xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 8730046c)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37 
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t	*xfs_btree_cur_zone;
42 
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 	  XFS_FIBT_MAGIC, 0 },
49 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51 	  XFS_REFC_CRC_MAGIC }
52 };
53 #define xfs_btree_magic(cur) \
54 	xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
55 
56 STATIC int				/* error (0 or EFSCORRUPTED) */
57 xfs_btree_check_lblock(
58 	struct xfs_btree_cur	*cur,	/* btree cursor */
59 	struct xfs_btree_block	*block,	/* btree long form block pointer */
60 	int			level,	/* level of the btree block */
61 	struct xfs_buf		*bp)	/* buffer for block, if any */
62 {
63 	int			lblock_ok = 1; /* block passes checks */
64 	struct xfs_mount	*mp;	/* file system mount point */
65 
66 	mp = cur->bc_mp;
67 
68 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
69 		lblock_ok = lblock_ok &&
70 			uuid_equal(&block->bb_u.l.bb_uuid,
71 				   &mp->m_sb.sb_meta_uuid) &&
72 			block->bb_u.l.bb_blkno == cpu_to_be64(
73 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
74 	}
75 
76 	lblock_ok = lblock_ok &&
77 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
78 		be16_to_cpu(block->bb_level) == level &&
79 		be16_to_cpu(block->bb_numrecs) <=
80 			cur->bc_ops->get_maxrecs(cur, level) &&
81 		block->bb_u.l.bb_leftsib &&
82 		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
83 		 XFS_FSB_SANITY_CHECK(mp,
84 			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
85 		block->bb_u.l.bb_rightsib &&
86 		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
87 		 XFS_FSB_SANITY_CHECK(mp,
88 			be64_to_cpu(block->bb_u.l.bb_rightsib)));
89 
90 	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
91 			XFS_ERRTAG_BTREE_CHECK_LBLOCK,
92 			XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
93 		if (bp)
94 			trace_xfs_btree_corrupt(bp, _RET_IP_);
95 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
96 		return -EFSCORRUPTED;
97 	}
98 	return 0;
99 }
100 
101 STATIC int				/* error (0 or EFSCORRUPTED) */
102 xfs_btree_check_sblock(
103 	struct xfs_btree_cur	*cur,	/* btree cursor */
104 	struct xfs_btree_block	*block,	/* btree short form block pointer */
105 	int			level,	/* level of the btree block */
106 	struct xfs_buf		*bp)	/* buffer containing block */
107 {
108 	struct xfs_mount	*mp;	/* file system mount point */
109 	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
110 	struct xfs_agf		*agf;	/* ag. freespace structure */
111 	xfs_agblock_t		agflen;	/* native ag. freespace length */
112 	int			sblock_ok = 1; /* block passes checks */
113 
114 	mp = cur->bc_mp;
115 	agbp = cur->bc_private.a.agbp;
116 	agf = XFS_BUF_TO_AGF(agbp);
117 	agflen = be32_to_cpu(agf->agf_length);
118 
119 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
120 		sblock_ok = sblock_ok &&
121 			uuid_equal(&block->bb_u.s.bb_uuid,
122 				   &mp->m_sb.sb_meta_uuid) &&
123 			block->bb_u.s.bb_blkno == cpu_to_be64(
124 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
125 	}
126 
127 	sblock_ok = sblock_ok &&
128 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
129 		be16_to_cpu(block->bb_level) == level &&
130 		be16_to_cpu(block->bb_numrecs) <=
131 			cur->bc_ops->get_maxrecs(cur, level) &&
132 		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
133 		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
134 		block->bb_u.s.bb_leftsib &&
135 		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
136 		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
137 		block->bb_u.s.bb_rightsib;
138 
139 	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
140 			XFS_ERRTAG_BTREE_CHECK_SBLOCK,
141 			XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
142 		if (bp)
143 			trace_xfs_btree_corrupt(bp, _RET_IP_);
144 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
145 		return -EFSCORRUPTED;
146 	}
147 	return 0;
148 }
149 
150 /*
151  * Debug routine: check that block header is ok.
152  */
153 int
154 xfs_btree_check_block(
155 	struct xfs_btree_cur	*cur,	/* btree cursor */
156 	struct xfs_btree_block	*block,	/* generic btree block pointer */
157 	int			level,	/* level of the btree block */
158 	struct xfs_buf		*bp)	/* buffer containing block, if any */
159 {
160 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
161 		return xfs_btree_check_lblock(cur, block, level, bp);
162 	else
163 		return xfs_btree_check_sblock(cur, block, level, bp);
164 }
165 
166 /*
167  * Check that (long) pointer is ok.
168  */
169 int					/* error (0 or EFSCORRUPTED) */
170 xfs_btree_check_lptr(
171 	struct xfs_btree_cur	*cur,	/* btree cursor */
172 	xfs_fsblock_t		bno,	/* btree block disk address */
173 	int			level)	/* btree block level */
174 {
175 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
176 		level > 0 &&
177 		bno != NULLFSBLOCK &&
178 		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
179 	return 0;
180 }
181 
182 #ifdef DEBUG
183 /*
184  * Check that (short) pointer is ok.
185  */
186 STATIC int				/* error (0 or EFSCORRUPTED) */
187 xfs_btree_check_sptr(
188 	struct xfs_btree_cur	*cur,	/* btree cursor */
189 	xfs_agblock_t		bno,	/* btree block disk address */
190 	int			level)	/* btree block level */
191 {
192 	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
193 
194 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
195 		level > 0 &&
196 		bno != NULLAGBLOCK &&
197 		bno != 0 &&
198 		bno < agblocks);
199 	return 0;
200 }
201 
202 /*
203  * Check that block ptr is ok.
204  */
205 STATIC int				/* error (0 or EFSCORRUPTED) */
206 xfs_btree_check_ptr(
207 	struct xfs_btree_cur	*cur,	/* btree cursor */
208 	union xfs_btree_ptr	*ptr,	/* btree block disk address */
209 	int			index,	/* offset from ptr to check */
210 	int			level)	/* btree block level */
211 {
212 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
213 		return xfs_btree_check_lptr(cur,
214 				be64_to_cpu((&ptr->l)[index]), level);
215 	} else {
216 		return xfs_btree_check_sptr(cur,
217 				be32_to_cpu((&ptr->s)[index]), level);
218 	}
219 }
220 #endif
221 
222 /*
223  * Calculate CRC on the whole btree block and stuff it into the
224  * long-form btree header.
225  *
226  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
227  * it into the buffer so recovery knows what the last modification was that made
228  * it to disk.
229  */
230 void
231 xfs_btree_lblock_calc_crc(
232 	struct xfs_buf		*bp)
233 {
234 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
235 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
236 
237 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
238 		return;
239 	if (bip)
240 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
241 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
242 }
243 
244 bool
245 xfs_btree_lblock_verify_crc(
246 	struct xfs_buf		*bp)
247 {
248 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
249 	struct xfs_mount	*mp = bp->b_target->bt_mount;
250 
251 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
252 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
253 			return false;
254 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
255 	}
256 
257 	return true;
258 }
259 
260 /*
261  * Calculate CRC on the whole btree block and stuff it into the
262  * short-form btree header.
263  *
264  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265  * it into the buffer so recovery knows what the last modification was that made
266  * it to disk.
267  */
268 void
269 xfs_btree_sblock_calc_crc(
270 	struct xfs_buf		*bp)
271 {
272 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
273 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
274 
275 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
276 		return;
277 	if (bip)
278 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
280 }
281 
282 bool
283 xfs_btree_sblock_verify_crc(
284 	struct xfs_buf		*bp)
285 {
286 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
287 	struct xfs_mount	*mp = bp->b_target->bt_mount;
288 
289 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
291 			return false;
292 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
293 	}
294 
295 	return true;
296 }
297 
298 static int
299 xfs_btree_free_block(
300 	struct xfs_btree_cur	*cur,
301 	struct xfs_buf		*bp)
302 {
303 	int			error;
304 
305 	error = cur->bc_ops->free_block(cur, bp);
306 	if (!error) {
307 		xfs_trans_binval(cur->bc_tp, bp);
308 		XFS_BTREE_STATS_INC(cur, free);
309 	}
310 	return error;
311 }
312 
313 /*
314  * Delete the btree cursor.
315  */
316 void
317 xfs_btree_del_cursor(
318 	xfs_btree_cur_t	*cur,		/* btree cursor */
319 	int		error)		/* del because of error */
320 {
321 	int		i;		/* btree level */
322 
323 	/*
324 	 * Clear the buffer pointers, and release the buffers.
325 	 * If we're doing this in the face of an error, we
326 	 * need to make sure to inspect all of the entries
327 	 * in the bc_bufs array for buffers to be unlocked.
328 	 * This is because some of the btree code works from
329 	 * level n down to 0, and if we get an error along
330 	 * the way we won't have initialized all the entries
331 	 * down to 0.
332 	 */
333 	for (i = 0; i < cur->bc_nlevels; i++) {
334 		if (cur->bc_bufs[i])
335 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
336 		else if (!error)
337 			break;
338 	}
339 	/*
340 	 * Can't free a bmap cursor without having dealt with the
341 	 * allocated indirect blocks' accounting.
342 	 */
343 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
344 	       cur->bc_private.b.allocated == 0);
345 	/*
346 	 * Free the cursor.
347 	 */
348 	kmem_zone_free(xfs_btree_cur_zone, cur);
349 }
350 
351 /*
352  * Duplicate the btree cursor.
353  * Allocate a new one, copy the record, re-get the buffers.
354  */
355 int					/* error */
356 xfs_btree_dup_cursor(
357 	xfs_btree_cur_t	*cur,		/* input cursor */
358 	xfs_btree_cur_t	**ncur)		/* output cursor */
359 {
360 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
361 	int		error;		/* error return value */
362 	int		i;		/* level number of btree block */
363 	xfs_mount_t	*mp;		/* mount structure for filesystem */
364 	xfs_btree_cur_t	*new;		/* new cursor value */
365 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
366 
367 	tp = cur->bc_tp;
368 	mp = cur->bc_mp;
369 
370 	/*
371 	 * Allocate a new cursor like the old one.
372 	 */
373 	new = cur->bc_ops->dup_cursor(cur);
374 
375 	/*
376 	 * Copy the record currently in the cursor.
377 	 */
378 	new->bc_rec = cur->bc_rec;
379 
380 	/*
381 	 * For each level current, re-get the buffer and copy the ptr value.
382 	 */
383 	for (i = 0; i < new->bc_nlevels; i++) {
384 		new->bc_ptrs[i] = cur->bc_ptrs[i];
385 		new->bc_ra[i] = cur->bc_ra[i];
386 		bp = cur->bc_bufs[i];
387 		if (bp) {
388 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
389 						   XFS_BUF_ADDR(bp), mp->m_bsize,
390 						   0, &bp,
391 						   cur->bc_ops->buf_ops);
392 			if (error) {
393 				xfs_btree_del_cursor(new, error);
394 				*ncur = NULL;
395 				return error;
396 			}
397 		}
398 		new->bc_bufs[i] = bp;
399 	}
400 	*ncur = new;
401 	return 0;
402 }
403 
404 /*
405  * XFS btree block layout and addressing:
406  *
407  * There are two types of blocks in the btree: leaf and non-leaf blocks.
408  *
409  * The leaf record start with a header then followed by records containing
410  * the values.  A non-leaf block also starts with the same header, and
411  * then first contains lookup keys followed by an equal number of pointers
412  * to the btree blocks at the previous level.
413  *
414  *		+--------+-------+-------+-------+-------+-------+-------+
415  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
416  *		+--------+-------+-------+-------+-------+-------+-------+
417  *
418  *		+--------+-------+-------+-------+-------+-------+-------+
419  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
420  *		+--------+-------+-------+-------+-------+-------+-------+
421  *
422  * The header is called struct xfs_btree_block for reasons better left unknown
423  * and comes in different versions for short (32bit) and long (64bit) block
424  * pointers.  The record and key structures are defined by the btree instances
425  * and opaque to the btree core.  The block pointers are simple disk endian
426  * integers, available in a short (32bit) and long (64bit) variant.
427  *
428  * The helpers below calculate the offset of a given record, key or pointer
429  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
430  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
431  * inside the btree block is done using indices starting at one, not zero!
432  *
433  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
434  * overlapping intervals.  In such a tree, records are still sorted lowest to
435  * highest and indexed by the smallest key value that refers to the record.
436  * However, nodes are different: each pointer has two associated keys -- one
437  * indexing the lowest key available in the block(s) below (the same behavior
438  * as the key in a regular btree) and another indexing the highest key
439  * available in the block(s) below.  Because records are /not/ sorted by the
440  * highest key, all leaf block updates require us to compute the highest key
441  * that matches any record in the leaf and to recursively update the high keys
442  * in the nodes going further up in the tree, if necessary.  Nodes look like
443  * this:
444  *
445  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
446  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
447  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
448  *
449  * To perform an interval query on an overlapped tree, perform the usual
450  * depth-first search and use the low and high keys to decide if we can skip
451  * that particular node.  If a leaf node is reached, return the records that
452  * intersect the interval.  Note that an interval query may return numerous
453  * entries.  For a non-overlapped tree, simply search for the record associated
454  * with the lowest key and iterate forward until a non-matching record is
455  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
456  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
457  * more detail.
458  *
459  * Why do we care about overlapping intervals?  Let's say you have a bunch of
460  * reverse mapping records on a reflink filesystem:
461  *
462  * 1: +- file A startblock B offset C length D -----------+
463  * 2:      +- file E startblock F offset G length H --------------+
464  * 3:      +- file I startblock F offset J length K --+
465  * 4:                                                        +- file L... --+
466  *
467  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
468  * we'd simply increment the length of record 1.  But how do we find the record
469  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
470  * record 3 because the keys are ordered first by startblock.  An interval
471  * query would return records 1 and 2 because they both overlap (B+D-1), and
472  * from that we can pick out record 1 as the appropriate left neighbor.
473  *
474  * In the non-overlapped case you can do a LE lookup and decrement the cursor
475  * because a record's interval must end before the next record.
476  */
477 
478 /*
479  * Return size of the btree block header for this btree instance.
480  */
481 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
482 {
483 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
484 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
485 			return XFS_BTREE_LBLOCK_CRC_LEN;
486 		return XFS_BTREE_LBLOCK_LEN;
487 	}
488 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
489 		return XFS_BTREE_SBLOCK_CRC_LEN;
490 	return XFS_BTREE_SBLOCK_LEN;
491 }
492 
493 /*
494  * Return size of btree block pointers for this btree instance.
495  */
496 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
497 {
498 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
499 		sizeof(__be64) : sizeof(__be32);
500 }
501 
502 /*
503  * Calculate offset of the n-th record in a btree block.
504  */
505 STATIC size_t
506 xfs_btree_rec_offset(
507 	struct xfs_btree_cur	*cur,
508 	int			n)
509 {
510 	return xfs_btree_block_len(cur) +
511 		(n - 1) * cur->bc_ops->rec_len;
512 }
513 
514 /*
515  * Calculate offset of the n-th key in a btree block.
516  */
517 STATIC size_t
518 xfs_btree_key_offset(
519 	struct xfs_btree_cur	*cur,
520 	int			n)
521 {
522 	return xfs_btree_block_len(cur) +
523 		(n - 1) * cur->bc_ops->key_len;
524 }
525 
526 /*
527  * Calculate offset of the n-th high key in a btree block.
528  */
529 STATIC size_t
530 xfs_btree_high_key_offset(
531 	struct xfs_btree_cur	*cur,
532 	int			n)
533 {
534 	return xfs_btree_block_len(cur) +
535 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
536 }
537 
538 /*
539  * Calculate offset of the n-th block pointer in a btree block.
540  */
541 STATIC size_t
542 xfs_btree_ptr_offset(
543 	struct xfs_btree_cur	*cur,
544 	int			n,
545 	int			level)
546 {
547 	return xfs_btree_block_len(cur) +
548 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
549 		(n - 1) * xfs_btree_ptr_len(cur);
550 }
551 
552 /*
553  * Return a pointer to the n-th record in the btree block.
554  */
555 STATIC union xfs_btree_rec *
556 xfs_btree_rec_addr(
557 	struct xfs_btree_cur	*cur,
558 	int			n,
559 	struct xfs_btree_block	*block)
560 {
561 	return (union xfs_btree_rec *)
562 		((char *)block + xfs_btree_rec_offset(cur, n));
563 }
564 
565 /*
566  * Return a pointer to the n-th key in the btree block.
567  */
568 STATIC union xfs_btree_key *
569 xfs_btree_key_addr(
570 	struct xfs_btree_cur	*cur,
571 	int			n,
572 	struct xfs_btree_block	*block)
573 {
574 	return (union xfs_btree_key *)
575 		((char *)block + xfs_btree_key_offset(cur, n));
576 }
577 
578 /*
579  * Return a pointer to the n-th high key in the btree block.
580  */
581 STATIC union xfs_btree_key *
582 xfs_btree_high_key_addr(
583 	struct xfs_btree_cur	*cur,
584 	int			n,
585 	struct xfs_btree_block	*block)
586 {
587 	return (union xfs_btree_key *)
588 		((char *)block + xfs_btree_high_key_offset(cur, n));
589 }
590 
591 /*
592  * Return a pointer to the n-th block pointer in the btree block.
593  */
594 STATIC union xfs_btree_ptr *
595 xfs_btree_ptr_addr(
596 	struct xfs_btree_cur	*cur,
597 	int			n,
598 	struct xfs_btree_block	*block)
599 {
600 	int			level = xfs_btree_get_level(block);
601 
602 	ASSERT(block->bb_level != 0);
603 
604 	return (union xfs_btree_ptr *)
605 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
606 }
607 
608 /*
609  * Get the root block which is stored in the inode.
610  *
611  * For now this btree implementation assumes the btree root is always
612  * stored in the if_broot field of an inode fork.
613  */
614 STATIC struct xfs_btree_block *
615 xfs_btree_get_iroot(
616 	struct xfs_btree_cur	*cur)
617 {
618 	struct xfs_ifork	*ifp;
619 
620 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
621 	return (struct xfs_btree_block *)ifp->if_broot;
622 }
623 
624 /*
625  * Retrieve the block pointer from the cursor at the given level.
