xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision d47a97bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
66 xfs_btree_check_lblock_siblings(
67 	struct xfs_mount	*mp,
68 	struct xfs_btree_cur	*cur,
69 	int			level,
70 	xfs_fsblock_t		fsb,
71 	__be64			dsibling)
72 {
73 	xfs_fsblock_t		sibling;
74 
75 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 		return NULL;
77 
78 	sibling = be64_to_cpu(dsibling);
79 	if (sibling == fsb)
80 		return __this_address;
81 	if (level >= 0) {
82 		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 			return __this_address;
84 	} else {
85 		if (!xfs_verify_fsbno(mp, sibling))
86 			return __this_address;
87 	}
88 
89 	return NULL;
90 }
91 
92 static inline xfs_failaddr_t
93 xfs_btree_check_sblock_siblings(
94 	struct xfs_perag	*pag,
95 	struct xfs_btree_cur	*cur,
96 	int			level,
97 	xfs_agblock_t		agbno,
98 	__be32			dsibling)
99 {
100 	xfs_agblock_t		sibling;
101 
102 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
103 		return NULL;
104 
105 	sibling = be32_to_cpu(dsibling);
106 	if (sibling == agbno)
107 		return __this_address;
108 	if (level >= 0) {
109 		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110 			return __this_address;
111 	} else {
112 		if (!xfs_verify_agbno(pag, sibling))
113 			return __this_address;
114 	}
115 	return NULL;
116 }
117 
118 /*
119  * Check a long btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
123 __xfs_btree_check_lblock(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_btree_block	*block,
126 	int			level,
127 	struct xfs_buf		*bp)
128 {
129 	struct xfs_mount	*mp = cur->bc_mp;
130 	xfs_btnum_t		btnum = cur->bc_btnum;
131 	int			crc = xfs_has_crc(mp);
132 	xfs_failaddr_t		fa;
133 	xfs_fsblock_t		fsb = NULLFSBLOCK;
134 
135 	if (crc) {
136 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137 			return __this_address;
138 		if (block->bb_u.l.bb_blkno !=
139 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140 			return __this_address;
141 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142 			return __this_address;
143 	}
144 
145 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146 		return __this_address;
147 	if (be16_to_cpu(block->bb_level) != level)
148 		return __this_address;
149 	if (be16_to_cpu(block->bb_numrecs) >
150 	    cur->bc_ops->get_maxrecs(cur, level))
151 		return __this_address;
152 
153 	if (bp)
154 		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155 
156 	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157 			block->bb_u.l.bb_leftsib);
158 	if (!fa)
159 		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160 				block->bb_u.l.bb_rightsib);
161 	return fa;
162 }
163 
164 /* Check a long btree block header. */
165 static int
166 xfs_btree_check_lblock(
167 	struct xfs_btree_cur	*cur,
168 	struct xfs_btree_block	*block,
169 	int			level,
170 	struct xfs_buf		*bp)
171 {
172 	struct xfs_mount	*mp = cur->bc_mp;
173 	xfs_failaddr_t		fa;
174 
175 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
176 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178 		if (bp)
179 			trace_xfs_btree_corrupt(bp, _RET_IP_);
180 		return -EFSCORRUPTED;
181 	}
182 	return 0;
183 }
184 
185 /*
186  * Check a short btree block header.  Return the address of the failing check,
187  * or NULL if everything is ok.
188  */
189 xfs_failaddr_t
190 __xfs_btree_check_sblock(
191 	struct xfs_btree_cur	*cur,
192 	struct xfs_btree_block	*block,
193 	int			level,
194 	struct xfs_buf		*bp)
195 {
196 	struct xfs_mount	*mp = cur->bc_mp;
197 	struct xfs_perag	*pag = cur->bc_ag.pag;
198 	xfs_btnum_t		btnum = cur->bc_btnum;
199 	int			crc = xfs_has_crc(mp);
200 	xfs_failaddr_t		fa;
201 	xfs_agblock_t		agbno = NULLAGBLOCK;
202 
203 	if (crc) {
204 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205 			return __this_address;
206 		if (block->bb_u.s.bb_blkno !=
207 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208 			return __this_address;
209 	}
210 
211 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212 		return __this_address;
213 	if (be16_to_cpu(block->bb_level) != level)
214 		return __this_address;
215 	if (be16_to_cpu(block->bb_numrecs) >
216 	    cur->bc_ops->get_maxrecs(cur, level))
217 		return __this_address;
218 
219 	if (bp)
220 		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221 
222 	fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223 			block->bb_u.s.bb_leftsib);
224 	if (!fa)
225 		fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226 				block->bb_u.s.bb_rightsib);
227 	return fa;
228 }
229 
230 /* Check a short btree block header. */
231 STATIC int
232 xfs_btree_check_sblock(
233 	struct xfs_btree_cur	*cur,
234 	struct xfs_btree_block	*block,
235 	int			level,
236 	struct xfs_buf		*bp)
237 {
238 	struct xfs_mount	*mp = cur->bc_mp;
239 	xfs_failaddr_t		fa;
240 
241 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
242 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244 		if (bp)
245 			trace_xfs_btree_corrupt(bp, _RET_IP_);
246 		return -EFSCORRUPTED;
247 	}
248 	return 0;
249 }
250 
251 /*
252  * Debug routine: check that block header is ok.
253  */
254 int
255 xfs_btree_check_block(
256 	struct xfs_btree_cur	*cur,	/* btree cursor */
257 	struct xfs_btree_block	*block,	/* generic btree block pointer */
258 	int			level,	/* level of the btree block */
259 	struct xfs_buf		*bp)	/* buffer containing block, if any */
260 {
261 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262 		return xfs_btree_check_lblock(cur, block, level, bp);
263 	else
264 		return xfs_btree_check_sblock(cur, block, level, bp);
265 }
266 
267 /* Check that this long pointer is valid and points within the fs. */
268 bool
269 xfs_btree_check_lptr(
270 	struct xfs_btree_cur	*cur,
271 	xfs_fsblock_t		fsbno,
272 	int			level)
273 {
274 	if (level <= 0)
275 		return false;
276 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
277 }
278 
279 /* Check that this short pointer is valid and points within the AG. */
280 bool
281 xfs_btree_check_sptr(
282 	struct xfs_btree_cur	*cur,
283 	xfs_agblock_t		agbno,
284 	int			level)
285 {
286 	if (level <= 0)
287 		return false;
288 	return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289 }
290 
291 /*
292  * Check that a given (indexed) btree pointer at a certain level of a
293  * btree is valid and doesn't point past where it should.
294  */
295 static int
296 xfs_btree_check_ptr(
297 	struct xfs_btree_cur		*cur,
298 	const union xfs_btree_ptr	*ptr,
299 	int				index,
300 	int				level)
301 {
302 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304 				level))
305 			return 0;
306 		xfs_err(cur->bc_mp,
307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308 				cur->bc_ino.ip->i_ino,
309 				cur->bc_ino.whichfork, cur->bc_btnum,
310 				level, index);
311 	} else {
312 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313 				level))
314 			return 0;
315 		xfs_err(cur->bc_mp,
316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
317 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318 				level, index);
319 	}
320 
321 	return -EFSCORRUPTED;
322 }
323 
324 #ifdef DEBUG
325 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
326 #else
327 # define xfs_btree_debug_check_ptr(...)	(0)
328 #endif
329 
330 /*
331  * Calculate CRC on the whole btree block and stuff it into the
332  * long-form btree header.
333  *
334  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335  * it into the buffer so recovery knows what the last modification was that made
336  * it to disk.
337  */
338 void
339 xfs_btree_lblock_calc_crc(
340 	struct xfs_buf		*bp)
341 {
342 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
343 	struct xfs_buf_log_item	*bip = bp->b_log_item;
344 
345 	if (!xfs_has_crc(bp->b_mount))
346 		return;
347 	if (bip)
348 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350 }
351 
352 bool
353 xfs_btree_lblock_verify_crc(
354 	struct xfs_buf		*bp)
355 {
356 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
357 	struct xfs_mount	*mp = bp->b_mount;
358 
359 	if (xfs_has_crc(mp)) {
360 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361 			return false;
362 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363 	}
364 
365 	return true;
366 }
367 
368 /*
369  * Calculate CRC on the whole btree block and stuff it into the
370  * short-form btree header.
371  *
372  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373  * it into the buffer so recovery knows what the last modification was that made
374  * it to disk.
375  */
376 void
377 xfs_btree_sblock_calc_crc(
378 	struct xfs_buf		*bp)
379 {
380 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
381 	struct xfs_buf_log_item	*bip = bp->b_log_item;
382 
383 	if (!xfs_has_crc(bp->b_mount))
384 		return;
385 	if (bip)
386 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388 }
389 
390 bool
391 xfs_btree_sblock_verify_crc(
392 	struct xfs_buf		*bp)
393 {
394 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
395 	struct xfs_mount	*mp = bp->b_mount;
396 
397 	if (xfs_has_crc(mp)) {
398 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399 			return false;
400 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401 	}
402 
403 	return true;
404 }
405 
406 static int
407 xfs_btree_free_block(
408 	struct xfs_btree_cur	*cur,
409 	struct xfs_buf		*bp)
410 {
411 	int			error;
412 
413 	error = cur->bc_ops->free_block(cur, bp);
414 	if (!error) {
415 		xfs_trans_binval(cur->bc_tp, bp);
416 		XFS_BTREE_STATS_INC(cur, free);
417 	}
418 	return error;
419 }
420 
421 /*
422  * Delete the btree cursor.
423  */
424 void
425 xfs_btree_del_cursor(
426 	struct xfs_btree_cur	*cur,		/* btree cursor */
427 	int			error)		/* del because of error */
428 {
429 	int			i;		/* btree level */
430 
431 	/*
432 	 * Clear the buffer pointers and release the buffers. If we're doing
433 	 * this because of an error, inspect all of the entries in the bc_bufs
434 	 * array for buffers to be unlocked. This is because some of the btree
435 	 * code works from level n down to 0, and if we get an error along the
436 	 * way we won't have initialized all the entries down to 0.
437 	 */
438 	for (i = 0; i < cur->bc_nlevels; i++) {
439 		if (cur->bc_levels[i].bp)
440 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441 		else if (!error)
442 			break;
443 	}
444 
445 	/*
446 	 * If we are doing a BMBT update, the number of unaccounted blocks
447 	 * allocated during this cursor life time should be zero. If it's not
448 	 * zero, then we should be shut down or on our way to shutdown due to
449 	 * cancelling a dirty transaction on error.
450 	 */
451 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
453 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454 		kmem_free(cur->bc_ops);
455 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456 		xfs_perag_put(cur->bc_ag.pag);
457 	kmem_cache_free(cur->bc_cache, cur);
458 }
459 
460 /*
461  * Duplicate the btree cursor.
462  * Allocate a new one, copy the record, re-get the buffers.
463  */
464 int					/* error */
465 xfs_btree_dup_cursor(
466 	struct xfs_btree_cur *cur,		/* input cursor */
467 	struct xfs_btree_cur **ncur)		/* output cursor */
468 {
469 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
470 	int		error;		/* error return value */
471 	int		i;		/* level number of btree block */
472 	xfs_mount_t	*mp;		/* mount structure for filesystem */
473 	struct xfs_btree_cur *new;		/* new cursor value */
474 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
475 
476 	tp = cur->bc_tp;
477 	mp = cur->bc_mp;
478 
479 	/*
480 	 * Allocate a new cursor like the old one.
481 	 */
482 	new = cur->bc_ops->dup_cursor(cur);
483 
484 	/*
485 	 * Copy the record currently in the cursor.
486 	 */
487 	new->bc_rec = cur->bc_rec;
488 
489 	/*
490 	 * For each level current, re-get the buffer and copy the ptr value.
491 	 */
492 	for (i = 0; i < new->bc_nlevels; i++) {
493 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
495 		bp = cur->bc_levels[i].bp;
496 		if (bp) {
497 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498 						   xfs_buf_daddr(bp), mp->m_bsize,
499 						   0, &bp,
500 						   cur->bc_ops->buf_ops);
501 			if (error) {
502 				xfs_btree_del_cursor(new, error);
503 				*ncur = NULL;
504 				return error;
505 			}
506 		}
507 		new->bc_levels[i].bp = bp;
508 	}
509 	*ncur = new;
510 	return 0;
511 }
512 
513 /*
514  * XFS btree block layout and addressing:
515  *
516  * There are two types of blocks in the btree: leaf and non-leaf blocks.
517  *
518  * The leaf record start with a header then followed by records containing
519  * the values.  A non-leaf block also starts with the same header, and
520  * then first contains lookup keys followed by an equal number of pointers
521  * to the btree blocks at the previous level.
522  *
523  *		+--------+-------+-------+-------+-------+-------+-------+
524  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525  *		+--------+-------+-------+-------+-------+-------+-------+
526  *
527  *		+--------+-------+-------+-------+-------+-------+-------+
528  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529  *		+--------+-------+-------+-------+-------+-------+-------+
530  *
531  * The header is called struct xfs_btree_block for reasons better left unknown
532  * and comes in different versions for short (32bit) and long (64bit) block
533  * pointers.  The record and key structures are defined by the btree instances
534  * and opaque to the btree core.  The block pointers are simple disk endian
535  * integers, available in a short (32bit) and long (64bit) variant.
536  *
537  * The helpers below calculate the offset of a given record, key or pointer
538  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
540  * inside the btree block is done using indices starting at one, not zero!
541  *
542  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543  * overlapping intervals.  In such a tree, records are still sorted lowest to
544  * highest and indexed by the smallest key value that refers to the record.
545  * However, nodes are different: each pointer has two associated keys -- one
546  * indexing the lowest key available in the block(s) below (the same behavior
547  * as the key in a regular btree) and another indexing the highest key
548  * available in the block(s) below.  Because records are /not/ sorted by the
549  * highest key, all leaf block updates require us to compute the highest key
550  * that matches any record in the leaf and to recursively update the high keys
551  * in the nodes going further up in the tree, if necessary.  Nodes look like
552  * this:
553  *
554  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
555  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
557  *
558  * To perform an interval query on an overlapped tree, perform the usual
559  * depth-first search and use the low and high keys to decide if we can skip
560  * that particular node.  If a leaf node is reached, return the records that
561  * intersect the interval.  Note that an interval query may return numerous
562  * entries.  For a non-overlapped tree, simply search for the record associated
563  * with the lowest key and iterate forward until a non-matching record is
564  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566  * more detail.
567  *
568  * Why do we care about overlapping intervals?  Let's say you have a bunch of
569  * reverse mapping records on a reflink filesystem:
570  *
571  * 1: +- file A startblock B offset C length D -----------+
572  * 2:      +- file E startblock F offset G length H --------------+
573  * 3:      +- file I startblock F offset J length K --+
574  * 4:                                                        +- file L... --+
575  *
576  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
577  * we'd simply increment the length of record 1.  But how do we find the record
578  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
579  * record 3 because the keys are ordered first by startblock.  An interval
580  * query would return records 1 and 2 because they both overlap (B+D-1), and
581  * from that we can pick out record 1 as the appropriate left neighbor.
582  *
583  * In the non-overlapped case you can do a LE lookup and decrement the cursor
584  * because a record's interval must end before the next record.
585  */
586 
587 /*
588  * Return size of the btree block header for this btree instance.
589  */
590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591 {
592 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594 			return XFS_BTREE_LBLOCK_CRC_LEN;
595 		return XFS_BTREE_LBLOCK_LEN;
596 	}
597 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598 		return XFS_BTREE_SBLOCK_CRC_LEN;
599 	return XFS_BTREE_SBLOCK_LEN;
600 }
601 
602 /*
603  * Return size of btree block pointers for this btree instance.
604  */
605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606 {
607 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608 		sizeof(__be64) : sizeof(__be32);
609 }
610 
611 /*
612  * Calculate offset of the n-th record in a btree block.
613  */
614 STATIC size_t
615 xfs_btree_rec_offset(
616 	struct xfs_btree_cur	*cur,
617 	int			n)
618 {
619 	return xfs_btree_block_len(cur) +
620 		(n - 1) * cur->bc_ops->rec_len;
621 }
622 
623 /*
624  * Calculate offset of the n-th key in a btree block.
625  */
626 STATIC size_t
627 xfs_btree_key_offset(
628 	struct xfs_btree_cur	*cur,
629 	int			n)
630 {
631 	return xfs_btree_block_len(cur) +
632 		(n - 1) * cur->bc_ops->key_len;
633 }
634 
635 /*
636  * Calculate offset of the n-th high key in a btree block.
637  */
638 STATIC size_t
639 xfs_btree_high_key_offset(
640 	struct xfs_btree_cur	*cur,
641 	int			n)
642 {
643 	return xfs_btree_block_len(cur) +
644 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645 }
646 
647 /*
648  * Calculate offset of the n-th block pointer in a btree block.
649  */
650 STATIC size_t
651 xfs_btree_ptr_offset(
652 	struct xfs_btree_cur	*cur,
653 	int			n,
654 	int			level)
655 {
656 	return xfs_btree_block_len(cur) +
657 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658 		(n - 1) * xfs_btree_ptr_len(cur);
659 }
660 
661 /*
662  * Return a pointer to the n-th record in the btree block.
663  */
664 union xfs_btree_rec *
665 xfs_btree_rec_addr(
666 	struct xfs_btree_cur	*cur,
667 	int			n,
668 	struct xfs_btree_block	*block)
669 {
670 	return (union xfs_btree_rec *)
671 		((char *)block + xfs_btree_rec_offset(cur, n));
672 }
673 
674 /*
675  * Return a pointer to the n-th key in the btree block.
676  */
677 union xfs_btree_key *
678 xfs_btree_key_addr(
679 	struct xfs_btree_cur	*cur,
680 	int			n,
681 	struct xfs_btree_block	*block)
682 {
683 	return (union xfs_btree_key *)
684 		((char *)block + xfs_btree_key_offset(cur, n));
685 }
686 
687 /*
688  * Return a pointer to the n-th high key in the btree block.
689  */
690 union xfs_btree_key *
691 xfs_btree_high_key_addr(
692 	struct xfs_btree_cur	*cur,
693 	int			n,
694 	struct xfs_btree_block	*block)
695 {
696 	return (union xfs_btree_key *)
697 		((char *)block + xfs_btree_high_key_offset(cur, n));
698 }
699 
700 /*
701  * Return a pointer to the n-th block pointer in the btree block.
702  */
703 union xfs_btree_ptr *
704 xfs_btree_ptr_addr(
705 	struct xfs_btree_cur	*cur,
706 	int			n,
707 	struct xfs_btree_block	*block)
708 {
709 	int			level = xfs_btree_get_level(block);
710 
711 	ASSERT(block->bb_level != 0);
712 
713 	return (union xfs_btree_ptr *)
714 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
715 }
716 
717 struct xfs_ifork *
718 xfs_btree_ifork_ptr(
719 	struct xfs_btree_cur	*cur)
720 {
721 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722 
723 	if (cur->bc_flags & XFS_BTREE_STAGING)
724 		return cur->bc_ino.ifake->if_fork;
725 	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726 }
727 
728 /*
729  * Get the root block which is stored in the inode.
