xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * Check a long btree block header.  Return the address of the failing check,
56  * or NULL if everything is ok.
57  */
58 xfs_failaddr_t
59 __xfs_btree_check_lblock(
60 	struct xfs_btree_cur	*cur,
61 	struct xfs_btree_block	*block,
62 	int			level,
63 	struct xfs_buf		*bp)
64 {
65 	struct xfs_mount	*mp = cur->bc_mp;
66 	xfs_btnum_t		btnum = cur->bc_btnum;
67 	int			crc = xfs_has_crc(mp);
68 
69 	if (crc) {
70 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
71 			return __this_address;
72 		if (block->bb_u.l.bb_blkno !=
73 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
74 			return __this_address;
75 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
76 			return __this_address;
77 	}
78 
79 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
80 		return __this_address;
81 	if (be16_to_cpu(block->bb_level) != level)
82 		return __this_address;
83 	if (be16_to_cpu(block->bb_numrecs) >
84 	    cur->bc_ops->get_maxrecs(cur, level))
85 		return __this_address;
86 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
87 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
88 			level + 1))
89 		return __this_address;
90 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
91 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
92 			level + 1))
93 		return __this_address;
94 
95 	return NULL;
96 }
97 
98 /* Check a long btree block header. */
99 static int
100 xfs_btree_check_lblock(
101 	struct xfs_btree_cur	*cur,
102 	struct xfs_btree_block	*block,
103 	int			level,
104 	struct xfs_buf		*bp)
105 {
106 	struct xfs_mount	*mp = cur->bc_mp;
107 	xfs_failaddr_t		fa;
108 
109 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
110 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
111 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
112 		if (bp)
113 			trace_xfs_btree_corrupt(bp, _RET_IP_);
114 		return -EFSCORRUPTED;
115 	}
116 	return 0;
117 }
118 
119 /*
120  * Check a short btree block header.  Return the address of the failing check,
121  * or NULL if everything is ok.
122  */
123 xfs_failaddr_t
124 __xfs_btree_check_sblock(
125 	struct xfs_btree_cur	*cur,
126 	struct xfs_btree_block	*block,
127 	int			level,
128 	struct xfs_buf		*bp)
129 {
130 	struct xfs_mount	*mp = cur->bc_mp;
131 	xfs_btnum_t		btnum = cur->bc_btnum;
132 	int			crc = xfs_has_crc(mp);
133 
134 	if (crc) {
135 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
136 			return __this_address;
137 		if (block->bb_u.s.bb_blkno !=
138 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
139 			return __this_address;
140 	}
141 
142 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
143 		return __this_address;
144 	if (be16_to_cpu(block->bb_level) != level)
145 		return __this_address;
146 	if (be16_to_cpu(block->bb_numrecs) >
147 	    cur->bc_ops->get_maxrecs(cur, level))
148 		return __this_address;
149 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
150 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
151 			level + 1))
152 		return __this_address;
153 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
154 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
155 			level + 1))
156 		return __this_address;
157 
158 	return NULL;
159 }
160 
161 /* Check a short btree block header. */
162 STATIC int
163 xfs_btree_check_sblock(
164 	struct xfs_btree_cur	*cur,
165 	struct xfs_btree_block	*block,
166 	int			level,
167 	struct xfs_buf		*bp)
168 {
169 	struct xfs_mount	*mp = cur->bc_mp;
170 	xfs_failaddr_t		fa;
171 
172 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
173 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
174 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
175 		if (bp)
176 			trace_xfs_btree_corrupt(bp, _RET_IP_);
177 		return -EFSCORRUPTED;
178 	}
179 	return 0;
180 }
181 
182 /*
183  * Debug routine: check that block header is ok.
184  */
185 int
186 xfs_btree_check_block(
187 	struct xfs_btree_cur	*cur,	/* btree cursor */
188 	struct xfs_btree_block	*block,	/* generic btree block pointer */
189 	int			level,	/* level of the btree block */
190 	struct xfs_buf		*bp)	/* buffer containing block, if any */
191 {
192 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 		return xfs_btree_check_lblock(cur, block, level, bp);
194 	else
195 		return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197 
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
200 xfs_btree_check_lptr(
201 	struct xfs_btree_cur	*cur,
202 	xfs_fsblock_t		fsbno,
203 	int			level)
204 {
205 	if (level <= 0)
206 		return false;
207 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209 
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
212 xfs_btree_check_sptr(
213 	struct xfs_btree_cur	*cur,
214 	xfs_agblock_t		agbno,
215 	int			level)
216 {
217 	if (level <= 0)
218 		return false;
219 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
220 }
221 
222 /*
223  * Check that a given (indexed) btree pointer at a certain level of a
224  * btree is valid and doesn't point past where it should.
225  */
226 static int
227 xfs_btree_check_ptr(
228 	struct xfs_btree_cur		*cur,
229 	const union xfs_btree_ptr	*ptr,
230 	int				index,
231 	int				level)
232 {
233 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 				level))
236 			return 0;
237 		xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 				cur->bc_ino.ip->i_ino,
240 				cur->bc_ino.whichfork, cur->bc_btnum,
241 				level, index);
242 	} else {
243 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 				level))
245 			return 0;
246 		xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
249 				level, index);
250 	}
251 
252 	return -EFSCORRUPTED;
253 }
254 
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...)	(0)
259 #endif
260 
261 /*
262  * Calculate CRC on the whole btree block and stuff it into the
263  * long-form btree header.
264  *
265  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266  * it into the buffer so recovery knows what the last modification was that made
267  * it to disk.
268  */
269 void
270 xfs_btree_lblock_calc_crc(
271 	struct xfs_buf		*bp)
272 {
273 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
274 	struct xfs_buf_log_item	*bip = bp->b_log_item;
275 
276 	if (!xfs_has_crc(bp->b_mount))
277 		return;
278 	if (bip)
279 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282 
283 bool
284 xfs_btree_lblock_verify_crc(
285 	struct xfs_buf		*bp)
286 {
287 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
288 	struct xfs_mount	*mp = bp->b_mount;
289 
290 	if (xfs_has_crc(mp)) {
291 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 			return false;
293 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 	}
295 
296 	return true;
297 }
298 
299 /*
300  * Calculate CRC on the whole btree block and stuff it into the
301  * short-form btree header.
302  *
303  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304  * it into the buffer so recovery knows what the last modification was that made
305  * it to disk.
306  */
307 void
308 xfs_btree_sblock_calc_crc(
309 	struct xfs_buf		*bp)
310 {
311 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
312 	struct xfs_buf_log_item	*bip = bp->b_log_item;
313 
314 	if (!xfs_has_crc(bp->b_mount))
315 		return;
316 	if (bip)
317 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320 
321 bool
322 xfs_btree_sblock_verify_crc(
323 	struct xfs_buf		*bp)
324 {
325 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
326 	struct xfs_mount	*mp = bp->b_mount;
327 
328 	if (xfs_has_crc(mp)) {
329 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 			return false;
331 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 	}
333 
334 	return true;
335 }
336 
337 static int
338 xfs_btree_free_block(
339 	struct xfs_btree_cur	*cur,
340 	struct xfs_buf		*bp)
341 {
342 	int			error;
343 
344 	error = cur->bc_ops->free_block(cur, bp);
345 	if (!error) {
346 		xfs_trans_binval(cur->bc_tp, bp);
347 		XFS_BTREE_STATS_INC(cur, free);
348 	}
349 	return error;
350 }
351 
352 /*
353  * Delete the btree cursor.
354  */
355 void
356 xfs_btree_del_cursor(
357 	struct xfs_btree_cur	*cur,		/* btree cursor */
358 	int			error)		/* del because of error */
359 {
360 	int			i;		/* btree level */
361 
362 	/*
363 	 * Clear the buffer pointers and release the buffers. If we're doing
364 	 * this because of an error, inspect all of the entries in the bc_bufs
365 	 * array for buffers to be unlocked. This is because some of the btree
366 	 * code works from level n down to 0, and if we get an error along the
367 	 * way we won't have initialized all the entries down to 0.
368 	 */
369 	for (i = 0; i < cur->bc_nlevels; i++) {
370 		if (cur->bc_levels[i].bp)
371 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
372 		else if (!error)
373 			break;
374 	}
375 
376 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
377 	       xfs_is_shutdown(cur->bc_mp));
378 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
379 		kmem_free(cur->bc_ops);
380 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
381 		xfs_perag_put(cur->bc_ag.pag);
382 	kmem_cache_free(cur->bc_cache, cur);
383 }
384 
385 /*
386  * Duplicate the btree cursor.
387  * Allocate a new one, copy the record, re-get the buffers.
388  */
389 int					/* error */
390 xfs_btree_dup_cursor(
391 	struct xfs_btree_cur *cur,		/* input cursor */
392 	struct xfs_btree_cur **ncur)		/* output cursor */
393 {
394 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
395 	int		error;		/* error return value */
396 	int		i;		/* level number of btree block */
397 	xfs_mount_t	*mp;		/* mount structure for filesystem */
398 	struct xfs_btree_cur *new;		/* new cursor value */
399 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
400 
401 	tp = cur->bc_tp;
402 	mp = cur->bc_mp;
403 
404 	/*
405 	 * Allocate a new cursor like the old one.
406 	 */
407 	new = cur->bc_ops->dup_cursor(cur);
408 
409 	/*
410 	 * Copy the record currently in the cursor.
411 	 */
412 	new->bc_rec = cur->bc_rec;
413 
414 	/*
415 	 * For each level current, re-get the buffer and copy the ptr value.
416 	 */
417 	for (i = 0; i < new->bc_nlevels; i++) {
418 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
419 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
420 		bp = cur->bc_levels[i].bp;
421 		if (bp) {
422 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
423 						   xfs_buf_daddr(bp), mp->m_bsize,
424 						   0, &bp,
425 						   cur->bc_ops->buf_ops);
426 			if (error) {
427 				xfs_btree_del_cursor(new, error);
428 				*ncur = NULL;
429 				return error;
430 			}
431 		}
432 		new->bc_levels[i].bp = bp;
433 	}
434 	*ncur = new;
435 	return 0;
436 }
437 
438 /*
439  * XFS btree block layout and addressing:
440  *
441  * There are two types of blocks in the btree: leaf and non-leaf blocks.
442  *
443  * The leaf record start with a header then followed by records containing
444  * the values.  A non-leaf block also starts with the same header, and
445  * then first contains lookup keys followed by an equal number of pointers
446  * to the btree blocks at the previous level.
447  *
448  *		+--------+-------+-------+-------+-------+-------+-------+
449  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
450  *		+--------+-------+-------+-------+-------+-------+-------+
451  *
452  *		+--------+-------+-------+-------+-------+-------+-------+
453  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
454  *		+--------+-------+-------+-------+-------+-------+-------+
455  *
456  * The header is called struct xfs_btree_block for reasons better left unknown
457  * and comes in different versions for short (32bit) and long (64bit) block
458  * pointers.  The record and key structures are defined by the btree instances
459  * and opaque to the btree core.  The block pointers are simple disk endian
460  * integers, available in a short (32bit) and long (64bit) variant.
461  *
462  * The helpers below calculate the offset of a given record, key or pointer
463  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
464  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
465  * inside the btree block is done using indices starting at one, not zero!
466  *
467  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
468  * overlapping intervals.  In such a tree, records are still sorted lowest to
469  * highest and indexed by the smallest key value that refers to the record.
470  * However, nodes are different: each pointer has two associated keys -- one
471  * indexing the lowest key available in the block(s) below (the same behavior
472  * as the key in a regular btree) and another indexing the highest key
473  * available in the block(s) below.  Because records are /not/ sorted by the
474  * highest key, all leaf block updates require us to compute the highest key
475  * that matches any record in the leaf and to recursively update the high keys
476  * in the nodes going further up in the tree, if necessary.  Nodes look like
477  * this:
478  *
479  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
480  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
481  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
482  *
483  * To perform an interval query on an overlapped tree, perform the usual
484  * depth-first search and use the low and high keys to decide if we can skip
485  * that particular node.  If a leaf node is reached, return the records that
486  * intersect the interval.  Note that an interval query may return numerous
487  * entries.  For a non-overlapped tree, simply search for the record associated
488  * with the lowest key and iterate forward until a non-matching record is
489  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
490  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
491  * more detail.
492  *
493  * Why do we care about overlapping intervals?  Let's say you have a bunch of
494  * reverse mapping records on a reflink filesystem:
495  *
496  * 1: +- file A startblock B offset C length D -----------+
497  * 2:      +- file E startblock F offset G length H --------------+
498  * 3:      +- file I startblock F offset J length K --+
499  * 4:                                                        +- file L... --+
500  *
501  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
502  * we'd simply increment the length of record 1.  But how do we find the record
503  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
504  * record 3 because the keys are ordered first by startblock.  An interval
505  * query would return records 1 and 2 because they both overlap (B+D-1), and
506  * from that we can pick out record 1 as the appropriate left neighbor.
507  *
508  * In the non-overlapped case you can do a LE lookup and decrement the cursor
509  * because a record's interval must end before the next record.
510  */
511 
512 /*
513  * Return size of the btree block header for this btree instance.
514  */
515 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
516 {
517 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
518 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
519 			return XFS_BTREE_LBLOCK_CRC_LEN;
520 		return XFS_BTREE_LBLOCK_LEN;
521 	}
522 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
523 		return XFS_BTREE_SBLOCK_CRC_LEN;
524 	return XFS_BTREE_SBLOCK_LEN;
525 }
526 
527 /*
528  * Return size of btree block pointers for this btree instance.
529  */
530 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
531 {
532 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
533 		sizeof(__be64) : sizeof(__be32);
534 }
535 
536 /*
537  * Calculate offset of the n-th record in a btree block.
538  */
539 STATIC size_t
540 xfs_btree_rec_offset(
541 	struct xfs_btree_cur	*cur,
542 	int			n)
543 {
544 	return xfs_btree_block_len(cur) +
545 		(n - 1) * cur->bc_ops->rec_len;
546 }
547 
548 /*
549  * Calculate offset of the n-th key in a btree block.
550  */
551 STATIC size_t
552 xfs_btree_key_offset(
553 	struct xfs_btree_cur	*cur,
554 	int			n)
555 {
556 	return xfs_btree_block_len(cur) +
557 		(n - 1) * cur->bc_ops->key_len;
558 }
559 
560 /*
561  * Calculate offset of the n-th high key in a btree block.
562  */
563 STATIC size_t
564 xfs_btree_high_key_offset(
565 	struct xfs_btree_cur	*cur,
566 	int			n)
567 {
568 	return xfs_btree_block_len(cur) +
569 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
570 }
571 
572 /*
573  * Calculate offset of the n-th block pointer in a btree block.
574  */
575 STATIC size_t
576 xfs_btree_ptr_offset(
577 	struct xfs_btree_cur	*cur,
578 	int			n,
579 	int			level)
580 {
581 	return xfs_btree_block_len(cur) +
582 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
583 		(n - 1) * xfs_btree_ptr_len(cur);
584 }
585 
586 /*
587  * Return a pointer to the n-th record in the btree block.
588  */
589 union xfs_btree_rec *
590 xfs_btree_rec_addr(
591 	struct xfs_btree_cur	*cur,
592 	int			n,
593 	struct xfs_btree_block	*block)
594 {
595 	return (union xfs_btree_rec *)
596 		((char *)block + xfs_btree_rec_offset(cur, n));
597 }
598 
599 /*
600  * Return a pointer to the n-th key in the btree block.
601  */
602 union xfs_btree_key *
603 xfs_btree_key_addr(
604 	struct xfs_btree_cur	*cur,
605 	int			n,
606 	struct xfs_btree_block	*block)
607 {
608 	return (union xfs_btree_key *)
609 		((char *)block + xfs_btree_key_offset(cur, n));
610 }
611 
612 /*
613  * Return a pointer to the n-th high key in the btree block.
614  */
615 union xfs_btree_key *
616 xfs_btree_high_key_addr(
617 	struct xfs_btree_cur	*cur,
618 	int			n,
619 	struct xfs_btree_block	*block)
620 {
621 	return (union xfs_btree_key *)
622 		((char *)block + xfs_btree_high_key_offset(cur, n));
623 }
624 
625 /*
626  * Return a pointer to the n-th block pointer in the btree block.
627  */
628 union xfs_btree_ptr *
629 xfs_btree_ptr_addr(
630 	struct xfs_btree_cur	*cur,
631 	int			n,
632 	struct xfs_btree_block	*block)
633 {
634 	int			level = xfs_btree_get_level(block);
635 
636 	ASSERT(block->bb_level != 0);
637 
638 	return (union xfs_btree_ptr *)
639 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
640 }
641 
642 struct xfs_ifork *
643 xfs_btree_ifork_ptr(
644 	struct xfs_btree_cur	*cur)
645 {
646 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
647 
648 	if (cur->bc_flags & XFS_BTREE_STAGING)
649 		return cur->bc_ino.ifake->if_fork;
650 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
651 }
652 
653 /*
654  * Get the root block which is stored in the inode.
655  *
656  * For now this btree implementation assumes the btree root is always
657  * stored in the if_broot field of an inode fork.
658  */
659 STATIC struct xfs_btree_block *
660 xfs_btree_get_iroot(
661 	struct xfs_btree_cur	*cur)
662 {
663 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
664 
665 	return (struct xfs_btree_block *)ifp->if_broot;
666 }
667 
668 /*
669  * Retrieve the block pointer from the cursor at the given level.
670  * This may be an inode btree root or from a buffer.
671  */
672 struct xfs_btree_block *		/* generic btree block pointer */
673 xfs_btree_get_block(
674 	struct xfs_btree_cur	*cur,	/* btree cursor */
675 	int			level,	/* level in btree */
676 	struct xfs_buf		**bpp)	/* buffer containing the block */
677 {
678 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
679 	    (level == cur->bc_nlevels - 1)) {
680 		*bpp = NULL;
681 		return xfs_btree_get_iroot(cur);
682 	}
683 
684 	*bpp = cur->bc_levels[level].bp;
685 	return XFS_BUF_TO_BLOCK(*bpp);
686 }
687 
688 /*
689  * Change the cursor to point to the first record at the given level.
690  * Other levels are unaffected.
691  */
692 STATIC int				/* success=1, failure=0 */
693 xfs_btree_firstrec(
694 	struct xfs_btree_cur	*cur,	/* btree cursor */
695 	int			level)	/* level to change */
696 {
697 	struct xfs_btree_block	*block;	/* generic btree block pointer */
698 	struct xfs_buf		*bp;	/* buffer containing block */
699 
700 	/*
701 	 * Get the block pointer for this level.