626  * This may be an inode btree root or from a buffer.
627  */
628 STATIC struct xfs_btree_block *		/* generic btree block pointer */
629 xfs_btree_get_block(
630 	struct xfs_btree_cur	*cur,	/* btree cursor */
631 	int			level,	/* level in btree */
632 	struct xfs_buf		**bpp)	/* buffer containing the block */
633 {
634 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
635 	    (level == cur->bc_nlevels - 1)) {
636 		*bpp = NULL;
637 		return xfs_btree_get_iroot(cur);
638 	}
639 
640 	*bpp = cur->bc_bufs[level];
641 	return XFS_BUF_TO_BLOCK(*bpp);
642 }
643 
644 /*
645  * Get a buffer for the block, return it with no data read.
646  * Long-form addressing.
647  */
648 xfs_buf_t *				/* buffer for fsbno */
649 xfs_btree_get_bufl(
650 	xfs_mount_t	*mp,		/* file system mount point */
651 	xfs_trans_t	*tp,		/* transaction pointer */
652 	xfs_fsblock_t	fsbno,		/* file system block number */
653 	uint		lock)		/* lock flags for get_buf */
654 {
655 	xfs_daddr_t		d;		/* real disk block address */
656 
657 	ASSERT(fsbno != NULLFSBLOCK);
658 	d = XFS_FSB_TO_DADDR(mp, fsbno);
659 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
660 }
661 
662 /*
663  * Get a buffer for the block, return it with no data read.
664  * Short-form addressing.
665  */
666 xfs_buf_t *				/* buffer for agno/agbno */
667 xfs_btree_get_bufs(
668 	xfs_mount_t	*mp,		/* file system mount point */
669 	xfs_trans_t	*tp,		/* transaction pointer */
670 	xfs_agnumber_t	agno,		/* allocation group number */
671 	xfs_agblock_t	agbno,		/* allocation group block number */
672 	uint		lock)		/* lock flags for get_buf */
673 {
674 	xfs_daddr_t		d;		/* real disk block address */
675 
676 	ASSERT(agno != NULLAGNUMBER);
677 	ASSERT(agbno != NULLAGBLOCK);
678 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
679 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
680 }
681 
682 /*
683  * Check for the cursor referring to the last block at the given level.
684  */
685 int					/* 1=is last block, 0=not last block */
686 xfs_btree_islastblock(
687 	xfs_btree_cur_t		*cur,	/* btree cursor */
688 	int			level)	/* level to check */
689 {
690 	struct xfs_btree_block	*block;	/* generic btree block pointer */
691 	xfs_buf_t		*bp;	/* buffer containing block */
692 
693 	block = xfs_btree_get_block(cur, level, &bp);
694 	xfs_btree_check_block(cur, block, level, bp);
695 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
696 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
697 	else
698 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
699 }
700 
701 /*
702  * Change the cursor to point to the first record at the given level.
703  * Other levels are unaffected.
704  */
705 STATIC int				/* success=1, failure=0 */
706 xfs_btree_firstrec(
707 	xfs_btree_cur_t		*cur,	/* btree cursor */
708 	int			level)	/* level to change */
709 {
710 	struct xfs_btree_block	*block;	/* generic btree block pointer */
711 	xfs_buf_t		*bp;	/* buffer containing block */
712 
713 	/*
714 	 * Get the block pointer for this level.
715 	 */
716 	block = xfs_btree_get_block(cur, level, &bp);
717 	xfs_btree_check_block(cur, block, level, bp);
718 	/*
719 	 * It's empty, there is no such record.
720 	 */
721 	if (!block->bb_numrecs)
722 		return 0;
723 	/*
724 	 * Set the ptr value to 1, that's the first record/key.
725 	 */
726 	cur->bc_ptrs[level] = 1;
727 	return 1;
728 }
729 
730 /*
731  * Change the cursor to point to the last record in the current block
732  * at the given level.  Other levels are unaffected.
733  */
734 STATIC int				/* success=1, failure=0 */
735 xfs_btree_lastrec(
736 	xfs_btree_cur_t		*cur,	/* btree cursor */
737 	int			level)	/* level to change */
738 {
739 	struct xfs_btree_block	*block;	/* generic btree block pointer */
740 	xfs_buf_t		*bp;	/* buffer containing block */
741 
742 	/*
743 	 * Get the block pointer for this level.
744 	 */
745 	block = xfs_btree_get_block(cur, level, &bp);
746 	xfs_btree_check_block(cur, block, level, bp);
747 	/*
748 	 * It's empty, there is no such record.
749 	 */
750 	if (!block->bb_numrecs)
751 		return 0;
752 	/*
753 	 * Set the ptr value to numrecs, that's the last record/key.
754 	 */
755 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
756 	return 1;
757 }
758 
759 /*
760  * Compute first and last byte offsets for the fields given.
761  * Interprets the offsets table, which contains struct field offsets.
762  */
763 void
764 xfs_btree_offsets(
765 	__int64_t	fields,		/* bitmask of fields */
766 	const short	*offsets,	/* table of field offsets */
767 	int		nbits,		/* number of bits to inspect */
768 	int		*first,		/* output: first byte offset */
769 	int		*last)		/* output: last byte offset */
770 {
771 	int		i;		/* current bit number */
772 	__int64_t	imask;		/* mask for current bit number */
773 
774 	ASSERT(fields != 0);
775 	/*
776 	 * Find the lowest bit, so the first byte offset.
777 	 */
778 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
779 		if (imask & fields) {
780 			*first = offsets[i];
781 			break;
782 		}
783 	}
784 	/*
785 	 * Find the highest bit, so the last byte offset.
786 	 */
787 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
788 		if (imask & fields) {
789 			*last = offsets[i + 1] - 1;
790 			break;
791 		}
792 	}
793 }
794 
795 /*
796  * Get a buffer for the block, return it read in.
797  * Long-form addressing.
798  */
799 int
800 xfs_btree_read_bufl(
801 	struct xfs_mount	*mp,		/* file system mount point */
802 	struct xfs_trans	*tp,		/* transaction pointer */
803 	xfs_fsblock_t		fsbno,		/* file system block number */
804 	uint			lock,		/* lock flags for read_buf */
805 	struct xfs_buf		**bpp,		/* buffer for fsbno */
806 	int			refval,		/* ref count value for buffer */
807 	const struct xfs_buf_ops *ops)
808 {
809 	struct xfs_buf		*bp;		/* return value */
810 	xfs_daddr_t		d;		/* real disk block address */
811 	int			error;
812 
813 	ASSERT(fsbno != NULLFSBLOCK);
814 	d = XFS_FSB_TO_DADDR(mp, fsbno);
815 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
816 				   mp->m_bsize, lock, &bp, ops);
817 	if (error)
818 		return error;
819 	if (bp)
820 		xfs_buf_set_ref(bp, refval);
821 	*bpp = bp;
822 	return 0;
823 }
824 
825 /*
826  * Read-ahead the block, don't wait for it, don't return a buffer.
827  * Long-form addressing.
828  */
829 /* ARGSUSED */
830 void
831 xfs_btree_reada_bufl(
832 	struct xfs_mount	*mp,		/* file system mount point */
833 	xfs_fsblock_t		fsbno,		/* file system block number */
834 	xfs_extlen_t		count,		/* count of filesystem blocks */
835 	const struct xfs_buf_ops *ops)
836 {
837 	xfs_daddr_t		d;
838 
839 	ASSERT(fsbno != NULLFSBLOCK);
840 	d = XFS_FSB_TO_DADDR(mp, fsbno);
841 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
842 }
843 
844 /*
845  * Read-ahead the block, don't wait for it, don't return a buffer.
846  * Short-form addressing.
847  */
848 /* ARGSUSED */
849 void
850 xfs_btree_reada_bufs(
851 	struct xfs_mount	*mp,		/* file system mount point */
852 	xfs_agnumber_t		agno,		/* allocation group number */
853 	xfs_agblock_t		agbno,		/* allocation group block number */
854 	xfs_extlen_t		count,		/* count of filesystem blocks */
855 	const struct xfs_buf_ops *ops)
856 {
857 	xfs_daddr_t		d;
858 
859 	ASSERT(agno != NULLAGNUMBER);
860 	ASSERT(agbno != NULLAGBLOCK);
861 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
862 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
863 }
864 
865 STATIC int
866 xfs_btree_readahead_lblock(
867 	struct xfs_btree_cur	*cur,
868 	int			lr,
869 	struct xfs_btree_block	*block)
870 {
871 	int			rval = 0;
872 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
873 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
874 
875 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
876 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
877 				     cur->bc_ops->buf_ops);
878 		rval++;
879 	}
880 
881 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
882 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
883 				     cur->bc_ops->buf_ops);
884 		rval++;
885 	}
886 
887 	return rval;
888 }
889 
890 STATIC int
891 xfs_btree_readahead_sblock(
892 	struct xfs_btree_cur	*cur,
893 	int			lr,
894 	struct xfs_btree_block *block)
895 {
896 	int			rval = 0;
897 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
898 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
899 
900 
901 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
902 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
903 				     left, 1, cur->bc_ops->buf_ops);
904 		rval++;
905 	}
906 
907 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
908 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
909 				     right, 1, cur->bc_ops->buf_ops);
910 		rval++;
911 	}
912 
913 	return rval;
914 }
915 
916 /*
917  * Read-ahead btree blocks, at the given level.
918  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
919  */
920 STATIC int
921 xfs_btree_readahead(
922 	struct xfs_btree_cur	*cur,		/* btree cursor */
923 	int			lev,		/* level in btree */
924 	int			lr)		/* left/right bits */
925 {
926 	struct xfs_btree_block	*block;
927 
928 	/*
929 	 * No readahead needed if we are at the root level and the
930 	 * btree root is stored in the inode.
931 	 */
932 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
933 	    (lev == cur->bc_nlevels - 1))
934 		return 0;
935 
936 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
937 		return 0;
938 
939 	cur->bc_ra[lev] |= lr;
940 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
941 
942 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
943 		return xfs_btree_readahead_lblock(cur, lr, block);
944 	return xfs_btree_readahead_sblock(cur, lr, block);
945 }
946 
947 STATIC xfs_daddr_t
948 xfs_btree_ptr_to_daddr(
949 	struct xfs_btree_cur	*cur,
950 	union xfs_btree_ptr	*ptr)
951 {
952 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
953 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
954 
955 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
956 	} else {
957 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
958 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
959 
960 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
961 					be32_to_cpu(ptr->s));
962 	}
963 }
964 
965 /*
966  * Readahead @count btree blocks at the given @ptr location.
967  *
968  * We don't need to care about long or short form btrees here as we have a
969  * method of converting the ptr directly to a daddr available to us.
970  */
971 STATIC void
972 xfs_btree_readahead_ptr(
973 	struct xfs_btree_cur	*cur,
974 	union xfs_btree_ptr	*ptr,
975 	xfs_extlen_t		count)
976 {
977 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
978 			  xfs_btree_ptr_to_daddr(cur, ptr),
979 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981 
982 /*
983  * Set the buffer for level "lev" in the cursor to bp, releasing
984  * any previous buffer.
985  */
986 STATIC void
987 xfs_btree_setbuf(
988 	xfs_btree_cur_t		*cur,	/* btree cursor */
989 	int			lev,	/* level in btree */
990 	xfs_buf_t		*bp)	/* new buffer to set */
991 {
992 	struct xfs_btree_block	*b;	/* btree block */
993 
994 	if (cur->bc_bufs[lev])
995 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
996 	cur->bc_bufs[lev] = bp;
997 	cur->bc_ra[lev] = 0;
998 
999 	b = XFS_BUF_TO_BLOCK(bp);
1000 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005 	} else {
1006 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010 	}
1011 }
1012 
1013 STATIC int
1014 xfs_btree_ptr_is_null(
1015 	struct xfs_btree_cur	*cur,
1016 	union xfs_btree_ptr	*ptr)
1017 {
1018 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 	else
1021 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023 
1024 STATIC void
1025 xfs_btree_set_ptr_null(
1026 	struct xfs_btree_cur	*cur,
1027 	union xfs_btree_ptr	*ptr)
1028 {
1029 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 	else
1032 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034 
1035 /*
1036  * Get/set/init sibling pointers
1037  */
1038 STATIC void
1039 xfs_btree_get_sibling(
1040 	struct xfs_btree_cur	*cur,
1041 	struct xfs_btree_block	*block,
1042 	union xfs_btree_ptr	*ptr,
1043 	int			lr)
1044 {
1045 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046 
1047 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 		if (lr == XFS_BB_RIGHTSIB)
1049 			ptr->l = block->bb_u.l.bb_rightsib;
1050 		else
1051 			ptr->l = block->bb_u.l.bb_leftsib;
1052 	} else {
1053 		if (lr == XFS_BB_RIGHTSIB)
1054 			ptr->s = block->bb_u.s.bb_rightsib;
1055 		else
1056 			ptr->s = block->bb_u.s.bb_leftsib;
1057 	}
1058 }
1059 
1060 STATIC void
1061 xfs_btree_set_sibling(
1062 	struct xfs_btree_cur	*cur,
1063 	struct xfs_btree_block	*block,
1064 	union xfs_btree_ptr	*ptr,
1065 	int			lr)
1066 {
1067 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068 
1069 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 		if (lr == XFS_BB_RIGHTSIB)
1071 			block->bb_u.l.bb_rightsib = ptr->l;
1072 		else
1073 			block->bb_u.l.bb_leftsib = ptr->l;
1074 	} else {
1075 		if (lr == XFS_BB_RIGHTSIB)
1076 			block->bb_u.s.bb_rightsib = ptr->s;
1077 		else
1078 			block->bb_u.s.bb_leftsib = ptr->s;
1079 	}
1080 }
1081 
1082 void
1083 xfs_btree_init_block_int(
1084 	struct xfs_mount	*mp,
1085 	struct xfs_btree_block	*buf,
1086 	xfs_daddr_t		blkno,
1087 	__u32			magic,
1088 	__u16			level,
1089 	__u16			numrecs,
1090 	__u64			owner,
1091 	unsigned int		flags)
1092 {
1093 	buf->bb_magic = cpu_to_be32(magic);
1094 	buf->bb_level = cpu_to_be16(level);
1095 	buf->bb_numrecs = cpu_to_be16(numrecs);
1096 
1097 	if (flags & XFS_BTREE_LONG_PTRS) {
1098 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1099 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1100 		if (flags & XFS_BTREE_CRC_BLOCKS) {
1101 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1102 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1103 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1104 			buf->bb_u.l.bb_pad = 0;
1105 			buf->bb_u.l.bb_lsn = 0;
1106 		}
1107 	} else {
1108 		/* owner is a 32 bit value on short blocks */
1109 		__u32 __owner = (__u32)owner;
1110 
1111 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1112 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1113 		if (flags & XFS_BTREE_CRC_BLOCKS) {
1114 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1115 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1116 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1117 			buf->bb_u.s.bb_lsn = 0;
1118 		}
1119 	}
1120 }
1121 
1122 void
1123 xfs_btree_init_block(
1124 	struct xfs_mount *mp,
1125 	struct xfs_buf	*bp,
1126 	__u32		magic,
1127 	__u16		level,
1128 	__u16		numrecs,
1129 	__u64		owner,
1130 	unsigned int	flags)
1131 {
1132 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1133 				 magic, level, numrecs, owner, flags);
1134 }
1135 
1136 STATIC void
1137 xfs_btree_init_block_cur(
1138 	struct xfs_btree_cur	*cur,
1139 	struct xfs_buf		*bp,
1140 	int			level,
1141 	int			numrecs)
1142 {
1143 	__u64 owner;
1144 
1145 	/*
1146 	 * we can pull the owner from the cursor right now as the different
1147 	 * owners align directly with the pointer size of the btree. This may
1148 	 * change in future, but is safe for current users of the generic btree
1149 	 * code.
1150 	 */
1151 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1152 		owner = cur->bc_private.b.ip->i_ino;
1153 	else
1154 		owner = cur->bc_private.a.agno;
1155 
1156 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1157 				 xfs_btree_magic(cur), level, numrecs,
1158 				 owner, cur->bc_flags);
1159 }
1160 
1161 /*
1162  * Return true if ptr is the last record in the btree and
1163  * we need to track updates to this record.  The decision
1164  * will be further refined in the update_lastrec method.
1165  */
1166 STATIC int
1167 xfs_btree_is_lastrec(
1168 	struct xfs_btree_cur	*cur,
1169 	struct xfs_btree_block	*block,
1170 	int			level)
1171 {
1172 	union xfs_btree_ptr	ptr;
1173 
1174 	if (level > 0)
1175 		return 0;
1176 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1177 		return 0;
1178 
1179 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1180 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1181 		return 0;
1182 	return 1;
1183 }
1184 
1185 STATIC void
1186 xfs_btree_buf_to_ptr(
1187 	struct xfs_btree_cur	*cur,
1188 	struct xfs_buf		*bp,
1189 	union xfs_btree_ptr	*ptr)
1190 {
1191 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1192 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1193 					XFS_BUF_ADDR(bp)));
1194 	else {
1195 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1196 					XFS_BUF_ADDR(bp)));
1197 	}
1198 }
1199 
1200 STATIC void
1201 xfs_btree_set_refs(
1202 	struct xfs_btree_cur	*cur,
1203 	struct xfs_buf		*bp)
1204 {
1205 	switch (cur->bc_btnum) {
1206 	case XFS_BTNUM_BNO:
1207 	case XFS_BTNUM_CNT:
1208 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1209 		break;
1210 	case XFS_BTNUM_INO:
1211 	case XFS_BTNUM_FINO:
1212 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1213 		break;
1214 	case XFS_BTNUM_BMAP:
1215 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1216 		break;
1217 	case XFS_BTNUM_RMAP:
1218 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1219 		break;
1220 	case XFS_BTNUM_REFC:
1221 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1222 		break;
1223 	default:
1224 		ASSERT(0);
1225 	}
1226 }
1227 
1228 STATIC int
1229 xfs_btree_get_buf_block(
1230 	struct xfs_btree_cur	*cur,
1231 	union xfs_btree_ptr	*ptr,
1232 	int			flags,
1233 	struct xfs_btree_block	**block,
1234 	struct xfs_buf		**bpp)
1235 {
1236 	struct xfs_mount	*mp = cur->bc_mp;
1237 	xfs_daddr_t		d;
1238 
1239 	/* need to sort out how callers deal with failures first */
1240 	ASSERT(!(flags & XBF_TRYLOCK));
1241 
1242 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1243 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1244 				 mp->m_bsize, flags);
1245 
1246 	if (!*bpp)
1247 		return -ENOMEM;
1248 
1249 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 	*block = XFS_BUF_TO_BLOCK(*bpp);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Read in the buffer at the given ptr and return the buffer and
1256  * the block pointer within the buffer.