730  *
731  * For now this btree implementation assumes the btree root is always
732  * stored in the if_broot field of an inode fork.
733  */
734 STATIC struct xfs_btree_block *
735 xfs_btree_get_iroot(
736 	struct xfs_btree_cur	*cur)
737 {
738 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
739 
740 	return (struct xfs_btree_block *)ifp->if_broot;
741 }
742 
743 /*
744  * Retrieve the block pointer from the cursor at the given level.
745  * This may be an inode btree root or from a buffer.
746  */
747 struct xfs_btree_block *		/* generic btree block pointer */
748 xfs_btree_get_block(
749 	struct xfs_btree_cur	*cur,	/* btree cursor */
750 	int			level,	/* level in btree */
751 	struct xfs_buf		**bpp)	/* buffer containing the block */
752 {
753 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754 	    (level == cur->bc_nlevels - 1)) {
755 		*bpp = NULL;
756 		return xfs_btree_get_iroot(cur);
757 	}
758 
759 	*bpp = cur->bc_levels[level].bp;
760 	return XFS_BUF_TO_BLOCK(*bpp);
761 }
762 
763 /*
764  * Change the cursor to point to the first record at the given level.
765  * Other levels are unaffected.
766  */
767 STATIC int				/* success=1, failure=0 */
768 xfs_btree_firstrec(
769 	struct xfs_btree_cur	*cur,	/* btree cursor */
770 	int			level)	/* level to change */
771 {
772 	struct xfs_btree_block	*block;	/* generic btree block pointer */
773 	struct xfs_buf		*bp;	/* buffer containing block */
774 
775 	/*
776 	 * Get the block pointer for this level.
777 	 */
778 	block = xfs_btree_get_block(cur, level, &bp);
779 	if (xfs_btree_check_block(cur, block, level, bp))
780 		return 0;
781 	/*
782 	 * It's empty, there is no such record.
783 	 */
784 	if (!block->bb_numrecs)
785 		return 0;
786 	/*
787 	 * Set the ptr value to 1, that's the first record/key.
788 	 */
789 	cur->bc_levels[level].ptr = 1;
790 	return 1;
791 }
792 
793 /*
794  * Change the cursor to point to the last record in the current block
795  * at the given level.  Other levels are unaffected.
796  */
797 STATIC int				/* success=1, failure=0 */
798 xfs_btree_lastrec(
799 	struct xfs_btree_cur	*cur,	/* btree cursor */
800 	int			level)	/* level to change */
801 {
802 	struct xfs_btree_block	*block;	/* generic btree block pointer */
803 	struct xfs_buf		*bp;	/* buffer containing block */
804 
805 	/*
806 	 * Get the block pointer for this level.
807 	 */
808 	block = xfs_btree_get_block(cur, level, &bp);
809 	if (xfs_btree_check_block(cur, block, level, bp))
810 		return 0;
811 	/*
812 	 * It's empty, there is no such record.
813 	 */
814 	if (!block->bb_numrecs)
815 		return 0;
816 	/*
817 	 * Set the ptr value to numrecs, that's the last record/key.
818 	 */
819 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820 	return 1;
821 }
822 
823 /*
824  * Compute first and last byte offsets for the fields given.
825  * Interprets the offsets table, which contains struct field offsets.
826  */
827 void
828 xfs_btree_offsets(
829 	uint32_t	fields,		/* bitmask of fields */
830 	const short	*offsets,	/* table of field offsets */
831 	int		nbits,		/* number of bits to inspect */
832 	int		*first,		/* output: first byte offset */
833 	int		*last)		/* output: last byte offset */
834 {
835 	int		i;		/* current bit number */
836 	uint32_t	imask;		/* mask for current bit number */
837 
838 	ASSERT(fields != 0);
839 	/*
840 	 * Find the lowest bit, so the first byte offset.
841 	 */
842 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843 		if (imask & fields) {
844 			*first = offsets[i];
845 			break;
846 		}
847 	}
848 	/*
849 	 * Find the highest bit, so the last byte offset.
850 	 */
851 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852 		if (imask & fields) {
853 			*last = offsets[i + 1] - 1;
854 			break;
855 		}
856 	}
857 }
858 
859 /*
860  * Get a buffer for the block, return it read in.
861  * Long-form addressing.
862  */
863 int
864 xfs_btree_read_bufl(
865 	struct xfs_mount	*mp,		/* file system mount point */
866 	struct xfs_trans	*tp,		/* transaction pointer */
867 	xfs_fsblock_t		fsbno,		/* file system block number */
868 	struct xfs_buf		**bpp,		/* buffer for fsbno */
869 	int			refval,		/* ref count value for buffer */
870 	const struct xfs_buf_ops *ops)
871 {
872 	struct xfs_buf		*bp;		/* return value */
873 	xfs_daddr_t		d;		/* real disk block address */
874 	int			error;
875 
876 	if (!xfs_verify_fsbno(mp, fsbno))
877 		return -EFSCORRUPTED;
878 	d = XFS_FSB_TO_DADDR(mp, fsbno);
879 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880 				   mp->m_bsize, 0, &bp, ops);
881 	if (error)
882 		return error;
883 	if (bp)
884 		xfs_buf_set_ref(bp, refval);
885 	*bpp = bp;
886 	return 0;
887 }
888 
889 /*
890  * Read-ahead the block, don't wait for it, don't return a buffer.
891  * Long-form addressing.
892  */
893 /* ARGSUSED */
894 void
895 xfs_btree_reada_bufl(
896 	struct xfs_mount	*mp,		/* file system mount point */
897 	xfs_fsblock_t		fsbno,		/* file system block number */
898 	xfs_extlen_t		count,		/* count of filesystem blocks */
899 	const struct xfs_buf_ops *ops)
900 {
901 	xfs_daddr_t		d;
902 
903 	ASSERT(fsbno != NULLFSBLOCK);
904 	d = XFS_FSB_TO_DADDR(mp, fsbno);
905 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906 }
907 
908 /*
909  * Read-ahead the block, don't wait for it, don't return a buffer.
910  * Short-form addressing.
911  */
912 /* ARGSUSED */
913 void
914 xfs_btree_reada_bufs(
915 	struct xfs_mount	*mp,		/* file system mount point */
916 	xfs_agnumber_t		agno,		/* allocation group number */
917 	xfs_agblock_t		agbno,		/* allocation group block number */
918 	xfs_extlen_t		count,		/* count of filesystem blocks */
919 	const struct xfs_buf_ops *ops)
920 {
921 	xfs_daddr_t		d;
922 
923 	ASSERT(agno != NULLAGNUMBER);
924 	ASSERT(agbno != NULLAGBLOCK);
925 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927 }
928 
929 STATIC int
930 xfs_btree_readahead_lblock(
931 	struct xfs_btree_cur	*cur,
932 	int			lr,
933 	struct xfs_btree_block	*block)
934 {
935 	int			rval = 0;
936 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938 
939 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941 				     cur->bc_ops->buf_ops);
942 		rval++;
943 	}
944 
945 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947 				     cur->bc_ops->buf_ops);
948 		rval++;
949 	}
950 
951 	return rval;
952 }
953 
954 STATIC int
955 xfs_btree_readahead_sblock(
956 	struct xfs_btree_cur	*cur,
957 	int			lr,
958 	struct xfs_btree_block *block)
959 {
960 	int			rval = 0;
961 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963 
964 
965 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967 				     left, 1, cur->bc_ops->buf_ops);
968 		rval++;
969 	}
970 
971 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973 				     right, 1, cur->bc_ops->buf_ops);
974 		rval++;
975 	}
976 
977 	return rval;
978 }
979 
980 /*
981  * Read-ahead btree blocks, at the given level.
982  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983  */
984 STATIC int
985 xfs_btree_readahead(
986 	struct xfs_btree_cur	*cur,		/* btree cursor */
987 	int			lev,		/* level in btree */
988 	int			lr)		/* left/right bits */
989 {
990 	struct xfs_btree_block	*block;
991 
992 	/*
993 	 * No readahead needed if we are at the root level and the
994 	 * btree root is stored in the inode.
995 	 */
996 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997 	    (lev == cur->bc_nlevels - 1))
998 		return 0;
999 
1000 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001 		return 0;
1002 
1003 	cur->bc_levels[lev].ra |= lr;
1004 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005 
1006 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007 		return xfs_btree_readahead_lblock(cur, lr, block);
1008 	return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010 
1011 STATIC int
1012 xfs_btree_ptr_to_daddr(
1013 	struct xfs_btree_cur		*cur,
1014 	const union xfs_btree_ptr	*ptr,
1015 	xfs_daddr_t			*daddr)
1016 {
1017 	xfs_fsblock_t		fsbno;
1018 	xfs_agblock_t		agbno;
1019 	int			error;
1020 
1021 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022 	if (error)
1023 		return error;
1024 
1025 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026 		fsbno = be64_to_cpu(ptr->l);
1027 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028 	} else {
1029 		agbno = be32_to_cpu(ptr->s);
1030 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031 				agbno);
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * Readahead @count btree blocks at the given @ptr location.
1039  *
1040  * We don't need to care about long or short form btrees here as we have a
1041  * method of converting the ptr directly to a daddr available to us.
1042  */
1043 STATIC void
1044 xfs_btree_readahead_ptr(
1045 	struct xfs_btree_cur	*cur,
1046 	union xfs_btree_ptr	*ptr,
1047 	xfs_extlen_t		count)
1048 {
1049 	xfs_daddr_t		daddr;
1050 
1051 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052 		return;
1053 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056 
1057 /*
1058  * Set the buffer for level "lev" in the cursor to bp, releasing
1059  * any previous buffer.
1060  */
1061 STATIC void
1062 xfs_btree_setbuf(
1063 	struct xfs_btree_cur	*cur,	/* btree cursor */
1064 	int			lev,	/* level in btree */
1065 	struct xfs_buf		*bp)	/* new buffer to set */
1066 {
1067 	struct xfs_btree_block	*b;	/* btree block */
1068 
1069 	if (cur->bc_levels[lev].bp)
1070 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071 	cur->bc_levels[lev].bp = bp;
1072 	cur->bc_levels[lev].ra = 0;
1073 
1074 	b = XFS_BUF_TO_BLOCK(bp);
1075 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080 	} else {
1081 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085 	}
1086 }
1087 
1088 bool
1089 xfs_btree_ptr_is_null(
1090 	struct xfs_btree_cur		*cur,
1091 	const union xfs_btree_ptr	*ptr)
1092 {
1093 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095 	else
1096 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098 
1099 void
1100 xfs_btree_set_ptr_null(
1101 	struct xfs_btree_cur	*cur,
1102 	union xfs_btree_ptr	*ptr)
1103 {
1104 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1106 	else
1107 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109 
1110 /*
1111  * Get/set/init sibling pointers
1112  */
1113 void
1114 xfs_btree_get_sibling(
1115 	struct xfs_btree_cur	*cur,
1116 	struct xfs_btree_block	*block,
1117 	union xfs_btree_ptr	*ptr,
1118 	int			lr)
1119 {
1120 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121 
1122 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123 		if (lr == XFS_BB_RIGHTSIB)
1124 			ptr->l = block->bb_u.l.bb_rightsib;
1125 		else
1126 			ptr->l = block->bb_u.l.bb_leftsib;
1127 	} else {
1128 		if (lr == XFS_BB_RIGHTSIB)
1129 			ptr->s = block->bb_u.s.bb_rightsib;
1130 		else
1131 			ptr->s = block->bb_u.s.bb_leftsib;
1132 	}
1133 }
1134 
1135 void
1136 xfs_btree_set_sibling(
1137 	struct xfs_btree_cur		*cur,
1138 	struct xfs_btree_block		*block,
1139 	const union xfs_btree_ptr	*ptr,
1140 	int				lr)
1141 {
1142 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143 
1144 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145 		if (lr == XFS_BB_RIGHTSIB)
1146 			block->bb_u.l.bb_rightsib = ptr->l;
1147 		else
1148 			block->bb_u.l.bb_leftsib = ptr->l;
1149 	} else {
1150 		if (lr == XFS_BB_RIGHTSIB)
1151 			block->bb_u.s.bb_rightsib = ptr->s;
1152 		else
1153 			block->bb_u.s.bb_leftsib = ptr->s;
1154 	}
1155 }
1156 
1157 void
1158 xfs_btree_init_block_int(
1159 	struct xfs_mount	*mp,
1160 	struct xfs_btree_block	*buf,
1161 	xfs_daddr_t		blkno,
1162 	xfs_btnum_t		btnum,
1163 	__u16			level,
1164 	__u16			numrecs,
1165 	__u64			owner,
1166 	unsigned int		flags)
1167 {
1168 	int			crc = xfs_has_crc(mp);
1169 	__u32			magic = xfs_btree_magic(crc, btnum);
1170 
1171 	buf->bb_magic = cpu_to_be32(magic);
1172 	buf->bb_level = cpu_to_be16(level);
1173 	buf->bb_numrecs = cpu_to_be16(numrecs);
1174 
1175 	if (flags & XFS_BTREE_LONG_PTRS) {
1176 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178 		if (crc) {
1179 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182 			buf->bb_u.l.bb_pad = 0;
1183 			buf->bb_u.l.bb_lsn = 0;
1184 		}
1185 	} else {
1186 		/* owner is a 32 bit value on short blocks */
1187 		__u32 __owner = (__u32)owner;
1188 
1189 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 		if (crc) {
1192 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195 			buf->bb_u.s.bb_lsn = 0;
1196 		}
1197 	}
1198 }
1199 
1200 void
1201 xfs_btree_init_block(
1202 	struct xfs_mount *mp,
1203 	struct xfs_buf	*bp,
1204 	xfs_btnum_t	btnum,
1205 	__u16		level,
1206 	__u16		numrecs,
1207 	__u64		owner)
1208 {
1209 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210 				 btnum, level, numrecs, owner, 0);
1211 }
1212 
1213 void
1214 xfs_btree_init_block_cur(
1215 	struct xfs_btree_cur	*cur,
1216 	struct xfs_buf		*bp,
1217 	int			level,
1218 	int			numrecs)
1219 {
1220 	__u64			owner;
1221 
1222 	/*
1223 	 * we can pull the owner from the cursor right now as the different
1224 	 * owners align directly with the pointer size of the btree. This may
1225 	 * change in future, but is safe for current users of the generic btree
1226 	 * code.
1227 	 */
1228 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229 		owner = cur->bc_ino.ip->i_ino;
1230 	else
1231 		owner = cur->bc_ag.pag->pag_agno;
1232 
1233 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1235 				numrecs, owner, cur->bc_flags);
1236 }
1237 
1238 /*
1239  * Return true if ptr is the last record in the btree and
1240  * we need to track updates to this record.  The decision
1241  * will be further refined in the update_lastrec method.
1242  */
1243 STATIC int
1244 xfs_btree_is_lastrec(
1245 	struct xfs_btree_cur	*cur,
1246 	struct xfs_btree_block	*block,
1247 	int			level)
1248 {
1249 	union xfs_btree_ptr	ptr;
1250 
1251 	if (level > 0)
1252 		return 0;
1253 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254 		return 0;
1255 
1256 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1258 		return 0;
1259 	return 1;
1260 }
1261 
1262 STATIC void
1263 xfs_btree_buf_to_ptr(
1264 	struct xfs_btree_cur	*cur,
1265 	struct xfs_buf		*bp,
1266 	union xfs_btree_ptr	*ptr)
1267 {
1268 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270 					xfs_buf_daddr(bp)));
1271 	else {
1272 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273 					xfs_buf_daddr(bp)));
1274 	}
1275 }
1276 
1277 STATIC void
1278 xfs_btree_set_refs(
1279 	struct xfs_btree_cur	*cur,
1280 	struct xfs_buf		*bp)
1281 {
1282 	switch (cur->bc_btnum) {
1283 	case XFS_BTNUM_BNO:
1284 	case XFS_BTNUM_CNT:
1285 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286 		break;
1287 	case XFS_BTNUM_INO:
1288 	case XFS_BTNUM_FINO:
1289 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290 		break;
1291 	case XFS_BTNUM_BMAP:
1292 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293 		break;
1294 	case XFS_BTNUM_RMAP:
1295 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296 		break;
1297 	case XFS_BTNUM_REFC:
1298 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299 		break;
1300 	default:
1301 		ASSERT(0);
1302 	}
1303 }
1304 
1305 int
1306 xfs_btree_get_buf_block(
1307 	struct xfs_btree_cur		*cur,
1308 	const union xfs_btree_ptr	*ptr,
1309 	struct xfs_btree_block		**block,
1310 	struct xfs_buf			**bpp)
1311 {
1312 	struct xfs_mount	*mp = cur->bc_mp;
1313 	xfs_daddr_t		d;
1314 	int			error;
1315 
1316 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 	if (error)
1318 		return error;
1319 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320 			0, bpp);
1321 	if (error)
1322 		return error;
1323 
1324 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1325 	*block = XFS_BUF_TO_BLOCK(*bpp);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Read in the buffer at the given ptr and return the buffer and
1331  * the block pointer within the buffer.
1332  */
1333 STATIC int
1334 xfs_btree_read_buf_block(
1335 	struct xfs_btree_cur		*cur,
1336 	const union xfs_btree_ptr	*ptr,
1337 	int				flags,
1338 	struct xfs_btree_block		**block,
1339 	struct xfs_buf			**bpp)
1340 {
1341 	struct xfs_mount	*mp = cur->bc_mp;
1342 	xfs_daddr_t		d;
1343 	int			error;
1344 
1345 	/* need to sort out how callers deal with failures first */
1346 	ASSERT(!(flags & XBF_TRYLOCK));
1347 
1348 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349 	if (error)
1350 		return error;
1351 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352 				   mp->m_bsize, flags, bpp,
1353 				   cur->bc_ops->buf_ops);
1354 	if (error)
1355 		return error;
1356 
1357 	xfs_btree_set_refs(cur, *bpp);
1358 	*block = XFS_BUF_TO_BLOCK(*bpp);
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Copy keys from one btree block to another.
1364  */
1365 void
1366 xfs_btree_copy_keys(
1367 	struct xfs_btree_cur		*cur,
1368 	union xfs_btree_key		*dst_key,
1369 	const union xfs_btree_key	*src_key,
1370 	int				numkeys)
1371 {
1372 	ASSERT(numkeys >= 0);
1373 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375 
1376 /*
1377  * Copy records from one btree block to another.
1378  */
1379 STATIC void
1380 xfs_btree_copy_recs(
1381 	struct xfs_btree_cur	*cur,
1382 	union xfs_btree_rec	*dst_rec,
1383 	union xfs_btree_rec	*src_rec,
1384 	int			numrecs)
1385 {
1386 	ASSERT(numrecs >= 0);
1387 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389 
1390 /*
1391  * Copy block pointers from one btree block to another.