702 	 */
703 	block = xfs_btree_get_block(cur, level, &bp);
704 	if (xfs_btree_check_block(cur, block, level, bp))
705 		return 0;
706 	/*
707 	 * It's empty, there is no such record.
708 	 */
709 	if (!block->bb_numrecs)
710 		return 0;
711 	/*
712 	 * Set the ptr value to 1, that's the first record/key.
713 	 */
714 	cur->bc_levels[level].ptr = 1;
715 	return 1;
716 }
717 
718 /*
719  * Change the cursor to point to the last record in the current block
720  * at the given level.  Other levels are unaffected.
721  */
722 STATIC int				/* success=1, failure=0 */
723 xfs_btree_lastrec(
724 	struct xfs_btree_cur	*cur,	/* btree cursor */
725 	int			level)	/* level to change */
726 {
727 	struct xfs_btree_block	*block;	/* generic btree block pointer */
728 	struct xfs_buf		*bp;	/* buffer containing block */
729 
730 	/*
731 	 * Get the block pointer for this level.
732 	 */
733 	block = xfs_btree_get_block(cur, level, &bp);
734 	if (xfs_btree_check_block(cur, block, level, bp))
735 		return 0;
736 	/*
737 	 * It's empty, there is no such record.
738 	 */
739 	if (!block->bb_numrecs)
740 		return 0;
741 	/*
742 	 * Set the ptr value to numrecs, that's the last record/key.
743 	 */
744 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
745 	return 1;
746 }
747 
748 /*
749  * Compute first and last byte offsets for the fields given.
750  * Interprets the offsets table, which contains struct field offsets.
751  */
752 void
753 xfs_btree_offsets(
754 	int64_t		fields,		/* bitmask of fields */
755 	const short	*offsets,	/* table of field offsets */
756 	int		nbits,		/* number of bits to inspect */
757 	int		*first,		/* output: first byte offset */
758 	int		*last)		/* output: last byte offset */
759 {
760 	int		i;		/* current bit number */
761 	int64_t		imask;		/* mask for current bit number */
762 
763 	ASSERT(fields != 0);
764 	/*
765 	 * Find the lowest bit, so the first byte offset.
766 	 */
767 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
768 		if (imask & fields) {
769 			*first = offsets[i];
770 			break;
771 		}
772 	}
773 	/*
774 	 * Find the highest bit, so the last byte offset.
775 	 */
776 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
777 		if (imask & fields) {
778 			*last = offsets[i + 1] - 1;
779 			break;
780 		}
781 	}
782 }
783 
784 /*
785  * Get a buffer for the block, return it read in.
786  * Long-form addressing.
787  */
788 int
789 xfs_btree_read_bufl(
790 	struct xfs_mount	*mp,		/* file system mount point */
791 	struct xfs_trans	*tp,		/* transaction pointer */
792 	xfs_fsblock_t		fsbno,		/* file system block number */
793 	struct xfs_buf		**bpp,		/* buffer for fsbno */
794 	int			refval,		/* ref count value for buffer */
795 	const struct xfs_buf_ops *ops)
796 {
797 	struct xfs_buf		*bp;		/* return value */
798 	xfs_daddr_t		d;		/* real disk block address */
799 	int			error;
800 
801 	if (!xfs_verify_fsbno(mp, fsbno))
802 		return -EFSCORRUPTED;
803 	d = XFS_FSB_TO_DADDR(mp, fsbno);
804 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
805 				   mp->m_bsize, 0, &bp, ops);
806 	if (error)
807 		return error;
808 	if (bp)
809 		xfs_buf_set_ref(bp, refval);
810 	*bpp = bp;
811 	return 0;
812 }
813 
814 /*
815  * Read-ahead the block, don't wait for it, don't return a buffer.
816  * Long-form addressing.
817  */
818 /* ARGSUSED */
819 void
820 xfs_btree_reada_bufl(
821 	struct xfs_mount	*mp,		/* file system mount point */
822 	xfs_fsblock_t		fsbno,		/* file system block number */
823 	xfs_extlen_t		count,		/* count of filesystem blocks */
824 	const struct xfs_buf_ops *ops)
825 {
826 	xfs_daddr_t		d;
827 
828 	ASSERT(fsbno != NULLFSBLOCK);
829 	d = XFS_FSB_TO_DADDR(mp, fsbno);
830 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
831 }
832 
833 /*
834  * Read-ahead the block, don't wait for it, don't return a buffer.
835  * Short-form addressing.
836  */
837 /* ARGSUSED */
838 void
839 xfs_btree_reada_bufs(
840 	struct xfs_mount	*mp,		/* file system mount point */
841 	xfs_agnumber_t		agno,		/* allocation group number */
842 	xfs_agblock_t		agbno,		/* allocation group block number */
843 	xfs_extlen_t		count,		/* count of filesystem blocks */
844 	const struct xfs_buf_ops *ops)
845 {
846 	xfs_daddr_t		d;
847 
848 	ASSERT(agno != NULLAGNUMBER);
849 	ASSERT(agbno != NULLAGBLOCK);
850 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
851 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
852 }
853 
854 STATIC int
855 xfs_btree_readahead_lblock(
856 	struct xfs_btree_cur	*cur,
857 	int			lr,
858 	struct xfs_btree_block	*block)
859 {
860 	int			rval = 0;
861 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
862 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
863 
864 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
865 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
866 				     cur->bc_ops->buf_ops);
867 		rval++;
868 	}
869 
870 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
871 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
872 				     cur->bc_ops->buf_ops);
873 		rval++;
874 	}
875 
876 	return rval;
877 }
878 
879 STATIC int
880 xfs_btree_readahead_sblock(
881 	struct xfs_btree_cur	*cur,
882 	int			lr,
883 	struct xfs_btree_block *block)
884 {
885 	int			rval = 0;
886 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
887 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
888 
889 
890 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
891 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
892 				     left, 1, cur->bc_ops->buf_ops);
893 		rval++;
894 	}
895 
896 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
897 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
898 				     right, 1, cur->bc_ops->buf_ops);
899 		rval++;
900 	}
901 
902 	return rval;
903 }
904 
905 /*
906  * Read-ahead btree blocks, at the given level.
907  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
908  */
909 STATIC int
910 xfs_btree_readahead(
911 	struct xfs_btree_cur	*cur,		/* btree cursor */
912 	int			lev,		/* level in btree */
913 	int			lr)		/* left/right bits */
914 {
915 	struct xfs_btree_block	*block;
916 
917 	/*
918 	 * No readahead needed if we are at the root level and the
919 	 * btree root is stored in the inode.
920 	 */
921 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
922 	    (lev == cur->bc_nlevels - 1))
923 		return 0;
924 
925 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
926 		return 0;
927 
928 	cur->bc_levels[lev].ra |= lr;
929 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
930 
931 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
932 		return xfs_btree_readahead_lblock(cur, lr, block);
933 	return xfs_btree_readahead_sblock(cur, lr, block);
934 }
935 
936 STATIC int
937 xfs_btree_ptr_to_daddr(
938 	struct xfs_btree_cur		*cur,
939 	const union xfs_btree_ptr	*ptr,
940 	xfs_daddr_t			*daddr)
941 {
942 	xfs_fsblock_t		fsbno;
943 	xfs_agblock_t		agbno;
944 	int			error;
945 
946 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
947 	if (error)
948 		return error;
949 
950 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
951 		fsbno = be64_to_cpu(ptr->l);
952 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
953 	} else {
954 		agbno = be32_to_cpu(ptr->s);
955 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
956 				agbno);
957 	}
958 
959 	return 0;
960 }
961 
962 /*
963  * Readahead @count btree blocks at the given @ptr location.
964  *
965  * We don't need to care about long or short form btrees here as we have a
966  * method of converting the ptr directly to a daddr available to us.
967  */
968 STATIC void
969 xfs_btree_readahead_ptr(
970 	struct xfs_btree_cur	*cur,
971 	union xfs_btree_ptr	*ptr,
972 	xfs_extlen_t		count)
973 {
974 	xfs_daddr_t		daddr;
975 
976 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
977 		return;
978 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
979 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981 
982 /*
983  * Set the buffer for level "lev" in the cursor to bp, releasing
984  * any previous buffer.
985  */
986 STATIC void
987 xfs_btree_setbuf(
988 	struct xfs_btree_cur	*cur,	/* btree cursor */
989 	int			lev,	/* level in btree */
990 	struct xfs_buf		*bp)	/* new buffer to set */
991 {
992 	struct xfs_btree_block	*b;	/* btree block */
993 
994 	if (cur->bc_levels[lev].bp)
995 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
996 	cur->bc_levels[lev].bp = bp;
997 	cur->bc_levels[lev].ra = 0;
998 
999 	b = XFS_BUF_TO_BLOCK(bp);
1000 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1003 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1005 	} else {
1006 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1008 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1010 	}
1011 }
1012 
1013 bool
1014 xfs_btree_ptr_is_null(
1015 	struct xfs_btree_cur		*cur,
1016 	const union xfs_btree_ptr	*ptr)
1017 {
1018 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 	else
1021 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023 
1024 void
1025 xfs_btree_set_ptr_null(
1026 	struct xfs_btree_cur	*cur,
1027 	union xfs_btree_ptr	*ptr)
1028 {
1029 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 	else
1032 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034 
1035 /*
1036  * Get/set/init sibling pointers
1037  */
1038 void
1039 xfs_btree_get_sibling(
1040 	struct xfs_btree_cur	*cur,
1041 	struct xfs_btree_block	*block,
1042 	union xfs_btree_ptr	*ptr,
1043 	int			lr)
1044 {
1045 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046 
1047 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 		if (lr == XFS_BB_RIGHTSIB)
1049 			ptr->l = block->bb_u.l.bb_rightsib;
1050 		else
1051 			ptr->l = block->bb_u.l.bb_leftsib;
1052 	} else {
1053 		if (lr == XFS_BB_RIGHTSIB)
1054 			ptr->s = block->bb_u.s.bb_rightsib;
1055 		else
1056 			ptr->s = block->bb_u.s.bb_leftsib;
1057 	}
1058 }
1059 
1060 void
1061 xfs_btree_set_sibling(
1062 	struct xfs_btree_cur		*cur,
1063 	struct xfs_btree_block		*block,
1064 	const union xfs_btree_ptr	*ptr,
1065 	int				lr)
1066 {
1067 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068 
1069 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 		if (lr == XFS_BB_RIGHTSIB)
1071 			block->bb_u.l.bb_rightsib = ptr->l;
1072 		else
1073 			block->bb_u.l.bb_leftsib = ptr->l;
1074 	} else {
1075 		if (lr == XFS_BB_RIGHTSIB)
1076 			block->bb_u.s.bb_rightsib = ptr->s;
1077 		else
1078 			block->bb_u.s.bb_leftsib = ptr->s;
1079 	}
1080 }
1081 
1082 void
1083 xfs_btree_init_block_int(
1084 	struct xfs_mount	*mp,
1085 	struct xfs_btree_block	*buf,
1086 	xfs_daddr_t		blkno,
1087 	xfs_btnum_t		btnum,
1088 	__u16			level,
1089 	__u16			numrecs,
1090 	__u64			owner,
1091 	unsigned int		flags)
1092 {
1093 	int			crc = xfs_has_crc(mp);
1094 	__u32			magic = xfs_btree_magic(crc, btnum);
1095 
1096 	buf->bb_magic = cpu_to_be32(magic);
1097 	buf->bb_level = cpu_to_be16(level);
1098 	buf->bb_numrecs = cpu_to_be16(numrecs);
1099 
1100 	if (flags & XFS_BTREE_LONG_PTRS) {
1101 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1102 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1103 		if (crc) {
1104 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1105 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1106 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1107 			buf->bb_u.l.bb_pad = 0;
1108 			buf->bb_u.l.bb_lsn = 0;
1109 		}
1110 	} else {
1111 		/* owner is a 32 bit value on short blocks */
1112 		__u32 __owner = (__u32)owner;
1113 
1114 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1115 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1116 		if (crc) {
1117 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1118 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1119 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1120 			buf->bb_u.s.bb_lsn = 0;
1121 		}
1122 	}
1123 }
1124 
1125 void
1126 xfs_btree_init_block(
1127 	struct xfs_mount *mp,
1128 	struct xfs_buf	*bp,
1129 	xfs_btnum_t	btnum,
1130 	__u16		level,
1131 	__u16		numrecs,
1132 	__u64		owner)
1133 {
1134 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1135 				 btnum, level, numrecs, owner, 0);
1136 }
1137 
1138 void
1139 xfs_btree_init_block_cur(
1140 	struct xfs_btree_cur	*cur,
1141 	struct xfs_buf		*bp,
1142 	int			level,
1143 	int			numrecs)
1144 {
1145 	__u64			owner;
1146 
1147 	/*
1148 	 * we can pull the owner from the cursor right now as the different
1149 	 * owners align directly with the pointer size of the btree. This may
1150 	 * change in future, but is safe for current users of the generic btree
1151 	 * code.
1152 	 */
1153 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1154 		owner = cur->bc_ino.ip->i_ino;
1155 	else
1156 		owner = cur->bc_ag.pag->pag_agno;
1157 
1158 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1159 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1160 				numrecs, owner, cur->bc_flags);
1161 }
1162 
1163 /*
1164  * Return true if ptr is the last record in the btree and
1165  * we need to track updates to this record.  The decision
1166  * will be further refined in the update_lastrec method.
1167  */
1168 STATIC int
1169 xfs_btree_is_lastrec(
1170 	struct xfs_btree_cur	*cur,
1171 	struct xfs_btree_block	*block,
1172 	int			level)
1173 {
1174 	union xfs_btree_ptr	ptr;
1175 
1176 	if (level > 0)
1177 		return 0;
1178 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1179 		return 0;
1180 
1181 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1182 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1183 		return 0;
1184 	return 1;
1185 }
1186 
1187 STATIC void
1188 xfs_btree_buf_to_ptr(
1189 	struct xfs_btree_cur	*cur,
1190 	struct xfs_buf		*bp,
1191 	union xfs_btree_ptr	*ptr)
1192 {
1193 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1194 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1195 					xfs_buf_daddr(bp)));
1196 	else {
1197 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1198 					xfs_buf_daddr(bp)));
1199 	}
1200 }
1201 
1202 STATIC void
1203 xfs_btree_set_refs(
1204 	struct xfs_btree_cur	*cur,
1205 	struct xfs_buf		*bp)
1206 {
1207 	switch (cur->bc_btnum) {
1208 	case XFS_BTNUM_BNO:
1209 	case XFS_BTNUM_CNT:
1210 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1211 		break;
1212 	case XFS_BTNUM_INO:
1213 	case XFS_BTNUM_FINO:
1214 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1215 		break;
1216 	case XFS_BTNUM_BMAP:
1217 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1218 		break;
1219 	case XFS_BTNUM_RMAP:
1220 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1221 		break;
1222 	case XFS_BTNUM_REFC:
1223 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1224 		break;
1225 	default:
1226 		ASSERT(0);
1227 	}
1228 }
1229 
1230 int
1231 xfs_btree_get_buf_block(
1232 	struct xfs_btree_cur		*cur,
1233 	const union xfs_btree_ptr	*ptr,
1234 	struct xfs_btree_block		**block,
1235 	struct xfs_buf			**bpp)
1236 {
1237 	struct xfs_mount	*mp = cur->bc_mp;
1238 	xfs_daddr_t		d;
1239 	int			error;
1240 
1241 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1242 	if (error)
1243 		return error;
1244 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1245 			0, bpp);
1246 	if (error)
1247 		return error;
1248 
1249 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 	*block = XFS_BUF_TO_BLOCK(*bpp);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Read in the buffer at the given ptr and return the buffer and
1256  * the block pointer within the buffer.
1257  */
1258 STATIC int
1259 xfs_btree_read_buf_block(
1260 	struct xfs_btree_cur		*cur,
1261 	const union xfs_btree_ptr	*ptr,
1262 	int				flags,
1263 	struct xfs_btree_block		**block,
1264 	struct xfs_buf			**bpp)
1265 {
1266 	struct xfs_mount	*mp = cur->bc_mp;
1267 	xfs_daddr_t		d;
1268 	int			error;
1269 
1270 	/* need to sort out how callers deal with failures first */
1271 	ASSERT(!(flags & XBF_TRYLOCK));
1272 
1273 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1274 	if (error)
1275 		return error;
1276 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1277 				   mp->m_bsize, flags, bpp,
1278 				   cur->bc_ops->buf_ops);
1279 	if (error)
1280 		return error;
1281 
1282 	xfs_btree_set_refs(cur, *bpp);
1283 	*block = XFS_BUF_TO_BLOCK(*bpp);
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Copy keys from one btree block to another.
1289  */
1290 void
1291 xfs_btree_copy_keys(
1292 	struct xfs_btree_cur		*cur,
1293 	union xfs_btree_key		*dst_key,
1294 	const union xfs_btree_key	*src_key,
1295 	int				numkeys)
1296 {
1297 	ASSERT(numkeys >= 0);
1298 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1299 }
1300 
1301 /*
1302  * Copy records from one btree block to another.
1303  */
1304 STATIC void
1305 xfs_btree_copy_recs(
1306 	struct xfs_btree_cur	*cur,
1307 	union xfs_btree_rec	*dst_rec,
1308 	union xfs_btree_rec	*src_rec,
1309 	int			numrecs)
1310 {
1311 	ASSERT(numrecs >= 0);
1312 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1313 }
1314 
1315 /*
1316  * Copy block pointers from one btree block to another.
1317  */
1318 void
1319 xfs_btree_copy_ptrs(
1320 	struct xfs_btree_cur	*cur,
1321 	union xfs_btree_ptr	*dst_ptr,
1322 	const union xfs_btree_ptr *src_ptr,
1323 	int			numptrs)
1324 {
1325 	ASSERT(numptrs >= 0);
1326 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1327 }
1328 
1329 /*
1330  * Shift keys one index left/right inside a single btree block.
1331  */
1332 STATIC void
1333 xfs_btree_shift_keys(
1334 	struct xfs_btree_cur	*cur,
1335 	union xfs_btree_key	*key,
1336 	int			dir,
1337 	int			numkeys)
1338 {
1339 	char			*dst_key;
1340 
1341 	ASSERT(numkeys >= 0);
1342 	ASSERT(dir == 1 || dir == -1);
1343 
1344 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1345 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1346 }
1347 
1348 /*
1349  * Shift records one index left/right inside a single btree block.