1257  */
1258 STATIC int
1259 xfs_btree_read_buf_block(
1260 	struct xfs_btree_cur	*cur,
1261 	union xfs_btree_ptr	*ptr,
1262 	int			flags,
1263 	struct xfs_btree_block	**block,
1264 	struct xfs_buf		**bpp)
1265 {
1266 	struct xfs_mount	*mp = cur->bc_mp;
1267 	xfs_daddr_t		d;
1268 	int			error;
1269 
1270 	/* need to sort out how callers deal with failures first */
1271 	ASSERT(!(flags & XBF_TRYLOCK));
1272 
1273 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1274 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1275 				   mp->m_bsize, flags, bpp,
1276 				   cur->bc_ops->buf_ops);
1277 	if (error)
1278 		return error;
1279 
1280 	xfs_btree_set_refs(cur, *bpp);
1281 	*block = XFS_BUF_TO_BLOCK(*bpp);
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Copy keys from one btree block to another.
1287  */
1288 STATIC void
1289 xfs_btree_copy_keys(
1290 	struct xfs_btree_cur	*cur,
1291 	union xfs_btree_key	*dst_key,
1292 	union xfs_btree_key	*src_key,
1293 	int			numkeys)
1294 {
1295 	ASSERT(numkeys >= 0);
1296 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1297 }
1298 
1299 /*
1300  * Copy records from one btree block to another.
1301  */
1302 STATIC void
1303 xfs_btree_copy_recs(
1304 	struct xfs_btree_cur	*cur,
1305 	union xfs_btree_rec	*dst_rec,
1306 	union xfs_btree_rec	*src_rec,
1307 	int			numrecs)
1308 {
1309 	ASSERT(numrecs >= 0);
1310 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1311 }
1312 
1313 /*
1314  * Copy block pointers from one btree block to another.
1315  */
1316 STATIC void
1317 xfs_btree_copy_ptrs(
1318 	struct xfs_btree_cur	*cur,
1319 	union xfs_btree_ptr	*dst_ptr,
1320 	union xfs_btree_ptr	*src_ptr,
1321 	int			numptrs)
1322 {
1323 	ASSERT(numptrs >= 0);
1324 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1325 }
1326 
1327 /*
1328  * Shift keys one index left/right inside a single btree block.
1329  */
1330 STATIC void
1331 xfs_btree_shift_keys(
1332 	struct xfs_btree_cur	*cur,
1333 	union xfs_btree_key	*key,
1334 	int			dir,
1335 	int			numkeys)
1336 {
1337 	char			*dst_key;
1338 
1339 	ASSERT(numkeys >= 0);
1340 	ASSERT(dir == 1 || dir == -1);
1341 
1342 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1343 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1344 }
1345 
1346 /*
1347  * Shift records one index left/right inside a single btree block.
1348  */
1349 STATIC void
1350 xfs_btree_shift_recs(
1351 	struct xfs_btree_cur	*cur,
1352 	union xfs_btree_rec	*rec,
1353 	int			dir,
1354 	int			numrecs)
1355 {
1356 	char			*dst_rec;
1357 
1358 	ASSERT(numrecs >= 0);
1359 	ASSERT(dir == 1 || dir == -1);
1360 
1361 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1362 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1363 }
1364 
1365 /*
1366  * Shift block pointers one index left/right inside a single btree block.
1367  */
1368 STATIC void
1369 xfs_btree_shift_ptrs(
1370 	struct xfs_btree_cur	*cur,
1371 	union xfs_btree_ptr	*ptr,
1372 	int			dir,
1373 	int			numptrs)
1374 {
1375 	char			*dst_ptr;
1376 
1377 	ASSERT(numptrs >= 0);
1378 	ASSERT(dir == 1 || dir == -1);
1379 
1380 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1381 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1382 }
1383 
1384 /*
1385  * Log key values from the btree block.
1386  */
1387 STATIC void
1388 xfs_btree_log_keys(
1389 	struct xfs_btree_cur	*cur,
1390 	struct xfs_buf		*bp,
1391 	int			first,
1392 	int			last)
1393 {
1394 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1395 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1396 
1397 	if (bp) {
1398 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 		xfs_trans_log_buf(cur->bc_tp, bp,
1400 				  xfs_btree_key_offset(cur, first),
1401 				  xfs_btree_key_offset(cur, last + 1) - 1);
1402 	} else {
1403 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1404 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1405 	}
1406 
1407 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1408 }
1409 
1410 /*
1411  * Log record values from the btree block.
1412  */
1413 void
1414 xfs_btree_log_recs(
1415 	struct xfs_btree_cur	*cur,
1416 	struct xfs_buf		*bp,
1417 	int			first,
1418 	int			last)
1419 {
1420 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1421 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1422 
1423 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1424 	xfs_trans_log_buf(cur->bc_tp, bp,
1425 			  xfs_btree_rec_offset(cur, first),
1426 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1427 
1428 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1429 }
1430 
1431 /*
1432  * Log block pointer fields from a btree block (nonleaf).
1433  */
1434 STATIC void
1435 xfs_btree_log_ptrs(
1436 	struct xfs_btree_cur	*cur,	/* btree cursor */
1437 	struct xfs_buf		*bp,	/* buffer containing btree block */
1438 	int			first,	/* index of first pointer to log */
1439 	int			last)	/* index of last pointer to log */
1440 {
1441 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443 
1444 	if (bp) {
1445 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1446 		int			level = xfs_btree_get_level(block);
1447 
1448 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1449 		xfs_trans_log_buf(cur->bc_tp, bp,
1450 				xfs_btree_ptr_offset(cur, first, level),
1451 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1452 	} else {
1453 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1454 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1455 	}
1456 
1457 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458 }
1459 
1460 /*
1461  * Log fields from a btree block header.
1462  */
1463 void
1464 xfs_btree_log_block(
1465 	struct xfs_btree_cur	*cur,	/* btree cursor */
1466 	struct xfs_buf		*bp,	/* buffer containing btree block */
1467 	int			fields)	/* mask of fields: XFS_BB_... */
1468 {
1469 	int			first;	/* first byte offset logged */
1470 	int			last;	/* last byte offset logged */
1471 	static const short	soffsets[] = {	/* table of offsets (short) */
1472 		offsetof(struct xfs_btree_block, bb_magic),
1473 		offsetof(struct xfs_btree_block, bb_level),
1474 		offsetof(struct xfs_btree_block, bb_numrecs),
1475 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1476 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1477 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1478 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1479 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1480 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1481 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1482 		XFS_BTREE_SBLOCK_CRC_LEN
1483 	};
1484 	static const short	loffsets[] = {	/* table of offsets (long) */
1485 		offsetof(struct xfs_btree_block, bb_magic),
1486 		offsetof(struct xfs_btree_block, bb_level),
1487 		offsetof(struct xfs_btree_block, bb_numrecs),
1488 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1489 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1490 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1491 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1492 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1493 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1494 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1495 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1496 		XFS_BTREE_LBLOCK_CRC_LEN
1497 	};
1498 
1499 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1500 	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1501 
1502 	if (bp) {
1503 		int nbits;
1504 
1505 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1506 			/*
1507 			 * We don't log the CRC when updating a btree
1508 			 * block but instead recreate it during log
1509 			 * recovery.  As the log buffers have checksums
1510 			 * of their own this is safe and avoids logging a crc
1511 			 * update in a lot of places.
1512 			 */
1513 			if (fields == XFS_BB_ALL_BITS)
1514 				fields = XFS_BB_ALL_BITS_CRC;
1515 			nbits = XFS_BB_NUM_BITS_CRC;
1516 		} else {
1517 			nbits = XFS_BB_NUM_BITS;
1518 		}
1519 		xfs_btree_offsets(fields,
1520 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1521 					loffsets : soffsets,
1522 				  nbits, &first, &last);
1523 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1524 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1525 	} else {
1526 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1527 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1528 	}
1529 
1530 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1531 }
1532 
1533 /*
1534  * Increment cursor by one record at the level.
1535  * For nonzero levels the leaf-ward information is untouched.
1536  */
1537 int						/* error */
1538 xfs_btree_increment(
1539 	struct xfs_btree_cur	*cur,
1540 	int			level,
1541 	int			*stat)		/* success/failure */
1542 {
1543 	struct xfs_btree_block	*block;
1544 	union xfs_btree_ptr	ptr;
1545 	struct xfs_buf		*bp;
1546 	int			error;		/* error return value */
1547 	int			lev;
1548 
1549 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1550 	XFS_BTREE_TRACE_ARGI(cur, level);
1551 
1552 	ASSERT(level < cur->bc_nlevels);
1553 
1554 	/* Read-ahead to the right at this level. */
1555 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1556 
1557 	/* Get a pointer to the btree block. */
1558 	block = xfs_btree_get_block(cur, level, &bp);
1559 
1560 #ifdef DEBUG
1561 	error = xfs_btree_check_block(cur, block, level, bp);
1562 	if (error)
1563 		goto error0;
1564 #endif
1565 
1566 	/* We're done if we remain in the block after the increment. */
1567 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1568 		goto out1;
1569 
1570 	/* Fail if we just went off the right edge of the tree. */
1571 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1572 	if (xfs_btree_ptr_is_null(cur, &ptr))
1573 		goto out0;
1574 
1575 	XFS_BTREE_STATS_INC(cur, increment);
1576 
1577 	/*
1578 	 * March up the tree incrementing pointers.
1579 	 * Stop when we don't go off the right edge of a block.
1580 	 */
1581 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1582 		block = xfs_btree_get_block(cur, lev, &bp);
1583 
1584 #ifdef DEBUG
1585 		error = xfs_btree_check_block(cur, block, lev, bp);
1586 		if (error)
1587 			goto error0;
1588 #endif
1589 
1590 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1591 			break;
1592 
1593 		/* Read-ahead the right block for the next loop. */
1594 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1595 	}
1596 
1597 	/*
1598 	 * If we went off the root then we are either seriously
1599 	 * confused or have the tree root in an inode.
1600 	 */
1601 	if (lev == cur->bc_nlevels) {
1602 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1603 			goto out0;
1604 		ASSERT(0);
1605 		error = -EFSCORRUPTED;
1606 		goto error0;
1607 	}
1608 	ASSERT(lev < cur->bc_nlevels);
1609 
1610 	/*
1611 	 * Now walk back down the tree, fixing up the cursor's buffer
1612 	 * pointers and key numbers.
1613 	 */
1614 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1615 		union xfs_btree_ptr	*ptrp;
1616 
1617 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1618 		--lev;
1619 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1620 		if (error)
1621 			goto error0;
1622 
1623 		xfs_btree_setbuf(cur, lev, bp);
1624 		cur->bc_ptrs[lev] = 1;
1625 	}
1626 out1:
1627 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1628 	*stat = 1;
1629 	return 0;
1630 
1631 out0:
1632 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1633 	*stat = 0;
1634 	return 0;
1635 
1636 error0:
1637 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1638 	return error;
1639 }
1640 
1641 /*
1642  * Decrement cursor by one record at the level.
1643  * For nonzero levels the leaf-ward information is untouched.
1644  */
1645 int						/* error */
1646 xfs_btree_decrement(
1647 	struct xfs_btree_cur	*cur,
1648 	int			level,
1649 	int			*stat)		/* success/failure */
1650 {
1651 	struct xfs_btree_block	*block;
1652 	xfs_buf_t		*bp;
1653 	int			error;		/* error return value */
1654 	int			lev;
1655 	union xfs_btree_ptr	ptr;
1656 
1657 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1658 	XFS_BTREE_TRACE_ARGI(cur, level);
1659 
1660 	ASSERT(level < cur->bc_nlevels);
1661 
1662 	/* Read-ahead to the left at this level. */
1663 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1664 
1665 	/* We're done if we remain in the block after the decrement. */
1666 	if (--cur->bc_ptrs[level] > 0)
1667 		goto out1;
1668 
1669 	/* Get a pointer to the btree block. */
1670 	block = xfs_btree_get_block(cur, level, &bp);
1671 
1672 #ifdef DEBUG
1673 	error = xfs_btree_check_block(cur, block, level, bp);
1674 	if (error)
1675 		goto error0;
1676 #endif
1677 
1678 	/* Fail if we just went off the left edge of the tree. */
1679 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1680 	if (xfs_btree_ptr_is_null(cur, &ptr))
1681 		goto out0;
1682 
1683 	XFS_BTREE_STATS_INC(cur, decrement);
1684 
1685 	/*
1686 	 * March up the tree decrementing pointers.
1687 	 * Stop when we don't go off the left edge of a block.
1688 	 */
1689 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1690 		if (--cur->bc_ptrs[lev] > 0)
1691 			break;
1692 		/* Read-ahead the left block for the next loop. */
1693 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1694 	}
1695 
1696 	/*
1697 	 * If we went off the root then we are seriously confused.
1698 	 * or the root of the tree is in an inode.
1699 	 */
1700 	if (lev == cur->bc_nlevels) {
1701 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1702 			goto out0;
1703 		ASSERT(0);
1704 		error = -EFSCORRUPTED;
1705 		goto error0;
1706 	}
1707 	ASSERT(lev < cur->bc_nlevels);
1708 
1709 	/*
1710 	 * Now walk back down the tree, fixing up the cursor's buffer
1711 	 * pointers and key numbers.
1712 	 */
1713 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1714 		union xfs_btree_ptr	*ptrp;
1715 
1716 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1717 		--lev;
1718 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1719 		if (error)
1720 			goto error0;
1721 		xfs_btree_setbuf(cur, lev, bp);
1722 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1723 	}
1724 out1:
1725 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1726 	*stat = 1;
1727 	return 0;
1728 
1729 out0:
1730 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1731 	*stat = 0;
1732 	return 0;
1733 
1734 error0:
1735 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1736 	return error;
1737 }
1738 
1739 STATIC int
1740 xfs_btree_lookup_get_block(
1741 	struct xfs_btree_cur	*cur,	/* btree cursor */
1742 	int			level,	/* level in the btree */
1743 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1744 	struct xfs_btree_block	**blkp) /* return btree block */
1745 {
1746 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1747 	int			error = 0;
1748 
1749 	/* special case the root block if in an inode */
1750 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1751 	    (level == cur->bc_nlevels - 1)) {
1752 		*blkp = xfs_btree_get_iroot(cur);
1753 		return 0;
1754 	}
1755 
1756 	/*
1757 	 * If the old buffer at this level for the disk address we are
1758 	 * looking for re-use it.
1759 	 *
1760 	 * Otherwise throw it away and get a new one.
1761 	 */
1762 	bp = cur->bc_bufs[level];
1763 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1764 		*blkp = XFS_BUF_TO_BLOCK(bp);
1765 		return 0;
1766 	}
1767 
1768 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1769 	if (error)
1770 		return error;
1771 
1772 	/* Check the inode owner since the verifiers don't. */
1773 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1774 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1775 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1776 			cur->bc_private.b.ip->i_ino)
1777 		goto out_bad;
1778 
1779 	/* Did we get the level we were looking for? */
1780 	if (be16_to_cpu((*blkp)->bb_level) != level)
1781 		goto out_bad;
1782 
1783 	/* Check that internal nodes have at least one record. */
1784 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1785 		goto out_bad;
1786 
1787 	xfs_btree_setbuf(cur, level, bp);
1788 	return 0;
1789 
1790 out_bad:
1791 	*blkp = NULL;
1792 	xfs_trans_brelse(cur->bc_tp, bp);
1793 	return -EFSCORRUPTED;
1794 }
1795 
1796 /*
1797  * Get current search key.  For level 0 we don't actually have a key
1798  * structure so we make one up from the record.  For all other levels
1799  * we just return the right key.
1800  */
1801 STATIC union xfs_btree_key *
1802 xfs_lookup_get_search_key(
1803 	struct xfs_btree_cur	*cur,
1804 	int			level,
1805 	int			keyno,
1806 	struct xfs_btree_block	*block,
1807 	union xfs_btree_key	*kp)
1808 {
1809 	if (level == 0) {
1810 		cur->bc_ops->init_key_from_rec(kp,
1811 				xfs_btree_rec_addr(cur, keyno, block));
1812 		return kp;
1813 	}
1814 
1815 	return xfs_btree_key_addr(cur, keyno, block);
1816 }
1817 
1818 /*
1819  * Lookup the record.  The cursor is made to point to it, based on dir.
1820  * stat is set to 0 if can't find any such record, 1 for success.
1821  */
1822 int					/* error */
1823 xfs_btree_lookup(
1824 	struct xfs_btree_cur	*cur,	/* btree cursor */
1825 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1826 	int			*stat)	/* success/failure */
1827 {
1828 	struct xfs_btree_block	*block;	/* current btree block */
1829 	__int64_t		diff;	/* difference for the current key */
1830 	int			error;	/* error return value */
1831 	int			keyno;	/* current key number */
1832 	int			level;	/* level in the btree */
1833 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1834 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1835 
1836 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1837 	XFS_BTREE_TRACE_ARGI(cur, dir);
1838 
1839 	XFS_BTREE_STATS_INC(cur, lookup);
1840 
1841 	/* No such thing as a zero-level tree. */
1842 	if (cur->bc_nlevels == 0)
1843 		return -EFSCORRUPTED;
1844 
1845 	block = NULL;
1846 	keyno = 0;
1847 
1848 	/* initialise start pointer from cursor */
1849 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1850 	pp = &ptr;
1851 
1852 	/*
1853 	 * Iterate over each level in the btree, starting at the root.
1854 	 * For each level above the leaves, find the key we need, based
1855 	 * on the lookup record, then follow the corresponding block
1856 	 * pointer down to the next level.