1392  */
1393 void
1394 xfs_btree_copy_ptrs(
1395 	struct xfs_btree_cur	*cur,
1396 	union xfs_btree_ptr	*dst_ptr,
1397 	const union xfs_btree_ptr *src_ptr,
1398 	int			numptrs)
1399 {
1400 	ASSERT(numptrs >= 0);
1401 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403 
1404 /*
1405  * Shift keys one index left/right inside a single btree block.
1406  */
1407 STATIC void
1408 xfs_btree_shift_keys(
1409 	struct xfs_btree_cur	*cur,
1410 	union xfs_btree_key	*key,
1411 	int			dir,
1412 	int			numkeys)
1413 {
1414 	char			*dst_key;
1415 
1416 	ASSERT(numkeys >= 0);
1417 	ASSERT(dir == 1 || dir == -1);
1418 
1419 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422 
1423 /*
1424  * Shift records one index left/right inside a single btree block.
1425  */
1426 STATIC void
1427 xfs_btree_shift_recs(
1428 	struct xfs_btree_cur	*cur,
1429 	union xfs_btree_rec	*rec,
1430 	int			dir,
1431 	int			numrecs)
1432 {
1433 	char			*dst_rec;
1434 
1435 	ASSERT(numrecs >= 0);
1436 	ASSERT(dir == 1 || dir == -1);
1437 
1438 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441 
1442 /*
1443  * Shift block pointers one index left/right inside a single btree block.
1444  */
1445 STATIC void
1446 xfs_btree_shift_ptrs(
1447 	struct xfs_btree_cur	*cur,
1448 	union xfs_btree_ptr	*ptr,
1449 	int			dir,
1450 	int			numptrs)
1451 {
1452 	char			*dst_ptr;
1453 
1454 	ASSERT(numptrs >= 0);
1455 	ASSERT(dir == 1 || dir == -1);
1456 
1457 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460 
1461 /*
1462  * Log key values from the btree block.
1463  */
1464 STATIC void
1465 xfs_btree_log_keys(
1466 	struct xfs_btree_cur	*cur,
1467 	struct xfs_buf		*bp,
1468 	int			first,
1469 	int			last)
1470 {
1471 
1472 	if (bp) {
1473 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474 		xfs_trans_log_buf(cur->bc_tp, bp,
1475 				  xfs_btree_key_offset(cur, first),
1476 				  xfs_btree_key_offset(cur, last + 1) - 1);
1477 	} else {
1478 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480 	}
1481 }
1482 
1483 /*
1484  * Log record values from the btree block.
1485  */
1486 void
1487 xfs_btree_log_recs(
1488 	struct xfs_btree_cur	*cur,
1489 	struct xfs_buf		*bp,
1490 	int			first,
1491 	int			last)
1492 {
1493 
1494 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495 	xfs_trans_log_buf(cur->bc_tp, bp,
1496 			  xfs_btree_rec_offset(cur, first),
1497 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1498 
1499 }
1500 
1501 /*
1502  * Log block pointer fields from a btree block (nonleaf).
1503  */
1504 STATIC void
1505 xfs_btree_log_ptrs(
1506 	struct xfs_btree_cur	*cur,	/* btree cursor */
1507 	struct xfs_buf		*bp,	/* buffer containing btree block */
1508 	int			first,	/* index of first pointer to log */
1509 	int			last)	/* index of last pointer to log */
1510 {
1511 
1512 	if (bp) {
1513 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1514 		int			level = xfs_btree_get_level(block);
1515 
1516 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517 		xfs_trans_log_buf(cur->bc_tp, bp,
1518 				xfs_btree_ptr_offset(cur, first, level),
1519 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520 	} else {
1521 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 	}
1524 
1525 }
1526 
1527 /*
1528  * Log fields from a btree block header.
1529  */
1530 void
1531 xfs_btree_log_block(
1532 	struct xfs_btree_cur	*cur,	/* btree cursor */
1533 	struct xfs_buf		*bp,	/* buffer containing btree block */
1534 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1535 {
1536 	int			first;	/* first byte offset logged */
1537 	int			last;	/* last byte offset logged */
1538 	static const short	soffsets[] = {	/* table of offsets (short) */
1539 		offsetof(struct xfs_btree_block, bb_magic),
1540 		offsetof(struct xfs_btree_block, bb_level),
1541 		offsetof(struct xfs_btree_block, bb_numrecs),
1542 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549 		XFS_BTREE_SBLOCK_CRC_LEN
1550 	};
1551 	static const short	loffsets[] = {	/* table of offsets (long) */
1552 		offsetof(struct xfs_btree_block, bb_magic),
1553 		offsetof(struct xfs_btree_block, bb_level),
1554 		offsetof(struct xfs_btree_block, bb_numrecs),
1555 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563 		XFS_BTREE_LBLOCK_CRC_LEN
1564 	};
1565 
1566 	if (bp) {
1567 		int nbits;
1568 
1569 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570 			/*
1571 			 * We don't log the CRC when updating a btree
1572 			 * block but instead recreate it during log
1573 			 * recovery.  As the log buffers have checksums
1574 			 * of their own this is safe and avoids logging a crc
1575 			 * update in a lot of places.
1576 			 */
1577 			if (fields == XFS_BB_ALL_BITS)
1578 				fields = XFS_BB_ALL_BITS_CRC;
1579 			nbits = XFS_BB_NUM_BITS_CRC;
1580 		} else {
1581 			nbits = XFS_BB_NUM_BITS;
1582 		}
1583 		xfs_btree_offsets(fields,
1584 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585 					loffsets : soffsets,
1586 				  nbits, &first, &last);
1587 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589 	} else {
1590 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592 	}
1593 }
1594 
1595 /*
1596  * Increment cursor by one record at the level.
1597  * For nonzero levels the leaf-ward information is untouched.
1598  */
1599 int						/* error */
1600 xfs_btree_increment(
1601 	struct xfs_btree_cur	*cur,
1602 	int			level,
1603 	int			*stat)		/* success/failure */
1604 {
1605 	struct xfs_btree_block	*block;
1606 	union xfs_btree_ptr	ptr;
1607 	struct xfs_buf		*bp;
1608 	int			error;		/* error return value */
1609 	int			lev;
1610 
1611 	ASSERT(level < cur->bc_nlevels);
1612 
1613 	/* Read-ahead to the right at this level. */
1614 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615 
1616 	/* Get a pointer to the btree block. */
1617 	block = xfs_btree_get_block(cur, level, &bp);
1618 
1619 #ifdef DEBUG
1620 	error = xfs_btree_check_block(cur, block, level, bp);
1621 	if (error)
1622 		goto error0;
1623 #endif
1624 
1625 	/* We're done if we remain in the block after the increment. */
1626 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627 		goto out1;
1628 
1629 	/* Fail if we just went off the right edge of the tree. */
1630 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631 	if (xfs_btree_ptr_is_null(cur, &ptr))
1632 		goto out0;
1633 
1634 	XFS_BTREE_STATS_INC(cur, increment);
1635 
1636 	/*
1637 	 * March up the tree incrementing pointers.
1638 	 * Stop when we don't go off the right edge of a block.
1639 	 */
1640 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641 		block = xfs_btree_get_block(cur, lev, &bp);
1642 
1643 #ifdef DEBUG
1644 		error = xfs_btree_check_block(cur, block, lev, bp);
1645 		if (error)
1646 			goto error0;
1647 #endif
1648 
1649 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650 			break;
1651 
1652 		/* Read-ahead the right block for the next loop. */
1653 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654 	}
1655 
1656 	/*
1657 	 * If we went off the root then we are either seriously
1658 	 * confused or have the tree root in an inode.
1659 	 */
1660 	if (lev == cur->bc_nlevels) {
1661 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662 			goto out0;
1663 		ASSERT(0);
1664 		error = -EFSCORRUPTED;
1665 		goto error0;
1666 	}
1667 	ASSERT(lev < cur->bc_nlevels);
1668 
1669 	/*
1670 	 * Now walk back down the tree, fixing up the cursor's buffer
1671 	 * pointers and key numbers.
1672 	 */
1673 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674 		union xfs_btree_ptr	*ptrp;
1675 
1676 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677 		--lev;
1678 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679 		if (error)
1680 			goto error0;
1681 
1682 		xfs_btree_setbuf(cur, lev, bp);
1683 		cur->bc_levels[lev].ptr = 1;
1684 	}
1685 out1:
1686 	*stat = 1;
1687 	return 0;
1688 
1689 out0:
1690 	*stat = 0;
1691 	return 0;
1692 
1693 error0:
1694 	return error;
1695 }
1696 
1697 /*
1698  * Decrement cursor by one record at the level.
1699  * For nonzero levels the leaf-ward information is untouched.
1700  */
1701 int						/* error */
1702 xfs_btree_decrement(
1703 	struct xfs_btree_cur	*cur,
1704 	int			level,
1705 	int			*stat)		/* success/failure */
1706 {
1707 	struct xfs_btree_block	*block;
1708 	struct xfs_buf		*bp;
1709 	int			error;		/* error return value */
1710 	int			lev;
1711 	union xfs_btree_ptr	ptr;
1712 
1713 	ASSERT(level < cur->bc_nlevels);
1714 
1715 	/* Read-ahead to the left at this level. */
1716 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717 
1718 	/* We're done if we remain in the block after the decrement. */
1719 	if (--cur->bc_levels[level].ptr > 0)
1720 		goto out1;
1721 
1722 	/* Get a pointer to the btree block. */
1723 	block = xfs_btree_get_block(cur, level, &bp);
1724 
1725 #ifdef DEBUG
1726 	error = xfs_btree_check_block(cur, block, level, bp);
1727 	if (error)
1728 		goto error0;
1729 #endif
1730 
1731 	/* Fail if we just went off the left edge of the tree. */
1732 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733 	if (xfs_btree_ptr_is_null(cur, &ptr))
1734 		goto out0;
1735 
1736 	XFS_BTREE_STATS_INC(cur, decrement);
1737 
1738 	/*
1739 	 * March up the tree decrementing pointers.
1740 	 * Stop when we don't go off the left edge of a block.
1741 	 */
1742 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743 		if (--cur->bc_levels[lev].ptr > 0)
1744 			break;
1745 		/* Read-ahead the left block for the next loop. */
1746 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747 	}
1748 
1749 	/*
1750 	 * If we went off the root then we are seriously confused.
1751 	 * or the root of the tree is in an inode.
1752 	 */
1753 	if (lev == cur->bc_nlevels) {
1754 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755 			goto out0;
1756 		ASSERT(0);
1757 		error = -EFSCORRUPTED;
1758 		goto error0;
1759 	}
1760 	ASSERT(lev < cur->bc_nlevels);
1761 
1762 	/*
1763 	 * Now walk back down the tree, fixing up the cursor's buffer
1764 	 * pointers and key numbers.
1765 	 */
1766 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767 		union xfs_btree_ptr	*ptrp;
1768 
1769 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770 		--lev;
1771 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772 		if (error)
1773 			goto error0;
1774 		xfs_btree_setbuf(cur, lev, bp);
1775 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776 	}
1777 out1:
1778 	*stat = 1;
1779 	return 0;
1780 
1781 out0:
1782 	*stat = 0;
1783 	return 0;
1784 
1785 error0:
1786 	return error;
1787 }
1788 
1789 int
1790 xfs_btree_lookup_get_block(
1791 	struct xfs_btree_cur		*cur,	/* btree cursor */
1792 	int				level,	/* level in the btree */
1793 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1794 	struct xfs_btree_block		**blkp) /* return btree block */
1795 {
1796 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1797 	xfs_daddr_t		daddr;
1798 	int			error = 0;
1799 
1800 	/* special case the root block if in an inode */
1801 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802 	    (level == cur->bc_nlevels - 1)) {
1803 		*blkp = xfs_btree_get_iroot(cur);
1804 		return 0;
1805 	}
1806 
1807 	/*
1808 	 * If the old buffer at this level for the disk address we are
1809 	 * looking for re-use it.
1810 	 *
1811 	 * Otherwise throw it away and get a new one.
1812 	 */
1813 	bp = cur->bc_levels[level].bp;
1814 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815 	if (error)
1816 		return error;
1817 	if (bp && xfs_buf_daddr(bp) == daddr) {
1818 		*blkp = XFS_BUF_TO_BLOCK(bp);
1819 		return 0;
1820 	}
1821 
1822 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823 	if (error)
1824 		return error;
1825 
1826 	/* Check the inode owner since the verifiers don't. */
1827 	if (xfs_has_crc(cur->bc_mp) &&
1828 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831 			cur->bc_ino.ip->i_ino)
1832 		goto out_bad;
1833 
1834 	/* Did we get the level we were looking for? */
1835 	if (be16_to_cpu((*blkp)->bb_level) != level)
1836 		goto out_bad;
1837 
1838 	/* Check that internal nodes have at least one record. */
1839 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840 		goto out_bad;
1841 
1842 	xfs_btree_setbuf(cur, level, bp);
1843 	return 0;
1844 
1845 out_bad:
1846 	*blkp = NULL;
1847 	xfs_buf_mark_corrupt(bp);
1848 	xfs_trans_brelse(cur->bc_tp, bp);
1849 	return -EFSCORRUPTED;
1850 }
1851 
1852 /*
1853  * Get current search key.  For level 0 we don't actually have a key
1854  * structure so we make one up from the record.  For all other levels
1855  * we just return the right key.
1856  */
1857 STATIC union xfs_btree_key *
1858 xfs_lookup_get_search_key(
1859 	struct xfs_btree_cur	*cur,
1860 	int			level,
1861 	int			keyno,
1862 	struct xfs_btree_block	*block,
1863 	union xfs_btree_key	*kp)
1864 {
1865 	if (level == 0) {
1866 		cur->bc_ops->init_key_from_rec(kp,
1867 				xfs_btree_rec_addr(cur, keyno, block));
1868 		return kp;
1869 	}
1870 
1871 	return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873 
1874 /*
1875  * Lookup the record.  The cursor is made to point to it, based on dir.
1876  * stat is set to 0 if can't find any such record, 1 for success.
1877  */
1878 int					/* error */
1879 xfs_btree_lookup(
1880 	struct xfs_btree_cur	*cur,	/* btree cursor */
1881 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1882 	int			*stat)	/* success/failure */
1883 {
1884 	struct xfs_btree_block	*block;	/* current btree block */
1885 	int64_t			diff;	/* difference for the current key */
1886 	int			error;	/* error return value */
1887 	int			keyno;	/* current key number */
1888 	int			level;	/* level in the btree */
1889 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1890 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1891 
1892 	XFS_BTREE_STATS_INC(cur, lookup);
1893 
1894 	/* No such thing as a zero-level tree. */
1895 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896 		return -EFSCORRUPTED;
1897 
1898 	block = NULL;
1899 	keyno = 0;
1900 
1901 	/* initialise start pointer from cursor */
1902 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903 	pp = &ptr;
1904 
1905 	/*
1906 	 * Iterate over each level in the btree, starting at the root.
1907 	 * For each level above the leaves, find the key we need, based
1908 	 * on the lookup record, then follow the corresponding block
1909 	 * pointer down to the next level.
1910 	 */
1911 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912 		/* Get the block we need to do the lookup on. */
1913 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914 		if (error)
1915 			goto error0;
1916 
1917 		if (diff == 0) {
1918 			/*
1919 			 * If we already had a key match at a higher level, we
1920 			 * know we need to use the first entry in this block.
1921 			 */
1922 			keyno = 1;
1923 		} else {
1924 			/* Otherwise search this block. Do a binary search. */
1925 
1926 			int	high;	/* high entry number */
1927 			int	low;	/* low entry number */
1928 
1929 			/* Set low and high entry numbers, 1-based. */
1930 			low = 1;
1931 			high = xfs_btree_get_numrecs(block);
1932 			if (!high) {
1933 				/* Block is empty, must be an empty leaf. */
1934 				if (level != 0 || cur->bc_nlevels != 1) {
1935 					XFS_CORRUPTION_ERROR(__func__,
1936 							XFS_ERRLEVEL_LOW,
1937 							cur->bc_mp, block,
1938 							sizeof(*block));
1939 					return -EFSCORRUPTED;
1940 				}
1941 
1942 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943 				*stat = 0;
1944 				return 0;
1945 			}
1946 
1947 			/* Binary search the block. */
1948 			while (low <= high) {
1949 				union xfs_btree_key	key;
1950 				union xfs_btree_key	*kp;
1951 
1952 				XFS_BTREE_STATS_INC(cur, compare);
1953 
1954 				/* keyno is average of low and high. */
1955 				keyno = (low + high) >> 1;
1956 
1957 				/* Get current search key */
1958 				kp = xfs_lookup_get_search_key(cur, level,
1959 						keyno, block, &key);
1960 
1961 				/*
1962 				 * Compute difference to get next direction:
1963 				 *  - less than, move right
1964 				 *  - greater than, move left
1965 				 *  - equal, we're done
1966 				 */
1967 				diff = cur->bc_ops->key_diff(cur, kp);
1968 				if (diff < 0)
1969 					low = keyno + 1;
1970 				else if (diff > 0)
1971 					high = keyno - 1;
1972 				else
1973 					break;
1974 			}
1975 		}
1976 
1977 		/*
1978 		 * If there are more levels, set up for the next level
1979 		 * by getting the block number and filling in the cursor.
1980 		 */
1981 		if (level > 0) {
1982 			/*
1983 			 * If we moved left, need the previous key number,
1984 			 * unless there isn't one.
1985 			 */
1986 			if (diff > 0 && --keyno < 1)
1987 				keyno = 1;
1988 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1989 
1990 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991 			if (error)
1992 				goto error0;
1993 
1994 			cur->bc_levels[level].ptr = keyno;
1995 		}
1996 	}
1997 
1998 	/* Done with the search. See if we need to adjust the results. */
1999 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2000 		keyno++;
2001 		/*
2002 		 * If ge search and we went off the end of the block, but it's
2003 		 * not the last block, we're in the wrong block.