1350  */
1351 STATIC void
1352 xfs_btree_shift_recs(
1353 	struct xfs_btree_cur	*cur,
1354 	union xfs_btree_rec	*rec,
1355 	int			dir,
1356 	int			numrecs)
1357 {
1358 	char			*dst_rec;
1359 
1360 	ASSERT(numrecs >= 0);
1361 	ASSERT(dir == 1 || dir == -1);
1362 
1363 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1364 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1365 }
1366 
1367 /*
1368  * Shift block pointers one index left/right inside a single btree block.
1369  */
1370 STATIC void
1371 xfs_btree_shift_ptrs(
1372 	struct xfs_btree_cur	*cur,
1373 	union xfs_btree_ptr	*ptr,
1374 	int			dir,
1375 	int			numptrs)
1376 {
1377 	char			*dst_ptr;
1378 
1379 	ASSERT(numptrs >= 0);
1380 	ASSERT(dir == 1 || dir == -1);
1381 
1382 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1383 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1384 }
1385 
1386 /*
1387  * Log key values from the btree block.
1388  */
1389 STATIC void
1390 xfs_btree_log_keys(
1391 	struct xfs_btree_cur	*cur,
1392 	struct xfs_buf		*bp,
1393 	int			first,
1394 	int			last)
1395 {
1396 
1397 	if (bp) {
1398 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 		xfs_trans_log_buf(cur->bc_tp, bp,
1400 				  xfs_btree_key_offset(cur, first),
1401 				  xfs_btree_key_offset(cur, last + 1) - 1);
1402 	} else {
1403 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1404 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1405 	}
1406 }
1407 
1408 /*
1409  * Log record values from the btree block.
1410  */
1411 void
1412 xfs_btree_log_recs(
1413 	struct xfs_btree_cur	*cur,
1414 	struct xfs_buf		*bp,
1415 	int			first,
1416 	int			last)
1417 {
1418 
1419 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 	xfs_trans_log_buf(cur->bc_tp, bp,
1421 			  xfs_btree_rec_offset(cur, first),
1422 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1423 
1424 }
1425 
1426 /*
1427  * Log block pointer fields from a btree block (nonleaf).
1428  */
1429 STATIC void
1430 xfs_btree_log_ptrs(
1431 	struct xfs_btree_cur	*cur,	/* btree cursor */
1432 	struct xfs_buf		*bp,	/* buffer containing btree block */
1433 	int			first,	/* index of first pointer to log */
1434 	int			last)	/* index of last pointer to log */
1435 {
1436 
1437 	if (bp) {
1438 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1439 		int			level = xfs_btree_get_level(block);
1440 
1441 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 		xfs_trans_log_buf(cur->bc_tp, bp,
1443 				xfs_btree_ptr_offset(cur, first, level),
1444 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1445 	} else {
1446 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1447 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1448 	}
1449 
1450 }
1451 
1452 /*
1453  * Log fields from a btree block header.
1454  */
1455 void
1456 xfs_btree_log_block(
1457 	struct xfs_btree_cur	*cur,	/* btree cursor */
1458 	struct xfs_buf		*bp,	/* buffer containing btree block */
1459 	int			fields)	/* mask of fields: XFS_BB_... */
1460 {
1461 	int			first;	/* first byte offset logged */
1462 	int			last;	/* last byte offset logged */
1463 	static const short	soffsets[] = {	/* table of offsets (short) */
1464 		offsetof(struct xfs_btree_block, bb_magic),
1465 		offsetof(struct xfs_btree_block, bb_level),
1466 		offsetof(struct xfs_btree_block, bb_numrecs),
1467 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1468 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1469 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1470 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1471 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1472 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1473 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1474 		XFS_BTREE_SBLOCK_CRC_LEN
1475 	};
1476 	static const short	loffsets[] = {	/* table of offsets (long) */
1477 		offsetof(struct xfs_btree_block, bb_magic),
1478 		offsetof(struct xfs_btree_block, bb_level),
1479 		offsetof(struct xfs_btree_block, bb_numrecs),
1480 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1481 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1482 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1483 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1484 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1485 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1486 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1487 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1488 		XFS_BTREE_LBLOCK_CRC_LEN
1489 	};
1490 
1491 	if (bp) {
1492 		int nbits;
1493 
1494 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1495 			/*
1496 			 * We don't log the CRC when updating a btree
1497 			 * block but instead recreate it during log
1498 			 * recovery.  As the log buffers have checksums
1499 			 * of their own this is safe and avoids logging a crc
1500 			 * update in a lot of places.
1501 			 */
1502 			if (fields == XFS_BB_ALL_BITS)
1503 				fields = XFS_BB_ALL_BITS_CRC;
1504 			nbits = XFS_BB_NUM_BITS_CRC;
1505 		} else {
1506 			nbits = XFS_BB_NUM_BITS;
1507 		}
1508 		xfs_btree_offsets(fields,
1509 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1510 					loffsets : soffsets,
1511 				  nbits, &first, &last);
1512 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1513 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1514 	} else {
1515 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1516 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1517 	}
1518 }
1519 
1520 /*
1521  * Increment cursor by one record at the level.
1522  * For nonzero levels the leaf-ward information is untouched.
1523  */
1524 int						/* error */
1525 xfs_btree_increment(
1526 	struct xfs_btree_cur	*cur,
1527 	int			level,
1528 	int			*stat)		/* success/failure */
1529 {
1530 	struct xfs_btree_block	*block;
1531 	union xfs_btree_ptr	ptr;
1532 	struct xfs_buf		*bp;
1533 	int			error;		/* error return value */
1534 	int			lev;
1535 
1536 	ASSERT(level < cur->bc_nlevels);
1537 
1538 	/* Read-ahead to the right at this level. */
1539 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1540 
1541 	/* Get a pointer to the btree block. */
1542 	block = xfs_btree_get_block(cur, level, &bp);
1543 
1544 #ifdef DEBUG
1545 	error = xfs_btree_check_block(cur, block, level, bp);
1546 	if (error)
1547 		goto error0;
1548 #endif
1549 
1550 	/* We're done if we remain in the block after the increment. */
1551 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1552 		goto out1;
1553 
1554 	/* Fail if we just went off the right edge of the tree. */
1555 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1556 	if (xfs_btree_ptr_is_null(cur, &ptr))
1557 		goto out0;
1558 
1559 	XFS_BTREE_STATS_INC(cur, increment);
1560 
1561 	/*
1562 	 * March up the tree incrementing pointers.
1563 	 * Stop when we don't go off the right edge of a block.
1564 	 */
1565 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1566 		block = xfs_btree_get_block(cur, lev, &bp);
1567 
1568 #ifdef DEBUG
1569 		error = xfs_btree_check_block(cur, block, lev, bp);
1570 		if (error)
1571 			goto error0;
1572 #endif
1573 
1574 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1575 			break;
1576 
1577 		/* Read-ahead the right block for the next loop. */
1578 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1579 	}
1580 
1581 	/*
1582 	 * If we went off the root then we are either seriously
1583 	 * confused or have the tree root in an inode.
1584 	 */
1585 	if (lev == cur->bc_nlevels) {
1586 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1587 			goto out0;
1588 		ASSERT(0);
1589 		error = -EFSCORRUPTED;
1590 		goto error0;
1591 	}
1592 	ASSERT(lev < cur->bc_nlevels);
1593 
1594 	/*
1595 	 * Now walk back down the tree, fixing up the cursor's buffer
1596 	 * pointers and key numbers.
1597 	 */
1598 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1599 		union xfs_btree_ptr	*ptrp;
1600 
1601 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1602 		--lev;
1603 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1604 		if (error)
1605 			goto error0;
1606 
1607 		xfs_btree_setbuf(cur, lev, bp);
1608 		cur->bc_levels[lev].ptr = 1;
1609 	}
1610 out1:
1611 	*stat = 1;
1612 	return 0;
1613 
1614 out0:
1615 	*stat = 0;
1616 	return 0;
1617 
1618 error0:
1619 	return error;
1620 }
1621 
1622 /*
1623  * Decrement cursor by one record at the level.
1624  * For nonzero levels the leaf-ward information is untouched.
1625  */
1626 int						/* error */
1627 xfs_btree_decrement(
1628 	struct xfs_btree_cur	*cur,
1629 	int			level,
1630 	int			*stat)		/* success/failure */
1631 {
1632 	struct xfs_btree_block	*block;
1633 	struct xfs_buf		*bp;
1634 	int			error;		/* error return value */
1635 	int			lev;
1636 	union xfs_btree_ptr	ptr;
1637 
1638 	ASSERT(level < cur->bc_nlevels);
1639 
1640 	/* Read-ahead to the left at this level. */
1641 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1642 
1643 	/* We're done if we remain in the block after the decrement. */
1644 	if (--cur->bc_levels[level].ptr > 0)
1645 		goto out1;
1646 
1647 	/* Get a pointer to the btree block. */
1648 	block = xfs_btree_get_block(cur, level, &bp);
1649 
1650 #ifdef DEBUG
1651 	error = xfs_btree_check_block(cur, block, level, bp);
1652 	if (error)
1653 		goto error0;
1654 #endif
1655 
1656 	/* Fail if we just went off the left edge of the tree. */
1657 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1658 	if (xfs_btree_ptr_is_null(cur, &ptr))
1659 		goto out0;
1660 
1661 	XFS_BTREE_STATS_INC(cur, decrement);
1662 
1663 	/*
1664 	 * March up the tree decrementing pointers.
1665 	 * Stop when we don't go off the left edge of a block.
1666 	 */
1667 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1668 		if (--cur->bc_levels[lev].ptr > 0)
1669 			break;
1670 		/* Read-ahead the left block for the next loop. */
1671 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1672 	}
1673 
1674 	/*
1675 	 * If we went off the root then we are seriously confused.
1676 	 * or the root of the tree is in an inode.
1677 	 */
1678 	if (lev == cur->bc_nlevels) {
1679 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1680 			goto out0;
1681 		ASSERT(0);
1682 		error = -EFSCORRUPTED;
1683 		goto error0;
1684 	}
1685 	ASSERT(lev < cur->bc_nlevels);
1686 
1687 	/*
1688 	 * Now walk back down the tree, fixing up the cursor's buffer
1689 	 * pointers and key numbers.
1690 	 */
1691 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1692 		union xfs_btree_ptr	*ptrp;
1693 
1694 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1695 		--lev;
1696 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1697 		if (error)
1698 			goto error0;
1699 		xfs_btree_setbuf(cur, lev, bp);
1700 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1701 	}
1702 out1:
1703 	*stat = 1;
1704 	return 0;
1705 
1706 out0:
1707 	*stat = 0;
1708 	return 0;
1709 
1710 error0:
1711 	return error;
1712 }
1713 
1714 int
1715 xfs_btree_lookup_get_block(
1716 	struct xfs_btree_cur		*cur,	/* btree cursor */
1717 	int				level,	/* level in the btree */
1718 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1719 	struct xfs_btree_block		**blkp) /* return btree block */
1720 {
1721 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1722 	xfs_daddr_t		daddr;
1723 	int			error = 0;
1724 
1725 	/* special case the root block if in an inode */
1726 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1727 	    (level == cur->bc_nlevels - 1)) {
1728 		*blkp = xfs_btree_get_iroot(cur);
1729 		return 0;
1730 	}
1731 
1732 	/*
1733 	 * If the old buffer at this level for the disk address we are
1734 	 * looking for re-use it.
1735 	 *
1736 	 * Otherwise throw it away and get a new one.
1737 	 */
1738 	bp = cur->bc_levels[level].bp;
1739 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1740 	if (error)
1741 		return error;
1742 	if (bp && xfs_buf_daddr(bp) == daddr) {
1743 		*blkp = XFS_BUF_TO_BLOCK(bp);
1744 		return 0;
1745 	}
1746 
1747 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1748 	if (error)
1749 		return error;
1750 
1751 	/* Check the inode owner since the verifiers don't. */
1752 	if (xfs_has_crc(cur->bc_mp) &&
1753 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1754 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1755 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1756 			cur->bc_ino.ip->i_ino)
1757 		goto out_bad;
1758 
1759 	/* Did we get the level we were looking for? */
1760 	if (be16_to_cpu((*blkp)->bb_level) != level)
1761 		goto out_bad;
1762 
1763 	/* Check that internal nodes have at least one record. */
1764 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1765 		goto out_bad;
1766 
1767 	xfs_btree_setbuf(cur, level, bp);
1768 	return 0;
1769 
1770 out_bad:
1771 	*blkp = NULL;
1772 	xfs_buf_mark_corrupt(bp);
1773 	xfs_trans_brelse(cur->bc_tp, bp);
1774 	return -EFSCORRUPTED;
1775 }
1776 
1777 /*
1778  * Get current search key.  For level 0 we don't actually have a key
1779  * structure so we make one up from the record.  For all other levels
1780  * we just return the right key.
1781  */
1782 STATIC union xfs_btree_key *
1783 xfs_lookup_get_search_key(
1784 	struct xfs_btree_cur	*cur,
1785 	int			level,
1786 	int			keyno,
1787 	struct xfs_btree_block	*block,
1788 	union xfs_btree_key	*kp)
1789 {
1790 	if (level == 0) {
1791 		cur->bc_ops->init_key_from_rec(kp,
1792 				xfs_btree_rec_addr(cur, keyno, block));
1793 		return kp;
1794 	}
1795 
1796 	return xfs_btree_key_addr(cur, keyno, block);
1797 }
1798 
1799 /*
1800  * Lookup the record.  The cursor is made to point to it, based on dir.
1801  * stat is set to 0 if can't find any such record, 1 for success.
1802  */
1803 int					/* error */
1804 xfs_btree_lookup(
1805 	struct xfs_btree_cur	*cur,	/* btree cursor */
1806 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1807 	int			*stat)	/* success/failure */
1808 {
1809 	struct xfs_btree_block	*block;	/* current btree block */
1810 	int64_t			diff;	/* difference for the current key */
1811 	int			error;	/* error return value */
1812 	int			keyno;	/* current key number */
1813 	int			level;	/* level in the btree */
1814 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1815 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1816 
1817 	XFS_BTREE_STATS_INC(cur, lookup);
1818 
1819 	/* No such thing as a zero-level tree. */
1820 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1821 		return -EFSCORRUPTED;
1822 
1823 	block = NULL;
1824 	keyno = 0;
1825 
1826 	/* initialise start pointer from cursor */
1827 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1828 	pp = &ptr;
1829 
1830 	/*
1831 	 * Iterate over each level in the btree, starting at the root.
1832 	 * For each level above the leaves, find the key we need, based
1833 	 * on the lookup record, then follow the corresponding block
1834 	 * pointer down to the next level.
1835 	 */
1836 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1837 		/* Get the block we need to do the lookup on. */
1838 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1839 		if (error)
1840 			goto error0;
1841 
1842 		if (diff == 0) {
1843 			/*
1844 			 * If we already had a key match at a higher level, we
1845 			 * know we need to use the first entry in this block.
1846 			 */
1847 			keyno = 1;
1848 		} else {
1849 			/* Otherwise search this block. Do a binary search. */
1850 
1851 			int	high;	/* high entry number */
1852 			int	low;	/* low entry number */
1853 
1854 			/* Set low and high entry numbers, 1-based. */
1855 			low = 1;
1856 			high = xfs_btree_get_numrecs(block);
1857 			if (!high) {
1858 				/* Block is empty, must be an empty leaf. */
1859 				if (level != 0 || cur->bc_nlevels != 1) {
1860 					XFS_CORRUPTION_ERROR(__func__,
1861 							XFS_ERRLEVEL_LOW,
1862 							cur->bc_mp, block,
1863 							sizeof(*block));
1864 					return -EFSCORRUPTED;
1865 				}
1866 
1867 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1868 				*stat = 0;
1869 				return 0;
1870 			}
1871 
1872 			/* Binary search the block. */
1873 			while (low <= high) {
1874 				union xfs_btree_key	key;
1875 				union xfs_btree_key	*kp;
1876 
1877 				XFS_BTREE_STATS_INC(cur, compare);
1878 
1879 				/* keyno is average of low and high. */
1880 				keyno = (low + high) >> 1;
1881 
1882 				/* Get current search key */
1883 				kp = xfs_lookup_get_search_key(cur, level,
1884 						keyno, block, &key);
1885 
1886 				/*
1887 				 * Compute difference to get next direction:
1888 				 *  - less than, move right
1889 				 *  - greater than, move left
1890 				 *  - equal, we're done
1891 				 */
1892 				diff = cur->bc_ops->key_diff(cur, kp);
1893 				if (diff < 0)
1894 					low = keyno + 1;
1895 				else if (diff > 0)
1896 					high = keyno - 1;
1897 				else
1898 					break;
1899 			}
1900 		}
1901 
1902 		/*
1903 		 * If there are more levels, set up for the next level
1904 		 * by getting the block number and filling in the cursor.
1905 		 */
1906 		if (level > 0) {
1907 			/*
1908 			 * If we moved left, need the previous key number,
1909 			 * unless there isn't one.
1910 			 */
1911 			if (diff > 0 && --keyno < 1)
1912 				keyno = 1;
1913 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1914 
1915 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1916 			if (error)
1917 				goto error0;
1918 
1919 			cur->bc_levels[level].ptr = keyno;
1920 		}
1921 	}
1922 
1923 	/* Done with the search. See if we need to adjust the results. */
1924 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1925 		keyno++;
1926 		/*
1927 		 * If ge search and we went off the end of the block, but it's
1928 		 * not the last block, we're in the wrong block.