1857 	 */
1858 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1859 		/* Get the block we need to do the lookup on. */
1860 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1861 		if (error)
1862 			goto error0;
1863 
1864 		if (diff == 0) {
1865 			/*
1866 			 * If we already had a key match at a higher level, we
1867 			 * know we need to use the first entry in this block.
1868 			 */
1869 			keyno = 1;
1870 		} else {
1871 			/* Otherwise search this block. Do a binary search. */
1872 
1873 			int	high;	/* high entry number */
1874 			int	low;	/* low entry number */
1875 
1876 			/* Set low and high entry numbers, 1-based. */
1877 			low = 1;
1878 			high = xfs_btree_get_numrecs(block);
1879 			if (!high) {
1880 				/* Block is empty, must be an empty leaf. */
1881 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1882 
1883 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1884 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1885 				*stat = 0;
1886 				return 0;
1887 			}
1888 
1889 			/* Binary search the block. */
1890 			while (low <= high) {
1891 				union xfs_btree_key	key;
1892 				union xfs_btree_key	*kp;
1893 
1894 				XFS_BTREE_STATS_INC(cur, compare);
1895 
1896 				/* keyno is average of low and high. */
1897 				keyno = (low + high) >> 1;
1898 
1899 				/* Get current search key */
1900 				kp = xfs_lookup_get_search_key(cur, level,
1901 						keyno, block, &key);
1902 
1903 				/*
1904 				 * Compute difference to get next direction:
1905 				 *  - less than, move right
1906 				 *  - greater than, move left
1907 				 *  - equal, we're done
1908 				 */
1909 				diff = cur->bc_ops->key_diff(cur, kp);
1910 				if (diff < 0)
1911 					low = keyno + 1;
1912 				else if (diff > 0)
1913 					high = keyno - 1;
1914 				else
1915 					break;
1916 			}
1917 		}
1918 
1919 		/*
1920 		 * If there are more levels, set up for the next level
1921 		 * by getting the block number and filling in the cursor.
1922 		 */
1923 		if (level > 0) {
1924 			/*
1925 			 * If we moved left, need the previous key number,
1926 			 * unless there isn't one.
1927 			 */
1928 			if (diff > 0 && --keyno < 1)
1929 				keyno = 1;
1930 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1931 
1932 #ifdef DEBUG
1933 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1934 			if (error)
1935 				goto error0;
1936 #endif
1937 			cur->bc_ptrs[level] = keyno;
1938 		}
1939 	}
1940 
1941 	/* Done with the search. See if we need to adjust the results. */
1942 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1943 		keyno++;
1944 		/*
1945 		 * If ge search and we went off the end of the block, but it's
1946 		 * not the last block, we're in the wrong block.
1947 		 */
1948 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1949 		if (dir == XFS_LOOKUP_GE &&
1950 		    keyno > xfs_btree_get_numrecs(block) &&
1951 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1952 			int	i;
1953 
1954 			cur->bc_ptrs[0] = keyno;
1955 			error = xfs_btree_increment(cur, 0, &i);
1956 			if (error)
1957 				goto error0;
1958 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1959 			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1960 			*stat = 1;
1961 			return 0;
1962 		}
1963 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1964 		keyno--;
1965 	cur->bc_ptrs[0] = keyno;
1966 
1967 	/* Return if we succeeded or not. */
1968 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1969 		*stat = 0;
1970 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1971 		*stat = 1;
1972 	else
1973 		*stat = 0;
1974 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1975 	return 0;
1976 
1977 error0:
1978 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1979 	return error;
1980 }
1981 
1982 /* Find the high key storage area from a regular key. */
1983 STATIC union xfs_btree_key *
1984 xfs_btree_high_key_from_key(
1985 	struct xfs_btree_cur	*cur,
1986 	union xfs_btree_key	*key)
1987 {
1988 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1989 	return (union xfs_btree_key *)((char *)key +
1990 			(cur->bc_ops->key_len / 2));
1991 }
1992 
1993 /* Determine the low (and high if overlapped) keys of a leaf block */
1994 STATIC void
1995 xfs_btree_get_leaf_keys(
1996 	struct xfs_btree_cur	*cur,
1997 	struct xfs_btree_block	*block,
1998 	union xfs_btree_key	*key)
1999 {
2000 	union xfs_btree_key	max_hkey;
2001 	union xfs_btree_key	hkey;
2002 	union xfs_btree_rec	*rec;
2003 	union xfs_btree_key	*high;
2004 	int			n;
2005 
2006 	rec = xfs_btree_rec_addr(cur, 1, block);
2007 	cur->bc_ops->init_key_from_rec(key, rec);
2008 
2009 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2010 
2011 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2012 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2013 			rec = xfs_btree_rec_addr(cur, n, block);
2014 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2015 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2016 					> 0)
2017 				max_hkey = hkey;
2018 		}
2019 
2020 		high = xfs_btree_high_key_from_key(cur, key);
2021 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2022 	}
2023 }
2024 
2025 /* Determine the low (and high if overlapped) keys of a node block */
2026 STATIC void
2027 xfs_btree_get_node_keys(
2028 	struct xfs_btree_cur	*cur,
2029 	struct xfs_btree_block	*block,
2030 	union xfs_btree_key	*key)
2031 {
2032 	union xfs_btree_key	*hkey;
2033 	union xfs_btree_key	*max_hkey;
2034 	union xfs_btree_key	*high;
2035 	int			n;
2036 
2037 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2038 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2039 				cur->bc_ops->key_len / 2);
2040 
2041 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2042 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2043 			hkey = xfs_btree_high_key_addr(cur, n, block);
2044 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2045 				max_hkey = hkey;
2046 		}
2047 
2048 		high = xfs_btree_high_key_from_key(cur, key);
2049 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2050 	} else {
2051 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2052 				cur->bc_ops->key_len);
2053 	}
2054 }
2055 
2056 /* Derive the keys for any btree block. */
2057 STATIC void
2058 xfs_btree_get_keys(
2059 	struct xfs_btree_cur	*cur,
2060 	struct xfs_btree_block	*block,
2061 	union xfs_btree_key	*key)
2062 {
2063 	if (be16_to_cpu(block->bb_level) == 0)
2064 		xfs_btree_get_leaf_keys(cur, block, key);
2065 	else
2066 		xfs_btree_get_node_keys(cur, block, key);
2067 }
2068 
2069 /*
2070  * Decide if we need to update the parent keys of a btree block.  For
2071  * a standard btree this is only necessary if we're updating the first
2072  * record/key.  For an overlapping btree, we must always update the
2073  * keys because the highest key can be in any of the records or keys
2074  * in the block.
2075  */
2076 static inline bool
2077 xfs_btree_needs_key_update(
2078 	struct xfs_btree_cur	*cur,
2079 	int			ptr)
2080 {
2081 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2082 }
2083 
2084 /*
2085  * Update the low and high parent keys of the given level, progressing
2086  * towards the root.  If force_all is false, stop if the keys for a given
2087  * level do not need updating.
2088  */
2089 STATIC int
2090 __xfs_btree_updkeys(
2091 	struct xfs_btree_cur	*cur,
2092 	int			level,
2093 	struct xfs_btree_block	*block,
2094 	struct xfs_buf		*bp0,
2095 	bool			force_all)
2096 {
2097 	union xfs_btree_key	key;	/* keys from current level */
2098 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2099 	union xfs_btree_key	*hkey;
2100 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2101 	union xfs_btree_key	*nhkey;
2102 	struct xfs_buf		*bp;
2103 	int			ptr;
2104 
2105 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2106 
2107 	/* Exit if there aren't any parent levels to update. */
2108 	if (level + 1 >= cur->bc_nlevels)
2109 		return 0;
2110 
2111 	trace_xfs_btree_updkeys(cur, level, bp0);
2112 
2113 	lkey = &key;
2114 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2115 	xfs_btree_get_keys(cur, block, lkey);
2116 	for (level++; level < cur->bc_nlevels; level++) {
2117 #ifdef DEBUG
2118 		int		error;
2119 #endif
2120 		block = xfs_btree_get_block(cur, level, &bp);
2121 		trace_xfs_btree_updkeys(cur, level, bp);
2122 #ifdef DEBUG
2123 		error = xfs_btree_check_block(cur, block, level, bp);
2124 		if (error) {
2125 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2126 			return error;
2127 		}
2128 #endif
2129 		ptr = cur->bc_ptrs[level];
2130 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2131 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2132 		if (!force_all &&
2133 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2134 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2135 			break;
2136 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2137 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2138 		if (level + 1 >= cur->bc_nlevels)
2139 			break;
2140 		xfs_btree_get_node_keys(cur, block, lkey);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 /* Update all the keys from some level in cursor back to the root. */
2147 STATIC int
2148 xfs_btree_updkeys_force(
2149 	struct xfs_btree_cur	*cur,
2150 	int			level)
2151 {
2152 	struct xfs_buf		*bp;
2153 	struct xfs_btree_block	*block;
2154 
2155 	block = xfs_btree_get_block(cur, level, &bp);
2156 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2157 }
2158 
2159 /*
2160  * Update the parent keys of the given level, progressing towards the root.
2161  */
2162 STATIC int
2163 xfs_btree_update_keys(
2164 	struct xfs_btree_cur	*cur,
2165 	int			level)
2166 {
2167 	struct xfs_btree_block	*block;
2168 	struct xfs_buf		*bp;
2169 	union xfs_btree_key	*kp;
2170 	union xfs_btree_key	key;
2171 	int			ptr;
2172 
2173 	ASSERT(level >= 0);
2174 
2175 	block = xfs_btree_get_block(cur, level, &bp);
2176 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2177 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2178 
2179 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2180 	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2181 
2182 	/*
2183 	 * Go up the tree from this level toward the root.
2184 	 * At each level, update the key value to the value input.
2185 	 * Stop when we reach a level where the cursor isn't pointing
2186 	 * at the first entry in the block.
2187 	 */
2188 	xfs_btree_get_keys(cur, block, &key);
2189 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2190 #ifdef DEBUG
2191 		int		error;
2192 #endif
2193 		block = xfs_btree_get_block(cur, level, &bp);
2194 #ifdef DEBUG
2195 		error = xfs_btree_check_block(cur, block, level, bp);
2196 		if (error) {
2197 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2198 			return error;
2199 		}
2200 #endif
2201 		ptr = cur->bc_ptrs[level];
2202 		kp = xfs_btree_key_addr(cur, ptr, block);
2203 		xfs_btree_copy_keys(cur, kp, &key, 1);
2204 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2205 	}
2206 
2207 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2208 	return 0;
2209 }
2210 
2211 /*
2212  * Update the record referred to by cur to the value in the
2213  * given record. This either works (return 0) or gets an
2214  * EFSCORRUPTED error.
2215  */
2216 int
2217 xfs_btree_update(
2218 	struct xfs_btree_cur	*cur,
2219 	union xfs_btree_rec	*rec)
2220 {
2221 	struct xfs_btree_block	*block;
2222 	struct xfs_buf		*bp;
2223 	int			error;
2224 	int			ptr;
2225 	union xfs_btree_rec	*rp;
2226 
2227 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228 	XFS_BTREE_TRACE_ARGR(cur, rec);
2229 
2230 	/* Pick up the current block. */
2231 	block = xfs_btree_get_block(cur, 0, &bp);
2232 
2233 #ifdef DEBUG
2234 	error = xfs_btree_check_block(cur, block, 0, bp);
2235 	if (error)
2236 		goto error0;
2237 #endif
2238 	/* Get the address of the rec to be updated. */
2239 	ptr = cur->bc_ptrs[0];
2240 	rp = xfs_btree_rec_addr(cur, ptr, block);
2241 
2242 	/* Fill in the new contents and log them. */
2243 	xfs_btree_copy_recs(cur, rp, rec, 1);
2244 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2245 
2246 	/*
2247 	 * If we are tracking the last record in the tree and
2248 	 * we are at the far right edge of the tree, update it.
2249 	 */
2250 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2251 		cur->bc_ops->update_lastrec(cur, block, rec,
2252 					    ptr, LASTREC_UPDATE);
2253 	}
2254 
2255 	/* Pass new key value up to our parent. */
2256 	if (xfs_btree_needs_key_update(cur, ptr)) {
2257 		error = xfs_btree_update_keys(cur, 0);
2258 		if (error)
2259 			goto error0;
2260 	}
2261 
2262 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2263 	return 0;
2264 
2265 error0:
2266 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2267 	return error;
2268 }
2269 
2270 /*
2271  * Move 1 record left from cur/level if possible.
2272  * Update cur to reflect the new path.
2273  */
2274 STATIC int					/* error */
2275 xfs_btree_lshift(
2276 	struct xfs_btree_cur	*cur,
2277 	int			level,
2278 	int			*stat)		/* success/failure */
2279 {
2280 	struct xfs_buf		*lbp;		/* left buffer pointer */
2281 	struct xfs_btree_block	*left;		/* left btree block */
2282 	int			lrecs;		/* left record count */
2283 	struct xfs_buf		*rbp;		/* right buffer pointer */
2284 	struct xfs_btree_block	*right;		/* right btree block */
2285 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2286 	int			rrecs;		/* right record count */
2287 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2288 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2289 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2290 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2291 	int			error;		/* error return value */
2292 	int			i;
2293 
2294 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2295 	XFS_BTREE_TRACE_ARGI(cur, level);
2296 
2297 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2298 	    level == cur->bc_nlevels - 1)
2299 		goto out0;
2300 
2301 	/* Set up variables for this block as "right". */
2302 	right = xfs_btree_get_block(cur, level, &rbp);
2303 
2304 #ifdef DEBUG
2305 	error = xfs_btree_check_block(cur, right, level, rbp);
2306 	if (error)
2307 		goto error0;
2308 #endif
2309 
2310 	/* If we've got no left sibling then we can't shift an entry left. */
2311 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2312 	if (xfs_btree_ptr_is_null(cur, &lptr))
2313 		goto out0;
2314 
2315 	/*
2316 	 * If the cursor entry is the one that would be moved, don't
2317 	 * do it... it's too complicated.
2318 	 */
2319 	if (cur->bc_ptrs[level] <= 1)
2320 		goto out0;
2321 
2322 	/* Set up the left neighbor as "left". */
2323 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2324 	if (error)
2325 		goto error0;
2326 
2327 	/* If it's full, it can't take another entry. */
2328 	lrecs = xfs_btree_get_numrecs(left);
2329 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2330 		goto out0;
2331 
2332 	rrecs = xfs_btree_get_numrecs(right);
2333 
2334 	/*
2335 	 * We add one entry to the left side and remove one for the right side.
2336 	 * Account for it here, the changes will be updated on disk and logged
2337 	 * later.
2338 	 */
2339 	lrecs++;
2340 	rrecs--;
2341 
2342 	XFS_BTREE_STATS_INC(cur, lshift);
2343 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2344 
2345 	/*
2346 	 * If non-leaf, copy a key and a ptr to the left block.
2347 	 * Log the changes to the left block.
2348 	 */
2349 	if (level > 0) {
2350 		/* It's a non-leaf.  Move keys and pointers. */
2351 		union xfs_btree_key	*lkp;	/* left btree key */
2352 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2353 
2354 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2355 		rkp = xfs_btree_key_addr(cur, 1, right);
2356 
2357 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2358 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2359 #ifdef DEBUG
2360 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2361 		if (error)
2362 			goto error0;
2363 #endif
2364 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2365 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2366 
2367 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2368 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2369 
2370 		ASSERT(cur->bc_ops->keys_inorder(cur,
2371 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2372 	} else {
2373 		/* It's a leaf.  Move records.  */
2374 		union xfs_btree_rec	*lrp;	/* left record pointer */
2375 
2376 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2377 		rrp = xfs_btree_rec_addr(cur, 1, right);
2378 
2379 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2380 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2381 
2382 		ASSERT(cur->bc_ops->recs_inorder(cur,
2383 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2384 	}
2385 
2386 	xfs_btree_set_numrecs(left, lrecs);
2387 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2388 
2389 	xfs_btree_set_numrecs(right, rrecs);
2390 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2391 
2392 	/*
2393 	 * Slide the contents of right down one entry.
2394 	 */
2395 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2396 	if (level > 0) {
2397 		/* It's a nonleaf. operate on keys and ptrs */
2398 #ifdef DEBUG
2399 		int			i;		/* loop index */
2400 
2401 		for (i = 0; i < rrecs; i++) {
2402 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2403 			if (error)
2404 				goto error0;
2405 		}
2406 #endif
2407 		xfs_btree_shift_keys(cur,
2408 				xfs_btree_key_addr(cur, 2, right),
2409 				-1, rrecs);
2410 		xfs_btree_shift_ptrs(cur,
2411 				xfs_btree_ptr_addr(cur, 2, right),
2412 				-1, rrecs);
2413 
2414 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2415 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2416 	} else {
2417 		/* It's a leaf. operate on records */
2418 		xfs_btree_shift_recs(cur,
2419 			xfs_btree_rec_addr(cur, 2, right),
2420 			-1, rrecs);
2421 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2422 	}
2423 
2424 	/*
2425 	 * Using a temporary cursor, update the parent key values of the
2426 	 * block on the left.
2427 	 */
2428 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2429 		error = xfs_btree_dup_cursor(cur, &tcur);
2430 		if (error)
2431 			goto error0;
2432 		i = xfs_btree_firstrec(tcur, level);
2433 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2434 
2435 		error = xfs_btree_decrement(tcur, level, &i);
2436 		if (error)
2437 			goto error1;
2438 
2439 		/* Update the parent high keys of the left block, if needed. */
2440 		error = xfs_btree_update_keys(tcur, level);
2441 		if (error)
2442 			goto error1;
2443 
2444 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2445 	}
2446 
2447 	/* Update the parent keys of the right block. */
2448 	error = xfs_btree_update_keys(cur, level);
2449 	if (error)
2450 		goto error0;
2451 
2452 	/* Slide the cursor value left one. */
2453 	cur->bc_ptrs[level]--;
2454 
2455 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2456 	*stat = 1;
2457 	return 0;
2458 
2459 out0:
2460 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2461 	*stat = 0;
2462 	return 0;
2463 
2464 error0:
2465 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2466 	return error;
2467 
2468 error1:
2469 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2470 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2471 	return error;
2472 }
2473 
2474 /*
2475  * Move 1 record right from cur/level if possible.