2004 		 */
2005 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006 		if (dir == XFS_LOOKUP_GE &&
2007 		    keyno > xfs_btree_get_numrecs(block) &&
2008 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2009 			int	i;
2010 
2011 			cur->bc_levels[0].ptr = keyno;
2012 			error = xfs_btree_increment(cur, 0, &i);
2013 			if (error)
2014 				goto error0;
2015 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016 				return -EFSCORRUPTED;
2017 			*stat = 1;
2018 			return 0;
2019 		}
2020 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2021 		keyno--;
2022 	cur->bc_levels[0].ptr = keyno;
2023 
2024 	/* Return if we succeeded or not. */
2025 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026 		*stat = 0;
2027 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028 		*stat = 1;
2029 	else
2030 		*stat = 0;
2031 	return 0;
2032 
2033 error0:
2034 	return error;
2035 }
2036 
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
2039 xfs_btree_high_key_from_key(
2040 	struct xfs_btree_cur	*cur,
2041 	union xfs_btree_key	*key)
2042 {
2043 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044 	return (union xfs_btree_key *)((char *)key +
2045 			(cur->bc_ops->key_len / 2));
2046 }
2047 
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
2050 xfs_btree_get_leaf_keys(
2051 	struct xfs_btree_cur	*cur,
2052 	struct xfs_btree_block	*block,
2053 	union xfs_btree_key	*key)
2054 {
2055 	union xfs_btree_key	max_hkey;
2056 	union xfs_btree_key	hkey;
2057 	union xfs_btree_rec	*rec;
2058 	union xfs_btree_key	*high;
2059 	int			n;
2060 
2061 	rec = xfs_btree_rec_addr(cur, 1, block);
2062 	cur->bc_ops->init_key_from_rec(key, rec);
2063 
2064 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065 
2066 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068 			rec = xfs_btree_rec_addr(cur, n, block);
2069 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071 					> 0)
2072 				max_hkey = hkey;
2073 		}
2074 
2075 		high = xfs_btree_high_key_from_key(cur, key);
2076 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077 	}
2078 }
2079 
2080 /* Determine the low (and high if overlapped) keys of a node block */
2081 STATIC void
2082 xfs_btree_get_node_keys(
2083 	struct xfs_btree_cur	*cur,
2084 	struct xfs_btree_block	*block,
2085 	union xfs_btree_key	*key)
2086 {
2087 	union xfs_btree_key	*hkey;
2088 	union xfs_btree_key	*max_hkey;
2089 	union xfs_btree_key	*high;
2090 	int			n;
2091 
2092 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094 				cur->bc_ops->key_len / 2);
2095 
2096 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098 			hkey = xfs_btree_high_key_addr(cur, n, block);
2099 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100 				max_hkey = hkey;
2101 		}
2102 
2103 		high = xfs_btree_high_key_from_key(cur, key);
2104 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105 	} else {
2106 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107 				cur->bc_ops->key_len);
2108 	}
2109 }
2110 
2111 /* Derive the keys for any btree block. */
2112 void
2113 xfs_btree_get_keys(
2114 	struct xfs_btree_cur	*cur,
2115 	struct xfs_btree_block	*block,
2116 	union xfs_btree_key	*key)
2117 {
2118 	if (be16_to_cpu(block->bb_level) == 0)
2119 		xfs_btree_get_leaf_keys(cur, block, key);
2120 	else
2121 		xfs_btree_get_node_keys(cur, block, key);
2122 }
2123 
2124 /*
2125  * Decide if we need to update the parent keys of a btree block.  For
2126  * a standard btree this is only necessary if we're updating the first
2127  * record/key.  For an overlapping btree, we must always update the
2128  * keys because the highest key can be in any of the records or keys
2129  * in the block.
2130  */
2131 static inline bool
2132 xfs_btree_needs_key_update(
2133 	struct xfs_btree_cur	*cur,
2134 	int			ptr)
2135 {
2136 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137 }
2138 
2139 /*
2140  * Update the low and high parent keys of the given level, progressing
2141  * towards the root.  If force_all is false, stop if the keys for a given
2142  * level do not need updating.
2143  */
2144 STATIC int
2145 __xfs_btree_updkeys(
2146 	struct xfs_btree_cur	*cur,
2147 	int			level,
2148 	struct xfs_btree_block	*block,
2149 	struct xfs_buf		*bp0,
2150 	bool			force_all)
2151 {
2152 	union xfs_btree_key	key;	/* keys from current level */
2153 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2154 	union xfs_btree_key	*hkey;
2155 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2156 	union xfs_btree_key	*nhkey;
2157 	struct xfs_buf		*bp;
2158 	int			ptr;
2159 
2160 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161 
2162 	/* Exit if there aren't any parent levels to update. */
2163 	if (level + 1 >= cur->bc_nlevels)
2164 		return 0;
2165 
2166 	trace_xfs_btree_updkeys(cur, level, bp0);
2167 
2168 	lkey = &key;
2169 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2170 	xfs_btree_get_keys(cur, block, lkey);
2171 	for (level++; level < cur->bc_nlevels; level++) {
2172 #ifdef DEBUG
2173 		int		error;
2174 #endif
2175 		block = xfs_btree_get_block(cur, level, &bp);
2176 		trace_xfs_btree_updkeys(cur, level, bp);
2177 #ifdef DEBUG
2178 		error = xfs_btree_check_block(cur, block, level, bp);
2179 		if (error)
2180 			return error;
2181 #endif
2182 		ptr = cur->bc_levels[level].ptr;
2183 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2184 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185 		if (!force_all &&
2186 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188 			break;
2189 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2191 		if (level + 1 >= cur->bc_nlevels)
2192 			break;
2193 		xfs_btree_get_node_keys(cur, block, lkey);
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 /* Update all the keys from some level in cursor back to the root. */
2200 STATIC int
2201 xfs_btree_updkeys_force(
2202 	struct xfs_btree_cur	*cur,
2203 	int			level)
2204 {
2205 	struct xfs_buf		*bp;
2206 	struct xfs_btree_block	*block;
2207 
2208 	block = xfs_btree_get_block(cur, level, &bp);
2209 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2210 }
2211 
2212 /*
2213  * Update the parent keys of the given level, progressing towards the root.
2214  */
2215 STATIC int
2216 xfs_btree_update_keys(
2217 	struct xfs_btree_cur	*cur,
2218 	int			level)
2219 {
2220 	struct xfs_btree_block	*block;
2221 	struct xfs_buf		*bp;
2222 	union xfs_btree_key	*kp;
2223 	union xfs_btree_key	key;
2224 	int			ptr;
2225 
2226 	ASSERT(level >= 0);
2227 
2228 	block = xfs_btree_get_block(cur, level, &bp);
2229 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2231 
2232 	/*
2233 	 * Go up the tree from this level toward the root.
2234 	 * At each level, update the key value to the value input.
2235 	 * Stop when we reach a level where the cursor isn't pointing
2236 	 * at the first entry in the block.
2237 	 */
2238 	xfs_btree_get_keys(cur, block, &key);
2239 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240 #ifdef DEBUG
2241 		int		error;
2242 #endif
2243 		block = xfs_btree_get_block(cur, level, &bp);
2244 #ifdef DEBUG
2245 		error = xfs_btree_check_block(cur, block, level, bp);
2246 		if (error)
2247 			return error;
2248 #endif
2249 		ptr = cur->bc_levels[level].ptr;
2250 		kp = xfs_btree_key_addr(cur, ptr, block);
2251 		xfs_btree_copy_keys(cur, kp, &key, 1);
2252 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Update the record referred to by cur to the value in the
2260  * given record. This either works (return 0) or gets an
2261  * EFSCORRUPTED error.
2262  */
2263 int
2264 xfs_btree_update(
2265 	struct xfs_btree_cur	*cur,
2266 	union xfs_btree_rec	*rec)
2267 {
2268 	struct xfs_btree_block	*block;
2269 	struct xfs_buf		*bp;
2270 	int			error;
2271 	int			ptr;
2272 	union xfs_btree_rec	*rp;
2273 
2274 	/* Pick up the current block. */
2275 	block = xfs_btree_get_block(cur, 0, &bp);
2276 
2277 #ifdef DEBUG
2278 	error = xfs_btree_check_block(cur, block, 0, bp);
2279 	if (error)
2280 		goto error0;
2281 #endif
2282 	/* Get the address of the rec to be updated. */
2283 	ptr = cur->bc_levels[0].ptr;
2284 	rp = xfs_btree_rec_addr(cur, ptr, block);
2285 
2286 	/* Fill in the new contents and log them. */
2287 	xfs_btree_copy_recs(cur, rp, rec, 1);
2288 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2289 
2290 	/*
2291 	 * If we are tracking the last record in the tree and
2292 	 * we are at the far right edge of the tree, update it.
2293 	 */
2294 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2295 		cur->bc_ops->update_lastrec(cur, block, rec,
2296 					    ptr, LASTREC_UPDATE);
2297 	}
2298 
2299 	/* Pass new key value up to our parent. */
2300 	if (xfs_btree_needs_key_update(cur, ptr)) {
2301 		error = xfs_btree_update_keys(cur, 0);
2302 		if (error)
2303 			goto error0;
2304 	}
2305 
2306 	return 0;
2307 
2308 error0:
2309 	return error;
2310 }
2311 
2312 /*
2313  * Move 1 record left from cur/level if possible.
2314  * Update cur to reflect the new path.
2315  */
2316 STATIC int					/* error */
2317 xfs_btree_lshift(
2318 	struct xfs_btree_cur	*cur,
2319 	int			level,
2320 	int			*stat)		/* success/failure */
2321 {
2322 	struct xfs_buf		*lbp;		/* left buffer pointer */
2323 	struct xfs_btree_block	*left;		/* left btree block */
2324 	int			lrecs;		/* left record count */
2325 	struct xfs_buf		*rbp;		/* right buffer pointer */
2326 	struct xfs_btree_block	*right;		/* right btree block */
2327 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2328 	int			rrecs;		/* right record count */
2329 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2330 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2331 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2332 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2333 	int			error;		/* error return value */
2334 	int			i;
2335 
2336 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337 	    level == cur->bc_nlevels - 1)
2338 		goto out0;
2339 
2340 	/* Set up variables for this block as "right". */
2341 	right = xfs_btree_get_block(cur, level, &rbp);
2342 
2343 #ifdef DEBUG
2344 	error = xfs_btree_check_block(cur, right, level, rbp);
2345 	if (error)
2346 		goto error0;
2347 #endif
2348 
2349 	/* If we've got no left sibling then we can't shift an entry left. */
2350 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351 	if (xfs_btree_ptr_is_null(cur, &lptr))
2352 		goto out0;
2353 
2354 	/*
2355 	 * If the cursor entry is the one that would be moved, don't
2356 	 * do it... it's too complicated.
2357 	 */
2358 	if (cur->bc_levels[level].ptr <= 1)
2359 		goto out0;
2360 
2361 	/* Set up the left neighbor as "left". */
2362 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363 	if (error)
2364 		goto error0;
2365 
2366 	/* If it's full, it can't take another entry. */
2367 	lrecs = xfs_btree_get_numrecs(left);
2368 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369 		goto out0;
2370 
2371 	rrecs = xfs_btree_get_numrecs(right);
2372 
2373 	/*
2374 	 * We add one entry to the left side and remove one for the right side.
2375 	 * Account for it here, the changes will be updated on disk and logged
2376 	 * later.
2377 	 */
2378 	lrecs++;
2379 	rrecs--;
2380 
2381 	XFS_BTREE_STATS_INC(cur, lshift);
2382 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2383 
2384 	/*
2385 	 * If non-leaf, copy a key and a ptr to the left block.
2386 	 * Log the changes to the left block.
2387 	 */
2388 	if (level > 0) {
2389 		/* It's a non-leaf.  Move keys and pointers. */
2390 		union xfs_btree_key	*lkp;	/* left btree key */
2391 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2392 
2393 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2394 		rkp = xfs_btree_key_addr(cur, 1, right);
2395 
2396 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2398 
2399 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400 		if (error)
2401 			goto error0;
2402 
2403 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405 
2406 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408 
2409 		ASSERT(cur->bc_ops->keys_inorder(cur,
2410 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411 	} else {
2412 		/* It's a leaf.  Move records.  */
2413 		union xfs_btree_rec	*lrp;	/* left record pointer */
2414 
2415 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416 		rrp = xfs_btree_rec_addr(cur, 1, right);
2417 
2418 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420 
2421 		ASSERT(cur->bc_ops->recs_inorder(cur,
2422 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423 	}
2424 
2425 	xfs_btree_set_numrecs(left, lrecs);
2426 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427 
2428 	xfs_btree_set_numrecs(right, rrecs);
2429 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430 
2431 	/*
2432 	 * Slide the contents of right down one entry.
2433 	 */
2434 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435 	if (level > 0) {
2436 		/* It's a nonleaf. operate on keys and ptrs */
2437 		for (i = 0; i < rrecs; i++) {
2438 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439 			if (error)
2440 				goto error0;
2441 		}
2442 
2443 		xfs_btree_shift_keys(cur,
2444 				xfs_btree_key_addr(cur, 2, right),
2445 				-1, rrecs);
2446 		xfs_btree_shift_ptrs(cur,
2447 				xfs_btree_ptr_addr(cur, 2, right),
2448 				-1, rrecs);
2449 
2450 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452 	} else {
2453 		/* It's a leaf. operate on records */
2454 		xfs_btree_shift_recs(cur,
2455 			xfs_btree_rec_addr(cur, 2, right),
2456 			-1, rrecs);
2457 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458 	}
2459 
2460 	/*
2461 	 * Using a temporary cursor, update the parent key values of the
2462 	 * block on the left.
2463 	 */
2464 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465 		error = xfs_btree_dup_cursor(cur, &tcur);
2466 		if (error)
2467 			goto error0;
2468 		i = xfs_btree_firstrec(tcur, level);
2469 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470 			error = -EFSCORRUPTED;
2471 			goto error0;
2472 		}
2473 
2474 		error = xfs_btree_decrement(tcur, level, &i);
2475 		if (error)
2476 			goto error1;
2477 
2478 		/* Update the parent high keys of the left block, if needed. */
2479 		error = xfs_btree_update_keys(tcur, level);
2480 		if (error)
2481 			goto error1;
2482 
2483 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484 	}
2485 
2486 	/* Update the parent keys of the right block. */
2487 	error = xfs_btree_update_keys(cur, level);
2488 	if (error)
2489 		goto error0;
2490 
2491 	/* Slide the cursor value left one. */
2492 	cur->bc_levels[level].ptr--;
2493 
2494 	*stat = 1;
2495 	return 0;
2496 
2497 out0:
2498 	*stat = 0;
2499 	return 0;
2500 
2501 error0:
2502 	return error;
2503 
2504 error1:
2505 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506 	return error;
2507 }
2508 
2509 /*
2510  * Move 1 record right from cur/level if possible.
2511  * Update cur to reflect the new path.
2512  */
2513 STATIC int					/* error */
2514 xfs_btree_rshift(
2515 	struct xfs_btree_cur	*cur,
2516 	int			level,
2517 	int			*stat)		/* success/failure */
2518 {
2519 	struct xfs_buf		*lbp;		/* left buffer pointer */
2520 	struct xfs_btree_block	*left;		/* left btree block */
2521 	struct xfs_buf		*rbp;		/* right buffer pointer */
2522 	struct xfs_btree_block	*right;		/* right btree block */
2523 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2524 	union xfs_btree_ptr	rptr;		/* right block pointer */
2525 	union xfs_btree_key	*rkp;		/* right btree key */
2526 	int			rrecs;		/* right record count */
2527 	int			lrecs;		/* left record count */
2528 	int			error;		/* error return value */
2529 	int			i;		/* loop counter */
2530 
2531 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532 	    (level == cur->bc_nlevels - 1))
2533 		goto out0;
2534 
2535 	/* Set up variables for this block as "left". */
2536 	left = xfs_btree_get_block(cur, level, &lbp);
2537 
2538 #ifdef DEBUG
2539 	error = xfs_btree_check_block(cur, left, level, lbp);
2540 	if (error)
2541 		goto error0;
2542 #endif
2543 
2544 	/* If we've got no right sibling then we can't shift an entry right. */
2545 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546 	if (xfs_btree_ptr_is_null(cur, &rptr))
2547 		goto out0;
2548 
2549 	/*
2550 	 * If the cursor entry is the one that would be moved, don't
2551 	 * do it... it's too complicated.
2552 	 */
2553 	lrecs = xfs_btree_get_numrecs(left);
2554 	if (cur->bc_levels[level].ptr >= lrecs)
2555 		goto out0;
2556 
2557 	/* Set up the right neighbor as "right". */
2558 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559 	if (error)
2560 		goto error0;
2561 
2562 	/* If it's full, it can't take another entry. */
2563 	rrecs = xfs_btree_get_numrecs(right);
2564 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565 		goto out0;
2566 
2567 	XFS_BTREE_STATS_INC(cur, rshift);
2568 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569 
2570 	/*
2571 	 * Make a hole at the start of the right neighbor block, then
2572 	 * copy the last left block entry to the hole.
2573 	 */
2574 	if (level > 0) {
2575 		/* It's a nonleaf. make a hole in the keys and ptrs */
2576 		union xfs_btree_key	*lkp;
2577 		union xfs_btree_ptr	*lpp;
2578 		union xfs_btree_ptr	*rpp;
2579 
2580 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2581 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582 		rkp = xfs_btree_key_addr(cur, 1, right);
2583 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2584 
2585 		for (i = rrecs - 1; i >= 0; i--) {
2586 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587 			if (error)
2588 				goto error0;
2589 		}
2590 
2591 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593 
2594 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595 		if (error)
2596 			goto error0;
2597 
2598 		/* Now put the new data in, and log it. */
2599 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601 
2602 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604 
2605 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606 			xfs_btree_key_addr(cur, 2, right)));
2607 	} else {
2608 		/* It's a leaf. make a hole in the records */
2609 		union xfs_btree_rec	*lrp;
2610 		union xfs_btree_rec	*rrp;
2611 
2612 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613 		rrp = xfs_btree_rec_addr(cur, 1, right);
2614 
2615 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616 
2617 		/* Now put the new data in, and log it. */
2618 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620 	}
2621 
2622 	/*
2623 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2624 	 */
2625 	xfs_btree_set_numrecs(left, --lrecs);
2626 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627 
2628 	xfs_btree_set_numrecs(right, ++rrecs);
2629 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630 
2631 	/*
2632 	 * Using a temporary cursor, update the parent key values of the
2633 	 * block on the right.
2634 	 */
2635 	error = xfs_btree_dup_cursor(cur, &tcur);
2636 	if (error)
2637 		goto error0;
2638 	i = xfs_btree_lastrec(tcur, level);
2639 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640 		error = -EFSCORRUPTED;
2641 		goto error0;
2642 	}
2643 
2644 	error = xfs_btree_increment(tcur, level, &i);
2645 	if (error)
2646 		goto error1;
2647 
2648 	/* Update the parent high keys of the left block, if needed. */
2649 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650 		error = xfs_btree_update_keys(cur, level);
2651 		if (error)
2652 			goto error1;
2653 	}
2654 
2655 	/* Update the parent keys of the right block. */
2656 	error = xfs_btree_update_keys(tcur, level);
2657 	if (error)
2658 		goto error1;
2659 
2660 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661 
2662 	*stat = 1;
2663 	return 0;
2664 
2665 out0:
2666 	*stat = 0;
2667 	return 0;
2668 
2669 error0:
2670 	return error;
2671 
2672 error1:
2673 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674 	return error;
2675 }
2676 
2677 /*
2678  * Split cur/level block in half.