1929 		 */
1930 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1931 		if (dir == XFS_LOOKUP_GE &&
1932 		    keyno > xfs_btree_get_numrecs(block) &&
1933 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1934 			int	i;
1935 
1936 			cur->bc_levels[0].ptr = keyno;
1937 			error = xfs_btree_increment(cur, 0, &i);
1938 			if (error)
1939 				goto error0;
1940 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1941 				return -EFSCORRUPTED;
1942 			*stat = 1;
1943 			return 0;
1944 		}
1945 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1946 		keyno--;
1947 	cur->bc_levels[0].ptr = keyno;
1948 
1949 	/* Return if we succeeded or not. */
1950 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1951 		*stat = 0;
1952 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1953 		*stat = 1;
1954 	else
1955 		*stat = 0;
1956 	return 0;
1957 
1958 error0:
1959 	return error;
1960 }
1961 
1962 /* Find the high key storage area from a regular key. */
1963 union xfs_btree_key *
1964 xfs_btree_high_key_from_key(
1965 	struct xfs_btree_cur	*cur,
1966 	union xfs_btree_key	*key)
1967 {
1968 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969 	return (union xfs_btree_key *)((char *)key +
1970 			(cur->bc_ops->key_len / 2));
1971 }
1972 
1973 /* Determine the low (and high if overlapped) keys of a leaf block */
1974 STATIC void
1975 xfs_btree_get_leaf_keys(
1976 	struct xfs_btree_cur	*cur,
1977 	struct xfs_btree_block	*block,
1978 	union xfs_btree_key	*key)
1979 {
1980 	union xfs_btree_key	max_hkey;
1981 	union xfs_btree_key	hkey;
1982 	union xfs_btree_rec	*rec;
1983 	union xfs_btree_key	*high;
1984 	int			n;
1985 
1986 	rec = xfs_btree_rec_addr(cur, 1, block);
1987 	cur->bc_ops->init_key_from_rec(key, rec);
1988 
1989 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990 
1991 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993 			rec = xfs_btree_rec_addr(cur, n, block);
1994 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996 					> 0)
1997 				max_hkey = hkey;
1998 		}
1999 
2000 		high = xfs_btree_high_key_from_key(cur, key);
2001 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002 	}
2003 }
2004 
2005 /* Determine the low (and high if overlapped) keys of a node block */
2006 STATIC void
2007 xfs_btree_get_node_keys(
2008 	struct xfs_btree_cur	*cur,
2009 	struct xfs_btree_block	*block,
2010 	union xfs_btree_key	*key)
2011 {
2012 	union xfs_btree_key	*hkey;
2013 	union xfs_btree_key	*max_hkey;
2014 	union xfs_btree_key	*high;
2015 	int			n;
2016 
2017 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019 				cur->bc_ops->key_len / 2);
2020 
2021 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 			hkey = xfs_btree_high_key_addr(cur, n, block);
2024 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025 				max_hkey = hkey;
2026 		}
2027 
2028 		high = xfs_btree_high_key_from_key(cur, key);
2029 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030 	} else {
2031 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032 				cur->bc_ops->key_len);
2033 	}
2034 }
2035 
2036 /* Derive the keys for any btree block. */
2037 void
2038 xfs_btree_get_keys(
2039 	struct xfs_btree_cur	*cur,
2040 	struct xfs_btree_block	*block,
2041 	union xfs_btree_key	*key)
2042 {
2043 	if (be16_to_cpu(block->bb_level) == 0)
2044 		xfs_btree_get_leaf_keys(cur, block, key);
2045 	else
2046 		xfs_btree_get_node_keys(cur, block, key);
2047 }
2048 
2049 /*
2050  * Decide if we need to update the parent keys of a btree block.  For
2051  * a standard btree this is only necessary if we're updating the first
2052  * record/key.  For an overlapping btree, we must always update the
2053  * keys because the highest key can be in any of the records or keys
2054  * in the block.
2055  */
2056 static inline bool
2057 xfs_btree_needs_key_update(
2058 	struct xfs_btree_cur	*cur,
2059 	int			ptr)
2060 {
2061 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062 }
2063 
2064 /*
2065  * Update the low and high parent keys of the given level, progressing
2066  * towards the root.  If force_all is false, stop if the keys for a given
2067  * level do not need updating.
2068  */
2069 STATIC int
2070 __xfs_btree_updkeys(
2071 	struct xfs_btree_cur	*cur,
2072 	int			level,
2073 	struct xfs_btree_block	*block,
2074 	struct xfs_buf		*bp0,
2075 	bool			force_all)
2076 {
2077 	union xfs_btree_key	key;	/* keys from current level */
2078 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2079 	union xfs_btree_key	*hkey;
2080 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2081 	union xfs_btree_key	*nhkey;
2082 	struct xfs_buf		*bp;
2083 	int			ptr;
2084 
2085 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086 
2087 	/* Exit if there aren't any parent levels to update. */
2088 	if (level + 1 >= cur->bc_nlevels)
2089 		return 0;
2090 
2091 	trace_xfs_btree_updkeys(cur, level, bp0);
2092 
2093 	lkey = &key;
2094 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2095 	xfs_btree_get_keys(cur, block, lkey);
2096 	for (level++; level < cur->bc_nlevels; level++) {
2097 #ifdef DEBUG
2098 		int		error;
2099 #endif
2100 		block = xfs_btree_get_block(cur, level, &bp);
2101 		trace_xfs_btree_updkeys(cur, level, bp);
2102 #ifdef DEBUG
2103 		error = xfs_btree_check_block(cur, block, level, bp);
2104 		if (error)
2105 			return error;
2106 #endif
2107 		ptr = cur->bc_levels[level].ptr;
2108 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2109 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2110 		if (!force_all &&
2111 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2112 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2113 			break;
2114 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2115 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2116 		if (level + 1 >= cur->bc_nlevels)
2117 			break;
2118 		xfs_btree_get_node_keys(cur, block, lkey);
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 /* Update all the keys from some level in cursor back to the root. */
2125 STATIC int
2126 xfs_btree_updkeys_force(
2127 	struct xfs_btree_cur	*cur,
2128 	int			level)
2129 {
2130 	struct xfs_buf		*bp;
2131 	struct xfs_btree_block	*block;
2132 
2133 	block = xfs_btree_get_block(cur, level, &bp);
2134 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2135 }
2136 
2137 /*
2138  * Update the parent keys of the given level, progressing towards the root.
2139  */
2140 STATIC int
2141 xfs_btree_update_keys(
2142 	struct xfs_btree_cur	*cur,
2143 	int			level)
2144 {
2145 	struct xfs_btree_block	*block;
2146 	struct xfs_buf		*bp;
2147 	union xfs_btree_key	*kp;
2148 	union xfs_btree_key	key;
2149 	int			ptr;
2150 
2151 	ASSERT(level >= 0);
2152 
2153 	block = xfs_btree_get_block(cur, level, &bp);
2154 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2155 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2156 
2157 	/*
2158 	 * Go up the tree from this level toward the root.
2159 	 * At each level, update the key value to the value input.
2160 	 * Stop when we reach a level where the cursor isn't pointing
2161 	 * at the first entry in the block.
2162 	 */
2163 	xfs_btree_get_keys(cur, block, &key);
2164 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2165 #ifdef DEBUG
2166 		int		error;
2167 #endif
2168 		block = xfs_btree_get_block(cur, level, &bp);
2169 #ifdef DEBUG
2170 		error = xfs_btree_check_block(cur, block, level, bp);
2171 		if (error)
2172 			return error;
2173 #endif
2174 		ptr = cur->bc_levels[level].ptr;
2175 		kp = xfs_btree_key_addr(cur, ptr, block);
2176 		xfs_btree_copy_keys(cur, kp, &key, 1);
2177 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Update the record referred to by cur to the value in the
2185  * given record. This either works (return 0) or gets an
2186  * EFSCORRUPTED error.
2187  */
2188 int
2189 xfs_btree_update(
2190 	struct xfs_btree_cur	*cur,
2191 	union xfs_btree_rec	*rec)
2192 {
2193 	struct xfs_btree_block	*block;
2194 	struct xfs_buf		*bp;
2195 	int			error;
2196 	int			ptr;
2197 	union xfs_btree_rec	*rp;
2198 
2199 	/* Pick up the current block. */
2200 	block = xfs_btree_get_block(cur, 0, &bp);
2201 
2202 #ifdef DEBUG
2203 	error = xfs_btree_check_block(cur, block, 0, bp);
2204 	if (error)
2205 		goto error0;
2206 #endif
2207 	/* Get the address of the rec to be updated. */
2208 	ptr = cur->bc_levels[0].ptr;
2209 	rp = xfs_btree_rec_addr(cur, ptr, block);
2210 
2211 	/* Fill in the new contents and log them. */
2212 	xfs_btree_copy_recs(cur, rp, rec, 1);
2213 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2214 
2215 	/*
2216 	 * If we are tracking the last record in the tree and
2217 	 * we are at the far right edge of the tree, update it.
2218 	 */
2219 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2220 		cur->bc_ops->update_lastrec(cur, block, rec,
2221 					    ptr, LASTREC_UPDATE);
2222 	}
2223 
2224 	/* Pass new key value up to our parent. */
2225 	if (xfs_btree_needs_key_update(cur, ptr)) {
2226 		error = xfs_btree_update_keys(cur, 0);
2227 		if (error)
2228 			goto error0;
2229 	}
2230 
2231 	return 0;
2232 
2233 error0:
2234 	return error;
2235 }
2236 
2237 /*
2238  * Move 1 record left from cur/level if possible.
2239  * Update cur to reflect the new path.
2240  */
2241 STATIC int					/* error */
2242 xfs_btree_lshift(
2243 	struct xfs_btree_cur	*cur,
2244 	int			level,
2245 	int			*stat)		/* success/failure */
2246 {
2247 	struct xfs_buf		*lbp;		/* left buffer pointer */
2248 	struct xfs_btree_block	*left;		/* left btree block */
2249 	int			lrecs;		/* left record count */
2250 	struct xfs_buf		*rbp;		/* right buffer pointer */
2251 	struct xfs_btree_block	*right;		/* right btree block */
2252 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2253 	int			rrecs;		/* right record count */
2254 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2255 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2256 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2257 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2258 	int			error;		/* error return value */
2259 	int			i;
2260 
2261 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2262 	    level == cur->bc_nlevels - 1)
2263 		goto out0;
2264 
2265 	/* Set up variables for this block as "right". */
2266 	right = xfs_btree_get_block(cur, level, &rbp);
2267 
2268 #ifdef DEBUG
2269 	error = xfs_btree_check_block(cur, right, level, rbp);
2270 	if (error)
2271 		goto error0;
2272 #endif
2273 
2274 	/* If we've got no left sibling then we can't shift an entry left. */
2275 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2276 	if (xfs_btree_ptr_is_null(cur, &lptr))
2277 		goto out0;
2278 
2279 	/*
2280 	 * If the cursor entry is the one that would be moved, don't
2281 	 * do it... it's too complicated.
2282 	 */
2283 	if (cur->bc_levels[level].ptr <= 1)
2284 		goto out0;
2285 
2286 	/* Set up the left neighbor as "left". */
2287 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2288 	if (error)
2289 		goto error0;
2290 
2291 	/* If it's full, it can't take another entry. */
2292 	lrecs = xfs_btree_get_numrecs(left);
2293 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2294 		goto out0;
2295 
2296 	rrecs = xfs_btree_get_numrecs(right);
2297 
2298 	/*
2299 	 * We add one entry to the left side and remove one for the right side.
2300 	 * Account for it here, the changes will be updated on disk and logged
2301 	 * later.
2302 	 */
2303 	lrecs++;
2304 	rrecs--;
2305 
2306 	XFS_BTREE_STATS_INC(cur, lshift);
2307 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2308 
2309 	/*
2310 	 * If non-leaf, copy a key and a ptr to the left block.
2311 	 * Log the changes to the left block.
2312 	 */
2313 	if (level > 0) {
2314 		/* It's a non-leaf.  Move keys and pointers. */
2315 		union xfs_btree_key	*lkp;	/* left btree key */
2316 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2317 
2318 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2319 		rkp = xfs_btree_key_addr(cur, 1, right);
2320 
2321 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2322 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2323 
2324 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2325 		if (error)
2326 			goto error0;
2327 
2328 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2329 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2330 
2331 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2332 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2333 
2334 		ASSERT(cur->bc_ops->keys_inorder(cur,
2335 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2336 	} else {
2337 		/* It's a leaf.  Move records.  */
2338 		union xfs_btree_rec	*lrp;	/* left record pointer */
2339 
2340 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2341 		rrp = xfs_btree_rec_addr(cur, 1, right);
2342 
2343 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2344 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2345 
2346 		ASSERT(cur->bc_ops->recs_inorder(cur,
2347 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2348 	}
2349 
2350 	xfs_btree_set_numrecs(left, lrecs);
2351 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2352 
2353 	xfs_btree_set_numrecs(right, rrecs);
2354 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2355 
2356 	/*
2357 	 * Slide the contents of right down one entry.
2358 	 */
2359 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2360 	if (level > 0) {
2361 		/* It's a nonleaf. operate on keys and ptrs */
2362 		for (i = 0; i < rrecs; i++) {
2363 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2364 			if (error)
2365 				goto error0;
2366 		}
2367 
2368 		xfs_btree_shift_keys(cur,
2369 				xfs_btree_key_addr(cur, 2, right),
2370 				-1, rrecs);
2371 		xfs_btree_shift_ptrs(cur,
2372 				xfs_btree_ptr_addr(cur, 2, right),
2373 				-1, rrecs);
2374 
2375 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2376 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2377 	} else {
2378 		/* It's a leaf. operate on records */
2379 		xfs_btree_shift_recs(cur,
2380 			xfs_btree_rec_addr(cur, 2, right),
2381 			-1, rrecs);
2382 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2383 	}
2384 
2385 	/*
2386 	 * Using a temporary cursor, update the parent key values of the
2387 	 * block on the left.
2388 	 */
2389 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2390 		error = xfs_btree_dup_cursor(cur, &tcur);
2391 		if (error)
2392 			goto error0;
2393 		i = xfs_btree_firstrec(tcur, level);
2394 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2395 			error = -EFSCORRUPTED;
2396 			goto error0;
2397 		}
2398 
2399 		error = xfs_btree_decrement(tcur, level, &i);
2400 		if (error)
2401 			goto error1;
2402 
2403 		/* Update the parent high keys of the left block, if needed. */
2404 		error = xfs_btree_update_keys(tcur, level);
2405 		if (error)
2406 			goto error1;
2407 
2408 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2409 	}
2410 
2411 	/* Update the parent keys of the right block. */
2412 	error = xfs_btree_update_keys(cur, level);
2413 	if (error)
2414 		goto error0;
2415 
2416 	/* Slide the cursor value left one. */
2417 	cur->bc_levels[level].ptr--;
2418 
2419 	*stat = 1;
2420 	return 0;
2421 
2422 out0:
2423 	*stat = 0;
2424 	return 0;
2425 
2426 error0:
2427 	return error;
2428 
2429 error1:
2430 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2431 	return error;
2432 }
2433 
2434 /*
2435  * Move 1 record right from cur/level if possible.
2436  * Update cur to reflect the new path.
2437  */
2438 STATIC int					/* error */
2439 xfs_btree_rshift(
2440 	struct xfs_btree_cur	*cur,
2441 	int			level,
2442 	int			*stat)		/* success/failure */
2443 {
2444 	struct xfs_buf		*lbp;		/* left buffer pointer */
2445 	struct xfs_btree_block	*left;		/* left btree block */
2446 	struct xfs_buf		*rbp;		/* right buffer pointer */
2447 	struct xfs_btree_block	*right;		/* right btree block */
2448 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2449 	union xfs_btree_ptr	rptr;		/* right block pointer */
2450 	union xfs_btree_key	*rkp;		/* right btree key */
2451 	int			rrecs;		/* right record count */
2452 	int			lrecs;		/* left record count */
2453 	int			error;		/* error return value */
2454 	int			i;		/* loop counter */
2455 
2456 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2457 	    (level == cur->bc_nlevels - 1))
2458 		goto out0;
2459 
2460 	/* Set up variables for this block as "left". */
2461 	left = xfs_btree_get_block(cur, level, &lbp);
2462 
2463 #ifdef DEBUG
2464 	error = xfs_btree_check_block(cur, left, level, lbp);
2465 	if (error)
2466 		goto error0;
2467 #endif
2468 
2469 	/* If we've got no right sibling then we can't shift an entry right. */
2470 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2471 	if (xfs_btree_ptr_is_null(cur, &rptr))
2472 		goto out0;
2473 
2474 	/*
2475 	 * If the cursor entry is the one that would be moved, don't
2476 	 * do it... it's too complicated.
2477 	 */
2478 	lrecs = xfs_btree_get_numrecs(left);
2479 	if (cur->bc_levels[level].ptr >= lrecs)
2480 		goto out0;
2481 
2482 	/* Set up the right neighbor as "right". */
2483 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2484 	if (error)
2485 		goto error0;
2486 
2487 	/* If it's full, it can't take another entry. */
2488 	rrecs = xfs_btree_get_numrecs(right);
2489 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2490 		goto out0;
2491 
2492 	XFS_BTREE_STATS_INC(cur, rshift);
2493 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2494 
2495 	/*
2496 	 * Make a hole at the start of the right neighbor block, then
2497 	 * copy the last left block entry to the hole.
2498 	 */
2499 	if (level > 0) {
2500 		/* It's a nonleaf. make a hole in the keys and ptrs */
2501 		union xfs_btree_key	*lkp;
2502 		union xfs_btree_ptr	*lpp;
2503 		union xfs_btree_ptr	*rpp;
2504 
2505 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2506 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2507 		rkp = xfs_btree_key_addr(cur, 1, right);
2508 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2509 
2510 		for (i = rrecs - 1; i >= 0; i--) {
2511 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2512 			if (error)
2513 				goto error0;
2514 		}
2515 
2516 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2517 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2518 
2519 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2520 		if (error)
2521 			goto error0;
2522 
2523 		/* Now put the new data in, and log it. */
2524 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2525 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2526 
2527 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2528 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2529 
2530 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2531 			xfs_btree_key_addr(cur, 2, right)));
2532 	} else {
2533 		/* It's a leaf. make a hole in the records */
2534 		union xfs_btree_rec	*lrp;
2535 		union xfs_btree_rec	*rrp;
2536 
2537 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2538 		rrp = xfs_btree_rec_addr(cur, 1, right);
2539 
2540 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2541 
2542 		/* Now put the new data in, and log it. */
2543 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2544 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2545 	}
2546 
2547 	/*
2548 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2549 	 */
2550 	xfs_btree_set_numrecs(left, --lrecs);
2551 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2552 
2553 	xfs_btree_set_numrecs(right, ++rrecs);
2554 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2555 
2556 	/*
2557 	 * Using a temporary cursor, update the parent key values of the
2558 	 * block on the right.
2559 	 */
2560 	error = xfs_btree_dup_cursor(cur, &tcur);
2561 	if (error)
2562 		goto error0;
2563 	i = xfs_btree_lastrec(tcur, level);
2564 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2565 		error = -EFSCORRUPTED;
2566 		goto error0;
2567 	}
2568 
2569 	error = xfs_btree_increment(tcur, level, &i);
2570 	if (error)
2571 		goto error1;
2572 
2573 	/* Update the parent high keys of the left block, if needed. */
2574 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2575 		error = xfs_btree_update_keys(cur, level);
2576 		if (error)
2577 			goto error1;
2578 	}
2579 
2580 	/* Update the parent keys of the right block. */
2581 	error = xfs_btree_update_keys(tcur, level);
2582 	if (error)
2583 		goto error1;
2584 
2585 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2586 
2587 	*stat = 1;
2588 	return 0;
2589 
2590 out0:
2591 	*stat = 0;
2592 	return 0;
2593 
2594 error0:
2595 	return error;
2596 
2597 error1:
2598 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2599 	return error;
2600 }
2601 
2602 /*
2603  * Split cur/level block in half.