2476  * Update cur to reflect the new path.
2477  */
2478 STATIC int					/* error */
2479 xfs_btree_rshift(
2480 	struct xfs_btree_cur	*cur,
2481 	int			level,
2482 	int			*stat)		/* success/failure */
2483 {
2484 	struct xfs_buf		*lbp;		/* left buffer pointer */
2485 	struct xfs_btree_block	*left;		/* left btree block */
2486 	struct xfs_buf		*rbp;		/* right buffer pointer */
2487 	struct xfs_btree_block	*right;		/* right btree block */
2488 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2489 	union xfs_btree_ptr	rptr;		/* right block pointer */
2490 	union xfs_btree_key	*rkp;		/* right btree key */
2491 	int			rrecs;		/* right record count */
2492 	int			lrecs;		/* left record count */
2493 	int			error;		/* error return value */
2494 	int			i;		/* loop counter */
2495 
2496 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2497 	XFS_BTREE_TRACE_ARGI(cur, level);
2498 
2499 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2500 	    (level == cur->bc_nlevels - 1))
2501 		goto out0;
2502 
2503 	/* Set up variables for this block as "left". */
2504 	left = xfs_btree_get_block(cur, level, &lbp);
2505 
2506 #ifdef DEBUG
2507 	error = xfs_btree_check_block(cur, left, level, lbp);
2508 	if (error)
2509 		goto error0;
2510 #endif
2511 
2512 	/* If we've got no right sibling then we can't shift an entry right. */
2513 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2514 	if (xfs_btree_ptr_is_null(cur, &rptr))
2515 		goto out0;
2516 
2517 	/*
2518 	 * If the cursor entry is the one that would be moved, don't
2519 	 * do it... it's too complicated.
2520 	 */
2521 	lrecs = xfs_btree_get_numrecs(left);
2522 	if (cur->bc_ptrs[level] >= lrecs)
2523 		goto out0;
2524 
2525 	/* Set up the right neighbor as "right". */
2526 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2527 	if (error)
2528 		goto error0;
2529 
2530 	/* If it's full, it can't take another entry. */
2531 	rrecs = xfs_btree_get_numrecs(right);
2532 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2533 		goto out0;
2534 
2535 	XFS_BTREE_STATS_INC(cur, rshift);
2536 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2537 
2538 	/*
2539 	 * Make a hole at the start of the right neighbor block, then
2540 	 * copy the last left block entry to the hole.
2541 	 */
2542 	if (level > 0) {
2543 		/* It's a nonleaf. make a hole in the keys and ptrs */
2544 		union xfs_btree_key	*lkp;
2545 		union xfs_btree_ptr	*lpp;
2546 		union xfs_btree_ptr	*rpp;
2547 
2548 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2549 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2550 		rkp = xfs_btree_key_addr(cur, 1, right);
2551 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2552 
2553 #ifdef DEBUG
2554 		for (i = rrecs - 1; i >= 0; i--) {
2555 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2556 			if (error)
2557 				goto error0;
2558 		}
2559 #endif
2560 
2561 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2562 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2563 
2564 #ifdef DEBUG
2565 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2566 		if (error)
2567 			goto error0;
2568 #endif
2569 
2570 		/* Now put the new data in, and log it. */
2571 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2572 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2573 
2574 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2575 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2576 
2577 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2578 			xfs_btree_key_addr(cur, 2, right)));
2579 	} else {
2580 		/* It's a leaf. make a hole in the records */
2581 		union xfs_btree_rec	*lrp;
2582 		union xfs_btree_rec	*rrp;
2583 
2584 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2585 		rrp = xfs_btree_rec_addr(cur, 1, right);
2586 
2587 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2588 
2589 		/* Now put the new data in, and log it. */
2590 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2591 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2592 	}
2593 
2594 	/*
2595 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2596 	 */
2597 	xfs_btree_set_numrecs(left, --lrecs);
2598 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2599 
2600 	xfs_btree_set_numrecs(right, ++rrecs);
2601 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2602 
2603 	/*
2604 	 * Using a temporary cursor, update the parent key values of the
2605 	 * block on the right.
2606 	 */
2607 	error = xfs_btree_dup_cursor(cur, &tcur);
2608 	if (error)
2609 		goto error0;
2610 	i = xfs_btree_lastrec(tcur, level);
2611 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2612 
2613 	error = xfs_btree_increment(tcur, level, &i);
2614 	if (error)
2615 		goto error1;
2616 
2617 	/* Update the parent high keys of the left block, if needed. */
2618 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2619 		error = xfs_btree_update_keys(cur, level);
2620 		if (error)
2621 			goto error1;
2622 	}
2623 
2624 	/* Update the parent keys of the right block. */
2625 	error = xfs_btree_update_keys(tcur, level);
2626 	if (error)
2627 		goto error1;
2628 
2629 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2630 
2631 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2632 	*stat = 1;
2633 	return 0;
2634 
2635 out0:
2636 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2637 	*stat = 0;
2638 	return 0;
2639 
2640 error0:
2641 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2642 	return error;
2643 
2644 error1:
2645 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2646 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2647 	return error;
2648 }
2649 
2650 /*
2651  * Split cur/level block in half.
2652  * Return new block number and the key to its first
2653  * record (to be inserted into parent).
2654  */
2655 STATIC int					/* error */
2656 __xfs_btree_split(
2657 	struct xfs_btree_cur	*cur,
2658 	int			level,
2659 	union xfs_btree_ptr	*ptrp,
2660 	union xfs_btree_key	*key,
2661 	struct xfs_btree_cur	**curp,
2662 	int			*stat)		/* success/failure */
2663 {
2664 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2665 	struct xfs_buf		*lbp;		/* left buffer pointer */
2666 	struct xfs_btree_block	*left;		/* left btree block */
2667 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2668 	struct xfs_buf		*rbp;		/* right buffer pointer */
2669 	struct xfs_btree_block	*right;		/* right btree block */
2670 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2671 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2672 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2673 	int			lrecs;
2674 	int			rrecs;
2675 	int			src_index;
2676 	int			error;		/* error return value */
2677 #ifdef DEBUG
2678 	int			i;
2679 #endif
2680 
2681 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2682 	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2683 
2684 	XFS_BTREE_STATS_INC(cur, split);
2685 
2686 	/* Set up left block (current one). */
2687 	left = xfs_btree_get_block(cur, level, &lbp);
2688 
2689 #ifdef DEBUG
2690 	error = xfs_btree_check_block(cur, left, level, lbp);
2691 	if (error)
2692 		goto error0;
2693 #endif
2694 
2695 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2696 
2697 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2698 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2699 	if (error)
2700 		goto error0;
2701 	if (*stat == 0)
2702 		goto out0;
2703 	XFS_BTREE_STATS_INC(cur, alloc);
2704 
2705 	/* Set up the new block as "right". */
2706 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2707 	if (error)
2708 		goto error0;
2709 
2710 	/* Fill in the btree header for the new right block. */
2711 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2712 
2713 	/*
2714 	 * Split the entries between the old and the new block evenly.
2715 	 * Make sure that if there's an odd number of entries now, that
2716 	 * each new block will have the same number of entries.
2717 	 */
2718 	lrecs = xfs_btree_get_numrecs(left);
2719 	rrecs = lrecs / 2;
2720 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2721 		rrecs++;
2722 	src_index = (lrecs - rrecs + 1);
2723 
2724 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2725 
2726 	/* Adjust numrecs for the later get_*_keys() calls. */
2727 	lrecs -= rrecs;
2728 	xfs_btree_set_numrecs(left, lrecs);
2729 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2730 
2731 	/*
2732 	 * Copy btree block entries from the left block over to the
2733 	 * new block, the right. Update the right block and log the
2734 	 * changes.
2735 	 */
2736 	if (level > 0) {
2737 		/* It's a non-leaf.  Move keys and pointers. */
2738 		union xfs_btree_key	*lkp;	/* left btree key */
2739 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2740 		union xfs_btree_key	*rkp;	/* right btree key */
2741 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2742 
2743 		lkp = xfs_btree_key_addr(cur, src_index, left);
2744 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2745 		rkp = xfs_btree_key_addr(cur, 1, right);
2746 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2747 
2748 #ifdef DEBUG
2749 		for (i = src_index; i < rrecs; i++) {
2750 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2751 			if (error)
2752 				goto error0;
2753 		}
2754 #endif
2755 
2756 		/* Copy the keys & pointers to the new block. */
2757 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2758 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2759 
2760 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2761 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2762 
2763 		/* Stash the keys of the new block for later insertion. */
2764 		xfs_btree_get_node_keys(cur, right, key);
2765 	} else {
2766 		/* It's a leaf.  Move records.  */
2767 		union xfs_btree_rec	*lrp;	/* left record pointer */
2768 		union xfs_btree_rec	*rrp;	/* right record pointer */
2769 
2770 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2771 		rrp = xfs_btree_rec_addr(cur, 1, right);
2772 
2773 		/* Copy records to the new block. */
2774 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2775 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2776 
2777 		/* Stash the keys of the new block for later insertion. */
2778 		xfs_btree_get_leaf_keys(cur, right, key);
2779 	}
2780 
2781 	/*
2782 	 * Find the left block number by looking in the buffer.
2783 	 * Adjust sibling pointers.
2784 	 */
2785 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2786 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2787 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2788 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2789 
2790 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2791 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2792 
2793 	/*
2794 	 * If there's a block to the new block's right, make that block
2795 	 * point back to right instead of to left.
2796 	 */
2797 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2798 		error = xfs_btree_read_buf_block(cur, &rrptr,
2799 							0, &rrblock, &rrbp);
2800 		if (error)
2801 			goto error0;
2802 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2803 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2804 	}
2805 
2806 	/* Update the parent high keys of the left block, if needed. */
2807 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2808 		error = xfs_btree_update_keys(cur, level);
2809 		if (error)
2810 			goto error0;
2811 	}
2812 
2813 	/*
2814 	 * If the cursor is really in the right block, move it there.
2815 	 * If it's just pointing past the last entry in left, then we'll
2816 	 * insert there, so don't change anything in that case.
2817 	 */
2818 	if (cur->bc_ptrs[level] > lrecs + 1) {
2819 		xfs_btree_setbuf(cur, level, rbp);
2820 		cur->bc_ptrs[level] -= lrecs;
2821 	}
2822 	/*
2823 	 * If there are more levels, we'll need another cursor which refers
2824 	 * the right block, no matter where this cursor was.
2825 	 */
2826 	if (level + 1 < cur->bc_nlevels) {
2827 		error = xfs_btree_dup_cursor(cur, curp);
2828 		if (error)
2829 			goto error0;
2830 		(*curp)->bc_ptrs[level + 1]++;
2831 	}
2832 	*ptrp = rptr;
2833 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2834 	*stat = 1;
2835 	return 0;
2836 out0:
2837 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2838 	*stat = 0;
2839 	return 0;
2840 
2841 error0:
2842 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2843 	return error;
2844 }
2845 
2846 struct xfs_btree_split_args {
2847 	struct xfs_btree_cur	*cur;
2848 	int			level;
2849 	union xfs_btree_ptr	*ptrp;
2850 	union xfs_btree_key	*key;
2851 	struct xfs_btree_cur	**curp;
2852 	int			*stat;		/* success/failure */
2853 	int			result;
2854 	bool			kswapd;	/* allocation in kswapd context */
2855 	struct completion	*done;
2856 	struct work_struct	work;
2857 };
2858 
2859 /*
2860  * Stack switching interfaces for allocation
2861  */
2862 static void
2863 xfs_btree_split_worker(
2864 	struct work_struct	*work)
2865 {
2866 	struct xfs_btree_split_args	*args = container_of(work,
2867 						struct xfs_btree_split_args, work);
2868 	unsigned long		pflags;
2869 	unsigned long		new_pflags = PF_FSTRANS;
2870 
2871 	/*
2872 	 * we are in a transaction context here, but may also be doing work
2873 	 * in kswapd context, and hence we may need to inherit that state
2874 	 * temporarily to ensure that we don't block waiting for memory reclaim
2875 	 * in any way.
2876 	 */
2877 	if (args->kswapd)
2878 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2879 
2880 	current_set_flags_nested(&pflags, new_pflags);
2881 
2882 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2883 					 args->key, args->curp, args->stat);
2884 	complete(args->done);
2885 
2886 	current_restore_flags_nested(&pflags, new_pflags);
2887 }
2888 
2889 /*
2890  * BMBT split requests often come in with little stack to work on. Push
2891  * them off to a worker thread so there is lots of stack to use. For the other
2892  * btree types, just call directly to avoid the context switch overhead here.
2893  */
2894 STATIC int					/* error */
2895 xfs_btree_split(
2896 	struct xfs_btree_cur	*cur,
2897 	int			level,
2898 	union xfs_btree_ptr	*ptrp,
2899 	union xfs_btree_key	*key,
2900 	struct xfs_btree_cur	**curp,
2901 	int			*stat)		/* success/failure */
2902 {
2903 	struct xfs_btree_split_args	args;
2904 	DECLARE_COMPLETION_ONSTACK(done);
2905 
2906 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2907 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2908 
2909 	args.cur = cur;
2910 	args.level = level;
2911 	args.ptrp = ptrp;
2912 	args.key = key;
2913 	args.curp = curp;
2914 	args.stat = stat;
2915 	args.done = &done;
2916 	args.kswapd = current_is_kswapd();
2917 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2918 	queue_work(xfs_alloc_wq, &args.work);
2919 	wait_for_completion(&done);
2920 	destroy_work_on_stack(&args.work);
2921 	return args.result;
2922 }
2923 
2924 
2925 /*
2926  * Copy the old inode root contents into a real block and make the
2927  * broot point to it.
2928  */
2929 int						/* error */
2930 xfs_btree_new_iroot(
2931 	struct xfs_btree_cur	*cur,		/* btree cursor */
2932 	int			*logflags,	/* logging flags for inode */
2933 	int			*stat)		/* return status - 0 fail */
2934 {
2935 	struct xfs_buf		*cbp;		/* buffer for cblock */
2936 	struct xfs_btree_block	*block;		/* btree block */
2937 	struct xfs_btree_block	*cblock;	/* child btree block */
2938 	union xfs_btree_key	*ckp;		/* child key pointer */
2939 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2940 	union xfs_btree_key	*kp;		/* pointer to btree key */
2941 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2942 	union xfs_btree_ptr	nptr;		/* new block addr */
2943 	int			level;		/* btree level */
2944 	int			error;		/* error return code */
2945 #ifdef DEBUG
2946 	int			i;		/* loop counter */
2947 #endif
2948 
2949 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2950 	XFS_BTREE_STATS_INC(cur, newroot);
2951 
2952 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2953 
2954 	level = cur->bc_nlevels - 1;
2955 
2956 	block = xfs_btree_get_iroot(cur);
2957 	pp = xfs_btree_ptr_addr(cur, 1, block);
2958 
2959 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2960 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2961 	if (error)
2962 		goto error0;
2963 	if (*stat == 0) {
2964 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2965 		return 0;
2966 	}
2967 	XFS_BTREE_STATS_INC(cur, alloc);
2968 
2969 	/* Copy the root into a real block. */
2970 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2971 	if (error)
2972 		goto error0;
2973 
2974 	/*
2975 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2976 	 * In that case have to also ensure the blkno remains correct
2977 	 */
2978 	memcpy(cblock, block, xfs_btree_block_len(cur));
2979 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2980 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2981 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2982 		else
2983 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2984 	}
2985 
2986 	be16_add_cpu(&block->bb_level, 1);
2987 	xfs_btree_set_numrecs(block, 1);
2988 	cur->bc_nlevels++;
2989 	cur->bc_ptrs[level + 1] = 1;
2990 
2991 	kp = xfs_btree_key_addr(cur, 1, block);
2992 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2993 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2994 
2995 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2996 #ifdef DEBUG
2997 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2998 		error = xfs_btree_check_ptr(cur, pp, i, level);
2999 		if (error)
3000 			goto error0;
3001 	}
3002 #endif
3003 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3004 
3005 #ifdef DEBUG
3006 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3007 	if (error)
3008 		goto error0;
3009 #endif
3010 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3011 
3012 	xfs_iroot_realloc(cur->bc_private.b.ip,
3013 			  1 - xfs_btree_get_numrecs(cblock),
3014 			  cur->bc_private.b.whichfork);
3015 
3016 	xfs_btree_setbuf(cur, level, cbp);
3017 
3018 	/*
3019 	 * Do all this logging at the end so that
3020 	 * the root is at the right level.
3021 	 */
3022 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3023 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3024 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3025 
3026 	*logflags |=
3027 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3028 	*stat = 1;
3029 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3030 	return 0;
3031 error0:
3032 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3033 	return error;
3034 }
3035 
3036 /*
3037  * Allocate a new root block, fill it in.
3038  */
3039 STATIC int				/* error */
3040 xfs_btree_new_root(
3041 	struct xfs_btree_cur	*cur,	/* btree cursor */
3042 	int			*stat)	/* success/failure */
3043 {
3044 	struct xfs_btree_block	*block;	/* one half of the old root block */
3045 	struct xfs_buf		*bp;	/* buffer containing block */
3046 	int			error;	/* error return value */
3047 	struct xfs_buf		*lbp;	/* left buffer pointer */
3048 	struct xfs_btree_block	*left;	/* left btree block */
3049 	struct xfs_buf		*nbp;	/* new (root) buffer */
3050 	struct xfs_btree_block	*new;	/* new (root) btree block */
3051 	int			nptr;	/* new value for key index, 1 or 2 */
3052 	struct xfs_buf		*rbp;	/* right buffer pointer */
3053 	struct xfs_btree_block	*right;	/* right btree block */
3054 	union xfs_btree_ptr	rptr;
3055 	union xfs_btree_ptr	lptr;
3056 
3057 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3058 	XFS_BTREE_STATS_INC(cur, newroot);
3059 
3060 	/* initialise our start point from the cursor */
3061 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3062 
3063 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3064 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3065 	if (error)
3066 		goto error0;
3067 	if (*stat == 0)
3068 		goto out0;
3069 	XFS_BTREE_STATS_INC(cur, alloc);
3070 
3071 	/* Set up the new block. */
3072 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3073 	if (error)
3074 		goto error0;
3075 
3076 	/* Set the root in the holding structure  increasing the level by 1. */
3077 	cur->bc_ops->set_root(cur, &lptr, 1);
3078 
3079 	/*
3080 	 * At the previous root level there are now two blocks: the old root,
3081 	 * and the new block generated when it was split.  We don't know which
3082 	 * one the cursor is pointing at, so we set up variables "left" and
3083 	 * "right" for each case.