2679  * Return new block number and the key to its first
2680  * record (to be inserted into parent).
2681  */
2682 STATIC int					/* error */
2683 __xfs_btree_split(
2684 	struct xfs_btree_cur	*cur,
2685 	int			level,
2686 	union xfs_btree_ptr	*ptrp,
2687 	union xfs_btree_key	*key,
2688 	struct xfs_btree_cur	**curp,
2689 	int			*stat)		/* success/failure */
2690 {
2691 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2692 	struct xfs_buf		*lbp;		/* left buffer pointer */
2693 	struct xfs_btree_block	*left;		/* left btree block */
2694 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2695 	struct xfs_buf		*rbp;		/* right buffer pointer */
2696 	struct xfs_btree_block	*right;		/* right btree block */
2697 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2698 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2699 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2700 	int			lrecs;
2701 	int			rrecs;
2702 	int			src_index;
2703 	int			error;		/* error return value */
2704 	int			i;
2705 
2706 	XFS_BTREE_STATS_INC(cur, split);
2707 
2708 	/* Set up left block (current one). */
2709 	left = xfs_btree_get_block(cur, level, &lbp);
2710 
2711 #ifdef DEBUG
2712 	error = xfs_btree_check_block(cur, left, level, lbp);
2713 	if (error)
2714 		goto error0;
2715 #endif
2716 
2717 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718 
2719 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2720 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721 	if (error)
2722 		goto error0;
2723 	if (*stat == 0)
2724 		goto out0;
2725 	XFS_BTREE_STATS_INC(cur, alloc);
2726 
2727 	/* Set up the new block as "right". */
2728 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729 	if (error)
2730 		goto error0;
2731 
2732 	/* Fill in the btree header for the new right block. */
2733 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734 
2735 	/*
2736 	 * Split the entries between the old and the new block evenly.
2737 	 * Make sure that if there's an odd number of entries now, that
2738 	 * each new block will have the same number of entries.
2739 	 */
2740 	lrecs = xfs_btree_get_numrecs(left);
2741 	rrecs = lrecs / 2;
2742 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743 		rrecs++;
2744 	src_index = (lrecs - rrecs + 1);
2745 
2746 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747 
2748 	/* Adjust numrecs for the later get_*_keys() calls. */
2749 	lrecs -= rrecs;
2750 	xfs_btree_set_numrecs(left, lrecs);
2751 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752 
2753 	/*
2754 	 * Copy btree block entries from the left block over to the
2755 	 * new block, the right. Update the right block and log the
2756 	 * changes.
2757 	 */
2758 	if (level > 0) {
2759 		/* It's a non-leaf.  Move keys and pointers. */
2760 		union xfs_btree_key	*lkp;	/* left btree key */
2761 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2762 		union xfs_btree_key	*rkp;	/* right btree key */
2763 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2764 
2765 		lkp = xfs_btree_key_addr(cur, src_index, left);
2766 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767 		rkp = xfs_btree_key_addr(cur, 1, right);
2768 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2769 
2770 		for (i = src_index; i < rrecs; i++) {
2771 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772 			if (error)
2773 				goto error0;
2774 		}
2775 
2776 		/* Copy the keys & pointers to the new block. */
2777 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779 
2780 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782 
2783 		/* Stash the keys of the new block for later insertion. */
2784 		xfs_btree_get_node_keys(cur, right, key);
2785 	} else {
2786 		/* It's a leaf.  Move records.  */
2787 		union xfs_btree_rec	*lrp;	/* left record pointer */
2788 		union xfs_btree_rec	*rrp;	/* right record pointer */
2789 
2790 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2791 		rrp = xfs_btree_rec_addr(cur, 1, right);
2792 
2793 		/* Copy records to the new block. */
2794 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796 
2797 		/* Stash the keys of the new block for later insertion. */
2798 		xfs_btree_get_leaf_keys(cur, right, key);
2799 	}
2800 
2801 	/*
2802 	 * Find the left block number by looking in the buffer.
2803 	 * Adjust sibling pointers.
2804 	 */
2805 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809 
2810 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812 
2813 	/*
2814 	 * If there's a block to the new block's right, make that block
2815 	 * point back to right instead of to left.
2816 	 */
2817 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818 		error = xfs_btree_read_buf_block(cur, &rrptr,
2819 							0, &rrblock, &rrbp);
2820 		if (error)
2821 			goto error0;
2822 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824 	}
2825 
2826 	/* Update the parent high keys of the left block, if needed. */
2827 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828 		error = xfs_btree_update_keys(cur, level);
2829 		if (error)
2830 			goto error0;
2831 	}
2832 
2833 	/*
2834 	 * If the cursor is really in the right block, move it there.
2835 	 * If it's just pointing past the last entry in left, then we'll
2836 	 * insert there, so don't change anything in that case.
2837 	 */
2838 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2839 		xfs_btree_setbuf(cur, level, rbp);
2840 		cur->bc_levels[level].ptr -= lrecs;
2841 	}
2842 	/*
2843 	 * If there are more levels, we'll need another cursor which refers
2844 	 * the right block, no matter where this cursor was.
2845 	 */
2846 	if (level + 1 < cur->bc_nlevels) {
2847 		error = xfs_btree_dup_cursor(cur, curp);
2848 		if (error)
2849 			goto error0;
2850 		(*curp)->bc_levels[level + 1].ptr++;
2851 	}
2852 	*ptrp = rptr;
2853 	*stat = 1;
2854 	return 0;
2855 out0:
2856 	*stat = 0;
2857 	return 0;
2858 
2859 error0:
2860 	return error;
2861 }
2862 
2863 #ifdef __KERNEL__
2864 struct xfs_btree_split_args {
2865 	struct xfs_btree_cur	*cur;
2866 	int			level;
2867 	union xfs_btree_ptr	*ptrp;
2868 	union xfs_btree_key	*key;
2869 	struct xfs_btree_cur	**curp;
2870 	int			*stat;		/* success/failure */
2871 	int			result;
2872 	bool			kswapd;	/* allocation in kswapd context */
2873 	struct completion	*done;
2874 	struct work_struct	work;
2875 };
2876 
2877 /*
2878  * Stack switching interfaces for allocation
2879  */
2880 static void
2881 xfs_btree_split_worker(
2882 	struct work_struct	*work)
2883 {
2884 	struct xfs_btree_split_args	*args = container_of(work,
2885 						struct xfs_btree_split_args, work);
2886 	unsigned long		pflags;
2887 	unsigned long		new_pflags = 0;
2888 
2889 	/*
2890 	 * we are in a transaction context here, but may also be doing work
2891 	 * in kswapd context, and hence we may need to inherit that state
2892 	 * temporarily to ensure that we don't block waiting for memory reclaim
2893 	 * in any way.
2894 	 */
2895 	if (args->kswapd)
2896 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897 
2898 	current_set_flags_nested(&pflags, new_pflags);
2899 	xfs_trans_set_context(args->cur->bc_tp);
2900 
2901 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902 					 args->key, args->curp, args->stat);
2903 
2904 	xfs_trans_clear_context(args->cur->bc_tp);
2905 	current_restore_flags_nested(&pflags, new_pflags);
2906 
2907 	/*
2908 	 * Do not access args after complete() has run here. We don't own args
2909 	 * and the owner may run and free args before we return here.
2910 	 */
2911 	complete(args->done);
2912 
2913 }
2914 
2915 /*
2916  * BMBT split requests often come in with little stack to work on so we push
2917  * them off to a worker thread so there is lots of stack to use. For the other
2918  * btree types, just call directly to avoid the context switch overhead here.
2919  *
2920  * Care must be taken here - the work queue rescuer thread introduces potential
2921  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2922  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2923  * lock an AGF that is already locked by a task queued to run by the rescuer,
2924  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2925  * release it until the current thread it is running gains the lock.
2926  *
2927  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2928  * already locked to allocate from. The only place that doesn't hold an AGF
2929  * locked is unwritten extent conversion at IO completion, but that has already
2930  * been offloaded to a worker thread and hence has no stack consumption issues
2931  * we have to worry about.
2932  */
2933 STATIC int					/* error */
2934 xfs_btree_split(
2935 	struct xfs_btree_cur	*cur,
2936 	int			level,
2937 	union xfs_btree_ptr	*ptrp,
2938 	union xfs_btree_key	*key,
2939 	struct xfs_btree_cur	**curp,
2940 	int			*stat)		/* success/failure */
2941 {
2942 	struct xfs_btree_split_args	args;
2943 	DECLARE_COMPLETION_ONSTACK(done);
2944 
2945 	if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2946 	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2947 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2948 
2949 	args.cur = cur;
2950 	args.level = level;
2951 	args.ptrp = ptrp;
2952 	args.key = key;
2953 	args.curp = curp;
2954 	args.stat = stat;
2955 	args.done = &done;
2956 	args.kswapd = current_is_kswapd();
2957 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2958 	queue_work(xfs_alloc_wq, &args.work);
2959 	wait_for_completion(&done);
2960 	destroy_work_on_stack(&args.work);
2961 	return args.result;
2962 }
2963 #else
2964 #define xfs_btree_split	__xfs_btree_split
2965 #endif /* __KERNEL__ */
2966 
2967 
2968 /*
2969  * Copy the old inode root contents into a real block and make the
2970  * broot point to it.
2971  */
2972 int						/* error */
2973 xfs_btree_new_iroot(
2974 	struct xfs_btree_cur	*cur,		/* btree cursor */
2975 	int			*logflags,	/* logging flags for inode */
2976 	int			*stat)		/* return status - 0 fail */
2977 {
2978 	struct xfs_buf		*cbp;		/* buffer for cblock */
2979 	struct xfs_btree_block	*block;		/* btree block */
2980 	struct xfs_btree_block	*cblock;	/* child btree block */
2981 	union xfs_btree_key	*ckp;		/* child key pointer */
2982 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2983 	union xfs_btree_key	*kp;		/* pointer to btree key */
2984 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2985 	union xfs_btree_ptr	nptr;		/* new block addr */
2986 	int			level;		/* btree level */
2987 	int			error;		/* error return code */
2988 	int			i;		/* loop counter */
2989 
2990 	XFS_BTREE_STATS_INC(cur, newroot);
2991 
2992 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2993 
2994 	level = cur->bc_nlevels - 1;
2995 
2996 	block = xfs_btree_get_iroot(cur);
2997 	pp = xfs_btree_ptr_addr(cur, 1, block);
2998 
2999 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3000 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3001 	if (error)
3002 		goto error0;
3003 	if (*stat == 0)
3004 		return 0;
3005 
3006 	XFS_BTREE_STATS_INC(cur, alloc);
3007 
3008 	/* Copy the root into a real block. */
3009 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3010 	if (error)
3011 		goto error0;
3012 
3013 	/*
3014 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3015 	 * In that case have to also ensure the blkno remains correct
3016 	 */
3017 	memcpy(cblock, block, xfs_btree_block_len(cur));
3018 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3019 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3020 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3021 			cblock->bb_u.l.bb_blkno = bno;
3022 		else
3023 			cblock->bb_u.s.bb_blkno = bno;
3024 	}
3025 
3026 	be16_add_cpu(&block->bb_level, 1);
3027 	xfs_btree_set_numrecs(block, 1);
3028 	cur->bc_nlevels++;
3029 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3030 	cur->bc_levels[level + 1].ptr = 1;
3031 
3032 	kp = xfs_btree_key_addr(cur, 1, block);
3033 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3034 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3035 
3036 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3037 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3038 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3039 		if (error)
3040 			goto error0;
3041 	}
3042 
3043 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3044 
3045 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3046 	if (error)
3047 		goto error0;
3048 
3049 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3050 
3051 	xfs_iroot_realloc(cur->bc_ino.ip,
3052 			  1 - xfs_btree_get_numrecs(cblock),
3053 			  cur->bc_ino.whichfork);
3054 
3055 	xfs_btree_setbuf(cur, level, cbp);
3056 
3057 	/*
3058 	 * Do all this logging at the end so that
3059 	 * the root is at the right level.
3060 	 */
3061 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3062 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3064 
3065 	*logflags |=
3066 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3067 	*stat = 1;
3068 	return 0;
3069 error0:
3070 	return error;
3071 }
3072 
3073 /*
3074  * Allocate a new root block, fill it in.
3075  */
3076 STATIC int				/* error */
3077 xfs_btree_new_root(
3078 	struct xfs_btree_cur	*cur,	/* btree cursor */
3079 	int			*stat)	/* success/failure */
3080 {
3081 	struct xfs_btree_block	*block;	/* one half of the old root block */
3082 	struct xfs_buf		*bp;	/* buffer containing block */
3083 	int			error;	/* error return value */
3084 	struct xfs_buf		*lbp;	/* left buffer pointer */
3085 	struct xfs_btree_block	*left;	/* left btree block */
3086 	struct xfs_buf		*nbp;	/* new (root) buffer */
3087 	struct xfs_btree_block	*new;	/* new (root) btree block */
3088 	int			nptr;	/* new value for key index, 1 or 2 */
3089 	struct xfs_buf		*rbp;	/* right buffer pointer */
3090 	struct xfs_btree_block	*right;	/* right btree block */
3091 	union xfs_btree_ptr	rptr;
3092 	union xfs_btree_ptr	lptr;
3093 
3094 	XFS_BTREE_STATS_INC(cur, newroot);
3095 
3096 	/* initialise our start point from the cursor */
3097 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3098 
3099 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3100 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3101 	if (error)
3102 		goto error0;
3103 	if (*stat == 0)
3104 		goto out0;
3105 	XFS_BTREE_STATS_INC(cur, alloc);
3106 
3107 	/* Set up the new block. */
3108 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3109 	if (error)
3110 		goto error0;
3111 
3112 	/* Set the root in the holding structure  increasing the level by 1. */
3113 	cur->bc_ops->set_root(cur, &lptr, 1);
3114 
3115 	/*
3116 	 * At the previous root level there are now two blocks: the old root,
3117 	 * and the new block generated when it was split.  We don't know which
3118 	 * one the cursor is pointing at, so we set up variables "left" and
3119 	 * "right" for each case.
3120 	 */
3121 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3122 
3123 #ifdef DEBUG
3124 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3125 	if (error)
3126 		goto error0;
3127 #endif
3128 
3129 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3130 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3131 		/* Our block is left, pick up the right block. */
3132 		lbp = bp;
3133 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3134 		left = block;
3135 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3136 		if (error)
3137 			goto error0;
3138 		bp = rbp;
3139 		nptr = 1;
3140 	} else {
3141 		/* Our block is right, pick up the left block. */
3142 		rbp = bp;
3143 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3144 		right = block;
3145 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3146 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3147 		if (error)
3148 			goto error0;
3149 		bp = lbp;
3150 		nptr = 2;
3151 	}
3152 
3153 	/* Fill in the new block's btree header and log it. */
3154 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3155 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3156 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3157 			!xfs_btree_ptr_is_null(cur, &rptr));
3158 
3159 	/* Fill in the key data in the new root. */
3160 	if (xfs_btree_get_level(left) > 0) {
3161 		/*
3162 		 * Get the keys for the left block's keys and put them directly
3163 		 * in the parent block.  Do the same for the right block.
3164 		 */
3165 		xfs_btree_get_node_keys(cur, left,
3166 				xfs_btree_key_addr(cur, 1, new));
3167 		xfs_btree_get_node_keys(cur, right,
3168 				xfs_btree_key_addr(cur, 2, new));
3169 	} else {
3170 		/*
3171 		 * Get the keys for the left block's records and put them
3172 		 * directly in the parent block.  Do the same for the right
3173 		 * block.
3174 		 */
3175 		xfs_btree_get_leaf_keys(cur, left,
3176 			xfs_btree_key_addr(cur, 1, new));
3177 		xfs_btree_get_leaf_keys(cur, right,
3178 			xfs_btree_key_addr(cur, 2, new));
3179 	}
3180 	xfs_btree_log_keys(cur, nbp, 1, 2);
3181 
3182 	/* Fill in the pointer data in the new root. */
3183 	xfs_btree_copy_ptrs(cur,
3184 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3185 	xfs_btree_copy_ptrs(cur,
3186 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3187 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3188 
3189 	/* Fix up the cursor. */
3190 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3191 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3192 	cur->bc_nlevels++;
3193 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3194 	*stat = 1;
3195 	return 0;
3196 error0:
3197 	return error;
3198 out0:
3199 	*stat = 0;
3200 	return 0;
3201 }
3202 
3203 STATIC int
3204 xfs_btree_make_block_unfull(
3205 	struct xfs_btree_cur	*cur,	/* btree cursor */
3206 	int			level,	/* btree level */
3207 	int			numrecs,/* # of recs in block */
3208 	int			*oindex,/* old tree index */
3209 	int			*index,	/* new tree index */
3210 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3211 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3212 	union xfs_btree_key	*key,	/* key of new block */
3213 	int			*stat)
3214 {
3215 	int			error = 0;
3216 
3217 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3218 	    level == cur->bc_nlevels - 1) {
3219 		struct xfs_inode *ip = cur->bc_ino.ip;
3220 
3221 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3222 			/* A root block that can be made bigger. */
3223 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3224 			*stat = 1;
3225 		} else {
3226 			/* A root block that needs replacing */
3227 			int	logflags = 0;
3228 
3229 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3230 			if (error || *stat == 0)
3231 				return error;
3232 
3233 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3234 		}
3235 
3236 		return 0;
3237 	}
3238 
3239 	/* First, try shifting an entry to the right neighbor. */
3240 	error = xfs_btree_rshift(cur, level, stat);
3241 	if (error || *stat)
3242 		return error;
3243 
3244 	/* Next, try shifting an entry to the left neighbor. */
3245 	error = xfs_btree_lshift(cur, level, stat);
3246 	if (error)
3247 		return error;
3248 
3249 	if (*stat) {
3250 		*oindex = *index = cur->bc_levels[level].ptr;
3251 		return 0;
3252 	}
3253 
3254 	/*
3255 	 * Next, try splitting the current block in half.
3256 	 *
3257 	 * If this works we have to re-set our variables because we
3258 	 * could be in a different block now.
3259 	 */
3260 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3261 	if (error || *stat == 0)
3262 		return error;
3263 
3264 
3265 	*index = cur->bc_levels[level].ptr;
3266 	return 0;
3267 }
3268 
3269 /*
3270  * Insert one record/level.  Return information to the caller
3271  * allowing the next level up to proceed if necessary.