2604  * Return new block number and the key to its first
2605  * record (to be inserted into parent).
2606  */
2607 STATIC int					/* error */
2608 __xfs_btree_split(
2609 	struct xfs_btree_cur	*cur,
2610 	int			level,
2611 	union xfs_btree_ptr	*ptrp,
2612 	union xfs_btree_key	*key,
2613 	struct xfs_btree_cur	**curp,
2614 	int			*stat)		/* success/failure */
2615 {
2616 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2617 	struct xfs_buf		*lbp;		/* left buffer pointer */
2618 	struct xfs_btree_block	*left;		/* left btree block */
2619 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2620 	struct xfs_buf		*rbp;		/* right buffer pointer */
2621 	struct xfs_btree_block	*right;		/* right btree block */
2622 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2623 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2624 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2625 	int			lrecs;
2626 	int			rrecs;
2627 	int			src_index;
2628 	int			error;		/* error return value */
2629 	int			i;
2630 
2631 	XFS_BTREE_STATS_INC(cur, split);
2632 
2633 	/* Set up left block (current one). */
2634 	left = xfs_btree_get_block(cur, level, &lbp);
2635 
2636 #ifdef DEBUG
2637 	error = xfs_btree_check_block(cur, left, level, lbp);
2638 	if (error)
2639 		goto error0;
2640 #endif
2641 
2642 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2643 
2644 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2645 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2646 	if (error)
2647 		goto error0;
2648 	if (*stat == 0)
2649 		goto out0;
2650 	XFS_BTREE_STATS_INC(cur, alloc);
2651 
2652 	/* Set up the new block as "right". */
2653 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2654 	if (error)
2655 		goto error0;
2656 
2657 	/* Fill in the btree header for the new right block. */
2658 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2659 
2660 	/*
2661 	 * Split the entries between the old and the new block evenly.
2662 	 * Make sure that if there's an odd number of entries now, that
2663 	 * each new block will have the same number of entries.
2664 	 */
2665 	lrecs = xfs_btree_get_numrecs(left);
2666 	rrecs = lrecs / 2;
2667 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2668 		rrecs++;
2669 	src_index = (lrecs - rrecs + 1);
2670 
2671 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2672 
2673 	/* Adjust numrecs for the later get_*_keys() calls. */
2674 	lrecs -= rrecs;
2675 	xfs_btree_set_numrecs(left, lrecs);
2676 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2677 
2678 	/*
2679 	 * Copy btree block entries from the left block over to the
2680 	 * new block, the right. Update the right block and log the
2681 	 * changes.
2682 	 */
2683 	if (level > 0) {
2684 		/* It's a non-leaf.  Move keys and pointers. */
2685 		union xfs_btree_key	*lkp;	/* left btree key */
2686 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2687 		union xfs_btree_key	*rkp;	/* right btree key */
2688 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2689 
2690 		lkp = xfs_btree_key_addr(cur, src_index, left);
2691 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2692 		rkp = xfs_btree_key_addr(cur, 1, right);
2693 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2694 
2695 		for (i = src_index; i < rrecs; i++) {
2696 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2697 			if (error)
2698 				goto error0;
2699 		}
2700 
2701 		/* Copy the keys & pointers to the new block. */
2702 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2703 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2704 
2705 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2706 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2707 
2708 		/* Stash the keys of the new block for later insertion. */
2709 		xfs_btree_get_node_keys(cur, right, key);
2710 	} else {
2711 		/* It's a leaf.  Move records.  */
2712 		union xfs_btree_rec	*lrp;	/* left record pointer */
2713 		union xfs_btree_rec	*rrp;	/* right record pointer */
2714 
2715 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2716 		rrp = xfs_btree_rec_addr(cur, 1, right);
2717 
2718 		/* Copy records to the new block. */
2719 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2720 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2721 
2722 		/* Stash the keys of the new block for later insertion. */
2723 		xfs_btree_get_leaf_keys(cur, right, key);
2724 	}
2725 
2726 	/*
2727 	 * Find the left block number by looking in the buffer.
2728 	 * Adjust sibling pointers.
2729 	 */
2730 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2731 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2732 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2733 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2734 
2735 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2736 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2737 
2738 	/*
2739 	 * If there's a block to the new block's right, make that block
2740 	 * point back to right instead of to left.
2741 	 */
2742 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2743 		error = xfs_btree_read_buf_block(cur, &rrptr,
2744 							0, &rrblock, &rrbp);
2745 		if (error)
2746 			goto error0;
2747 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2748 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2749 	}
2750 
2751 	/* Update the parent high keys of the left block, if needed. */
2752 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2753 		error = xfs_btree_update_keys(cur, level);
2754 		if (error)
2755 			goto error0;
2756 	}
2757 
2758 	/*
2759 	 * If the cursor is really in the right block, move it there.
2760 	 * If it's just pointing past the last entry in left, then we'll
2761 	 * insert there, so don't change anything in that case.
2762 	 */
2763 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2764 		xfs_btree_setbuf(cur, level, rbp);
2765 		cur->bc_levels[level].ptr -= lrecs;
2766 	}
2767 	/*
2768 	 * If there are more levels, we'll need another cursor which refers
2769 	 * the right block, no matter where this cursor was.
2770 	 */
2771 	if (level + 1 < cur->bc_nlevels) {
2772 		error = xfs_btree_dup_cursor(cur, curp);
2773 		if (error)
2774 			goto error0;
2775 		(*curp)->bc_levels[level + 1].ptr++;
2776 	}
2777 	*ptrp = rptr;
2778 	*stat = 1;
2779 	return 0;
2780 out0:
2781 	*stat = 0;
2782 	return 0;
2783 
2784 error0:
2785 	return error;
2786 }
2787 
2788 #ifdef __KERNEL__
2789 struct xfs_btree_split_args {
2790 	struct xfs_btree_cur	*cur;
2791 	int			level;
2792 	union xfs_btree_ptr	*ptrp;
2793 	union xfs_btree_key	*key;
2794 	struct xfs_btree_cur	**curp;
2795 	int			*stat;		/* success/failure */
2796 	int			result;
2797 	bool			kswapd;	/* allocation in kswapd context */
2798 	struct completion	*done;
2799 	struct work_struct	work;
2800 };
2801 
2802 /*
2803  * Stack switching interfaces for allocation
2804  */
2805 static void
2806 xfs_btree_split_worker(
2807 	struct work_struct	*work)
2808 {
2809 	struct xfs_btree_split_args	*args = container_of(work,
2810 						struct xfs_btree_split_args, work);
2811 	unsigned long		pflags;
2812 	unsigned long		new_pflags = 0;
2813 
2814 	/*
2815 	 * we are in a transaction context here, but may also be doing work
2816 	 * in kswapd context, and hence we may need to inherit that state
2817 	 * temporarily to ensure that we don't block waiting for memory reclaim
2818 	 * in any way.
2819 	 */
2820 	if (args->kswapd)
2821 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2822 
2823 	current_set_flags_nested(&pflags, new_pflags);
2824 	xfs_trans_set_context(args->cur->bc_tp);
2825 
2826 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2827 					 args->key, args->curp, args->stat);
2828 
2829 	xfs_trans_clear_context(args->cur->bc_tp);
2830 	current_restore_flags_nested(&pflags, new_pflags);
2831 
2832 	/*
2833 	 * Do not access args after complete() has run here. We don't own args
2834 	 * and the owner may run and free args before we return here.
2835 	 */
2836 	complete(args->done);
2837 
2838 }
2839 
2840 /*
2841  * BMBT split requests often come in with little stack to work on. Push
2842  * them off to a worker thread so there is lots of stack to use. For the other
2843  * btree types, just call directly to avoid the context switch overhead here.
2844  */
2845 STATIC int					/* error */
2846 xfs_btree_split(
2847 	struct xfs_btree_cur	*cur,
2848 	int			level,
2849 	union xfs_btree_ptr	*ptrp,
2850 	union xfs_btree_key	*key,
2851 	struct xfs_btree_cur	**curp,
2852 	int			*stat)		/* success/failure */
2853 {
2854 	struct xfs_btree_split_args	args;
2855 	DECLARE_COMPLETION_ONSTACK(done);
2856 
2857 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2858 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2859 
2860 	args.cur = cur;
2861 	args.level = level;
2862 	args.ptrp = ptrp;
2863 	args.key = key;
2864 	args.curp = curp;
2865 	args.stat = stat;
2866 	args.done = &done;
2867 	args.kswapd = current_is_kswapd();
2868 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2869 	queue_work(xfs_alloc_wq, &args.work);
2870 	wait_for_completion(&done);
2871 	destroy_work_on_stack(&args.work);
2872 	return args.result;
2873 }
2874 #else
2875 #define xfs_btree_split	__xfs_btree_split
2876 #endif /* __KERNEL__ */
2877 
2878 
2879 /*
2880  * Copy the old inode root contents into a real block and make the
2881  * broot point to it.
2882  */
2883 int						/* error */
2884 xfs_btree_new_iroot(
2885 	struct xfs_btree_cur	*cur,		/* btree cursor */
2886 	int			*logflags,	/* logging flags for inode */
2887 	int			*stat)		/* return status - 0 fail */
2888 {
2889 	struct xfs_buf		*cbp;		/* buffer for cblock */
2890 	struct xfs_btree_block	*block;		/* btree block */
2891 	struct xfs_btree_block	*cblock;	/* child btree block */
2892 	union xfs_btree_key	*ckp;		/* child key pointer */
2893 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2894 	union xfs_btree_key	*kp;		/* pointer to btree key */
2895 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2896 	union xfs_btree_ptr	nptr;		/* new block addr */
2897 	int			level;		/* btree level */
2898 	int			error;		/* error return code */
2899 	int			i;		/* loop counter */
2900 
2901 	XFS_BTREE_STATS_INC(cur, newroot);
2902 
2903 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2904 
2905 	level = cur->bc_nlevels - 1;
2906 
2907 	block = xfs_btree_get_iroot(cur);
2908 	pp = xfs_btree_ptr_addr(cur, 1, block);
2909 
2910 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2911 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2912 	if (error)
2913 		goto error0;
2914 	if (*stat == 0)
2915 		return 0;
2916 
2917 	XFS_BTREE_STATS_INC(cur, alloc);
2918 
2919 	/* Copy the root into a real block. */
2920 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2921 	if (error)
2922 		goto error0;
2923 
2924 	/*
2925 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2926 	 * In that case have to also ensure the blkno remains correct
2927 	 */
2928 	memcpy(cblock, block, xfs_btree_block_len(cur));
2929 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2930 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
2931 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2932 			cblock->bb_u.l.bb_blkno = bno;
2933 		else
2934 			cblock->bb_u.s.bb_blkno = bno;
2935 	}
2936 
2937 	be16_add_cpu(&block->bb_level, 1);
2938 	xfs_btree_set_numrecs(block, 1);
2939 	cur->bc_nlevels++;
2940 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
2941 	cur->bc_levels[level + 1].ptr = 1;
2942 
2943 	kp = xfs_btree_key_addr(cur, 1, block);
2944 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2945 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2946 
2947 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2948 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2949 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2950 		if (error)
2951 			goto error0;
2952 	}
2953 
2954 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2955 
2956 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2957 	if (error)
2958 		goto error0;
2959 
2960 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2961 
2962 	xfs_iroot_realloc(cur->bc_ino.ip,
2963 			  1 - xfs_btree_get_numrecs(cblock),
2964 			  cur->bc_ino.whichfork);
2965 
2966 	xfs_btree_setbuf(cur, level, cbp);
2967 
2968 	/*
2969 	 * Do all this logging at the end so that
2970 	 * the root is at the right level.
2971 	 */
2972 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2973 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2974 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2975 
2976 	*logflags |=
2977 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2978 	*stat = 1;
2979 	return 0;
2980 error0:
2981 	return error;
2982 }
2983 
2984 /*
2985  * Allocate a new root block, fill it in.
2986  */
2987 STATIC int				/* error */
2988 xfs_btree_new_root(
2989 	struct xfs_btree_cur	*cur,	/* btree cursor */
2990 	int			*stat)	/* success/failure */
2991 {
2992 	struct xfs_btree_block	*block;	/* one half of the old root block */
2993 	struct xfs_buf		*bp;	/* buffer containing block */
2994 	int			error;	/* error return value */
2995 	struct xfs_buf		*lbp;	/* left buffer pointer */
2996 	struct xfs_btree_block	*left;	/* left btree block */
2997 	struct xfs_buf		*nbp;	/* new (root) buffer */
2998 	struct xfs_btree_block	*new;	/* new (root) btree block */
2999 	int			nptr;	/* new value for key index, 1 or 2 */
3000 	struct xfs_buf		*rbp;	/* right buffer pointer */
3001 	struct xfs_btree_block	*right;	/* right btree block */
3002 	union xfs_btree_ptr	rptr;
3003 	union xfs_btree_ptr	lptr;
3004 
3005 	XFS_BTREE_STATS_INC(cur, newroot);
3006 
3007 	/* initialise our start point from the cursor */
3008 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3009 
3010 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3011 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3012 	if (error)
3013 		goto error0;
3014 	if (*stat == 0)
3015 		goto out0;
3016 	XFS_BTREE_STATS_INC(cur, alloc);
3017 
3018 	/* Set up the new block. */
3019 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3020 	if (error)
3021 		goto error0;
3022 
3023 	/* Set the root in the holding structure  increasing the level by 1. */
3024 	cur->bc_ops->set_root(cur, &lptr, 1);
3025 
3026 	/*
3027 	 * At the previous root level there are now two blocks: the old root,
3028 	 * and the new block generated when it was split.  We don't know which
3029 	 * one the cursor is pointing at, so we set up variables "left" and
3030 	 * "right" for each case.
3031 	 */
3032 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3033 
3034 #ifdef DEBUG
3035 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3036 	if (error)
3037 		goto error0;
3038 #endif
3039 
3040 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3041 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3042 		/* Our block is left, pick up the right block. */
3043 		lbp = bp;
3044 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3045 		left = block;
3046 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3047 		if (error)
3048 			goto error0;
3049 		bp = rbp;
3050 		nptr = 1;
3051 	} else {
3052 		/* Our block is right, pick up the left block. */
3053 		rbp = bp;
3054 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3055 		right = block;
3056 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3057 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3058 		if (error)
3059 			goto error0;
3060 		bp = lbp;
3061 		nptr = 2;
3062 	}
3063 
3064 	/* Fill in the new block's btree header and log it. */
3065 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3066 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3067 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3068 			!xfs_btree_ptr_is_null(cur, &rptr));
3069 
3070 	/* Fill in the key data in the new root. */
3071 	if (xfs_btree_get_level(left) > 0) {
3072 		/*
3073 		 * Get the keys for the left block's keys and put them directly
3074 		 * in the parent block.  Do the same for the right block.
3075 		 */
3076 		xfs_btree_get_node_keys(cur, left,
3077 				xfs_btree_key_addr(cur, 1, new));
3078 		xfs_btree_get_node_keys(cur, right,
3079 				xfs_btree_key_addr(cur, 2, new));
3080 	} else {
3081 		/*
3082 		 * Get the keys for the left block's records and put them
3083 		 * directly in the parent block.  Do the same for the right
3084 		 * block.
3085 		 */
3086 		xfs_btree_get_leaf_keys(cur, left,
3087 			xfs_btree_key_addr(cur, 1, new));
3088 		xfs_btree_get_leaf_keys(cur, right,
3089 			xfs_btree_key_addr(cur, 2, new));
3090 	}
3091 	xfs_btree_log_keys(cur, nbp, 1, 2);
3092 
3093 	/* Fill in the pointer data in the new root. */
3094 	xfs_btree_copy_ptrs(cur,
3095 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3096 	xfs_btree_copy_ptrs(cur,
3097 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3098 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3099 
3100 	/* Fix up the cursor. */
3101 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3102 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3103 	cur->bc_nlevels++;
3104 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3105 	*stat = 1;
3106 	return 0;
3107 error0:
3108 	return error;
3109 out0:
3110 	*stat = 0;
3111 	return 0;
3112 }
3113 
3114 STATIC int
3115 xfs_btree_make_block_unfull(
3116 	struct xfs_btree_cur	*cur,	/* btree cursor */
3117 	int			level,	/* btree level */
3118 	int			numrecs,/* # of recs in block */
3119 	int			*oindex,/* old tree index */
3120 	int			*index,	/* new tree index */
3121 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3122 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3123 	union xfs_btree_key	*key,	/* key of new block */
3124 	int			*stat)
3125 {
3126 	int			error = 0;
3127 
3128 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3129 	    level == cur->bc_nlevels - 1) {
3130 		struct xfs_inode *ip = cur->bc_ino.ip;
3131 
3132 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3133 			/* A root block that can be made bigger. */
3134 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3135 			*stat = 1;
3136 		} else {
3137 			/* A root block that needs replacing */
3138 			int	logflags = 0;
3139 
3140 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3141 			if (error || *stat == 0)
3142 				return error;
3143 
3144 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3145 		}
3146 
3147 		return 0;
3148 	}
3149 
3150 	/* First, try shifting an entry to the right neighbor. */
3151 	error = xfs_btree_rshift(cur, level, stat);
3152 	if (error || *stat)
3153 		return error;
3154 
3155 	/* Next, try shifting an entry to the left neighbor. */
3156 	error = xfs_btree_lshift(cur, level, stat);
3157 	if (error)
3158 		return error;
3159 
3160 	if (*stat) {
3161 		*oindex = *index = cur->bc_levels[level].ptr;
3162 		return 0;
3163 	}
3164 
3165 	/*
3166 	 * Next, try splitting the current block in half.
3167 	 *
3168 	 * If this works we have to re-set our variables because we
3169 	 * could be in a different block now.
3170 	 */
3171 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3172 	if (error || *stat == 0)
3173 		return error;
3174 
3175 
3176 	*index = cur->bc_levels[level].ptr;
3177 	return 0;
3178 }
3179 
3180 /*
3181  * Insert one record/level.  Return information to the caller
3182  * allowing the next level up to proceed if necessary.