3084 	 */
3085 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3086 
3087 #ifdef DEBUG
3088 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3089 	if (error)
3090 		goto error0;
3091 #endif
3092 
3093 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3094 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3095 		/* Our block is left, pick up the right block. */
3096 		lbp = bp;
3097 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3098 		left = block;
3099 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3100 		if (error)
3101 			goto error0;
3102 		bp = rbp;
3103 		nptr = 1;
3104 	} else {
3105 		/* Our block is right, pick up the left block. */
3106 		rbp = bp;
3107 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3108 		right = block;
3109 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3110 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3111 		if (error)
3112 			goto error0;
3113 		bp = lbp;
3114 		nptr = 2;
3115 	}
3116 
3117 	/* Fill in the new block's btree header and log it. */
3118 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3119 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3120 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3121 			!xfs_btree_ptr_is_null(cur, &rptr));
3122 
3123 	/* Fill in the key data in the new root. */
3124 	if (xfs_btree_get_level(left) > 0) {
3125 		/*
3126 		 * Get the keys for the left block's keys and put them directly
3127 		 * in the parent block.  Do the same for the right block.
3128 		 */
3129 		xfs_btree_get_node_keys(cur, left,
3130 				xfs_btree_key_addr(cur, 1, new));
3131 		xfs_btree_get_node_keys(cur, right,
3132 				xfs_btree_key_addr(cur, 2, new));
3133 	} else {
3134 		/*
3135 		 * Get the keys for the left block's records and put them
3136 		 * directly in the parent block.  Do the same for the right
3137 		 * block.
3138 		 */
3139 		xfs_btree_get_leaf_keys(cur, left,
3140 			xfs_btree_key_addr(cur, 1, new));
3141 		xfs_btree_get_leaf_keys(cur, right,
3142 			xfs_btree_key_addr(cur, 2, new));
3143 	}
3144 	xfs_btree_log_keys(cur, nbp, 1, 2);
3145 
3146 	/* Fill in the pointer data in the new root. */
3147 	xfs_btree_copy_ptrs(cur,
3148 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3149 	xfs_btree_copy_ptrs(cur,
3150 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3151 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3152 
3153 	/* Fix up the cursor. */
3154 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3155 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3156 	cur->bc_nlevels++;
3157 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3158 	*stat = 1;
3159 	return 0;
3160 error0:
3161 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3162 	return error;
3163 out0:
3164 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3165 	*stat = 0;
3166 	return 0;
3167 }
3168 
3169 STATIC int
3170 xfs_btree_make_block_unfull(
3171 	struct xfs_btree_cur	*cur,	/* btree cursor */
3172 	int			level,	/* btree level */
3173 	int			numrecs,/* # of recs in block */
3174 	int			*oindex,/* old tree index */
3175 	int			*index,	/* new tree index */
3176 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3177 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3178 	union xfs_btree_key	*key,	/* key of new block */
3179 	int			*stat)
3180 {
3181 	int			error = 0;
3182 
3183 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3184 	    level == cur->bc_nlevels - 1) {
3185 	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3186 
3187 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3188 			/* A root block that can be made bigger. */
3189 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3190 			*stat = 1;
3191 		} else {
3192 			/* A root block that needs replacing */
3193 			int	logflags = 0;
3194 
3195 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3196 			if (error || *stat == 0)
3197 				return error;
3198 
3199 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3200 		}
3201 
3202 		return 0;
3203 	}
3204 
3205 	/* First, try shifting an entry to the right neighbor. */
3206 	error = xfs_btree_rshift(cur, level, stat);
3207 	if (error || *stat)
3208 		return error;
3209 
3210 	/* Next, try shifting an entry to the left neighbor. */
3211 	error = xfs_btree_lshift(cur, level, stat);
3212 	if (error)
3213 		return error;
3214 
3215 	if (*stat) {
3216 		*oindex = *index = cur->bc_ptrs[level];
3217 		return 0;
3218 	}
3219 
3220 	/*
3221 	 * Next, try splitting the current block in half.
3222 	 *
3223 	 * If this works we have to re-set our variables because we
3224 	 * could be in a different block now.
3225 	 */
3226 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3227 	if (error || *stat == 0)
3228 		return error;
3229 
3230 
3231 	*index = cur->bc_ptrs[level];
3232 	return 0;
3233 }
3234 
3235 /*
3236  * Insert one record/level.  Return information to the caller
3237  * allowing the next level up to proceed if necessary.
3238  */
3239 STATIC int
3240 xfs_btree_insrec(
3241 	struct xfs_btree_cur	*cur,	/* btree cursor */
3242 	int			level,	/* level to insert record at */
3243 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3244 	union xfs_btree_rec	*rec,	/* record to insert */
3245 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3246 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3247 	int			*stat)	/* success/failure */
3248 {
3249 	struct xfs_btree_block	*block;	/* btree block */
3250 	struct xfs_buf		*bp;	/* buffer for block */
3251 	union xfs_btree_ptr	nptr;	/* new block ptr */
3252 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3253 	union xfs_btree_key	nkey;	/* new block key */
3254 	union xfs_btree_key	*lkey;
3255 	int			optr;	/* old key/record index */
3256 	int			ptr;	/* key/record index */
3257 	int			numrecs;/* number of records */
3258 	int			error;	/* error return value */
3259 #ifdef DEBUG
3260 	int			i;
3261 #endif
3262 	xfs_daddr_t		old_bn;
3263 
3264 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3265 	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3266 
3267 	ncur = NULL;
3268 	lkey = &nkey;
3269 
3270 	/*
3271 	 * If we have an external root pointer, and we've made it to the
3272 	 * root level, allocate a new root block and we're done.
3273 	 */
3274 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3275 	    (level >= cur->bc_nlevels)) {
3276 		error = xfs_btree_new_root(cur, stat);
3277 		xfs_btree_set_ptr_null(cur, ptrp);
3278 
3279 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3280 		return error;
3281 	}
3282 
3283 	/* If we're off the left edge, return failure. */
3284 	ptr = cur->bc_ptrs[level];
3285 	if (ptr == 0) {
3286 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3287 		*stat = 0;
3288 		return 0;
3289 	}
3290 
3291 	optr = ptr;
3292 
3293 	XFS_BTREE_STATS_INC(cur, insrec);
3294 
3295 	/* Get pointers to the btree buffer and block. */
3296 	block = xfs_btree_get_block(cur, level, &bp);
3297 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3298 	numrecs = xfs_btree_get_numrecs(block);
3299 
3300 #ifdef DEBUG
3301 	error = xfs_btree_check_block(cur, block, level, bp);
3302 	if (error)
3303 		goto error0;
3304 
3305 	/* Check that the new entry is being inserted in the right place. */
3306 	if (ptr <= numrecs) {
3307 		if (level == 0) {
3308 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3309 				xfs_btree_rec_addr(cur, ptr, block)));
3310 		} else {
3311 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3312 				xfs_btree_key_addr(cur, ptr, block)));
3313 		}
3314 	}
3315 #endif
3316 
3317 	/*
3318 	 * If the block is full, we can't insert the new entry until we
3319 	 * make the block un-full.
3320 	 */
3321 	xfs_btree_set_ptr_null(cur, &nptr);
3322 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3323 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3324 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3325 		if (error || *stat == 0)
3326 			goto error0;
3327 	}
3328 
3329 	/*
3330 	 * The current block may have changed if the block was
3331 	 * previously full and we have just made space in it.
3332 	 */
3333 	block = xfs_btree_get_block(cur, level, &bp);
3334 	numrecs = xfs_btree_get_numrecs(block);
3335 
3336 #ifdef DEBUG
3337 	error = xfs_btree_check_block(cur, block, level, bp);
3338 	if (error)
3339 		return error;
3340 #endif
3341 
3342 	/*
3343 	 * At this point we know there's room for our new entry in the block
3344 	 * we're pointing at.
3345 	 */
3346 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3347 
3348 	if (level > 0) {
3349 		/* It's a nonleaf. make a hole in the keys and ptrs */
3350 		union xfs_btree_key	*kp;
3351 		union xfs_btree_ptr	*pp;
3352 
3353 		kp = xfs_btree_key_addr(cur, ptr, block);
3354 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3355 
3356 #ifdef DEBUG
3357 		for (i = numrecs - ptr; i >= 0; i--) {
3358 			error = xfs_btree_check_ptr(cur, pp, i, level);
3359 			if (error)
3360 				return error;
3361 		}
3362 #endif
3363 
3364 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3365 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3366 
3367 #ifdef DEBUG
3368 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3369 		if (error)
3370 			goto error0;
3371 #endif
3372 
3373 		/* Now put the new data in, bump numrecs and log it. */
3374 		xfs_btree_copy_keys(cur, kp, key, 1);
3375 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3376 		numrecs++;
3377 		xfs_btree_set_numrecs(block, numrecs);
3378 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3379 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3380 #ifdef DEBUG
3381 		if (ptr < numrecs) {
3382 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3383 				xfs_btree_key_addr(cur, ptr + 1, block)));
3384 		}
3385 #endif
3386 	} else {
3387 		/* It's a leaf. make a hole in the records */
3388 		union xfs_btree_rec             *rp;
3389 
3390 		rp = xfs_btree_rec_addr(cur, ptr, block);
3391 
3392 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3393 
3394 		/* Now put the new data in, bump numrecs and log it. */
3395 		xfs_btree_copy_recs(cur, rp, rec, 1);
3396 		xfs_btree_set_numrecs(block, ++numrecs);
3397 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3398 #ifdef DEBUG
3399 		if (ptr < numrecs) {
3400 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3401 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3402 		}
3403 #endif
3404 	}
3405 
3406 	/* Log the new number of records in the btree header. */
3407 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3408 
3409 	/*
3410 	 * If we just inserted into a new tree block, we have to
3411 	 * recalculate nkey here because nkey is out of date.
3412 	 *
3413 	 * Otherwise we're just updating an existing block (having shoved
3414 	 * some records into the new tree block), so use the regular key
3415 	 * update mechanism.
3416 	 */
3417 	if (bp && bp->b_bn != old_bn) {
3418 		xfs_btree_get_keys(cur, block, lkey);
3419 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3420 		error = xfs_btree_update_keys(cur, level);
3421 		if (error)
3422 			goto error0;
3423 	}
3424 
3425 	/*
3426 	 * If we are tracking the last record in the tree and
3427 	 * we are at the far right edge of the tree, update it.
3428 	 */
3429 	if (xfs_btree_is_lastrec(cur, block, level)) {
3430 		cur->bc_ops->update_lastrec(cur, block, rec,
3431 					    ptr, LASTREC_INSREC);
3432 	}
3433 
3434 	/*
3435 	 * Return the new block number, if any.
3436 	 * If there is one, give back a record value and a cursor too.
3437 	 */
3438 	*ptrp = nptr;
3439 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3440 		xfs_btree_copy_keys(cur, key, lkey, 1);
3441 		*curp = ncur;
3442 	}
3443 
3444 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3445 	*stat = 1;
3446 	return 0;
3447 
3448 error0:
3449 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3450 	return error;
3451 }
3452 
3453 /*
3454  * Insert the record at the point referenced by cur.
3455  *
3456  * A multi-level split of the tree on insert will invalidate the original
3457  * cursor.  All callers of this function should assume that the cursor is
3458  * no longer valid and revalidate it.
3459  */
3460 int
3461 xfs_btree_insert(
3462 	struct xfs_btree_cur	*cur,
3463 	int			*stat)
3464 {
3465 	int			error;	/* error return value */
3466 	int			i;	/* result value, 0 for failure */
3467 	int			level;	/* current level number in btree */
3468 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3469 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3470 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3471 	union xfs_btree_key	bkey;	/* key of block to insert */
3472 	union xfs_btree_key	*key;
3473 	union xfs_btree_rec	rec;	/* record to insert */
3474 
3475 	level = 0;
3476 	ncur = NULL;
3477 	pcur = cur;
3478 	key = &bkey;
3479 
3480 	xfs_btree_set_ptr_null(cur, &nptr);
3481 
3482 	/* Make a key out of the record data to be inserted, and save it. */
3483 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3484 	cur->bc_ops->init_key_from_rec(key, &rec);
3485 
3486 	/*
3487 	 * Loop going up the tree, starting at the leaf level.
3488 	 * Stop when we don't get a split block, that must mean that
3489 	 * the insert is finished with this level.
3490 	 */
3491 	do {
3492 		/*
3493 		 * Insert nrec/nptr into this level of the tree.
3494 		 * Note if we fail, nptr will be null.
3495 		 */
3496 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3497 				&ncur, &i);
3498 		if (error) {
3499 			if (pcur != cur)
3500 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3501 			goto error0;
3502 		}
3503 
3504 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3505 		level++;
3506 
3507 		/*
3508 		 * See if the cursor we just used is trash.
3509 		 * Can't trash the caller's cursor, but otherwise we should
3510 		 * if ncur is a new cursor or we're about to be done.
3511 		 */
3512 		if (pcur != cur &&
3513 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3514 			/* Save the state from the cursor before we trash it */
3515 			if (cur->bc_ops->update_cursor)
3516 				cur->bc_ops->update_cursor(pcur, cur);
3517 			cur->bc_nlevels = pcur->bc_nlevels;
3518 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3519 		}
3520 		/* If we got a new cursor, switch to it. */
3521 		if (ncur) {
3522 			pcur = ncur;
3523 			ncur = NULL;
3524 		}
3525 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3526 
3527 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3528 	*stat = i;
3529 	return 0;
3530 error0:
3531 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3532 	return error;
3533 }
3534 
3535 /*
3536  * Try to merge a non-leaf block back into the inode root.
3537  *
3538  * Note: the killroot names comes from the fact that we're effectively
3539  * killing the old root block.  But because we can't just delete the
3540  * inode we have to copy the single block it was pointing to into the
3541  * inode.
3542  */
3543 STATIC int
3544 xfs_btree_kill_iroot(
3545 	struct xfs_btree_cur	*cur)
3546 {
3547 	int			whichfork = cur->bc_private.b.whichfork;
3548 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3549 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3550 	struct xfs_btree_block	*block;
3551 	struct xfs_btree_block	*cblock;
3552 	union xfs_btree_key	*kp;
3553 	union xfs_btree_key	*ckp;
3554 	union xfs_btree_ptr	*pp;
3555 	union xfs_btree_ptr	*cpp;
3556 	struct xfs_buf		*cbp;
3557 	int			level;
3558 	int			index;
3559 	int			numrecs;
3560 	int			error;
3561 #ifdef DEBUG
3562 	union xfs_btree_ptr	ptr;
3563 	int			i;
3564 #endif
3565 
3566 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3567 
3568 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3569 	ASSERT(cur->bc_nlevels > 1);
3570 
3571 	/*
3572 	 * Don't deal with the root block needs to be a leaf case.
3573 	 * We're just going to turn the thing back into extents anyway.
3574 	 */
3575 	level = cur->bc_nlevels - 1;
3576 	if (level == 1)
3577 		goto out0;
3578 
3579 	/*
3580 	 * Give up if the root has multiple children.
3581 	 */
3582 	block = xfs_btree_get_iroot(cur);
3583 	if (xfs_btree_get_numrecs(block) != 1)
3584 		goto out0;
3585 
3586 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3587 	numrecs = xfs_btree_get_numrecs(cblock);
3588 
3589 	/*
3590 	 * Only do this if the next level will fit.
3591 	 * Then the data must be copied up to the inode,
3592 	 * instead of freeing the root you free the next level.
3593 	 */
3594 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3595 		goto out0;
3596 
3597 	XFS_BTREE_STATS_INC(cur, killroot);
3598 
3599 #ifdef DEBUG
3600 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3601 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3602 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3603 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3604 #endif
3605 
3606 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3607 	if (index) {
3608 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3609 				  cur->bc_private.b.whichfork);
3610 		block = ifp->if_broot;
3611 	}
3612 
3613 	be16_add_cpu(&block->bb_numrecs, index);
3614 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3615 
3616 	kp = xfs_btree_key_addr(cur, 1, block);
3617 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3618 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3619 
3620 	pp = xfs_btree_ptr_addr(cur, 1, block);
3621 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3622 #ifdef DEBUG
3623 	for (i = 0; i < numrecs; i++) {
3624 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3625 		if (error) {
3626 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3627 			return error;
3628 		}
3629 	}
3630 #endif
3631 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3632 
3633 	error = xfs_btree_free_block(cur, cbp);
3634 	if (error) {
3635 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3636 		return error;
3637 	}
3638 
3639 	cur->bc_bufs[level - 1] = NULL;
3640 	be16_add_cpu(&block->bb_level, -1);
3641 	xfs_trans_log_inode(cur->bc_tp, ip,
3642 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3643 	cur->bc_nlevels--;
3644 out0:
3645 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3646 	return 0;
3647 }
3648 
3649 /*
3650  * Kill the current root node, and replace it with it's only child node.
3651  */
3652 STATIC int
3653 xfs_btree_kill_root(
3654 	struct xfs_btree_cur	*cur,
3655 	struct xfs_buf		*bp,
3656 	int			level,
3657 	union xfs_btree_ptr	*newroot)
3658 {
3659 	int			error;
3660 
3661 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3662 	XFS_BTREE_STATS_INC(cur, killroot);
3663 
3664 	/*
3665 	 * Update the root pointer, decreasing the level by 1 and then
3666 	 * free the old root.