3272  */
3273 STATIC int
3274 xfs_btree_insrec(
3275 	struct xfs_btree_cur	*cur,	/* btree cursor */
3276 	int			level,	/* level to insert record at */
3277 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3278 	union xfs_btree_rec	*rec,	/* record to insert */
3279 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3280 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3281 	int			*stat)	/* success/failure */
3282 {
3283 	struct xfs_btree_block	*block;	/* btree block */
3284 	struct xfs_buf		*bp;	/* buffer for block */
3285 	union xfs_btree_ptr	nptr;	/* new block ptr */
3286 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3287 	union xfs_btree_key	nkey;	/* new block key */
3288 	union xfs_btree_key	*lkey;
3289 	int			optr;	/* old key/record index */
3290 	int			ptr;	/* key/record index */
3291 	int			numrecs;/* number of records */
3292 	int			error;	/* error return value */
3293 	int			i;
3294 	xfs_daddr_t		old_bn;
3295 
3296 	ncur = NULL;
3297 	lkey = &nkey;
3298 
3299 	/*
3300 	 * If we have an external root pointer, and we've made it to the
3301 	 * root level, allocate a new root block and we're done.
3302 	 */
3303 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3304 	    (level >= cur->bc_nlevels)) {
3305 		error = xfs_btree_new_root(cur, stat);
3306 		xfs_btree_set_ptr_null(cur, ptrp);
3307 
3308 		return error;
3309 	}
3310 
3311 	/* If we're off the left edge, return failure. */
3312 	ptr = cur->bc_levels[level].ptr;
3313 	if (ptr == 0) {
3314 		*stat = 0;
3315 		return 0;
3316 	}
3317 
3318 	optr = ptr;
3319 
3320 	XFS_BTREE_STATS_INC(cur, insrec);
3321 
3322 	/* Get pointers to the btree buffer and block. */
3323 	block = xfs_btree_get_block(cur, level, &bp);
3324 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3325 	numrecs = xfs_btree_get_numrecs(block);
3326 
3327 #ifdef DEBUG
3328 	error = xfs_btree_check_block(cur, block, level, bp);
3329 	if (error)
3330 		goto error0;
3331 
3332 	/* Check that the new entry is being inserted in the right place. */
3333 	if (ptr <= numrecs) {
3334 		if (level == 0) {
3335 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3336 				xfs_btree_rec_addr(cur, ptr, block)));
3337 		} else {
3338 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3339 				xfs_btree_key_addr(cur, ptr, block)));
3340 		}
3341 	}
3342 #endif
3343 
3344 	/*
3345 	 * If the block is full, we can't insert the new entry until we
3346 	 * make the block un-full.
3347 	 */
3348 	xfs_btree_set_ptr_null(cur, &nptr);
3349 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3350 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3351 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3352 		if (error || *stat == 0)
3353 			goto error0;
3354 	}
3355 
3356 	/*
3357 	 * The current block may have changed if the block was
3358 	 * previously full and we have just made space in it.
3359 	 */
3360 	block = xfs_btree_get_block(cur, level, &bp);
3361 	numrecs = xfs_btree_get_numrecs(block);
3362 
3363 #ifdef DEBUG
3364 	error = xfs_btree_check_block(cur, block, level, bp);
3365 	if (error)
3366 		goto error0;
3367 #endif
3368 
3369 	/*
3370 	 * At this point we know there's room for our new entry in the block
3371 	 * we're pointing at.
3372 	 */
3373 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3374 
3375 	if (level > 0) {
3376 		/* It's a nonleaf. make a hole in the keys and ptrs */
3377 		union xfs_btree_key	*kp;
3378 		union xfs_btree_ptr	*pp;
3379 
3380 		kp = xfs_btree_key_addr(cur, ptr, block);
3381 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3382 
3383 		for (i = numrecs - ptr; i >= 0; i--) {
3384 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3385 			if (error)
3386 				goto error0;
3387 		}
3388 
3389 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3390 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3391 
3392 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3393 		if (error)
3394 			goto error0;
3395 
3396 		/* Now put the new data in, bump numrecs and log it. */
3397 		xfs_btree_copy_keys(cur, kp, key, 1);
3398 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3399 		numrecs++;
3400 		xfs_btree_set_numrecs(block, numrecs);
3401 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3402 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3403 #ifdef DEBUG
3404 		if (ptr < numrecs) {
3405 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3406 				xfs_btree_key_addr(cur, ptr + 1, block)));
3407 		}
3408 #endif
3409 	} else {
3410 		/* It's a leaf. make a hole in the records */
3411 		union xfs_btree_rec             *rp;
3412 
3413 		rp = xfs_btree_rec_addr(cur, ptr, block);
3414 
3415 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3416 
3417 		/* Now put the new data in, bump numrecs and log it. */
3418 		xfs_btree_copy_recs(cur, rp, rec, 1);
3419 		xfs_btree_set_numrecs(block, ++numrecs);
3420 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3421 #ifdef DEBUG
3422 		if (ptr < numrecs) {
3423 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3424 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3425 		}
3426 #endif
3427 	}
3428 
3429 	/* Log the new number of records in the btree header. */
3430 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3431 
3432 	/*
3433 	 * If we just inserted into a new tree block, we have to
3434 	 * recalculate nkey here because nkey is out of date.
3435 	 *
3436 	 * Otherwise we're just updating an existing block (having shoved
3437 	 * some records into the new tree block), so use the regular key
3438 	 * update mechanism.
3439 	 */
3440 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3441 		xfs_btree_get_keys(cur, block, lkey);
3442 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3443 		error = xfs_btree_update_keys(cur, level);
3444 		if (error)
3445 			goto error0;
3446 	}
3447 
3448 	/*
3449 	 * If we are tracking the last record in the tree and
3450 	 * we are at the far right edge of the tree, update it.
3451 	 */
3452 	if (xfs_btree_is_lastrec(cur, block, level)) {
3453 		cur->bc_ops->update_lastrec(cur, block, rec,
3454 					    ptr, LASTREC_INSREC);
3455 	}
3456 
3457 	/*
3458 	 * Return the new block number, if any.
3459 	 * If there is one, give back a record value and a cursor too.
3460 	 */
3461 	*ptrp = nptr;
3462 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3463 		xfs_btree_copy_keys(cur, key, lkey, 1);
3464 		*curp = ncur;
3465 	}
3466 
3467 	*stat = 1;
3468 	return 0;
3469 
3470 error0:
3471 	if (ncur)
3472 		xfs_btree_del_cursor(ncur, error);
3473 	return error;
3474 }
3475 
3476 /*
3477  * Insert the record at the point referenced by cur.
3478  *
3479  * A multi-level split of the tree on insert will invalidate the original
3480  * cursor.  All callers of this function should assume that the cursor is
3481  * no longer valid and revalidate it.
3482  */
3483 int
3484 xfs_btree_insert(
3485 	struct xfs_btree_cur	*cur,
3486 	int			*stat)
3487 {
3488 	int			error;	/* error return value */
3489 	int			i;	/* result value, 0 for failure */
3490 	int			level;	/* current level number in btree */
3491 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3492 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3493 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3494 	union xfs_btree_key	bkey;	/* key of block to insert */
3495 	union xfs_btree_key	*key;
3496 	union xfs_btree_rec	rec;	/* record to insert */
3497 
3498 	level = 0;
3499 	ncur = NULL;
3500 	pcur = cur;
3501 	key = &bkey;
3502 
3503 	xfs_btree_set_ptr_null(cur, &nptr);
3504 
3505 	/* Make a key out of the record data to be inserted, and save it. */
3506 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3507 	cur->bc_ops->init_key_from_rec(key, &rec);
3508 
3509 	/*
3510 	 * Loop going up the tree, starting at the leaf level.
3511 	 * Stop when we don't get a split block, that must mean that
3512 	 * the insert is finished with this level.
3513 	 */
3514 	do {
3515 		/*
3516 		 * Insert nrec/nptr into this level of the tree.
3517 		 * Note if we fail, nptr will be null.
3518 		 */
3519 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3520 				&ncur, &i);
3521 		if (error) {
3522 			if (pcur != cur)
3523 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3524 			goto error0;
3525 		}
3526 
3527 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3528 			error = -EFSCORRUPTED;
3529 			goto error0;
3530 		}
3531 		level++;
3532 
3533 		/*
3534 		 * See if the cursor we just used is trash.
3535 		 * Can't trash the caller's cursor, but otherwise we should
3536 		 * if ncur is a new cursor or we're about to be done.
3537 		 */
3538 		if (pcur != cur &&
3539 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3540 			/* Save the state from the cursor before we trash it */
3541 			if (cur->bc_ops->update_cursor)
3542 				cur->bc_ops->update_cursor(pcur, cur);
3543 			cur->bc_nlevels = pcur->bc_nlevels;
3544 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3545 		}
3546 		/* If we got a new cursor, switch to it. */
3547 		if (ncur) {
3548 			pcur = ncur;
3549 			ncur = NULL;
3550 		}
3551 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3552 
3553 	*stat = i;
3554 	return 0;
3555 error0:
3556 	return error;
3557 }
3558 
3559 /*
3560  * Try to merge a non-leaf block back into the inode root.
3561  *
3562  * Note: the killroot names comes from the fact that we're effectively
3563  * killing the old root block.  But because we can't just delete the
3564  * inode we have to copy the single block it was pointing to into the
3565  * inode.
3566  */
3567 STATIC int
3568 xfs_btree_kill_iroot(
3569 	struct xfs_btree_cur	*cur)
3570 {
3571 	int			whichfork = cur->bc_ino.whichfork;
3572 	struct xfs_inode	*ip = cur->bc_ino.ip;
3573 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3574 	struct xfs_btree_block	*block;
3575 	struct xfs_btree_block	*cblock;
3576 	union xfs_btree_key	*kp;
3577 	union xfs_btree_key	*ckp;
3578 	union xfs_btree_ptr	*pp;
3579 	union xfs_btree_ptr	*cpp;
3580 	struct xfs_buf		*cbp;
3581 	int			level;
3582 	int			index;
3583 	int			numrecs;
3584 	int			error;
3585 #ifdef DEBUG
3586 	union xfs_btree_ptr	ptr;
3587 #endif
3588 	int			i;
3589 
3590 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3591 	ASSERT(cur->bc_nlevels > 1);
3592 
3593 	/*
3594 	 * Don't deal with the root block needs to be a leaf case.
3595 	 * We're just going to turn the thing back into extents anyway.
3596 	 */
3597 	level = cur->bc_nlevels - 1;
3598 	if (level == 1)
3599 		goto out0;
3600 
3601 	/*
3602 	 * Give up if the root has multiple children.
3603 	 */
3604 	block = xfs_btree_get_iroot(cur);
3605 	if (xfs_btree_get_numrecs(block) != 1)
3606 		goto out0;
3607 
3608 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3609 	numrecs = xfs_btree_get_numrecs(cblock);
3610 
3611 	/*
3612 	 * Only do this if the next level will fit.
3613 	 * Then the data must be copied up to the inode,
3614 	 * instead of freeing the root you free the next level.
3615 	 */
3616 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3617 		goto out0;
3618 
3619 	XFS_BTREE_STATS_INC(cur, killroot);
3620 
3621 #ifdef DEBUG
3622 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3623 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3624 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3625 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3626 #endif
3627 
3628 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3629 	if (index) {
3630 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3631 				  cur->bc_ino.whichfork);
3632 		block = ifp->if_broot;
3633 	}
3634 
3635 	be16_add_cpu(&block->bb_numrecs, index);
3636 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3637 
3638 	kp = xfs_btree_key_addr(cur, 1, block);
3639 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3640 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3641 
3642 	pp = xfs_btree_ptr_addr(cur, 1, block);
3643 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3644 
3645 	for (i = 0; i < numrecs; i++) {
3646 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3647 		if (error)
3648 			return error;
3649 	}
3650 
3651 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3652 
3653 	error = xfs_btree_free_block(cur, cbp);
3654 	if (error)
3655 		return error;
3656 
3657 	cur->bc_levels[level - 1].bp = NULL;
3658 	be16_add_cpu(&block->bb_level, -1);
3659 	xfs_trans_log_inode(cur->bc_tp, ip,
3660 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3661 	cur->bc_nlevels--;
3662 out0:
3663 	return 0;
3664 }
3665 
3666 /*
3667  * Kill the current root node, and replace it with it's only child node.
3668  */
3669 STATIC int
3670 xfs_btree_kill_root(
3671 	struct xfs_btree_cur	*cur,
3672 	struct xfs_buf		*bp,
3673 	int			level,
3674 	union xfs_btree_ptr	*newroot)
3675 {
3676 	int			error;
3677 
3678 	XFS_BTREE_STATS_INC(cur, killroot);
3679 
3680 	/*
3681 	 * Update the root pointer, decreasing the level by 1 and then
3682 	 * free the old root.
3683 	 */
3684 	cur->bc_ops->set_root(cur, newroot, -1);
3685 
3686 	error = xfs_btree_free_block(cur, bp);
3687 	if (error)
3688 		return error;
3689 
3690 	cur->bc_levels[level].bp = NULL;
3691 	cur->bc_levels[level].ra = 0;
3692 	cur->bc_nlevels--;
3693 
3694 	return 0;
3695 }
3696 
3697 STATIC int
3698 xfs_btree_dec_cursor(
3699 	struct xfs_btree_cur	*cur,
3700 	int			level,
3701 	int			*stat)
3702 {
3703 	int			error;
3704 	int			i;
3705 
3706 	if (level > 0) {
3707 		error = xfs_btree_decrement(cur, level, &i);
3708 		if (error)
3709 			return error;
3710 	}
3711 
3712 	*stat = 1;
3713 	return 0;
3714 }
3715 
3716 /*
3717  * Single level of the btree record deletion routine.
3718  * Delete record pointed to by cur/level.
3719  * Remove the record from its block then rebalance the tree.
3720  * Return 0 for error, 1 for done, 2 to go on to the next level.
3721  */
3722 STATIC int					/* error */
3723 xfs_btree_delrec(
3724 	struct xfs_btree_cur	*cur,		/* btree cursor */
3725 	int			level,		/* level removing record from */
3726 	int			*stat)		/* fail/done/go-on */
3727 {
3728 	struct xfs_btree_block	*block;		/* btree block */
3729 	union xfs_btree_ptr	cptr;		/* current block ptr */
3730 	struct xfs_buf		*bp;		/* buffer for block */
3731 	int			error;		/* error return value */
3732 	int			i;		/* loop counter */
3733 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3734 	struct xfs_buf		*lbp;		/* left buffer pointer */
3735 	struct xfs_btree_block	*left;		/* left btree block */
3736 	int			lrecs = 0;	/* left record count */
3737 	int			ptr;		/* key/record index */
3738 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3739 	struct xfs_buf		*rbp;		/* right buffer pointer */
3740 	struct xfs_btree_block	*right;		/* right btree block */
3741 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3742 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3743 	int			rrecs = 0;	/* right record count */
3744 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3745 	int			numrecs;	/* temporary numrec count */
3746 
3747 	tcur = NULL;
3748 
3749 	/* Get the index of the entry being deleted, check for nothing there. */
3750 	ptr = cur->bc_levels[level].ptr;
3751 	if (ptr == 0) {
3752 		*stat = 0;
3753 		return 0;
3754 	}
3755 
3756 	/* Get the buffer & block containing the record or key/ptr. */
3757 	block = xfs_btree_get_block(cur, level, &bp);
3758 	numrecs = xfs_btree_get_numrecs(block);
3759 
3760 #ifdef DEBUG
3761 	error = xfs_btree_check_block(cur, block, level, bp);
3762 	if (error)
3763 		goto error0;
3764 #endif
3765 
3766 	/* Fail if we're off the end of the block. */
3767 	if (ptr > numrecs) {
3768 		*stat = 0;
3769 		return 0;
3770 	}
3771 
3772 	XFS_BTREE_STATS_INC(cur, delrec);
3773 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3774 
3775 	/* Excise the entries being deleted. */
3776 	if (level > 0) {
3777 		/* It's a nonleaf. operate on keys and ptrs */
3778 		union xfs_btree_key	*lkp;
3779 		union xfs_btree_ptr	*lpp;
3780 
3781 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3782 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3783 
3784 		for (i = 0; i < numrecs - ptr; i++) {
3785 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3786 			if (error)
3787 				goto error0;
3788 		}
3789 
3790 		if (ptr < numrecs) {
3791 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3792 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3793 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3794 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3795 		}
3796 	} else {
3797 		/* It's a leaf. operate on records */
3798 		if (ptr < numrecs) {
3799 			xfs_btree_shift_recs(cur,
3800 				xfs_btree_rec_addr(cur, ptr + 1, block),
3801 				-1, numrecs - ptr);
3802 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3803 		}
3804 	}
3805 
3806 	/*
3807 	 * Decrement and log the number of entries in the block.
3808 	 */
3809 	xfs_btree_set_numrecs(block, --numrecs);
3810 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3811 
3812 	/*
3813 	 * If we are tracking the last record in the tree and
3814 	 * we are at the far right edge of the tree, update it.
3815 	 */
3816 	if (xfs_btree_is_lastrec(cur, block, level)) {
3817 		cur->bc_ops->update_lastrec(cur, block, NULL,
3818 					    ptr, LASTREC_DELREC);
3819 	}
3820 
3821 	/*
3822 	 * We're at the root level.  First, shrink the root block in-memory.
3823 	 * Try to get rid of the next level down.  If we can't then there's
3824 	 * nothing left to do.
3825 	 */
3826 	if (level == cur->bc_nlevels - 1) {
3827 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3828 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3829 					  cur->bc_ino.whichfork);
3830 
3831 			error = xfs_btree_kill_iroot(cur);
3832 			if (error)
3833 				goto error0;
3834 
3835 			error = xfs_btree_dec_cursor(cur, level, stat);
3836 			if (error)
3837 				goto error0;
3838 			*stat = 1;
3839 			return 0;
3840 		}
3841 
3842 		/*
3843 		 * If this is the root level, and there's only one entry left,
3844 		 * and it's NOT the leaf level, then we can get rid of this
3845 		 * level.
3846 		 */
3847 		if (numrecs == 1 && level > 0) {
3848 			union xfs_btree_ptr	*pp;
3849 			/*
3850 			 * pp is still set to the first pointer in the block.
3851 			 * Make it the new root of the btree.
3852 			 */
3853 			pp = xfs_btree_ptr_addr(cur, 1, block);
3854 			error = xfs_btree_kill_root(cur, bp, level, pp);
3855 			if (error)
3856 				goto error0;
3857 		} else if (level > 0) {
3858 			error = xfs_btree_dec_cursor(cur, level, stat);
3859 			if (error)
3860 				goto error0;
3861 		}
3862 		*stat = 1;
3863 		return 0;
3864 	}
3865 
3866 	/*
3867 	 * If we deleted the leftmost entry in the block, update the
3868 	 * key values above us in the tree.
3869 	 */
3870 	if (xfs_btree_needs_key_update(cur, ptr)) {
3871 		error = xfs_btree_update_keys(cur, level);
3872 		if (error)
3873 			goto error0;
3874 	}
3875 
3876 	/*
3877 	 * If the number of records remaining in the block is at least
3878 	 * the minimum, we're done.
3879 	 */
3880 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3881 		error = xfs_btree_dec_cursor(cur, level, stat);
3882 		if (error)
3883 			goto error0;
3884 		return 0;
3885 	}
3886 
3887 	/*
3888 	 * Otherwise, we have to move some records around to keep the
3889 	 * tree balanced.  Look at the left and right sibling blocks to
3890 	 * see if we can re-balance by moving only one record.