3183  */
3184 STATIC int
3185 xfs_btree_insrec(
3186 	struct xfs_btree_cur	*cur,	/* btree cursor */
3187 	int			level,	/* level to insert record at */
3188 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3189 	union xfs_btree_rec	*rec,	/* record to insert */
3190 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3191 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3192 	int			*stat)	/* success/failure */
3193 {
3194 	struct xfs_btree_block	*block;	/* btree block */
3195 	struct xfs_buf		*bp;	/* buffer for block */
3196 	union xfs_btree_ptr	nptr;	/* new block ptr */
3197 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3198 	union xfs_btree_key	nkey;	/* new block key */
3199 	union xfs_btree_key	*lkey;
3200 	int			optr;	/* old key/record index */
3201 	int			ptr;	/* key/record index */
3202 	int			numrecs;/* number of records */
3203 	int			error;	/* error return value */
3204 	int			i;
3205 	xfs_daddr_t		old_bn;
3206 
3207 	ncur = NULL;
3208 	lkey = &nkey;
3209 
3210 	/*
3211 	 * If we have an external root pointer, and we've made it to the
3212 	 * root level, allocate a new root block and we're done.
3213 	 */
3214 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3215 	    (level >= cur->bc_nlevels)) {
3216 		error = xfs_btree_new_root(cur, stat);
3217 		xfs_btree_set_ptr_null(cur, ptrp);
3218 
3219 		return error;
3220 	}
3221 
3222 	/* If we're off the left edge, return failure. */
3223 	ptr = cur->bc_levels[level].ptr;
3224 	if (ptr == 0) {
3225 		*stat = 0;
3226 		return 0;
3227 	}
3228 
3229 	optr = ptr;
3230 
3231 	XFS_BTREE_STATS_INC(cur, insrec);
3232 
3233 	/* Get pointers to the btree buffer and block. */
3234 	block = xfs_btree_get_block(cur, level, &bp);
3235 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3236 	numrecs = xfs_btree_get_numrecs(block);
3237 
3238 #ifdef DEBUG
3239 	error = xfs_btree_check_block(cur, block, level, bp);
3240 	if (error)
3241 		goto error0;
3242 
3243 	/* Check that the new entry is being inserted in the right place. */
3244 	if (ptr <= numrecs) {
3245 		if (level == 0) {
3246 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3247 				xfs_btree_rec_addr(cur, ptr, block)));
3248 		} else {
3249 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3250 				xfs_btree_key_addr(cur, ptr, block)));
3251 		}
3252 	}
3253 #endif
3254 
3255 	/*
3256 	 * If the block is full, we can't insert the new entry until we
3257 	 * make the block un-full.
3258 	 */
3259 	xfs_btree_set_ptr_null(cur, &nptr);
3260 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3261 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3262 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3263 		if (error || *stat == 0)
3264 			goto error0;
3265 	}
3266 
3267 	/*
3268 	 * The current block may have changed if the block was
3269 	 * previously full and we have just made space in it.
3270 	 */
3271 	block = xfs_btree_get_block(cur, level, &bp);
3272 	numrecs = xfs_btree_get_numrecs(block);
3273 
3274 #ifdef DEBUG
3275 	error = xfs_btree_check_block(cur, block, level, bp);
3276 	if (error)
3277 		return error;
3278 #endif
3279 
3280 	/*
3281 	 * At this point we know there's room for our new entry in the block
3282 	 * we're pointing at.
3283 	 */
3284 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3285 
3286 	if (level > 0) {
3287 		/* It's a nonleaf. make a hole in the keys and ptrs */
3288 		union xfs_btree_key	*kp;
3289 		union xfs_btree_ptr	*pp;
3290 
3291 		kp = xfs_btree_key_addr(cur, ptr, block);
3292 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3293 
3294 		for (i = numrecs - ptr; i >= 0; i--) {
3295 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3296 			if (error)
3297 				return error;
3298 		}
3299 
3300 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3301 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3302 
3303 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3304 		if (error)
3305 			goto error0;
3306 
3307 		/* Now put the new data in, bump numrecs and log it. */
3308 		xfs_btree_copy_keys(cur, kp, key, 1);
3309 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3310 		numrecs++;
3311 		xfs_btree_set_numrecs(block, numrecs);
3312 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3313 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3314 #ifdef DEBUG
3315 		if (ptr < numrecs) {
3316 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3317 				xfs_btree_key_addr(cur, ptr + 1, block)));
3318 		}
3319 #endif
3320 	} else {
3321 		/* It's a leaf. make a hole in the records */
3322 		union xfs_btree_rec             *rp;
3323 
3324 		rp = xfs_btree_rec_addr(cur, ptr, block);
3325 
3326 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3327 
3328 		/* Now put the new data in, bump numrecs and log it. */
3329 		xfs_btree_copy_recs(cur, rp, rec, 1);
3330 		xfs_btree_set_numrecs(block, ++numrecs);
3331 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3332 #ifdef DEBUG
3333 		if (ptr < numrecs) {
3334 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3335 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3336 		}
3337 #endif
3338 	}
3339 
3340 	/* Log the new number of records in the btree header. */
3341 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3342 
3343 	/*
3344 	 * If we just inserted into a new tree block, we have to
3345 	 * recalculate nkey here because nkey is out of date.
3346 	 *
3347 	 * Otherwise we're just updating an existing block (having shoved
3348 	 * some records into the new tree block), so use the regular key
3349 	 * update mechanism.
3350 	 */
3351 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3352 		xfs_btree_get_keys(cur, block, lkey);
3353 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3354 		error = xfs_btree_update_keys(cur, level);
3355 		if (error)
3356 			goto error0;
3357 	}
3358 
3359 	/*
3360 	 * If we are tracking the last record in the tree and
3361 	 * we are at the far right edge of the tree, update it.
3362 	 */
3363 	if (xfs_btree_is_lastrec(cur, block, level)) {
3364 		cur->bc_ops->update_lastrec(cur, block, rec,
3365 					    ptr, LASTREC_INSREC);
3366 	}
3367 
3368 	/*
3369 	 * Return the new block number, if any.
3370 	 * If there is one, give back a record value and a cursor too.
3371 	 */
3372 	*ptrp = nptr;
3373 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3374 		xfs_btree_copy_keys(cur, key, lkey, 1);
3375 		*curp = ncur;
3376 	}
3377 
3378 	*stat = 1;
3379 	return 0;
3380 
3381 error0:
3382 	return error;
3383 }
3384 
3385 /*
3386  * Insert the record at the point referenced by cur.
3387  *
3388  * A multi-level split of the tree on insert will invalidate the original
3389  * cursor.  All callers of this function should assume that the cursor is
3390  * no longer valid and revalidate it.
3391  */
3392 int
3393 xfs_btree_insert(
3394 	struct xfs_btree_cur	*cur,
3395 	int			*stat)
3396 {
3397 	int			error;	/* error return value */
3398 	int			i;	/* result value, 0 for failure */
3399 	int			level;	/* current level number in btree */
3400 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3401 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3402 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3403 	union xfs_btree_key	bkey;	/* key of block to insert */
3404 	union xfs_btree_key	*key;
3405 	union xfs_btree_rec	rec;	/* record to insert */
3406 
3407 	level = 0;
3408 	ncur = NULL;
3409 	pcur = cur;
3410 	key = &bkey;
3411 
3412 	xfs_btree_set_ptr_null(cur, &nptr);
3413 
3414 	/* Make a key out of the record data to be inserted, and save it. */
3415 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3416 	cur->bc_ops->init_key_from_rec(key, &rec);
3417 
3418 	/*
3419 	 * Loop going up the tree, starting at the leaf level.
3420 	 * Stop when we don't get a split block, that must mean that
3421 	 * the insert is finished with this level.
3422 	 */
3423 	do {
3424 		/*
3425 		 * Insert nrec/nptr into this level of the tree.
3426 		 * Note if we fail, nptr will be null.
3427 		 */
3428 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3429 				&ncur, &i);
3430 		if (error) {
3431 			if (pcur != cur)
3432 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3433 			goto error0;
3434 		}
3435 
3436 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3437 			error = -EFSCORRUPTED;
3438 			goto error0;
3439 		}
3440 		level++;
3441 
3442 		/*
3443 		 * See if the cursor we just used is trash.
3444 		 * Can't trash the caller's cursor, but otherwise we should
3445 		 * if ncur is a new cursor or we're about to be done.
3446 		 */
3447 		if (pcur != cur &&
3448 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3449 			/* Save the state from the cursor before we trash it */
3450 			if (cur->bc_ops->update_cursor)
3451 				cur->bc_ops->update_cursor(pcur, cur);
3452 			cur->bc_nlevels = pcur->bc_nlevels;
3453 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3454 		}
3455 		/* If we got a new cursor, switch to it. */
3456 		if (ncur) {
3457 			pcur = ncur;
3458 			ncur = NULL;
3459 		}
3460 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3461 
3462 	*stat = i;
3463 	return 0;
3464 error0:
3465 	return error;
3466 }
3467 
3468 /*
3469  * Try to merge a non-leaf block back into the inode root.
3470  *
3471  * Note: the killroot names comes from the fact that we're effectively
3472  * killing the old root block.  But because we can't just delete the
3473  * inode we have to copy the single block it was pointing to into the
3474  * inode.
3475  */
3476 STATIC int
3477 xfs_btree_kill_iroot(
3478 	struct xfs_btree_cur	*cur)
3479 {
3480 	int			whichfork = cur->bc_ino.whichfork;
3481 	struct xfs_inode	*ip = cur->bc_ino.ip;
3482 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3483 	struct xfs_btree_block	*block;
3484 	struct xfs_btree_block	*cblock;
3485 	union xfs_btree_key	*kp;
3486 	union xfs_btree_key	*ckp;
3487 	union xfs_btree_ptr	*pp;
3488 	union xfs_btree_ptr	*cpp;
3489 	struct xfs_buf		*cbp;
3490 	int			level;
3491 	int			index;
3492 	int			numrecs;
3493 	int			error;
3494 #ifdef DEBUG
3495 	union xfs_btree_ptr	ptr;
3496 #endif
3497 	int			i;
3498 
3499 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3500 	ASSERT(cur->bc_nlevels > 1);
3501 
3502 	/*
3503 	 * Don't deal with the root block needs to be a leaf case.
3504 	 * We're just going to turn the thing back into extents anyway.
3505 	 */
3506 	level = cur->bc_nlevels - 1;
3507 	if (level == 1)
3508 		goto out0;
3509 
3510 	/*
3511 	 * Give up if the root has multiple children.
3512 	 */
3513 	block = xfs_btree_get_iroot(cur);
3514 	if (xfs_btree_get_numrecs(block) != 1)
3515 		goto out0;
3516 
3517 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3518 	numrecs = xfs_btree_get_numrecs(cblock);
3519 
3520 	/*
3521 	 * Only do this if the next level will fit.
3522 	 * Then the data must be copied up to the inode,
3523 	 * instead of freeing the root you free the next level.
3524 	 */
3525 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3526 		goto out0;
3527 
3528 	XFS_BTREE_STATS_INC(cur, killroot);
3529 
3530 #ifdef DEBUG
3531 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3532 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3533 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3534 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3535 #endif
3536 
3537 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3538 	if (index) {
3539 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3540 				  cur->bc_ino.whichfork);
3541 		block = ifp->if_broot;
3542 	}
3543 
3544 	be16_add_cpu(&block->bb_numrecs, index);
3545 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3546 
3547 	kp = xfs_btree_key_addr(cur, 1, block);
3548 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3549 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3550 
3551 	pp = xfs_btree_ptr_addr(cur, 1, block);
3552 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3553 
3554 	for (i = 0; i < numrecs; i++) {
3555 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3556 		if (error)
3557 			return error;
3558 	}
3559 
3560 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3561 
3562 	error = xfs_btree_free_block(cur, cbp);
3563 	if (error)
3564 		return error;
3565 
3566 	cur->bc_levels[level - 1].bp = NULL;
3567 	be16_add_cpu(&block->bb_level, -1);
3568 	xfs_trans_log_inode(cur->bc_tp, ip,
3569 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3570 	cur->bc_nlevels--;
3571 out0:
3572 	return 0;
3573 }
3574 
3575 /*
3576  * Kill the current root node, and replace it with it's only child node.
3577  */
3578 STATIC int
3579 xfs_btree_kill_root(
3580 	struct xfs_btree_cur	*cur,
3581 	struct xfs_buf		*bp,
3582 	int			level,
3583 	union xfs_btree_ptr	*newroot)
3584 {
3585 	int			error;
3586 
3587 	XFS_BTREE_STATS_INC(cur, killroot);
3588 
3589 	/*
3590 	 * Update the root pointer, decreasing the level by 1 and then
3591 	 * free the old root.
3592 	 */
3593 	cur->bc_ops->set_root(cur, newroot, -1);
3594 
3595 	error = xfs_btree_free_block(cur, bp);
3596 	if (error)
3597 		return error;
3598 
3599 	cur->bc_levels[level].bp = NULL;
3600 	cur->bc_levels[level].ra = 0;
3601 	cur->bc_nlevels--;
3602 
3603 	return 0;
3604 }
3605 
3606 STATIC int
3607 xfs_btree_dec_cursor(
3608 	struct xfs_btree_cur	*cur,
3609 	int			level,
3610 	int			*stat)
3611 {
3612 	int			error;
3613 	int			i;
3614 
3615 	if (level > 0) {
3616 		error = xfs_btree_decrement(cur, level, &i);
3617 		if (error)
3618 			return error;
3619 	}
3620 
3621 	*stat = 1;
3622 	return 0;
3623 }
3624 
3625 /*
3626  * Single level of the btree record deletion routine.
3627  * Delete record pointed to by cur/level.
3628  * Remove the record from its block then rebalance the tree.
3629  * Return 0 for error, 1 for done, 2 to go on to the next level.
3630  */
3631 STATIC int					/* error */
3632 xfs_btree_delrec(
3633 	struct xfs_btree_cur	*cur,		/* btree cursor */
3634 	int			level,		/* level removing record from */
3635 	int			*stat)		/* fail/done/go-on */
3636 {
3637 	struct xfs_btree_block	*block;		/* btree block */
3638 	union xfs_btree_ptr	cptr;		/* current block ptr */
3639 	struct xfs_buf		*bp;		/* buffer for block */
3640 	int			error;		/* error return value */
3641 	int			i;		/* loop counter */
3642 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3643 	struct xfs_buf		*lbp;		/* left buffer pointer */
3644 	struct xfs_btree_block	*left;		/* left btree block */
3645 	int			lrecs = 0;	/* left record count */
3646 	int			ptr;		/* key/record index */
3647 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3648 	struct xfs_buf		*rbp;		/* right buffer pointer */
3649 	struct xfs_btree_block	*right;		/* right btree block */
3650 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3651 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3652 	int			rrecs = 0;	/* right record count */
3653 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3654 	int			numrecs;	/* temporary numrec count */
3655 
3656 	tcur = NULL;
3657 
3658 	/* Get the index of the entry being deleted, check for nothing there. */
3659 	ptr = cur->bc_levels[level].ptr;
3660 	if (ptr == 0) {
3661 		*stat = 0;
3662 		return 0;
3663 	}
3664 
3665 	/* Get the buffer & block containing the record or key/ptr. */
3666 	block = xfs_btree_get_block(cur, level, &bp);
3667 	numrecs = xfs_btree_get_numrecs(block);
3668 
3669 #ifdef DEBUG
3670 	error = xfs_btree_check_block(cur, block, level, bp);
3671 	if (error)
3672 		goto error0;
3673 #endif
3674 
3675 	/* Fail if we're off the end of the block. */
3676 	if (ptr > numrecs) {
3677 		*stat = 0;
3678 		return 0;
3679 	}
3680 
3681 	XFS_BTREE_STATS_INC(cur, delrec);
3682 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3683 
3684 	/* Excise the entries being deleted. */
3685 	if (level > 0) {
3686 		/* It's a nonleaf. operate on keys and ptrs */
3687 		union xfs_btree_key	*lkp;
3688 		union xfs_btree_ptr	*lpp;
3689 
3690 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3691 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3692 
3693 		for (i = 0; i < numrecs - ptr; i++) {
3694 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3695 			if (error)
3696 				goto error0;
3697 		}
3698 
3699 		if (ptr < numrecs) {
3700 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3701 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3702 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3703 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3704 		}
3705 	} else {
3706 		/* It's a leaf. operate on records */
3707 		if (ptr < numrecs) {
3708 			xfs_btree_shift_recs(cur,
3709 				xfs_btree_rec_addr(cur, ptr + 1, block),
3710 				-1, numrecs - ptr);
3711 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3712 		}
3713 	}
3714 
3715 	/*
3716 	 * Decrement and log the number of entries in the block.
3717 	 */
3718 	xfs_btree_set_numrecs(block, --numrecs);
3719 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3720 
3721 	/*
3722 	 * If we are tracking the last record in the tree and
3723 	 * we are at the far right edge of the tree, update it.
3724 	 */
3725 	if (xfs_btree_is_lastrec(cur, block, level)) {
3726 		cur->bc_ops->update_lastrec(cur, block, NULL,
3727 					    ptr, LASTREC_DELREC);
3728 	}
3729 
3730 	/*
3731 	 * We're at the root level.  First, shrink the root block in-memory.
3732 	 * Try to get rid of the next level down.  If we can't then there's
3733 	 * nothing left to do.
3734 	 */
3735 	if (level == cur->bc_nlevels - 1) {
3736 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3737 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3738 					  cur->bc_ino.whichfork);
3739 
3740 			error = xfs_btree_kill_iroot(cur);
3741 			if (error)
3742 				goto error0;
3743 
3744 			error = xfs_btree_dec_cursor(cur, level, stat);
3745 			if (error)
3746 				goto error0;
3747 			*stat = 1;
3748 			return 0;
3749 		}
3750 
3751 		/*
3752 		 * If this is the root level, and there's only one entry left,
3753 		 * and it's NOT the leaf level, then we can get rid of this
3754 		 * level.
3755 		 */
3756 		if (numrecs == 1 && level > 0) {
3757 			union xfs_btree_ptr	*pp;
3758 			/*
3759 			 * pp is still set to the first pointer in the block.
3760 			 * Make it the new root of the btree.
3761 			 */
3762 			pp = xfs_btree_ptr_addr(cur, 1, block);
3763 			error = xfs_btree_kill_root(cur, bp, level, pp);
3764 			if (error)
3765 				goto error0;
3766 		} else if (level > 0) {
3767 			error = xfs_btree_dec_cursor(cur, level, stat);
3768 			if (error)
3769 				goto error0;
3770 		}
3771 		*stat = 1;
3772 		return 0;
3773 	}
3774 
3775 	/*
3776 	 * If we deleted the leftmost entry in the block, update the
3777 	 * key values above us in the tree.
3778 	 */
3779 	if (xfs_btree_needs_key_update(cur, ptr)) {
3780 		error = xfs_btree_update_keys(cur, level);
3781 		if (error)
3782 			goto error0;
3783 	}
3784 
3785 	/*
3786 	 * If the number of records remaining in the block is at least
3787 	 * the minimum, we're done.