3667 	 */
3668 	cur->bc_ops->set_root(cur, newroot, -1);
3669 
3670 	error = xfs_btree_free_block(cur, bp);
3671 	if (error) {
3672 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3673 		return error;
3674 	}
3675 
3676 	cur->bc_bufs[level] = NULL;
3677 	cur->bc_ra[level] = 0;
3678 	cur->bc_nlevels--;
3679 
3680 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3681 	return 0;
3682 }
3683 
3684 STATIC int
3685 xfs_btree_dec_cursor(
3686 	struct xfs_btree_cur	*cur,
3687 	int			level,
3688 	int			*stat)
3689 {
3690 	int			error;
3691 	int			i;
3692 
3693 	if (level > 0) {
3694 		error = xfs_btree_decrement(cur, level, &i);
3695 		if (error)
3696 			return error;
3697 	}
3698 
3699 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3700 	*stat = 1;
3701 	return 0;
3702 }
3703 
3704 /*
3705  * Single level of the btree record deletion routine.
3706  * Delete record pointed to by cur/level.
3707  * Remove the record from its block then rebalance the tree.
3708  * Return 0 for error, 1 for done, 2 to go on to the next level.
3709  */
3710 STATIC int					/* error */
3711 xfs_btree_delrec(
3712 	struct xfs_btree_cur	*cur,		/* btree cursor */
3713 	int			level,		/* level removing record from */
3714 	int			*stat)		/* fail/done/go-on */
3715 {
3716 	struct xfs_btree_block	*block;		/* btree block */
3717 	union xfs_btree_ptr	cptr;		/* current block ptr */
3718 	struct xfs_buf		*bp;		/* buffer for block */
3719 	int			error;		/* error return value */
3720 	int			i;		/* loop counter */
3721 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3722 	struct xfs_buf		*lbp;		/* left buffer pointer */
3723 	struct xfs_btree_block	*left;		/* left btree block */
3724 	int			lrecs = 0;	/* left record count */
3725 	int			ptr;		/* key/record index */
3726 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3727 	struct xfs_buf		*rbp;		/* right buffer pointer */
3728 	struct xfs_btree_block	*right;		/* right btree block */
3729 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3730 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3731 	int			rrecs = 0;	/* right record count */
3732 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3733 	int			numrecs;	/* temporary numrec count */
3734 
3735 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3736 	XFS_BTREE_TRACE_ARGI(cur, level);
3737 
3738 	tcur = NULL;
3739 
3740 	/* Get the index of the entry being deleted, check for nothing there. */
3741 	ptr = cur->bc_ptrs[level];
3742 	if (ptr == 0) {
3743 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3744 		*stat = 0;
3745 		return 0;
3746 	}
3747 
3748 	/* Get the buffer & block containing the record or key/ptr. */
3749 	block = xfs_btree_get_block(cur, level, &bp);
3750 	numrecs = xfs_btree_get_numrecs(block);
3751 
3752 #ifdef DEBUG
3753 	error = xfs_btree_check_block(cur, block, level, bp);
3754 	if (error)
3755 		goto error0;
3756 #endif
3757 
3758 	/* Fail if we're off the end of the block. */
3759 	if (ptr > numrecs) {
3760 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3761 		*stat = 0;
3762 		return 0;
3763 	}
3764 
3765 	XFS_BTREE_STATS_INC(cur, delrec);
3766 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3767 
3768 	/* Excise the entries being deleted. */
3769 	if (level > 0) {
3770 		/* It's a nonleaf. operate on keys and ptrs */
3771 		union xfs_btree_key	*lkp;
3772 		union xfs_btree_ptr	*lpp;
3773 
3774 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3775 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3776 
3777 #ifdef DEBUG
3778 		for (i = 0; i < numrecs - ptr; i++) {
3779 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3780 			if (error)
3781 				goto error0;
3782 		}
3783 #endif
3784 
3785 		if (ptr < numrecs) {
3786 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3787 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3788 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3789 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3790 		}
3791 	} else {
3792 		/* It's a leaf. operate on records */
3793 		if (ptr < numrecs) {
3794 			xfs_btree_shift_recs(cur,
3795 				xfs_btree_rec_addr(cur, ptr + 1, block),
3796 				-1, numrecs - ptr);
3797 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3798 		}
3799 	}
3800 
3801 	/*
3802 	 * Decrement and log the number of entries in the block.
3803 	 */
3804 	xfs_btree_set_numrecs(block, --numrecs);
3805 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3806 
3807 	/*
3808 	 * If we are tracking the last record in the tree and
3809 	 * we are at the far right edge of the tree, update it.
3810 	 */
3811 	if (xfs_btree_is_lastrec(cur, block, level)) {
3812 		cur->bc_ops->update_lastrec(cur, block, NULL,
3813 					    ptr, LASTREC_DELREC);
3814 	}
3815 
3816 	/*
3817 	 * We're at the root level.  First, shrink the root block in-memory.
3818 	 * Try to get rid of the next level down.  If we can't then there's
3819 	 * nothing left to do.
3820 	 */
3821 	if (level == cur->bc_nlevels - 1) {
3822 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3823 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3824 					  cur->bc_private.b.whichfork);
3825 
3826 			error = xfs_btree_kill_iroot(cur);
3827 			if (error)
3828 				goto error0;
3829 
3830 			error = xfs_btree_dec_cursor(cur, level, stat);
3831 			if (error)
3832 				goto error0;
3833 			*stat = 1;
3834 			return 0;
3835 		}
3836 
3837 		/*
3838 		 * If this is the root level, and there's only one entry left,
3839 		 * and it's NOT the leaf level, then we can get rid of this
3840 		 * level.
3841 		 */
3842 		if (numrecs == 1 && level > 0) {
3843 			union xfs_btree_ptr	*pp;
3844 			/*
3845 			 * pp is still set to the first pointer in the block.
3846 			 * Make it the new root of the btree.
3847 			 */
3848 			pp = xfs_btree_ptr_addr(cur, 1, block);
3849 			error = xfs_btree_kill_root(cur, bp, level, pp);
3850 			if (error)
3851 				goto error0;
3852 		} else if (level > 0) {
3853 			error = xfs_btree_dec_cursor(cur, level, stat);
3854 			if (error)
3855 				goto error0;
3856 		}
3857 		*stat = 1;
3858 		return 0;
3859 	}
3860 
3861 	/*
3862 	 * If we deleted the leftmost entry in the block, update the
3863 	 * key values above us in the tree.
3864 	 */
3865 	if (xfs_btree_needs_key_update(cur, ptr)) {
3866 		error = xfs_btree_update_keys(cur, level);
3867 		if (error)
3868 			goto error0;
3869 	}
3870 
3871 	/*
3872 	 * If the number of records remaining in the block is at least
3873 	 * the minimum, we're done.
3874 	 */
3875 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3876 		error = xfs_btree_dec_cursor(cur, level, stat);
3877 		if (error)
3878 			goto error0;
3879 		return 0;
3880 	}
3881 
3882 	/*
3883 	 * Otherwise, we have to move some records around to keep the
3884 	 * tree balanced.  Look at the left and right sibling blocks to
3885 	 * see if we can re-balance by moving only one record.
3886 	 */
3887 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3888 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3889 
3890 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3891 		/*
3892 		 * One child of root, need to get a chance to copy its contents
3893 		 * into the root and delete it. Can't go up to next level,
3894 		 * there's nothing to delete there.
3895 		 */
3896 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3897 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3898 		    level == cur->bc_nlevels - 2) {
3899 			error = xfs_btree_kill_iroot(cur);
3900 			if (!error)
3901 				error = xfs_btree_dec_cursor(cur, level, stat);
3902 			if (error)
3903 				goto error0;
3904 			return 0;
3905 		}
3906 	}
3907 
3908 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3909 	       !xfs_btree_ptr_is_null(cur, &lptr));
3910 
3911 	/*
3912 	 * Duplicate the cursor so our btree manipulations here won't
3913 	 * disrupt the next level up.
3914 	 */
3915 	error = xfs_btree_dup_cursor(cur, &tcur);
3916 	if (error)
3917 		goto error0;
3918 
3919 	/*
3920 	 * If there's a right sibling, see if it's ok to shift an entry
3921 	 * out of it.
3922 	 */
3923 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3924 		/*
3925 		 * Move the temp cursor to the last entry in the next block.
3926 		 * Actually any entry but the first would suffice.
3927 		 */
3928 		i = xfs_btree_lastrec(tcur, level);
3929 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3930 
3931 		error = xfs_btree_increment(tcur, level, &i);
3932 		if (error)
3933 			goto error0;
3934 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3935 
3936 		i = xfs_btree_lastrec(tcur, level);
3937 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3938 
3939 		/* Grab a pointer to the block. */
3940 		right = xfs_btree_get_block(tcur, level, &rbp);
3941 #ifdef DEBUG
3942 		error = xfs_btree_check_block(tcur, right, level, rbp);
3943 		if (error)
3944 			goto error0;
3945 #endif
3946 		/* Grab the current block number, for future use. */
3947 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948 
3949 		/*
3950 		 * If right block is full enough so that removing one entry
3951 		 * won't make it too empty, and left-shifting an entry out
3952 		 * of right to us works, we're done.
3953 		 */
3954 		if (xfs_btree_get_numrecs(right) - 1 >=
3955 		    cur->bc_ops->get_minrecs(tcur, level)) {
3956 			error = xfs_btree_lshift(tcur, level, &i);
3957 			if (error)
3958 				goto error0;
3959 			if (i) {
3960 				ASSERT(xfs_btree_get_numrecs(block) >=
3961 				       cur->bc_ops->get_minrecs(tcur, level));
3962 
3963 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964 				tcur = NULL;
3965 
3966 				error = xfs_btree_dec_cursor(cur, level, stat);
3967 				if (error)
3968 					goto error0;
3969 				return 0;
3970 			}
3971 		}
3972 
3973 		/*
3974 		 * Otherwise, grab the number of records in right for
3975 		 * future reference, and fix up the temp cursor to point
3976 		 * to our block again (last record).
3977 		 */
3978 		rrecs = xfs_btree_get_numrecs(right);
3979 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980 			i = xfs_btree_firstrec(tcur, level);
3981 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3982 
3983 			error = xfs_btree_decrement(tcur, level, &i);
3984 			if (error)
3985 				goto error0;
3986 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987 		}
3988 	}
3989 
3990 	/*
3991 	 * If there's a left sibling, see if it's ok to shift an entry
3992 	 * out of it.
3993 	 */
3994 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3995 		/*
3996 		 * Move the temp cursor to the first entry in the
3997 		 * previous block.
3998 		 */
3999 		i = xfs_btree_firstrec(tcur, level);
4000 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4001 
4002 		error = xfs_btree_decrement(tcur, level, &i);
4003 		if (error)
4004 			goto error0;
4005 		i = xfs_btree_firstrec(tcur, level);
4006 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4007 
4008 		/* Grab a pointer to the block. */
4009 		left = xfs_btree_get_block(tcur, level, &lbp);
4010 #ifdef DEBUG
4011 		error = xfs_btree_check_block(cur, left, level, lbp);
4012 		if (error)
4013 			goto error0;
4014 #endif
4015 		/* Grab the current block number, for future use. */
4016 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4017 
4018 		/*
4019 		 * If left block is full enough so that removing one entry
4020 		 * won't make it too empty, and right-shifting an entry out
4021 		 * of left to us works, we're done.
4022 		 */
4023 		if (xfs_btree_get_numrecs(left) - 1 >=
4024 		    cur->bc_ops->get_minrecs(tcur, level)) {
4025 			error = xfs_btree_rshift(tcur, level, &i);
4026 			if (error)
4027 				goto error0;
4028 			if (i) {
4029 				ASSERT(xfs_btree_get_numrecs(block) >=
4030 				       cur->bc_ops->get_minrecs(tcur, level));
4031 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4032 				tcur = NULL;
4033 				if (level == 0)
4034 					cur->bc_ptrs[0]++;
4035 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4036 				*stat = 1;
4037 				return 0;
4038 			}
4039 		}
4040 
4041 		/*
4042 		 * Otherwise, grab the number of records in right for
4043 		 * future reference.
4044 		 */
4045 		lrecs = xfs_btree_get_numrecs(left);
4046 	}
4047 
4048 	/* Delete the temp cursor, we're done with it. */
4049 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4050 	tcur = NULL;
4051 
4052 	/* If here, we need to do a join to keep the tree balanced. */
4053 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4054 
4055 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4056 	    lrecs + xfs_btree_get_numrecs(block) <=
4057 			cur->bc_ops->get_maxrecs(cur, level)) {
4058 		/*
4059 		 * Set "right" to be the starting block,
4060 		 * "left" to be the left neighbor.
4061 		 */
4062 		rptr = cptr;
4063 		right = block;
4064 		rbp = bp;
4065 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4066 		if (error)
4067 			goto error0;
4068 
4069 	/*
4070 	 * If that won't work, see if we can join with the right neighbor block.
4071 	 */
4072 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4073 		   rrecs + xfs_btree_get_numrecs(block) <=
4074 			cur->bc_ops->get_maxrecs(cur, level)) {
4075 		/*
4076 		 * Set "left" to be the starting block,
4077 		 * "right" to be the right neighbor.
4078 		 */
4079 		lptr = cptr;
4080 		left = block;
4081 		lbp = bp;
4082 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4083 		if (error)
4084 			goto error0;
4085 
4086 	/*
4087 	 * Otherwise, we can't fix the imbalance.
4088 	 * Just return.  This is probably a logic error, but it's not fatal.
4089 	 */
4090 	} else {
4091 		error = xfs_btree_dec_cursor(cur, level, stat);
4092 		if (error)
4093 			goto error0;
4094 		return 0;
4095 	}
4096 
4097 	rrecs = xfs_btree_get_numrecs(right);
4098 	lrecs = xfs_btree_get_numrecs(left);
4099 
4100 	/*
4101 	 * We're now going to join "left" and "right" by moving all the stuff
4102 	 * in "right" to "left" and deleting "right".
4103 	 */
4104 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4105 	if (level > 0) {
4106 		/* It's a non-leaf.  Move keys and pointers. */
4107 		union xfs_btree_key	*lkp;	/* left btree key */
4108 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4109 		union xfs_btree_key	*rkp;	/* right btree key */
4110 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4111 
4112 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4113 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4114 		rkp = xfs_btree_key_addr(cur, 1, right);
4115 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4116 #ifdef DEBUG
4117 		for (i = 1; i < rrecs; i++) {
4118 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4119 			if (error)
4120 				goto error0;
4121 		}
4122 #endif
4123 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4124 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4125 
4126 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4127 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4128 	} else {
4129 		/* It's a leaf.  Move records.  */
4130 		union xfs_btree_rec	*lrp;	/* left record pointer */
4131 		union xfs_btree_rec	*rrp;	/* right record pointer */
4132 
4133 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4134 		rrp = xfs_btree_rec_addr(cur, 1, right);
4135 
4136 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4137 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4138 	}
4139 
4140 	XFS_BTREE_STATS_INC(cur, join);
4141 
4142 	/*
4143 	 * Fix up the number of records and right block pointer in the
4144 	 * surviving block, and log it.
4145 	 */
4146 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4147 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4148 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4149 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4150 
4151 	/* If there is a right sibling, point it to the remaining block. */
4152 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4153 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4154 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4155 		if (error)
4156 			goto error0;
4157 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4158 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4159 	}
4160 
4161 	/* Free the deleted block. */
4162 	error = xfs_btree_free_block(cur, rbp);
4163 	if (error)
4164 		goto error0;
4165 
4166 	/*
4167 	 * If we joined with the left neighbor, set the buffer in the
4168 	 * cursor to the left block, and fix up the index.
4169 	 */
4170 	if (bp != lbp) {
4171 		cur->bc_bufs[level] = lbp;
4172 		cur->bc_ptrs[level] += lrecs;
4173 		cur->bc_ra[level] = 0;
4174 	}
4175 	/*
4176 	 * If we joined with the right neighbor and there's a level above
4177 	 * us, increment the cursor at that level.
4178 	 */
4179 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4180 		   (level + 1 < cur->bc_nlevels)) {
4181 		error = xfs_btree_increment(cur, level + 1, &i);
4182 		if (error)
4183 			goto error0;
4184 	}
4185 
4186 	/*
4187 	 * Readjust the ptr at this level if it's not a leaf, since it's
4188 	 * still pointing at the deletion point, which makes the cursor
4189 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4190 	 * We can't use decrement because it would change the next level up.
4191 	 */
4192 	if (level > 0)
4193 		cur->bc_ptrs[level]--;
4194 
4195 	/*
4196 	 * We combined blocks, so we have to update the parent keys if the
4197 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4198 	 * points to the old block so that the caller knows which record to
4199 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4200 	 * for us if we return stat == 2.  The other exit points from this
4201 	 * function don't require deletions further up the tree, so they can
4202 	 * call updkeys directly.
4203 	 */
4204 
4205 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4206 	/* Return value means the next level up has something to do. */
4207 	*stat = 2;
4208 	return 0;
4209 
4210 error0:
4211 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4212 	if (tcur)
4213 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4214 	return error;
4215 }
4216 
4217 /*
4218  * Delete the record pointed to by cur.
4219  * The cursor refers to the place where the record was (could be inserted)
4220  * when the operation returns.
4221  */
4222 int					/* error */
4223 xfs_btree_delete(
4224 	struct xfs_btree_cur	*cur,
4225 	int			*stat)	/* success/failure */
4226 {
4227 	int			error;	/* error return value */
4228 	int			level;
4229 	int			i;
4230 	bool			joined = false;
4231 
4232 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4233 
4234 	/*
4235 	 * Go up the tree, starting at leaf level.
4236 	 *
4237 	 * If 2 is returned then a join was done; go to the next level.
4238 	 * Otherwise we are done.
4239 	 */
4240 	for (level = 0, i = 2; i == 2; level++) {
4241 		error = xfs_btree_delrec(cur, level, &i);
4242 		if (error)
4243 			goto error0;
4244 		if (i == 2)
4245 			joined = true;
4246 	}
4247 
4248 	/*
4249 	 * If we combined blocks as part of deleting the record, delrec won't
4250 	 * have updated the parent high keys so we have to do that here.
4251 	 */
4252 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4253 		error = xfs_btree_updkeys_force(cur, 0);
4254 		if (error)
4255 			goto error0;
4256 	}
4257 
4258 	if (i == 0) {
4259 		for (level = 1; level < cur->bc_nlevels; level++) {
4260 			if (cur->bc_ptrs[level] == 0) {
4261 				error = xfs_btree_decrement(cur, level, &i);
4262 				if (error)
4263 					goto error0;
4264 				break;
4265 			}
4266 		}
4267 	}
4268 
4269 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4270 	*stat = i;
4271 	return 0;
4272 error0:
4273 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4274 	return error;
4275 }
4276 
4277 /*
4278  * Get the data from the pointed-to record.