3891 	 */
3892 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3893 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3894 
3895 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3896 		/*
3897 		 * One child of root, need to get a chance to copy its contents
3898 		 * into the root and delete it. Can't go up to next level,
3899 		 * there's nothing to delete there.
3900 		 */
3901 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3902 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3903 		    level == cur->bc_nlevels - 2) {
3904 			error = xfs_btree_kill_iroot(cur);
3905 			if (!error)
3906 				error = xfs_btree_dec_cursor(cur, level, stat);
3907 			if (error)
3908 				goto error0;
3909 			return 0;
3910 		}
3911 	}
3912 
3913 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3914 	       !xfs_btree_ptr_is_null(cur, &lptr));
3915 
3916 	/*
3917 	 * Duplicate the cursor so our btree manipulations here won't
3918 	 * disrupt the next level up.
3919 	 */
3920 	error = xfs_btree_dup_cursor(cur, &tcur);
3921 	if (error)
3922 		goto error0;
3923 
3924 	/*
3925 	 * If there's a right sibling, see if it's ok to shift an entry
3926 	 * out of it.
3927 	 */
3928 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3929 		/*
3930 		 * Move the temp cursor to the last entry in the next block.
3931 		 * Actually any entry but the first would suffice.
3932 		 */
3933 		i = xfs_btree_lastrec(tcur, level);
3934 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935 			error = -EFSCORRUPTED;
3936 			goto error0;
3937 		}
3938 
3939 		error = xfs_btree_increment(tcur, level, &i);
3940 		if (error)
3941 			goto error0;
3942 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3943 			error = -EFSCORRUPTED;
3944 			goto error0;
3945 		}
3946 
3947 		i = xfs_btree_lastrec(tcur, level);
3948 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3949 			error = -EFSCORRUPTED;
3950 			goto error0;
3951 		}
3952 
3953 		/* Grab a pointer to the block. */
3954 		right = xfs_btree_get_block(tcur, level, &rbp);
3955 #ifdef DEBUG
3956 		error = xfs_btree_check_block(tcur, right, level, rbp);
3957 		if (error)
3958 			goto error0;
3959 #endif
3960 		/* Grab the current block number, for future use. */
3961 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3962 
3963 		/*
3964 		 * If right block is full enough so that removing one entry
3965 		 * won't make it too empty, and left-shifting an entry out
3966 		 * of right to us works, we're done.
3967 		 */
3968 		if (xfs_btree_get_numrecs(right) - 1 >=
3969 		    cur->bc_ops->get_minrecs(tcur, level)) {
3970 			error = xfs_btree_lshift(tcur, level, &i);
3971 			if (error)
3972 				goto error0;
3973 			if (i) {
3974 				ASSERT(xfs_btree_get_numrecs(block) >=
3975 				       cur->bc_ops->get_minrecs(tcur, level));
3976 
3977 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3978 				tcur = NULL;
3979 
3980 				error = xfs_btree_dec_cursor(cur, level, stat);
3981 				if (error)
3982 					goto error0;
3983 				return 0;
3984 			}
3985 		}
3986 
3987 		/*
3988 		 * Otherwise, grab the number of records in right for
3989 		 * future reference, and fix up the temp cursor to point
3990 		 * to our block again (last record).
3991 		 */
3992 		rrecs = xfs_btree_get_numrecs(right);
3993 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3994 			i = xfs_btree_firstrec(tcur, level);
3995 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3996 				error = -EFSCORRUPTED;
3997 				goto error0;
3998 			}
3999 
4000 			error = xfs_btree_decrement(tcur, level, &i);
4001 			if (error)
4002 				goto error0;
4003 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4004 				error = -EFSCORRUPTED;
4005 				goto error0;
4006 			}
4007 		}
4008 	}
4009 
4010 	/*
4011 	 * If there's a left sibling, see if it's ok to shift an entry
4012 	 * out of it.
4013 	 */
4014 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4015 		/*
4016 		 * Move the temp cursor to the first entry in the
4017 		 * previous block.
4018 		 */
4019 		i = xfs_btree_firstrec(tcur, level);
4020 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4021 			error = -EFSCORRUPTED;
4022 			goto error0;
4023 		}
4024 
4025 		error = xfs_btree_decrement(tcur, level, &i);
4026 		if (error)
4027 			goto error0;
4028 		i = xfs_btree_firstrec(tcur, level);
4029 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4030 			error = -EFSCORRUPTED;
4031 			goto error0;
4032 		}
4033 
4034 		/* Grab a pointer to the block. */
4035 		left = xfs_btree_get_block(tcur, level, &lbp);
4036 #ifdef DEBUG
4037 		error = xfs_btree_check_block(cur, left, level, lbp);
4038 		if (error)
4039 			goto error0;
4040 #endif
4041 		/* Grab the current block number, for future use. */
4042 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4043 
4044 		/*
4045 		 * If left block is full enough so that removing one entry
4046 		 * won't make it too empty, and right-shifting an entry out
4047 		 * of left to us works, we're done.
4048 		 */
4049 		if (xfs_btree_get_numrecs(left) - 1 >=
4050 		    cur->bc_ops->get_minrecs(tcur, level)) {
4051 			error = xfs_btree_rshift(tcur, level, &i);
4052 			if (error)
4053 				goto error0;
4054 			if (i) {
4055 				ASSERT(xfs_btree_get_numrecs(block) >=
4056 				       cur->bc_ops->get_minrecs(tcur, level));
4057 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4058 				tcur = NULL;
4059 				if (level == 0)
4060 					cur->bc_levels[0].ptr++;
4061 
4062 				*stat = 1;
4063 				return 0;
4064 			}
4065 		}
4066 
4067 		/*
4068 		 * Otherwise, grab the number of records in right for
4069 		 * future reference.
4070 		 */
4071 		lrecs = xfs_btree_get_numrecs(left);
4072 	}
4073 
4074 	/* Delete the temp cursor, we're done with it. */
4075 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4076 	tcur = NULL;
4077 
4078 	/* If here, we need to do a join to keep the tree balanced. */
4079 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4080 
4081 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4082 	    lrecs + xfs_btree_get_numrecs(block) <=
4083 			cur->bc_ops->get_maxrecs(cur, level)) {
4084 		/*
4085 		 * Set "right" to be the starting block,
4086 		 * "left" to be the left neighbor.
4087 		 */
4088 		rptr = cptr;
4089 		right = block;
4090 		rbp = bp;
4091 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4092 		if (error)
4093 			goto error0;
4094 
4095 	/*
4096 	 * If that won't work, see if we can join with the right neighbor block.
4097 	 */
4098 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4099 		   rrecs + xfs_btree_get_numrecs(block) <=
4100 			cur->bc_ops->get_maxrecs(cur, level)) {
4101 		/*
4102 		 * Set "left" to be the starting block,
4103 		 * "right" to be the right neighbor.
4104 		 */
4105 		lptr = cptr;
4106 		left = block;
4107 		lbp = bp;
4108 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4109 		if (error)
4110 			goto error0;
4111 
4112 	/*
4113 	 * Otherwise, we can't fix the imbalance.
4114 	 * Just return.  This is probably a logic error, but it's not fatal.
4115 	 */
4116 	} else {
4117 		error = xfs_btree_dec_cursor(cur, level, stat);
4118 		if (error)
4119 			goto error0;
4120 		return 0;
4121 	}
4122 
4123 	rrecs = xfs_btree_get_numrecs(right);
4124 	lrecs = xfs_btree_get_numrecs(left);
4125 
4126 	/*
4127 	 * We're now going to join "left" and "right" by moving all the stuff
4128 	 * in "right" to "left" and deleting "right".
4129 	 */
4130 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4131 	if (level > 0) {
4132 		/* It's a non-leaf.  Move keys and pointers. */
4133 		union xfs_btree_key	*lkp;	/* left btree key */
4134 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4135 		union xfs_btree_key	*rkp;	/* right btree key */
4136 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4137 
4138 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4139 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4140 		rkp = xfs_btree_key_addr(cur, 1, right);
4141 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4142 
4143 		for (i = 1; i < rrecs; i++) {
4144 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4145 			if (error)
4146 				goto error0;
4147 		}
4148 
4149 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4150 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4151 
4152 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4153 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4154 	} else {
4155 		/* It's a leaf.  Move records.  */
4156 		union xfs_btree_rec	*lrp;	/* left record pointer */
4157 		union xfs_btree_rec	*rrp;	/* right record pointer */
4158 
4159 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4160 		rrp = xfs_btree_rec_addr(cur, 1, right);
4161 
4162 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4163 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4164 	}
4165 
4166 	XFS_BTREE_STATS_INC(cur, join);
4167 
4168 	/*
4169 	 * Fix up the number of records and right block pointer in the
4170 	 * surviving block, and log it.
4171 	 */
4172 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4173 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4174 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4175 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4176 
4177 	/* If there is a right sibling, point it to the remaining block. */
4178 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4179 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4180 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4181 		if (error)
4182 			goto error0;
4183 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4184 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4185 	}
4186 
4187 	/* Free the deleted block. */
4188 	error = xfs_btree_free_block(cur, rbp);
4189 	if (error)
4190 		goto error0;
4191 
4192 	/*
4193 	 * If we joined with the left neighbor, set the buffer in the
4194 	 * cursor to the left block, and fix up the index.
4195 	 */
4196 	if (bp != lbp) {
4197 		cur->bc_levels[level].bp = lbp;
4198 		cur->bc_levels[level].ptr += lrecs;
4199 		cur->bc_levels[level].ra = 0;
4200 	}
4201 	/*
4202 	 * If we joined with the right neighbor and there's a level above
4203 	 * us, increment the cursor at that level.
4204 	 */
4205 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4206 		   (level + 1 < cur->bc_nlevels)) {
4207 		error = xfs_btree_increment(cur, level + 1, &i);
4208 		if (error)
4209 			goto error0;
4210 	}
4211 
4212 	/*
4213 	 * Readjust the ptr at this level if it's not a leaf, since it's
4214 	 * still pointing at the deletion point, which makes the cursor
4215 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4216 	 * We can't use decrement because it would change the next level up.
4217 	 */
4218 	if (level > 0)
4219 		cur->bc_levels[level].ptr--;
4220 
4221 	/*
4222 	 * We combined blocks, so we have to update the parent keys if the
4223 	 * btree supports overlapped intervals.  However,
4224 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4225 	 * knows which record to delete.  Therefore, the caller must be savvy
4226 	 * enough to call updkeys for us if we return stat == 2.  The other
4227 	 * exit points from this function don't require deletions further up
4228 	 * the tree, so they can call updkeys directly.
4229 	 */
4230 
4231 	/* Return value means the next level up has something to do. */
4232 	*stat = 2;
4233 	return 0;
4234 
4235 error0:
4236 	if (tcur)
4237 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4238 	return error;
4239 }
4240 
4241 /*
4242  * Delete the record pointed to by cur.
4243  * The cursor refers to the place where the record was (could be inserted)
4244  * when the operation returns.
4245  */
4246 int					/* error */
4247 xfs_btree_delete(
4248 	struct xfs_btree_cur	*cur,
4249 	int			*stat)	/* success/failure */
4250 {
4251 	int			error;	/* error return value */
4252 	int			level;
4253 	int			i;
4254 	bool			joined = false;
4255 
4256 	/*
4257 	 * Go up the tree, starting at leaf level.
4258 	 *
4259 	 * If 2 is returned then a join was done; go to the next level.
4260 	 * Otherwise we are done.
4261 	 */
4262 	for (level = 0, i = 2; i == 2; level++) {
4263 		error = xfs_btree_delrec(cur, level, &i);
4264 		if (error)
4265 			goto error0;
4266 		if (i == 2)
4267 			joined = true;
4268 	}
4269 
4270 	/*
4271 	 * If we combined blocks as part of deleting the record, delrec won't
4272 	 * have updated the parent high keys so we have to do that here.
4273 	 */
4274 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4275 		error = xfs_btree_updkeys_force(cur, 0);
4276 		if (error)
4277 			goto error0;
4278 	}
4279 
4280 	if (i == 0) {
4281 		for (level = 1; level < cur->bc_nlevels; level++) {
4282 			if (cur->bc_levels[level].ptr == 0) {
4283 				error = xfs_btree_decrement(cur, level, &i);
4284 				if (error)
4285 					goto error0;
4286 				break;
4287 			}
4288 		}
4289 	}
4290 
4291 	*stat = i;
4292 	return 0;
4293 error0:
4294 	return error;
4295 }
4296 
4297 /*
4298  * Get the data from the pointed-to record.
4299  */
4300 int					/* error */
4301 xfs_btree_get_rec(
4302 	struct xfs_btree_cur	*cur,	/* btree cursor */
4303 	union xfs_btree_rec	**recp,	/* output: btree record */
4304 	int			*stat)	/* output: success/failure */
4305 {
4306 	struct xfs_btree_block	*block;	/* btree block */
4307 	struct xfs_buf		*bp;	/* buffer pointer */
4308 	int			ptr;	/* record number */
4309 #ifdef DEBUG
4310 	int			error;	/* error return value */
4311 #endif
4312 
4313 	ptr = cur->bc_levels[0].ptr;
4314 	block = xfs_btree_get_block(cur, 0, &bp);
4315 
4316 #ifdef DEBUG
4317 	error = xfs_btree_check_block(cur, block, 0, bp);
4318 	if (error)
4319 		return error;
4320 #endif
4321 
4322 	/*
4323 	 * Off the right end or left end, return failure.
4324 	 */
4325 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4326 		*stat = 0;
4327 		return 0;
4328 	}
4329 
4330 	/*
4331 	 * Point to the record and extract its data.
4332 	 */
4333 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4334 	*stat = 1;
4335 	return 0;
4336 }
4337 
4338 /* Visit a block in a btree. */
4339 STATIC int
4340 xfs_btree_visit_block(
4341 	struct xfs_btree_cur		*cur,
4342 	int				level,
4343 	xfs_btree_visit_blocks_fn	fn,
4344 	void				*data)
4345 {
4346 	struct xfs_btree_block		*block;
4347 	struct xfs_buf			*bp;
4348 	union xfs_btree_ptr		rptr;
4349 	int				error;
4350 
4351 	/* do right sibling readahead */
4352 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4353 	block = xfs_btree_get_block(cur, level, &bp);
4354 
4355 	/* process the block */
4356 	error = fn(cur, level, data);
4357 	if (error)
4358 		return error;
4359 
4360 	/* now read rh sibling block for next iteration */
4361 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4362 	if (xfs_btree_ptr_is_null(cur, &rptr))
4363 		return -ENOENT;
4364 
4365 	/*
4366 	 * We only visit blocks once in this walk, so we have to avoid the
4367 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4368 	 * return the same block without checking if the right sibling points
4369 	 * back to us and creates a cyclic reference in the btree.
4370 	 */
4371 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4372 		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4373 							xfs_buf_daddr(bp)))
4374 			return -EFSCORRUPTED;
4375 	} else {
4376 		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4377 							xfs_buf_daddr(bp)))
4378 			return -EFSCORRUPTED;
4379 	}
4380 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4381 }
4382 
4383 
4384 /* Visit every block in a btree. */
4385 int
4386 xfs_btree_visit_blocks(
4387 	struct xfs_btree_cur		*cur,
4388 	xfs_btree_visit_blocks_fn	fn,
4389 	unsigned int			flags,
4390 	void				*data)
4391 {
4392 	union xfs_btree_ptr		lptr;
4393 	int				level;
4394 	struct xfs_btree_block		*block = NULL;
4395 	int				error = 0;
4396 
4397 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4398 
4399 	/* for each level */
4400 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4401 		/* grab the left hand block */
4402 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4403 		if (error)
4404 			return error;
4405 
4406 		/* readahead the left most block for the next level down */
4407 		if (level > 0) {
4408 			union xfs_btree_ptr     *ptr;
4409 
4410 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4411 			xfs_btree_readahead_ptr(cur, ptr, 1);
4412 
4413 			/* save for the next iteration of the loop */
4414 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4415 
4416 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4417 				continue;
4418 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4419 			continue;
4420 		}
4421 
4422 		/* for each buffer in the level */
4423 		do {
4424 			error = xfs_btree_visit_block(cur, level, fn, data);
4425 		} while (!error);
4426 
4427 		if (error != -ENOENT)
4428 			return error;
4429 	}
4430 
4431 	return 0;
4432 }
4433 
4434 /*
4435  * Change the owner of a btree.
4436  *
4437  * The mechanism we use here is ordered buffer logging. Because we don't know
4438  * how many buffers were are going to need to modify, we don't really want to
4439  * have to make transaction reservations for the worst case of every buffer in a
4440  * full size btree as that may be more space that we can fit in the log....
4441  *
4442  * We do the btree walk in the most optimal manner possible - we have sibling
4443  * pointers so we can just walk all the blocks on each level from left to right
4444  * in a single pass, and then move to the next level and do the same. We can
4445  * also do readahead on the sibling pointers to get IO moving more quickly,
4446  * though for slow disks this is unlikely to make much difference to performance
4447  * as the amount of CPU work we have to do before moving to the next block is
4448  * relatively small.
4449  *
4450  * For each btree block that we load, modify the owner appropriately, set the
4451  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4452  * we mark the region we change dirty so that if the buffer is relogged in
4453  * a subsequent transaction the changes we make here as an ordered buffer are
4454  * correctly relogged in that transaction.  If we are in recovery context, then
4455  * just queue the modified buffer as delayed write buffer so the transaction
4456  * recovery completion writes the changes to disk.
4457  */
4458 struct xfs_btree_block_change_owner_info {
4459 	uint64_t		new_owner;
4460 	struct list_head	*buffer_list;
4461 };
4462 
4463 static int
4464 xfs_btree_block_change_owner(
4465 	struct xfs_btree_cur	*cur,
4466 	int			level,
4467 	void			*data)
4468 {
4469 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4470 	struct xfs_btree_block	*block;
4471 	struct xfs_buf		*bp;
4472 
4473 	/* modify the owner */
4474 	block = xfs_btree_get_block(cur, level, &bp);
4475 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4476 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4477 			return 0;
4478 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4479 	} else {
4480 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4481 			return 0;
4482 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4483 	}
4484 
4485 	/*
4486 	 * If the block is a root block hosted in an inode, we might not have a
4487 	 * buffer pointer here and we shouldn't attempt to log the change as the
4488 	 * information is already held in the inode and discarded when the root
4489 	 * block is formatted into the on-disk inode fork. We still change it,
4490 	 * though, so everything is consistent in memory.