3788 	 */
3789 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3790 		error = xfs_btree_dec_cursor(cur, level, stat);
3791 		if (error)
3792 			goto error0;
3793 		return 0;
3794 	}
3795 
3796 	/*
3797 	 * Otherwise, we have to move some records around to keep the
3798 	 * tree balanced.  Look at the left and right sibling blocks to
3799 	 * see if we can re-balance by moving only one record.
3800 	 */
3801 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3802 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3803 
3804 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3805 		/*
3806 		 * One child of root, need to get a chance to copy its contents
3807 		 * into the root and delete it. Can't go up to next level,
3808 		 * there's nothing to delete there.
3809 		 */
3810 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3811 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3812 		    level == cur->bc_nlevels - 2) {
3813 			error = xfs_btree_kill_iroot(cur);
3814 			if (!error)
3815 				error = xfs_btree_dec_cursor(cur, level, stat);
3816 			if (error)
3817 				goto error0;
3818 			return 0;
3819 		}
3820 	}
3821 
3822 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3823 	       !xfs_btree_ptr_is_null(cur, &lptr));
3824 
3825 	/*
3826 	 * Duplicate the cursor so our btree manipulations here won't
3827 	 * disrupt the next level up.
3828 	 */
3829 	error = xfs_btree_dup_cursor(cur, &tcur);
3830 	if (error)
3831 		goto error0;
3832 
3833 	/*
3834 	 * If there's a right sibling, see if it's ok to shift an entry
3835 	 * out of it.
3836 	 */
3837 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3838 		/*
3839 		 * Move the temp cursor to the last entry in the next block.
3840 		 * Actually any entry but the first would suffice.
3841 		 */
3842 		i = xfs_btree_lastrec(tcur, level);
3843 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3844 			error = -EFSCORRUPTED;
3845 			goto error0;
3846 		}
3847 
3848 		error = xfs_btree_increment(tcur, level, &i);
3849 		if (error)
3850 			goto error0;
3851 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3852 			error = -EFSCORRUPTED;
3853 			goto error0;
3854 		}
3855 
3856 		i = xfs_btree_lastrec(tcur, level);
3857 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3858 			error = -EFSCORRUPTED;
3859 			goto error0;
3860 		}
3861 
3862 		/* Grab a pointer to the block. */
3863 		right = xfs_btree_get_block(tcur, level, &rbp);
3864 #ifdef DEBUG
3865 		error = xfs_btree_check_block(tcur, right, level, rbp);
3866 		if (error)
3867 			goto error0;
3868 #endif
3869 		/* Grab the current block number, for future use. */
3870 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3871 
3872 		/*
3873 		 * If right block is full enough so that removing one entry
3874 		 * won't make it too empty, and left-shifting an entry out
3875 		 * of right to us works, we're done.
3876 		 */
3877 		if (xfs_btree_get_numrecs(right) - 1 >=
3878 		    cur->bc_ops->get_minrecs(tcur, level)) {
3879 			error = xfs_btree_lshift(tcur, level, &i);
3880 			if (error)
3881 				goto error0;
3882 			if (i) {
3883 				ASSERT(xfs_btree_get_numrecs(block) >=
3884 				       cur->bc_ops->get_minrecs(tcur, level));
3885 
3886 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3887 				tcur = NULL;
3888 
3889 				error = xfs_btree_dec_cursor(cur, level, stat);
3890 				if (error)
3891 					goto error0;
3892 				return 0;
3893 			}
3894 		}
3895 
3896 		/*
3897 		 * Otherwise, grab the number of records in right for
3898 		 * future reference, and fix up the temp cursor to point
3899 		 * to our block again (last record).
3900 		 */
3901 		rrecs = xfs_btree_get_numrecs(right);
3902 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3903 			i = xfs_btree_firstrec(tcur, level);
3904 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3905 				error = -EFSCORRUPTED;
3906 				goto error0;
3907 			}
3908 
3909 			error = xfs_btree_decrement(tcur, level, &i);
3910 			if (error)
3911 				goto error0;
3912 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3913 				error = -EFSCORRUPTED;
3914 				goto error0;
3915 			}
3916 		}
3917 	}
3918 
3919 	/*
3920 	 * If there's a left sibling, see if it's ok to shift an entry
3921 	 * out of it.
3922 	 */
3923 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3924 		/*
3925 		 * Move the temp cursor to the first entry in the
3926 		 * previous block.
3927 		 */
3928 		i = xfs_btree_firstrec(tcur, level);
3929 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3930 			error = -EFSCORRUPTED;
3931 			goto error0;
3932 		}
3933 
3934 		error = xfs_btree_decrement(tcur, level, &i);
3935 		if (error)
3936 			goto error0;
3937 		i = xfs_btree_firstrec(tcur, level);
3938 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3939 			error = -EFSCORRUPTED;
3940 			goto error0;
3941 		}
3942 
3943 		/* Grab a pointer to the block. */
3944 		left = xfs_btree_get_block(tcur, level, &lbp);
3945 #ifdef DEBUG
3946 		error = xfs_btree_check_block(cur, left, level, lbp);
3947 		if (error)
3948 			goto error0;
3949 #endif
3950 		/* Grab the current block number, for future use. */
3951 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3952 
3953 		/*
3954 		 * If left block is full enough so that removing one entry
3955 		 * won't make it too empty, and right-shifting an entry out
3956 		 * of left to us works, we're done.
3957 		 */
3958 		if (xfs_btree_get_numrecs(left) - 1 >=
3959 		    cur->bc_ops->get_minrecs(tcur, level)) {
3960 			error = xfs_btree_rshift(tcur, level, &i);
3961 			if (error)
3962 				goto error0;
3963 			if (i) {
3964 				ASSERT(xfs_btree_get_numrecs(block) >=
3965 				       cur->bc_ops->get_minrecs(tcur, level));
3966 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3967 				tcur = NULL;
3968 				if (level == 0)
3969 					cur->bc_levels[0].ptr++;
3970 
3971 				*stat = 1;
3972 				return 0;
3973 			}
3974 		}
3975 
3976 		/*
3977 		 * Otherwise, grab the number of records in right for
3978 		 * future reference.
3979 		 */
3980 		lrecs = xfs_btree_get_numrecs(left);
3981 	}
3982 
3983 	/* Delete the temp cursor, we're done with it. */
3984 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3985 	tcur = NULL;
3986 
3987 	/* If here, we need to do a join to keep the tree balanced. */
3988 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3989 
3990 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3991 	    lrecs + xfs_btree_get_numrecs(block) <=
3992 			cur->bc_ops->get_maxrecs(cur, level)) {
3993 		/*
3994 		 * Set "right" to be the starting block,
3995 		 * "left" to be the left neighbor.
3996 		 */
3997 		rptr = cptr;
3998 		right = block;
3999 		rbp = bp;
4000 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4001 		if (error)
4002 			goto error0;
4003 
4004 	/*
4005 	 * If that won't work, see if we can join with the right neighbor block.
4006 	 */
4007 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4008 		   rrecs + xfs_btree_get_numrecs(block) <=
4009 			cur->bc_ops->get_maxrecs(cur, level)) {
4010 		/*
4011 		 * Set "left" to be the starting block,
4012 		 * "right" to be the right neighbor.
4013 		 */
4014 		lptr = cptr;
4015 		left = block;
4016 		lbp = bp;
4017 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4018 		if (error)
4019 			goto error0;
4020 
4021 	/*
4022 	 * Otherwise, we can't fix the imbalance.
4023 	 * Just return.  This is probably a logic error, but it's not fatal.
4024 	 */
4025 	} else {
4026 		error = xfs_btree_dec_cursor(cur, level, stat);
4027 		if (error)
4028 			goto error0;
4029 		return 0;
4030 	}
4031 
4032 	rrecs = xfs_btree_get_numrecs(right);
4033 	lrecs = xfs_btree_get_numrecs(left);
4034 
4035 	/*
4036 	 * We're now going to join "left" and "right" by moving all the stuff
4037 	 * in "right" to "left" and deleting "right".
4038 	 */
4039 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4040 	if (level > 0) {
4041 		/* It's a non-leaf.  Move keys and pointers. */
4042 		union xfs_btree_key	*lkp;	/* left btree key */
4043 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4044 		union xfs_btree_key	*rkp;	/* right btree key */
4045 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4046 
4047 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4048 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4049 		rkp = xfs_btree_key_addr(cur, 1, right);
4050 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4051 
4052 		for (i = 1; i < rrecs; i++) {
4053 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4054 			if (error)
4055 				goto error0;
4056 		}
4057 
4058 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4059 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4060 
4061 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4062 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4063 	} else {
4064 		/* It's a leaf.  Move records.  */
4065 		union xfs_btree_rec	*lrp;	/* left record pointer */
4066 		union xfs_btree_rec	*rrp;	/* right record pointer */
4067 
4068 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4069 		rrp = xfs_btree_rec_addr(cur, 1, right);
4070 
4071 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4072 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4073 	}
4074 
4075 	XFS_BTREE_STATS_INC(cur, join);
4076 
4077 	/*
4078 	 * Fix up the number of records and right block pointer in the
4079 	 * surviving block, and log it.
4080 	 */
4081 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4082 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4083 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4084 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4085 
4086 	/* If there is a right sibling, point it to the remaining block. */
4087 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4088 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4089 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4090 		if (error)
4091 			goto error0;
4092 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4093 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4094 	}
4095 
4096 	/* Free the deleted block. */
4097 	error = xfs_btree_free_block(cur, rbp);
4098 	if (error)
4099 		goto error0;
4100 
4101 	/*
4102 	 * If we joined with the left neighbor, set the buffer in the
4103 	 * cursor to the left block, and fix up the index.
4104 	 */
4105 	if (bp != lbp) {
4106 		cur->bc_levels[level].bp = lbp;
4107 		cur->bc_levels[level].ptr += lrecs;
4108 		cur->bc_levels[level].ra = 0;
4109 	}
4110 	/*
4111 	 * If we joined with the right neighbor and there's a level above
4112 	 * us, increment the cursor at that level.
4113 	 */
4114 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4115 		   (level + 1 < cur->bc_nlevels)) {
4116 		error = xfs_btree_increment(cur, level + 1, &i);
4117 		if (error)
4118 			goto error0;
4119 	}
4120 
4121 	/*
4122 	 * Readjust the ptr at this level if it's not a leaf, since it's
4123 	 * still pointing at the deletion point, which makes the cursor
4124 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4125 	 * We can't use decrement because it would change the next level up.
4126 	 */
4127 	if (level > 0)
4128 		cur->bc_levels[level].ptr--;
4129 
4130 	/*
4131 	 * We combined blocks, so we have to update the parent keys if the
4132 	 * btree supports overlapped intervals.  However,
4133 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4134 	 * knows which record to delete.  Therefore, the caller must be savvy
4135 	 * enough to call updkeys for us if we return stat == 2.  The other
4136 	 * exit points from this function don't require deletions further up
4137 	 * the tree, so they can call updkeys directly.
4138 	 */
4139 
4140 	/* Return value means the next level up has something to do. */
4141 	*stat = 2;
4142 	return 0;
4143 
4144 error0:
4145 	if (tcur)
4146 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4147 	return error;
4148 }
4149 
4150 /*
4151  * Delete the record pointed to by cur.
4152  * The cursor refers to the place where the record was (could be inserted)
4153  * when the operation returns.
4154  */
4155 int					/* error */
4156 xfs_btree_delete(
4157 	struct xfs_btree_cur	*cur,
4158 	int			*stat)	/* success/failure */
4159 {
4160 	int			error;	/* error return value */
4161 	int			level;
4162 	int			i;
4163 	bool			joined = false;
4164 
4165 	/*
4166 	 * Go up the tree, starting at leaf level.
4167 	 *
4168 	 * If 2 is returned then a join was done; go to the next level.
4169 	 * Otherwise we are done.
4170 	 */
4171 	for (level = 0, i = 2; i == 2; level++) {
4172 		error = xfs_btree_delrec(cur, level, &i);
4173 		if (error)
4174 			goto error0;
4175 		if (i == 2)
4176 			joined = true;
4177 	}
4178 
4179 	/*
4180 	 * If we combined blocks as part of deleting the record, delrec won't
4181 	 * have updated the parent high keys so we have to do that here.
4182 	 */
4183 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4184 		error = xfs_btree_updkeys_force(cur, 0);
4185 		if (error)
4186 			goto error0;
4187 	}
4188 
4189 	if (i == 0) {
4190 		for (level = 1; level < cur->bc_nlevels; level++) {
4191 			if (cur->bc_levels[level].ptr == 0) {
4192 				error = xfs_btree_decrement(cur, level, &i);
4193 				if (error)
4194 					goto error0;
4195 				break;
4196 			}
4197 		}
4198 	}
4199 
4200 	*stat = i;
4201 	return 0;
4202 error0:
4203 	return error;
4204 }
4205 
4206 /*
4207  * Get the data from the pointed-to record.
4208  */
4209 int					/* error */
4210 xfs_btree_get_rec(
4211 	struct xfs_btree_cur	*cur,	/* btree cursor */
4212 	union xfs_btree_rec	**recp,	/* output: btree record */
4213 	int			*stat)	/* output: success/failure */
4214 {
4215 	struct xfs_btree_block	*block;	/* btree block */
4216 	struct xfs_buf		*bp;	/* buffer pointer */
4217 	int			ptr;	/* record number */
4218 #ifdef DEBUG
4219 	int			error;	/* error return value */
4220 #endif
4221 
4222 	ptr = cur->bc_levels[0].ptr;
4223 	block = xfs_btree_get_block(cur, 0, &bp);
4224 
4225 #ifdef DEBUG
4226 	error = xfs_btree_check_block(cur, block, 0, bp);
4227 	if (error)
4228 		return error;
4229 #endif
4230 
4231 	/*
4232 	 * Off the right end or left end, return failure.
4233 	 */
4234 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4235 		*stat = 0;
4236 		return 0;
4237 	}
4238 
4239 	/*
4240 	 * Point to the record and extract its data.
4241 	 */
4242 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4243 	*stat = 1;
4244 	return 0;
4245 }
4246 
4247 /* Visit a block in a btree. */
4248 STATIC int
4249 xfs_btree_visit_block(
4250 	struct xfs_btree_cur		*cur,
4251 	int				level,
4252 	xfs_btree_visit_blocks_fn	fn,
4253 	void				*data)
4254 {
4255 	struct xfs_btree_block		*block;
4256 	struct xfs_buf			*bp;
4257 	union xfs_btree_ptr		rptr;
4258 	int				error;
4259 
4260 	/* do right sibling readahead */
4261 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4262 	block = xfs_btree_get_block(cur, level, &bp);
4263 
4264 	/* process the block */
4265 	error = fn(cur, level, data);
4266 	if (error)
4267 		return error;
4268 
4269 	/* now read rh sibling block for next iteration */
4270 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4271 	if (xfs_btree_ptr_is_null(cur, &rptr))
4272 		return -ENOENT;
4273 
4274 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4275 }
4276 
4277 
4278 /* Visit every block in a btree. */
4279 int
4280 xfs_btree_visit_blocks(
4281 	struct xfs_btree_cur		*cur,
4282 	xfs_btree_visit_blocks_fn	fn,
4283 	unsigned int			flags,
4284 	void				*data)
4285 {
4286 	union xfs_btree_ptr		lptr;
4287 	int				level;
4288 	struct xfs_btree_block		*block = NULL;
4289 	int				error = 0;
4290 
4291 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4292 
4293 	/* for each level */
4294 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4295 		/* grab the left hand block */
4296 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4297 		if (error)
4298 			return error;
4299 
4300 		/* readahead the left most block for the next level down */
4301 		if (level > 0) {
4302 			union xfs_btree_ptr     *ptr;
4303 
4304 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4305 			xfs_btree_readahead_ptr(cur, ptr, 1);
4306 
4307 			/* save for the next iteration of the loop */
4308 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4309 
4310 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4311 				continue;
4312 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4313 			continue;
4314 		}
4315 
4316 		/* for each buffer in the level */
4317 		do {
4318 			error = xfs_btree_visit_block(cur, level, fn, data);
4319 		} while (!error);
4320 
4321 		if (error != -ENOENT)
4322 			return error;
4323 	}
4324 
4325 	return 0;
4326 }
4327 
4328 /*
4329  * Change the owner of a btree.
4330  *
4331  * The mechanism we use here is ordered buffer logging. Because we don't know
4332  * how many buffers were are going to need to modify, we don't really want to
4333  * have to make transaction reservations for the worst case of every buffer in a
4334  * full size btree as that may be more space that we can fit in the log....
4335  *
4336  * We do the btree walk in the most optimal manner possible - we have sibling
4337  * pointers so we can just walk all the blocks on each level from left to right
4338  * in a single pass, and then move to the next level and do the same. We can
4339  * also do readahead on the sibling pointers to get IO moving more quickly,
4340  * though for slow disks this is unlikely to make much difference to performance
4341  * as the amount of CPU work we have to do before moving to the next block is
4342  * relatively small.
4343  *
4344  * For each btree block that we load, modify the owner appropriately, set the
4345  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4346  * we mark the region we change dirty so that if the buffer is relogged in
4347  * a subsequent transaction the changes we make here as an ordered buffer are
4348  * correctly relogged in that transaction.  If we are in recovery context, then
4349  * just queue the modified buffer as delayed write buffer so the transaction
4350  * recovery completion writes the changes to disk.
4351  */
4352 struct xfs_btree_block_change_owner_info {
4353 	uint64_t		new_owner;
4354 	struct list_head	*buffer_list;
4355 };
4356 
4357 static int
4358 xfs_btree_block_change_owner(
4359 	struct xfs_btree_cur	*cur,
4360 	int			level,
4361 	void			*data)
4362 {
4363 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4364 	struct xfs_btree_block	*block;
4365 	struct xfs_buf		*bp;
4366 
4367 	/* modify the owner */
4368 	block = xfs_btree_get_block(cur, level, &bp);
4369 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4370 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4371 			return 0;
4372 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4373 	} else {
4374 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4375 			return 0;
4376 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4377 	}
4378 
4379 	/*
4380 	 * If the block is a root block hosted in an inode, we might not have a
4381 	 * buffer pointer here and we shouldn't attempt to log the change as the
4382 	 * information is already held in the inode and discarded when the root
4383 	 * block is formatted into the on-disk inode fork. We still change it,
4384 	 * though, so everything is consistent in memory.