4279  */
4280 int					/* error */
4281 xfs_btree_get_rec(
4282 	struct xfs_btree_cur	*cur,	/* btree cursor */
4283 	union xfs_btree_rec	**recp,	/* output: btree record */
4284 	int			*stat)	/* output: success/failure */
4285 {
4286 	struct xfs_btree_block	*block;	/* btree block */
4287 	struct xfs_buf		*bp;	/* buffer pointer */
4288 	int			ptr;	/* record number */
4289 #ifdef DEBUG
4290 	int			error;	/* error return value */
4291 #endif
4292 
4293 	ptr = cur->bc_ptrs[0];
4294 	block = xfs_btree_get_block(cur, 0, &bp);
4295 
4296 #ifdef DEBUG
4297 	error = xfs_btree_check_block(cur, block, 0, bp);
4298 	if (error)
4299 		return error;
4300 #endif
4301 
4302 	/*
4303 	 * Off the right end or left end, return failure.
4304 	 */
4305 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4306 		*stat = 0;
4307 		return 0;
4308 	}
4309 
4310 	/*
4311 	 * Point to the record and extract its data.
4312 	 */
4313 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4314 	*stat = 1;
4315 	return 0;
4316 }
4317 
4318 /* Visit a block in a btree. */
4319 STATIC int
4320 xfs_btree_visit_block(
4321 	struct xfs_btree_cur		*cur,
4322 	int				level,
4323 	xfs_btree_visit_blocks_fn	fn,
4324 	void				*data)
4325 {
4326 	struct xfs_btree_block		*block;
4327 	struct xfs_buf			*bp;
4328 	union xfs_btree_ptr		rptr;
4329 	int				error;
4330 
4331 	/* do right sibling readahead */
4332 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4333 	block = xfs_btree_get_block(cur, level, &bp);
4334 
4335 	/* process the block */
4336 	error = fn(cur, level, data);
4337 	if (error)
4338 		return error;
4339 
4340 	/* now read rh sibling block for next iteration */
4341 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4342 	if (xfs_btree_ptr_is_null(cur, &rptr))
4343 		return -ENOENT;
4344 
4345 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4346 }
4347 
4348 
4349 /* Visit every block in a btree. */
4350 int
4351 xfs_btree_visit_blocks(
4352 	struct xfs_btree_cur		*cur,
4353 	xfs_btree_visit_blocks_fn	fn,
4354 	void				*data)
4355 {
4356 	union xfs_btree_ptr		lptr;
4357 	int				level;
4358 	struct xfs_btree_block		*block = NULL;
4359 	int				error = 0;
4360 
4361 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4362 
4363 	/* for each level */
4364 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4365 		/* grab the left hand block */
4366 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4367 		if (error)
4368 			return error;
4369 
4370 		/* readahead the left most block for the next level down */
4371 		if (level > 0) {
4372 			union xfs_btree_ptr     *ptr;
4373 
4374 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4375 			xfs_btree_readahead_ptr(cur, ptr, 1);
4376 
4377 			/* save for the next iteration of the loop */
4378 			lptr = *ptr;
4379 		}
4380 
4381 		/* for each buffer in the level */
4382 		do {
4383 			error = xfs_btree_visit_block(cur, level, fn, data);
4384 		} while (!error);
4385 
4386 		if (error != -ENOENT)
4387 			return error;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 /*
4394  * Change the owner of a btree.
4395  *
4396  * The mechanism we use here is ordered buffer logging. Because we don't know
4397  * how many buffers were are going to need to modify, we don't really want to
4398  * have to make transaction reservations for the worst case of every buffer in a
4399  * full size btree as that may be more space that we can fit in the log....
4400  *
4401  * We do the btree walk in the most optimal manner possible - we have sibling
4402  * pointers so we can just walk all the blocks on each level from left to right
4403  * in a single pass, and then move to the next level and do the same. We can
4404  * also do readahead on the sibling pointers to get IO moving more quickly,
4405  * though for slow disks this is unlikely to make much difference to performance
4406  * as the amount of CPU work we have to do before moving to the next block is
4407  * relatively small.
4408  *
4409  * For each btree block that we load, modify the owner appropriately, set the
4410  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4411  * we mark the region we change dirty so that if the buffer is relogged in
4412  * a subsequent transaction the changes we make here as an ordered buffer are
4413  * correctly relogged in that transaction.  If we are in recovery context, then
4414  * just queue the modified buffer as delayed write buffer so the transaction
4415  * recovery completion writes the changes to disk.
4416  */
4417 struct xfs_btree_block_change_owner_info {
4418 	__uint64_t		new_owner;
4419 	struct list_head	*buffer_list;
4420 };
4421 
4422 static int
4423 xfs_btree_block_change_owner(
4424 	struct xfs_btree_cur	*cur,
4425 	int			level,
4426 	void			*data)
4427 {
4428 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4429 	struct xfs_btree_block	*block;
4430 	struct xfs_buf		*bp;
4431 
4432 	/* modify the owner */
4433 	block = xfs_btree_get_block(cur, level, &bp);
4434 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4435 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4436 	else
4437 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4438 
4439 	/*
4440 	 * If the block is a root block hosted in an inode, we might not have a
4441 	 * buffer pointer here and we shouldn't attempt to log the change as the
4442 	 * information is already held in the inode and discarded when the root
4443 	 * block is formatted into the on-disk inode fork. We still change it,
4444 	 * though, so everything is consistent in memory.
4445 	 */
4446 	if (bp) {
4447 		if (cur->bc_tp) {
4448 			xfs_trans_ordered_buf(cur->bc_tp, bp);
4449 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4450 		} else {
4451 			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4452 		}
4453 	} else {
4454 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4455 		ASSERT(level == cur->bc_nlevels - 1);
4456 	}
4457 
4458 	return 0;
4459 }
4460 
4461 int
4462 xfs_btree_change_owner(
4463 	struct xfs_btree_cur	*cur,
4464 	__uint64_t		new_owner,
4465 	struct list_head	*buffer_list)
4466 {
4467 	struct xfs_btree_block_change_owner_info	bbcoi;
4468 
4469 	bbcoi.new_owner = new_owner;
4470 	bbcoi.buffer_list = buffer_list;
4471 
4472 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4473 			&bbcoi);
4474 }
4475 
4476 /**
4477  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4478  *				      btree block
4479  *
4480  * @bp: buffer containing the btree block
4481  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4482  * @pag_max_level: pointer to the per-ag max level field
4483  */
4484 bool
4485 xfs_btree_sblock_v5hdr_verify(
4486 	struct xfs_buf		*bp)
4487 {
4488 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4489 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4490 	struct xfs_perag	*pag = bp->b_pag;
4491 
4492 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4493 		return false;
4494 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4495 		return false;
4496 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4497 		return false;
4498 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4499 		return false;
4500 	return true;
4501 }
4502 
4503 /**
4504  * xfs_btree_sblock_verify() -- verify a short-format btree block
4505  *
4506  * @bp: buffer containing the btree block
4507  * @max_recs: maximum records allowed in this btree node
4508  */
4509 bool
4510 xfs_btree_sblock_verify(
4511 	struct xfs_buf		*bp,
4512 	unsigned int		max_recs)
4513 {
4514 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4515 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4516 
4517 	/* numrecs verification */
4518 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4519 		return false;
4520 
4521 	/* sibling pointer verification */
4522 	if (!block->bb_u.s.bb_leftsib ||
4523 	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4524 	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4525 		return false;
4526 	if (!block->bb_u.s.bb_rightsib ||
4527 	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4528 	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4529 		return false;
4530 
4531 	return true;
4532 }
4533 
4534 /*
4535  * Calculate the number of btree levels needed to store a given number of
4536  * records in a short-format btree.
4537  */
4538 uint
4539 xfs_btree_compute_maxlevels(
4540 	struct xfs_mount	*mp,
4541 	uint			*limits,
4542 	unsigned long		len)
4543 {
4544 	uint			level;
4545 	unsigned long		maxblocks;
4546 
4547 	maxblocks = (len + limits[0] - 1) / limits[0];
4548 	for (level = 1; maxblocks > 1; level++)
4549 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4550 	return level;
4551 }
4552 
4553 /*
4554  * Query a regular btree for all records overlapping a given interval.
4555  * Start with a LE lookup of the key of low_rec and return all records
4556  * until we find a record with a key greater than the key of high_rec.
4557  */
4558 STATIC int
4559 xfs_btree_simple_query_range(
4560 	struct xfs_btree_cur		*cur,
4561 	union xfs_btree_key		*low_key,
4562 	union xfs_btree_key		*high_key,
4563 	xfs_btree_query_range_fn	fn,
4564 	void				*priv)
4565 {
4566 	union xfs_btree_rec		*recp;
4567 	union xfs_btree_key		rec_key;
4568 	__int64_t			diff;
4569 	int				stat;
4570 	bool				firstrec = true;
4571 	int				error;
4572 
4573 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4574 	ASSERT(cur->bc_ops->diff_two_keys);
4575 
4576 	/*
4577 	 * Find the leftmost record.  The btree cursor must be set
4578 	 * to the low record used to generate low_key.
4579 	 */
4580 	stat = 0;
4581 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4582 	if (error)
4583 		goto out;
4584 
4585 	/* Nothing?  See if there's anything to the right. */
4586 	if (!stat) {
4587 		error = xfs_btree_increment(cur, 0, &stat);
4588 		if (error)
4589 			goto out;
4590 	}
4591 
4592 	while (stat) {
4593 		/* Find the record. */
4594 		error = xfs_btree_get_rec(cur, &recp, &stat);
4595 		if (error || !stat)
4596 			break;
4597 
4598 		/* Skip if high_key(rec) < low_key. */
4599 		if (firstrec) {
4600 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4601 			firstrec = false;
4602 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4603 					&rec_key);
4604 			if (diff > 0)
4605 				goto advloop;
4606 		}
4607 
4608 		/* Stop if high_key < low_key(rec). */
4609 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4610 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4611 		if (diff > 0)
4612 			break;
4613 
4614 		/* Callback */
4615 		error = fn(cur, recp, priv);
4616 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4617 			break;
4618 
4619 advloop:
4620 		/* Move on to the next record. */
4621 		error = xfs_btree_increment(cur, 0, &stat);
4622 		if (error)
4623 			break;
4624 	}
4625 
4626 out:
4627 	return error;
4628 }
4629 
4630 /*
4631  * Query an overlapped interval btree for all records overlapping a given
4632  * interval.  This function roughly follows the algorithm given in
4633  * "Interval Trees" of _Introduction to Algorithms_, which is section
4634  * 14.3 in the 2nd and 3rd editions.
4635  *
4636  * First, generate keys for the low and high records passed in.
4637  *
4638  * For any leaf node, generate the high and low keys for the record.
4639  * If the record keys overlap with the query low/high keys, pass the
4640  * record to the function iterator.
4641  *
4642  * For any internal node, compare the low and high keys of each
4643  * pointer against the query low/high keys.  If there's an overlap,
4644  * follow the pointer.
4645  *
4646  * As an optimization, we stop scanning a block when we find a low key
4647  * that is greater than the query's high key.
4648  */
4649 STATIC int
4650 xfs_btree_overlapped_query_range(
4651 	struct xfs_btree_cur		*cur,
4652 	union xfs_btree_key		*low_key,
4653 	union xfs_btree_key		*high_key,
4654 	xfs_btree_query_range_fn	fn,
4655 	void				*priv)
4656 {
4657 	union xfs_btree_ptr		ptr;
4658 	union xfs_btree_ptr		*pp;
4659 	union xfs_btree_key		rec_key;
4660 	union xfs_btree_key		rec_hkey;
4661 	union xfs_btree_key		*lkp;
4662 	union xfs_btree_key		*hkp;
4663 	union xfs_btree_rec		*recp;
4664 	struct xfs_btree_block		*block;
4665 	__int64_t			ldiff;
4666 	__int64_t			hdiff;
4667 	int				level;
4668 	struct xfs_buf			*bp;
4669 	int				i;
4670 	int				error;
4671 
4672 	/* Load the root of the btree. */
4673 	level = cur->bc_nlevels - 1;
4674 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4675 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4676 	if (error)
4677 		return error;
4678 	xfs_btree_get_block(cur, level, &bp);
4679 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4680 #ifdef DEBUG
4681 	error = xfs_btree_check_block(cur, block, level, bp);
4682 	if (error)
4683 		goto out;
4684 #endif
4685 	cur->bc_ptrs[level] = 1;
4686 
4687 	while (level < cur->bc_nlevels) {
4688 		block = xfs_btree_get_block(cur, level, &bp);
4689 
4690 		/* End of node, pop back towards the root. */
4691 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4692 pop_up:
4693 			if (level < cur->bc_nlevels - 1)
4694 				cur->bc_ptrs[level + 1]++;
4695 			level++;
4696 			continue;
4697 		}
4698 
4699 		if (level == 0) {
4700 			/* Handle a leaf node. */
4701 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4702 
4703 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4704 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4705 					low_key);
4706 
4707 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4708 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4709 					&rec_key);
4710 
4711 			/*
4712 			 * If (record's high key >= query's low key) and
4713 			 *    (query's high key >= record's low key), then
4714 			 * this record overlaps the query range; callback.
4715 			 */
4716 			if (ldiff >= 0 && hdiff >= 0) {
4717 				error = fn(cur, recp, priv);
4718 				if (error < 0 ||
4719 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4720 					break;
4721 			} else if (hdiff < 0) {
4722 				/* Record is larger than high key; pop. */
4723 				goto pop_up;
4724 			}
4725 			cur->bc_ptrs[level]++;
4726 			continue;
4727 		}
4728 
4729 		/* Handle an internal node. */
4730 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4731 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4732 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4733 
4734 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4735 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4736 
4737 		/*
4738 		 * If (pointer's high key >= query's low key) and
4739 		 *    (query's high key >= pointer's low key), then
4740 		 * this record overlaps the query range; follow pointer.
4741 		 */
4742 		if (ldiff >= 0 && hdiff >= 0) {
4743 			level--;
4744 			error = xfs_btree_lookup_get_block(cur, level, pp,
4745 					&block);
4746 			if (error)
4747 				goto out;
4748 			xfs_btree_get_block(cur, level, &bp);
4749 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4750 #ifdef DEBUG
4751 			error = xfs_btree_check_block(cur, block, level, bp);
4752 			if (error)
4753 				goto out;
4754 #endif
4755 			cur->bc_ptrs[level] = 1;
4756 			continue;
4757 		} else if (hdiff < 0) {
4758 			/* The low key is larger than the upper range; pop. */
4759 			goto pop_up;
4760 		}
4761 		cur->bc_ptrs[level]++;
4762 	}
4763 
4764 out:
4765 	/*
4766 	 * If we don't end this function with the cursor pointing at a record
4767 	 * block, a subsequent non-error cursor deletion will not release
4768 	 * node-level buffers, causing a buffer leak.  This is quite possible
4769 	 * with a zero-results range query, so release the buffers if we
4770 	 * failed to return any results.
4771 	 */
4772 	if (cur->bc_bufs[0] == NULL) {
4773 		for (i = 0; i < cur->bc_nlevels; i++) {
4774 			if (cur->bc_bufs[i]) {
4775 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4776 				cur->bc_bufs[i] = NULL;
4777 				cur->bc_ptrs[i] = 0;
4778 				cur->bc_ra[i] = 0;
4779 			}
4780 		}
4781 	}
4782 
4783 	return error;
4784 }
4785 
4786 /*
4787  * Query a btree for all records overlapping a given interval of keys.  The
4788  * supplied function will be called with each record found; return one of the
4789  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4790  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4791  * negative error code.
4792  */
4793 int
4794 xfs_btree_query_range(
4795 	struct xfs_btree_cur		*cur,
4796 	union xfs_btree_irec		*low_rec,
4797 	union xfs_btree_irec		*high_rec,
4798 	xfs_btree_query_range_fn	fn,
4799 	void				*priv)
4800 {
4801 	union xfs_btree_rec		rec;
4802 	union xfs_btree_key		low_key;
4803 	union xfs_btree_key		high_key;
4804 
4805 	/* Find the keys of both ends of the interval. */
4806 	cur->bc_rec = *high_rec;
4807 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4808 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4809 
4810 	cur->bc_rec = *low_rec;
4811 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4812 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4813 
4814 	/* Enforce low key < high key. */
4815 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4816 		return -EINVAL;
4817 
4818 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4819 		return xfs_btree_simple_query_range(cur, &low_key,
4820 				&high_key, fn, priv);
4821 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4822 			fn, priv);
4823 }
4824 
4825 /*
4826  * Calculate the number of blocks needed to store a given number of records
4827  * in a short-format (per-AG metadata) btree.
4828  */
4829 xfs_extlen_t
4830 xfs_btree_calc_size(
4831 	struct xfs_mount	*mp,
4832 	uint			*limits,
4833 	unsigned long long	len)
4834 {
4835 	int			level;
4836 	int			maxrecs;
4837 	xfs_extlen_t		rval;
4838 
4839 	maxrecs = limits[0];
4840 	for (level = 0, rval = 0; len > 1; level++) {
4841 		len += maxrecs - 1;
4842 		do_div(len, maxrecs);
4843 		maxrecs = limits[1];
4844 		rval += len;
4845 	}
4846 	return rval;
4847 }
4848 
4849 static int
4850 xfs_btree_count_blocks_helper(
4851 	struct xfs_btree_cur	*cur,
4852 	int			level,
4853 	void			*data)
4854 {
4855 	xfs_extlen_t		*blocks = data;
4856 	(*blocks)++;
4857 
4858 	return 0;
4859 }
4860 
4861 /* Count the blocks in a btree and return the result in *blocks. */
4862 int
4863 xfs_btree_count_blocks(
4864 	struct xfs_btree_cur	*cur,
4865 	xfs_extlen_t		*blocks)
4866 {
4867 	*blocks = 0;
4868 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4869 			blocks);
4870 }
4871