4491 	 */
4492 	if (!bp) {
4493 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4494 		ASSERT(level == cur->bc_nlevels - 1);
4495 		return 0;
4496 	}
4497 
4498 	if (cur->bc_tp) {
4499 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4500 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4501 			return -EAGAIN;
4502 		}
4503 	} else {
4504 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 int
4511 xfs_btree_change_owner(
4512 	struct xfs_btree_cur	*cur,
4513 	uint64_t		new_owner,
4514 	struct list_head	*buffer_list)
4515 {
4516 	struct xfs_btree_block_change_owner_info	bbcoi;
4517 
4518 	bbcoi.new_owner = new_owner;
4519 	bbcoi.buffer_list = buffer_list;
4520 
4521 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4522 			XFS_BTREE_VISIT_ALL, &bbcoi);
4523 }
4524 
4525 /* Verify the v5 fields of a long-format btree block. */
4526 xfs_failaddr_t
4527 xfs_btree_lblock_v5hdr_verify(
4528 	struct xfs_buf		*bp,
4529 	uint64_t		owner)
4530 {
4531 	struct xfs_mount	*mp = bp->b_mount;
4532 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4533 
4534 	if (!xfs_has_crc(mp))
4535 		return __this_address;
4536 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4537 		return __this_address;
4538 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4539 		return __this_address;
4540 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4541 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4542 		return __this_address;
4543 	return NULL;
4544 }
4545 
4546 /* Verify a long-format btree block. */
4547 xfs_failaddr_t
4548 xfs_btree_lblock_verify(
4549 	struct xfs_buf		*bp,
4550 	unsigned int		max_recs)
4551 {
4552 	struct xfs_mount	*mp = bp->b_mount;
4553 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4554 	xfs_fsblock_t		fsb;
4555 	xfs_failaddr_t		fa;
4556 
4557 	/* numrecs verification */
4558 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4559 		return __this_address;
4560 
4561 	/* sibling pointer verification */
4562 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4563 	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4564 			block->bb_u.l.bb_leftsib);
4565 	if (!fa)
4566 		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4567 				block->bb_u.l.bb_rightsib);
4568 	return fa;
4569 }
4570 
4571 /**
4572  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4573  *				      btree block
4574  *
4575  * @bp: buffer containing the btree block
4576  */
4577 xfs_failaddr_t
4578 xfs_btree_sblock_v5hdr_verify(
4579 	struct xfs_buf		*bp)
4580 {
4581 	struct xfs_mount	*mp = bp->b_mount;
4582 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4583 	struct xfs_perag	*pag = bp->b_pag;
4584 
4585 	if (!xfs_has_crc(mp))
4586 		return __this_address;
4587 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4588 		return __this_address;
4589 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4590 		return __this_address;
4591 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4592 		return __this_address;
4593 	return NULL;
4594 }
4595 
4596 /**
4597  * xfs_btree_sblock_verify() -- verify a short-format btree block
4598  *
4599  * @bp: buffer containing the btree block
4600  * @max_recs: maximum records allowed in this btree node
4601  */
4602 xfs_failaddr_t
4603 xfs_btree_sblock_verify(
4604 	struct xfs_buf		*bp,
4605 	unsigned int		max_recs)
4606 {
4607 	struct xfs_mount	*mp = bp->b_mount;
4608 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4609 	xfs_agblock_t		agbno;
4610 	xfs_failaddr_t		fa;
4611 
4612 	/* numrecs verification */
4613 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4614 		return __this_address;
4615 
4616 	/* sibling pointer verification */
4617 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4618 	fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4619 			block->bb_u.s.bb_leftsib);
4620 	if (!fa)
4621 		fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4622 				block->bb_u.s.bb_rightsib);
4623 	return fa;
4624 }
4625 
4626 /*
4627  * For the given limits on leaf and keyptr records per block, calculate the
4628  * height of the tree needed to index the number of leaf records.
4629  */
4630 unsigned int
4631 xfs_btree_compute_maxlevels(
4632 	const unsigned int	*limits,
4633 	unsigned long long	records)
4634 {
4635 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4636 	unsigned int		height = 1;
4637 
4638 	while (level_blocks > 1) {
4639 		level_blocks = howmany_64(level_blocks, limits[1]);
4640 		height++;
4641 	}
4642 
4643 	return height;
4644 }
4645 
4646 /*
4647  * For the given limits on leaf and keyptr records per block, calculate the
4648  * number of blocks needed to index the given number of leaf records.
4649  */
4650 unsigned long long
4651 xfs_btree_calc_size(
4652 	const unsigned int	*limits,
4653 	unsigned long long	records)
4654 {
4655 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4656 	unsigned long long	blocks = level_blocks;
4657 
4658 	while (level_blocks > 1) {
4659 		level_blocks = howmany_64(level_blocks, limits[1]);
4660 		blocks += level_blocks;
4661 	}
4662 
4663 	return blocks;
4664 }
4665 
4666 /*
4667  * Given a number of available blocks for the btree to consume with records and
4668  * pointers, calculate the height of the tree needed to index all the records
4669  * that space can hold based on the number of pointers each interior node
4670  * holds.
4671  *
4672  * We start by assuming a single level tree consumes a single block, then track
4673  * the number of blocks each node level consumes until we no longer have space
4674  * to store the next node level. At this point, we are indexing all the leaf
4675  * blocks in the space, and there's no more free space to split the tree any
4676  * further. That's our maximum btree height.
4677  */
4678 unsigned int
4679 xfs_btree_space_to_height(
4680 	const unsigned int	*limits,
4681 	unsigned long long	leaf_blocks)
4682 {
4683 	/*
4684 	 * The root btree block can have fewer than minrecs pointers in it
4685 	 * because the tree might not be big enough to require that amount of
4686 	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4687 	 */
4688 	unsigned long long	node_blocks = 2;
4689 	unsigned long long	blocks_left = leaf_blocks - 1;
4690 	unsigned int		height = 1;
4691 
4692 	if (leaf_blocks < 1)
4693 		return 0;
4694 
4695 	while (node_blocks < blocks_left) {
4696 		blocks_left -= node_blocks;
4697 		node_blocks *= limits[1];
4698 		height++;
4699 	}
4700 
4701 	return height;
4702 }
4703 
4704 /*
4705  * Query a regular btree for all records overlapping a given interval.
4706  * Start with a LE lookup of the key of low_rec and return all records
4707  * until we find a record with a key greater than the key of high_rec.
4708  */
4709 STATIC int
4710 xfs_btree_simple_query_range(
4711 	struct xfs_btree_cur		*cur,
4712 	const union xfs_btree_key	*low_key,
4713 	const union xfs_btree_key	*high_key,
4714 	xfs_btree_query_range_fn	fn,
4715 	void				*priv)
4716 {
4717 	union xfs_btree_rec		*recp;
4718 	union xfs_btree_key		rec_key;
4719 	int64_t				diff;
4720 	int				stat;
4721 	bool				firstrec = true;
4722 	int				error;
4723 
4724 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4725 	ASSERT(cur->bc_ops->diff_two_keys);
4726 
4727 	/*
4728 	 * Find the leftmost record.  The btree cursor must be set
4729 	 * to the low record used to generate low_key.
4730 	 */
4731 	stat = 0;
4732 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4733 	if (error)
4734 		goto out;
4735 
4736 	/* Nothing?  See if there's anything to the right. */
4737 	if (!stat) {
4738 		error = xfs_btree_increment(cur, 0, &stat);
4739 		if (error)
4740 			goto out;
4741 	}
4742 
4743 	while (stat) {
4744 		/* Find the record. */
4745 		error = xfs_btree_get_rec(cur, &recp, &stat);
4746 		if (error || !stat)
4747 			break;
4748 
4749 		/* Skip if high_key(rec) < low_key. */
4750 		if (firstrec) {
4751 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4752 			firstrec = false;
4753 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4754 					&rec_key);
4755 			if (diff > 0)
4756 				goto advloop;
4757 		}
4758 
4759 		/* Stop if high_key < low_key(rec). */
4760 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4761 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4762 		if (diff > 0)
4763 			break;
4764 
4765 		/* Callback */
4766 		error = fn(cur, recp, priv);
4767 		if (error)
4768 			break;
4769 
4770 advloop:
4771 		/* Move on to the next record. */
4772 		error = xfs_btree_increment(cur, 0, &stat);
4773 		if (error)
4774 			break;
4775 	}
4776 
4777 out:
4778 	return error;
4779 }
4780 
4781 /*
4782  * Query an overlapped interval btree for all records overlapping a given
4783  * interval.  This function roughly follows the algorithm given in
4784  * "Interval Trees" of _Introduction to Algorithms_, which is section
4785  * 14.3 in the 2nd and 3rd editions.
4786  *
4787  * First, generate keys for the low and high records passed in.
4788  *
4789  * For any leaf node, generate the high and low keys for the record.
4790  * If the record keys overlap with the query low/high keys, pass the
4791  * record to the function iterator.
4792  *
4793  * For any internal node, compare the low and high keys of each
4794  * pointer against the query low/high keys.  If there's an overlap,
4795  * follow the pointer.
4796  *
4797  * As an optimization, we stop scanning a block when we find a low key
4798  * that is greater than the query's high key.
4799  */
4800 STATIC int
4801 xfs_btree_overlapped_query_range(
4802 	struct xfs_btree_cur		*cur,
4803 	const union xfs_btree_key	*low_key,
4804 	const union xfs_btree_key	*high_key,
4805 	xfs_btree_query_range_fn	fn,
4806 	void				*priv)
4807 {
4808 	union xfs_btree_ptr		ptr;
4809 	union xfs_btree_ptr		*pp;
4810 	union xfs_btree_key		rec_key;
4811 	union xfs_btree_key		rec_hkey;
4812 	union xfs_btree_key		*lkp;
4813 	union xfs_btree_key		*hkp;
4814 	union xfs_btree_rec		*recp;
4815 	struct xfs_btree_block		*block;
4816 	int64_t				ldiff;
4817 	int64_t				hdiff;
4818 	int				level;
4819 	struct xfs_buf			*bp;
4820 	int				i;
4821 	int				error;
4822 
4823 	/* Load the root of the btree. */
4824 	level = cur->bc_nlevels - 1;
4825 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4826 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4827 	if (error)
4828 		return error;
4829 	xfs_btree_get_block(cur, level, &bp);
4830 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4831 #ifdef DEBUG
4832 	error = xfs_btree_check_block(cur, block, level, bp);
4833 	if (error)
4834 		goto out;
4835 #endif
4836 	cur->bc_levels[level].ptr = 1;
4837 
4838 	while (level < cur->bc_nlevels) {
4839 		block = xfs_btree_get_block(cur, level, &bp);
4840 
4841 		/* End of node, pop back towards the root. */
4842 		if (cur->bc_levels[level].ptr >
4843 					be16_to_cpu(block->bb_numrecs)) {
4844 pop_up:
4845 			if (level < cur->bc_nlevels - 1)
4846 				cur->bc_levels[level + 1].ptr++;
4847 			level++;
4848 			continue;
4849 		}
4850 
4851 		if (level == 0) {
4852 			/* Handle a leaf node. */
4853 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4854 					block);
4855 
4856 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4857 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4858 					low_key);
4859 
4860 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4861 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4862 					&rec_key);
4863 
4864 			/*
4865 			 * If (record's high key >= query's low key) and
4866 			 *    (query's high key >= record's low key), then
4867 			 * this record overlaps the query range; callback.
4868 			 */
4869 			if (ldiff >= 0 && hdiff >= 0) {
4870 				error = fn(cur, recp, priv);
4871 				if (error)
4872 					break;
4873 			} else if (hdiff < 0) {
4874 				/* Record is larger than high key; pop. */
4875 				goto pop_up;
4876 			}
4877 			cur->bc_levels[level].ptr++;
4878 			continue;
4879 		}
4880 
4881 		/* Handle an internal node. */
4882 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4883 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4884 				block);
4885 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4886 
4887 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4888 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4889 
4890 		/*
4891 		 * If (pointer's high key >= query's low key) and
4892 		 *    (query's high key >= pointer's low key), then
4893 		 * this record overlaps the query range; follow pointer.
4894 		 */
4895 		if (ldiff >= 0 && hdiff >= 0) {
4896 			level--;
4897 			error = xfs_btree_lookup_get_block(cur, level, pp,
4898 					&block);
4899 			if (error)
4900 				goto out;
4901 			xfs_btree_get_block(cur, level, &bp);
4902 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4903 #ifdef DEBUG
4904 			error = xfs_btree_check_block(cur, block, level, bp);
4905 			if (error)
4906 				goto out;
4907 #endif
4908 			cur->bc_levels[level].ptr = 1;
4909 			continue;
4910 		} else if (hdiff < 0) {
4911 			/* The low key is larger than the upper range; pop. */
4912 			goto pop_up;
4913 		}
4914 		cur->bc_levels[level].ptr++;
4915 	}
4916 
4917 out:
4918 	/*
4919 	 * If we don't end this function with the cursor pointing at a record
4920 	 * block, a subsequent non-error cursor deletion will not release
4921 	 * node-level buffers, causing a buffer leak.  This is quite possible
4922 	 * with a zero-results range query, so release the buffers if we
4923 	 * failed to return any results.
4924 	 */
4925 	if (cur->bc_levels[0].bp == NULL) {
4926 		for (i = 0; i < cur->bc_nlevels; i++) {
4927 			if (cur->bc_levels[i].bp) {
4928 				xfs_trans_brelse(cur->bc_tp,
4929 						cur->bc_levels[i].bp);
4930 				cur->bc_levels[i].bp = NULL;
4931 				cur->bc_levels[i].ptr = 0;
4932 				cur->bc_levels[i].ra = 0;
4933 			}
4934 		}
4935 	}
4936 
4937 	return error;
4938 }
4939 
4940 /*
4941  * Query a btree for all records overlapping a given interval of keys.  The
4942  * supplied function will be called with each record found; return one of the
4943  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4944  * code.  This function returns -ECANCELED, zero, or a negative error code.
4945  */
4946 int
4947 xfs_btree_query_range(
4948 	struct xfs_btree_cur		*cur,
4949 	const union xfs_btree_irec	*low_rec,
4950 	const union xfs_btree_irec	*high_rec,
4951 	xfs_btree_query_range_fn	fn,
4952 	void				*priv)
4953 {
4954 	union xfs_btree_rec		rec;
4955 	union xfs_btree_key		low_key;
4956 	union xfs_btree_key		high_key;
4957 
4958 	/* Find the keys of both ends of the interval. */
4959 	cur->bc_rec = *high_rec;
4960 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4961 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4962 
4963 	cur->bc_rec = *low_rec;
4964 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4965 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4966 
4967 	/* Enforce low key < high key. */
4968 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4969 		return -EINVAL;
4970 
4971 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4972 		return xfs_btree_simple_query_range(cur, &low_key,
4973 				&high_key, fn, priv);
4974 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4975 			fn, priv);
4976 }
4977 
4978 /* Query a btree for all records. */
4979 int
4980 xfs_btree_query_all(
4981 	struct xfs_btree_cur		*cur,
4982 	xfs_btree_query_range_fn	fn,
4983 	void				*priv)
4984 {
4985 	union xfs_btree_key		low_key;
4986 	union xfs_btree_key		high_key;
4987 
4988 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4989 	memset(&low_key, 0, sizeof(low_key));
4990 	memset(&high_key, 0xFF, sizeof(high_key));
4991 
4992 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4993 }
4994 
4995 static int
4996 xfs_btree_count_blocks_helper(
4997 	struct xfs_btree_cur	*cur,
4998 	int			level,
4999 	void			*data)
5000 {
5001 	xfs_extlen_t		*blocks = data;
5002 	(*blocks)++;
5003 
5004 	return 0;
5005 }
5006 
5007 /* Count the blocks in a btree and return the result in *blocks. */
5008 int
5009 xfs_btree_count_blocks(
5010 	struct xfs_btree_cur	*cur,
5011 	xfs_extlen_t		*blocks)
5012 {
5013 	*blocks = 0;
5014 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5015 			XFS_BTREE_VISIT_ALL, blocks);
5016 }
5017 
5018 /* Compare two btree pointers. */
5019 int64_t
5020 xfs_btree_diff_two_ptrs(
5021 	struct xfs_btree_cur		*cur,
5022 	const union xfs_btree_ptr	*a,
5023 	const union xfs_btree_ptr	*b)
5024 {
5025 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5026 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5027 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5028 }
5029 
5030 /* If there's an extent, we're done. */
5031 STATIC int
5032 xfs_btree_has_record_helper(
5033 	struct xfs_btree_cur		*cur,
5034 	const union xfs_btree_rec	*rec,
5035 	void				*priv)
5036 {
5037 	return -ECANCELED;
5038 }
5039 
5040 /* Is there a record covering a given range of keys? */
5041 int
5042 xfs_btree_has_record(
5043 	struct xfs_btree_cur		*cur,
5044 	const union xfs_btree_irec	*low,
5045 	const union xfs_btree_irec	*high,
5046 	bool				*exists)
5047 {
5048 	int				error;
5049 
5050 	error = xfs_btree_query_range(cur, low, high,
5051 			&xfs_btree_has_record_helper, NULL);
5052 	if (error == -ECANCELED) {
5053 		*exists = true;
5054 		return 0;
5055 	}
5056 	*exists = false;
5057 	return error;
5058 }
5059 
5060 /* Are there more records in this btree? */
5061 bool
5062 xfs_btree_has_more_records(
5063 	struct xfs_btree_cur	*cur)
5064 {
5065 	struct xfs_btree_block	*block;
5066 	struct xfs_buf		*bp;
5067 
5068 	block = xfs_btree_get_block(cur, 0, &bp);
5069 
5070 	/* There are still records in this block. */
5071 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5072 		return true;
5073 
5074 	/* There are more record blocks. */
5075 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5076 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5077 	else
5078 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5079 }
5080 
5081 /* Set up all the btree cursor caches. */
5082 int __init
5083 xfs_btree_init_cur_caches(void)
5084 {
5085 	int		error;
5086 
5087 	error = xfs_allocbt_init_cur_cache();
5088 	if (error)
5089 		return error;
5090 	error = xfs_inobt_init_cur_cache();
5091 	if (error)
5092 		goto err;
5093 	error = xfs_bmbt_init_cur_cache();
5094 	if (error)
5095 		goto err;
5096 	error = xfs_rmapbt_init_cur_cache();
5097 	if (error)
5098 		goto err;
5099 	error = xfs_refcountbt_init_cur_cache();
5100 	if (error)
5101 		goto err;
5102 
5103 	return 0;
5104 err:
5105 	xfs_btree_destroy_cur_caches();
5106 	return error;
5107 }
5108 
5109 /* Destroy all the btree cursor caches, if they've been allocated. */
5110 void
5111 xfs_btree_destroy_cur_caches(void)
5112 {
5113 	xfs_allocbt_destroy_cur_cache();
5114 	xfs_inobt_destroy_cur_cache();
5115 	xfs_bmbt_destroy_cur_cache();
5116 	xfs_rmapbt_destroy_cur_cache();
5117 	xfs_refcountbt_destroy_cur_cache();
5118 }
5119