4385 	 */
4386 	if (!bp) {
4387 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4388 		ASSERT(level == cur->bc_nlevels - 1);
4389 		return 0;
4390 	}
4391 
4392 	if (cur->bc_tp) {
4393 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4394 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4395 			return -EAGAIN;
4396 		}
4397 	} else {
4398 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4399 	}
4400 
4401 	return 0;
4402 }
4403 
4404 int
4405 xfs_btree_change_owner(
4406 	struct xfs_btree_cur	*cur,
4407 	uint64_t		new_owner,
4408 	struct list_head	*buffer_list)
4409 {
4410 	struct xfs_btree_block_change_owner_info	bbcoi;
4411 
4412 	bbcoi.new_owner = new_owner;
4413 	bbcoi.buffer_list = buffer_list;
4414 
4415 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4416 			XFS_BTREE_VISIT_ALL, &bbcoi);
4417 }
4418 
4419 /* Verify the v5 fields of a long-format btree block. */
4420 xfs_failaddr_t
4421 xfs_btree_lblock_v5hdr_verify(
4422 	struct xfs_buf		*bp,
4423 	uint64_t		owner)
4424 {
4425 	struct xfs_mount	*mp = bp->b_mount;
4426 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4427 
4428 	if (!xfs_has_crc(mp))
4429 		return __this_address;
4430 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4431 		return __this_address;
4432 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4433 		return __this_address;
4434 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4435 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4436 		return __this_address;
4437 	return NULL;
4438 }
4439 
4440 /* Verify a long-format btree block. */
4441 xfs_failaddr_t
4442 xfs_btree_lblock_verify(
4443 	struct xfs_buf		*bp,
4444 	unsigned int		max_recs)
4445 {
4446 	struct xfs_mount	*mp = bp->b_mount;
4447 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4448 
4449 	/* numrecs verification */
4450 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4451 		return __this_address;
4452 
4453 	/* sibling pointer verification */
4454 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4455 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4456 		return __this_address;
4457 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4458 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4459 		return __this_address;
4460 
4461 	return NULL;
4462 }
4463 
4464 /**
4465  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4466  *				      btree block
4467  *
4468  * @bp: buffer containing the btree block
4469  */
4470 xfs_failaddr_t
4471 xfs_btree_sblock_v5hdr_verify(
4472 	struct xfs_buf		*bp)
4473 {
4474 	struct xfs_mount	*mp = bp->b_mount;
4475 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4476 	struct xfs_perag	*pag = bp->b_pag;
4477 
4478 	if (!xfs_has_crc(mp))
4479 		return __this_address;
4480 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4481 		return __this_address;
4482 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4483 		return __this_address;
4484 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4485 		return __this_address;
4486 	return NULL;
4487 }
4488 
4489 /**
4490  * xfs_btree_sblock_verify() -- verify a short-format btree block
4491  *
4492  * @bp: buffer containing the btree block
4493  * @max_recs: maximum records allowed in this btree node
4494  */
4495 xfs_failaddr_t
4496 xfs_btree_sblock_verify(
4497 	struct xfs_buf		*bp,
4498 	unsigned int		max_recs)
4499 {
4500 	struct xfs_mount	*mp = bp->b_mount;
4501 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4502 	xfs_agblock_t		agno;
4503 
4504 	/* numrecs verification */
4505 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4506 		return __this_address;
4507 
4508 	/* sibling pointer verification */
4509 	agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4510 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4511 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4512 		return __this_address;
4513 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4514 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4515 		return __this_address;
4516 
4517 	return NULL;
4518 }
4519 
4520 /*
4521  * For the given limits on leaf and keyptr records per block, calculate the
4522  * height of the tree needed to index the number of leaf records.
4523  */
4524 unsigned int
4525 xfs_btree_compute_maxlevels(
4526 	const unsigned int	*limits,
4527 	unsigned long long	records)
4528 {
4529 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4530 	unsigned int		height = 1;
4531 
4532 	while (level_blocks > 1) {
4533 		level_blocks = howmany_64(level_blocks, limits[1]);
4534 		height++;
4535 	}
4536 
4537 	return height;
4538 }
4539 
4540 /*
4541  * For the given limits on leaf and keyptr records per block, calculate the
4542  * number of blocks needed to index the given number of leaf records.
4543  */
4544 unsigned long long
4545 xfs_btree_calc_size(
4546 	const unsigned int	*limits,
4547 	unsigned long long	records)
4548 {
4549 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4550 	unsigned long long	blocks = level_blocks;
4551 
4552 	while (level_blocks > 1) {
4553 		level_blocks = howmany_64(level_blocks, limits[1]);
4554 		blocks += level_blocks;
4555 	}
4556 
4557 	return blocks;
4558 }
4559 
4560 /*
4561  * Given a number of available blocks for the btree to consume with records and
4562  * pointers, calculate the height of the tree needed to index all the records
4563  * that space can hold based on the number of pointers each interior node
4564  * holds.
4565  *
4566  * We start by assuming a single level tree consumes a single block, then track
4567  * the number of blocks each node level consumes until we no longer have space
4568  * to store the next node level. At this point, we are indexing all the leaf
4569  * blocks in the space, and there's no more free space to split the tree any
4570  * further. That's our maximum btree height.
4571  */
4572 unsigned int
4573 xfs_btree_space_to_height(
4574 	const unsigned int	*limits,
4575 	unsigned long long	leaf_blocks)
4576 {
4577 	unsigned long long	node_blocks = limits[1];
4578 	unsigned long long	blocks_left = leaf_blocks - 1;
4579 	unsigned int		height = 1;
4580 
4581 	if (leaf_blocks < 1)
4582 		return 0;
4583 
4584 	while (node_blocks < blocks_left) {
4585 		blocks_left -= node_blocks;
4586 		node_blocks *= limits[1];
4587 		height++;
4588 	}
4589 
4590 	return height;
4591 }
4592 
4593 /*
4594  * Query a regular btree for all records overlapping a given interval.
4595  * Start with a LE lookup of the key of low_rec and return all records
4596  * until we find a record with a key greater than the key of high_rec.
4597  */
4598 STATIC int
4599 xfs_btree_simple_query_range(
4600 	struct xfs_btree_cur		*cur,
4601 	const union xfs_btree_key	*low_key,
4602 	const union xfs_btree_key	*high_key,
4603 	xfs_btree_query_range_fn	fn,
4604 	void				*priv)
4605 {
4606 	union xfs_btree_rec		*recp;
4607 	union xfs_btree_key		rec_key;
4608 	int64_t				diff;
4609 	int				stat;
4610 	bool				firstrec = true;
4611 	int				error;
4612 
4613 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4614 	ASSERT(cur->bc_ops->diff_two_keys);
4615 
4616 	/*
4617 	 * Find the leftmost record.  The btree cursor must be set
4618 	 * to the low record used to generate low_key.
4619 	 */
4620 	stat = 0;
4621 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4622 	if (error)
4623 		goto out;
4624 
4625 	/* Nothing?  See if there's anything to the right. */
4626 	if (!stat) {
4627 		error = xfs_btree_increment(cur, 0, &stat);
4628 		if (error)
4629 			goto out;
4630 	}
4631 
4632 	while (stat) {
4633 		/* Find the record. */
4634 		error = xfs_btree_get_rec(cur, &recp, &stat);
4635 		if (error || !stat)
4636 			break;
4637 
4638 		/* Skip if high_key(rec) < low_key. */
4639 		if (firstrec) {
4640 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4641 			firstrec = false;
4642 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4643 					&rec_key);
4644 			if (diff > 0)
4645 				goto advloop;
4646 		}
4647 
4648 		/* Stop if high_key < low_key(rec). */
4649 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4650 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4651 		if (diff > 0)
4652 			break;
4653 
4654 		/* Callback */
4655 		error = fn(cur, recp, priv);
4656 		if (error)
4657 			break;
4658 
4659 advloop:
4660 		/* Move on to the next record. */
4661 		error = xfs_btree_increment(cur, 0, &stat);
4662 		if (error)
4663 			break;
4664 	}
4665 
4666 out:
4667 	return error;
4668 }
4669 
4670 /*
4671  * Query an overlapped interval btree for all records overlapping a given
4672  * interval.  This function roughly follows the algorithm given in
4673  * "Interval Trees" of _Introduction to Algorithms_, which is section
4674  * 14.3 in the 2nd and 3rd editions.
4675  *
4676  * First, generate keys for the low and high records passed in.
4677  *
4678  * For any leaf node, generate the high and low keys for the record.
4679  * If the record keys overlap with the query low/high keys, pass the
4680  * record to the function iterator.
4681  *
4682  * For any internal node, compare the low and high keys of each
4683  * pointer against the query low/high keys.  If there's an overlap,
4684  * follow the pointer.
4685  *
4686  * As an optimization, we stop scanning a block when we find a low key
4687  * that is greater than the query's high key.
4688  */
4689 STATIC int
4690 xfs_btree_overlapped_query_range(
4691 	struct xfs_btree_cur		*cur,
4692 	const union xfs_btree_key	*low_key,
4693 	const union xfs_btree_key	*high_key,
4694 	xfs_btree_query_range_fn	fn,
4695 	void				*priv)
4696 {
4697 	union xfs_btree_ptr		ptr;
4698 	union xfs_btree_ptr		*pp;
4699 	union xfs_btree_key		rec_key;
4700 	union xfs_btree_key		rec_hkey;
4701 	union xfs_btree_key		*lkp;
4702 	union xfs_btree_key		*hkp;
4703 	union xfs_btree_rec		*recp;
4704 	struct xfs_btree_block		*block;
4705 	int64_t				ldiff;
4706 	int64_t				hdiff;
4707 	int				level;
4708 	struct xfs_buf			*bp;
4709 	int				i;
4710 	int				error;
4711 
4712 	/* Load the root of the btree. */
4713 	level = cur->bc_nlevels - 1;
4714 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4715 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4716 	if (error)
4717 		return error;
4718 	xfs_btree_get_block(cur, level, &bp);
4719 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4720 #ifdef DEBUG
4721 	error = xfs_btree_check_block(cur, block, level, bp);
4722 	if (error)
4723 		goto out;
4724 #endif
4725 	cur->bc_levels[level].ptr = 1;
4726 
4727 	while (level < cur->bc_nlevels) {
4728 		block = xfs_btree_get_block(cur, level, &bp);
4729 
4730 		/* End of node, pop back towards the root. */
4731 		if (cur->bc_levels[level].ptr >
4732 					be16_to_cpu(block->bb_numrecs)) {
4733 pop_up:
4734 			if (level < cur->bc_nlevels - 1)
4735 				cur->bc_levels[level + 1].ptr++;
4736 			level++;
4737 			continue;
4738 		}
4739 
4740 		if (level == 0) {
4741 			/* Handle a leaf node. */
4742 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4743 					block);
4744 
4745 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4746 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4747 					low_key);
4748 
4749 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4750 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4751 					&rec_key);
4752 
4753 			/*
4754 			 * If (record's high key >= query's low key) and
4755 			 *    (query's high key >= record's low key), then
4756 			 * this record overlaps the query range; callback.
4757 			 */
4758 			if (ldiff >= 0 && hdiff >= 0) {
4759 				error = fn(cur, recp, priv);
4760 				if (error)
4761 					break;
4762 			} else if (hdiff < 0) {
4763 				/* Record is larger than high key; pop. */
4764 				goto pop_up;
4765 			}
4766 			cur->bc_levels[level].ptr++;
4767 			continue;
4768 		}
4769 
4770 		/* Handle an internal node. */
4771 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4772 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4773 				block);
4774 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4775 
4776 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4777 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4778 
4779 		/*
4780 		 * If (pointer's high key >= query's low key) and
4781 		 *    (query's high key >= pointer's low key), then
4782 		 * this record overlaps the query range; follow pointer.
4783 		 */
4784 		if (ldiff >= 0 && hdiff >= 0) {
4785 			level--;
4786 			error = xfs_btree_lookup_get_block(cur, level, pp,
4787 					&block);
4788 			if (error)
4789 				goto out;
4790 			xfs_btree_get_block(cur, level, &bp);
4791 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4792 #ifdef DEBUG
4793 			error = xfs_btree_check_block(cur, block, level, bp);
4794 			if (error)
4795 				goto out;
4796 #endif
4797 			cur->bc_levels[level].ptr = 1;
4798 			continue;
4799 		} else if (hdiff < 0) {
4800 			/* The low key is larger than the upper range; pop. */
4801 			goto pop_up;
4802 		}
4803 		cur->bc_levels[level].ptr++;
4804 	}
4805 
4806 out:
4807 	/*
4808 	 * If we don't end this function with the cursor pointing at a record
4809 	 * block, a subsequent non-error cursor deletion will not release
4810 	 * node-level buffers, causing a buffer leak.  This is quite possible
4811 	 * with a zero-results range query, so release the buffers if we
4812 	 * failed to return any results.
4813 	 */
4814 	if (cur->bc_levels[0].bp == NULL) {
4815 		for (i = 0; i < cur->bc_nlevels; i++) {
4816 			if (cur->bc_levels[i].bp) {
4817 				xfs_trans_brelse(cur->bc_tp,
4818 						cur->bc_levels[i].bp);
4819 				cur->bc_levels[i].bp = NULL;
4820 				cur->bc_levels[i].ptr = 0;
4821 				cur->bc_levels[i].ra = 0;
4822 			}
4823 		}
4824 	}
4825 
4826 	return error;
4827 }
4828 
4829 /*
4830  * Query a btree for all records overlapping a given interval of keys.  The
4831  * supplied function will be called with each record found; return one of the
4832  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4833  * code.  This function returns -ECANCELED, zero, or a negative error code.
4834  */
4835 int
4836 xfs_btree_query_range(
4837 	struct xfs_btree_cur		*cur,
4838 	const union xfs_btree_irec	*low_rec,
4839 	const union xfs_btree_irec	*high_rec,
4840 	xfs_btree_query_range_fn	fn,
4841 	void				*priv)
4842 {
4843 	union xfs_btree_rec		rec;
4844 	union xfs_btree_key		low_key;
4845 	union xfs_btree_key		high_key;
4846 
4847 	/* Find the keys of both ends of the interval. */
4848 	cur->bc_rec = *high_rec;
4849 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4850 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4851 
4852 	cur->bc_rec = *low_rec;
4853 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4854 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4855 
4856 	/* Enforce low key < high key. */
4857 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4858 		return -EINVAL;
4859 
4860 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4861 		return xfs_btree_simple_query_range(cur, &low_key,
4862 				&high_key, fn, priv);
4863 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4864 			fn, priv);
4865 }
4866 
4867 /* Query a btree for all records. */
4868 int
4869 xfs_btree_query_all(
4870 	struct xfs_btree_cur		*cur,
4871 	xfs_btree_query_range_fn	fn,
4872 	void				*priv)
4873 {
4874 	union xfs_btree_key		low_key;
4875 	union xfs_btree_key		high_key;
4876 
4877 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4878 	memset(&low_key, 0, sizeof(low_key));
4879 	memset(&high_key, 0xFF, sizeof(high_key));
4880 
4881 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4882 }
4883 
4884 static int
4885 xfs_btree_count_blocks_helper(
4886 	struct xfs_btree_cur	*cur,
4887 	int			level,
4888 	void			*data)
4889 {
4890 	xfs_extlen_t		*blocks = data;
4891 	(*blocks)++;
4892 
4893 	return 0;
4894 }
4895 
4896 /* Count the blocks in a btree and return the result in *blocks. */
4897 int
4898 xfs_btree_count_blocks(
4899 	struct xfs_btree_cur	*cur,
4900 	xfs_extlen_t		*blocks)
4901 {
4902 	*blocks = 0;
4903 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4904 			XFS_BTREE_VISIT_ALL, blocks);
4905 }
4906 
4907 /* Compare two btree pointers. */
4908 int64_t
4909 xfs_btree_diff_two_ptrs(
4910 	struct xfs_btree_cur		*cur,
4911 	const union xfs_btree_ptr	*a,
4912 	const union xfs_btree_ptr	*b)
4913 {
4914 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4915 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4916 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4917 }
4918 
4919 /* If there's an extent, we're done. */
4920 STATIC int
4921 xfs_btree_has_record_helper(
4922 	struct xfs_btree_cur		*cur,
4923 	const union xfs_btree_rec	*rec,
4924 	void				*priv)
4925 {
4926 	return -ECANCELED;
4927 }
4928 
4929 /* Is there a record covering a given range of keys? */
4930 int
4931 xfs_btree_has_record(
4932 	struct xfs_btree_cur		*cur,
4933 	const union xfs_btree_irec	*low,
4934 	const union xfs_btree_irec	*high,
4935 	bool				*exists)
4936 {
4937 	int				error;
4938 
4939 	error = xfs_btree_query_range(cur, low, high,
4940 			&xfs_btree_has_record_helper, NULL);
4941 	if (error == -ECANCELED) {
4942 		*exists = true;
4943 		return 0;
4944 	}
4945 	*exists = false;
4946 	return error;
4947 }
4948 
4949 /* Are there more records in this btree? */
4950 bool
4951 xfs_btree_has_more_records(
4952 	struct xfs_btree_cur	*cur)
4953 {
4954 	struct xfs_btree_block	*block;
4955 	struct xfs_buf		*bp;
4956 
4957 	block = xfs_btree_get_block(cur, 0, &bp);
4958 
4959 	/* There are still records in this block. */
4960 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
4961 		return true;
4962 
4963 	/* There are more record blocks. */
4964 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4965 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4966 	else
4967 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4968 }
4969 
4970 /* Set up all the btree cursor caches. */
4971 int __init
4972 xfs_btree_init_cur_caches(void)
4973 {
4974 	int		error;
4975 
4976 	error = xfs_allocbt_init_cur_cache();
4977 	if (error)
4978 		return error;
4979 	error = xfs_inobt_init_cur_cache();
4980 	if (error)
4981 		goto err;
4982 	error = xfs_bmbt_init_cur_cache();
4983 	if (error)
4984 		goto err;
4985 	error = xfs_rmapbt_init_cur_cache();
4986 	if (error)
4987 		goto err;
4988 	error = xfs_refcountbt_init_cur_cache();
4989 	if (error)
4990 		goto err;
4991 
4992 	return 0;
4993 err:
4994 	xfs_btree_destroy_cur_caches();
4995 	return error;
4996 }
4997 
4998 /* Destroy all the btree cursor caches, if they've been allocated. */
4999 void
5000 xfs_btree_destroy_cur_caches(void)
5001 {
5002 	xfs_allocbt_destroy_cur_cache();
5003 	xfs_inobt_destroy_cur_cache();
5004 	xfs_bmbt_destroy_cur_cache();
5005 	xfs_rmapbt_destroy_cur_cache();
5006 	xfs_refcountbt_destroy_cur_cache();
5007 }
5008