xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 7fc96d71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
66 xfs_btree_check_lblock_siblings(
67 	struct xfs_mount	*mp,
68 	struct xfs_btree_cur	*cur,
69 	int			level,
70 	xfs_fsblock_t		fsb,
71 	__be64			dsibling)
72 {
73 	xfs_fsblock_t		sibling;
74 
75 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 		return NULL;
77 
78 	sibling = be64_to_cpu(dsibling);
79 	if (sibling == fsb)
80 		return __this_address;
81 	if (level >= 0) {
82 		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 			return __this_address;
84 	} else {
85 		if (!xfs_verify_fsbno(mp, sibling))
86 			return __this_address;
87 	}
88 
89 	return NULL;
90 }
91 
92 static inline xfs_failaddr_t
93 xfs_btree_check_sblock_siblings(
94 	struct xfs_mount	*mp,
95 	struct xfs_btree_cur	*cur,
96 	int			level,
97 	xfs_agnumber_t		agno,
98 	xfs_agblock_t		agbno,
99 	__be32			dsibling)
100 {
101 	xfs_agblock_t		sibling;
102 
103 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
104 		return NULL;
105 
106 	sibling = be32_to_cpu(dsibling);
107 	if (sibling == agbno)
108 		return __this_address;
109 	if (level >= 0) {
110 		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
111 			return __this_address;
112 	} else {
113 		if (!xfs_verify_agbno(mp, agno, sibling))
114 			return __this_address;
115 	}
116 	return NULL;
117 }
118 
119 /*
120  * Check a long btree block header.  Return the address of the failing check,
121  * or NULL if everything is ok.
122  */
123 xfs_failaddr_t
124 __xfs_btree_check_lblock(
125 	struct xfs_btree_cur	*cur,
126 	struct xfs_btree_block	*block,
127 	int			level,
128 	struct xfs_buf		*bp)
129 {
130 	struct xfs_mount	*mp = cur->bc_mp;
131 	xfs_btnum_t		btnum = cur->bc_btnum;
132 	int			crc = xfs_has_crc(mp);
133 	xfs_failaddr_t		fa;
134 	xfs_fsblock_t		fsb = NULLFSBLOCK;
135 
136 	if (crc) {
137 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
138 			return __this_address;
139 		if (block->bb_u.l.bb_blkno !=
140 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
141 			return __this_address;
142 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
143 			return __this_address;
144 	}
145 
146 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
147 		return __this_address;
148 	if (be16_to_cpu(block->bb_level) != level)
149 		return __this_address;
150 	if (be16_to_cpu(block->bb_numrecs) >
151 	    cur->bc_ops->get_maxrecs(cur, level))
152 		return __this_address;
153 
154 	if (bp)
155 		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
156 
157 	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
158 			block->bb_u.l.bb_leftsib);
159 	if (!fa)
160 		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
161 				block->bb_u.l.bb_rightsib);
162 	return fa;
163 }
164 
165 /* Check a long btree block header. */
166 static int
167 xfs_btree_check_lblock(
168 	struct xfs_btree_cur	*cur,
169 	struct xfs_btree_block	*block,
170 	int			level,
171 	struct xfs_buf		*bp)
172 {
173 	struct xfs_mount	*mp = cur->bc_mp;
174 	xfs_failaddr_t		fa;
175 
176 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
177 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
178 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
179 		if (bp)
180 			trace_xfs_btree_corrupt(bp, _RET_IP_);
181 		return -EFSCORRUPTED;
182 	}
183 	return 0;
184 }
185 
186 /*
187  * Check a short btree block header.  Return the address of the failing check,
188  * or NULL if everything is ok.
189  */
190 xfs_failaddr_t
191 __xfs_btree_check_sblock(
192 	struct xfs_btree_cur	*cur,
193 	struct xfs_btree_block	*block,
194 	int			level,
195 	struct xfs_buf		*bp)
196 {
197 	struct xfs_mount	*mp = cur->bc_mp;
198 	xfs_btnum_t		btnum = cur->bc_btnum;
199 	int			crc = xfs_has_crc(mp);
200 	xfs_failaddr_t		fa;
201 	xfs_agblock_t		agbno = NULLAGBLOCK;
202 	xfs_agnumber_t		agno = NULLAGNUMBER;
203 
204 	if (crc) {
205 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
206 			return __this_address;
207 		if (block->bb_u.s.bb_blkno !=
208 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
209 			return __this_address;
210 	}
211 
212 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
213 		return __this_address;
214 	if (be16_to_cpu(block->bb_level) != level)
215 		return __this_address;
216 	if (be16_to_cpu(block->bb_numrecs) >
217 	    cur->bc_ops->get_maxrecs(cur, level))
218 		return __this_address;
219 
220 	if (bp) {
221 		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
222 		agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
223 	}
224 
225 	fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, agbno,
226 			block->bb_u.s.bb_leftsib);
227 	if (!fa)
228 		fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno,
229 				 agbno, block->bb_u.s.bb_rightsib);
230 	return fa;
231 }
232 
233 /* Check a short btree block header. */
234 STATIC int
235 xfs_btree_check_sblock(
236 	struct xfs_btree_cur	*cur,
237 	struct xfs_btree_block	*block,
238 	int			level,
239 	struct xfs_buf		*bp)
240 {
241 	struct xfs_mount	*mp = cur->bc_mp;
242 	xfs_failaddr_t		fa;
243 
244 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
245 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
246 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
247 		if (bp)
248 			trace_xfs_btree_corrupt(bp, _RET_IP_);
249 		return -EFSCORRUPTED;
250 	}
251 	return 0;
252 }
253 
254 /*
255  * Debug routine: check that block header is ok.
256  */
257 int
258 xfs_btree_check_block(
259 	struct xfs_btree_cur	*cur,	/* btree cursor */
260 	struct xfs_btree_block	*block,	/* generic btree block pointer */
261 	int			level,	/* level of the btree block */
262 	struct xfs_buf		*bp)	/* buffer containing block, if any */
263 {
264 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
265 		return xfs_btree_check_lblock(cur, block, level, bp);
266 	else
267 		return xfs_btree_check_sblock(cur, block, level, bp);
268 }
269 
270 /* Check that this long pointer is valid and points within the fs. */
271 bool
272 xfs_btree_check_lptr(
273 	struct xfs_btree_cur	*cur,
274 	xfs_fsblock_t		fsbno,
275 	int			level)
276 {
277 	if (level <= 0)
278 		return false;
279 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
280 }
281 
282 /* Check that this short pointer is valid and points within the AG. */
283 bool
284 xfs_btree_check_sptr(
285 	struct xfs_btree_cur	*cur,
286 	xfs_agblock_t		agbno,
287 	int			level)
288 {
289 	if (level <= 0)
290 		return false;
291 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
292 }
293 
294 /*
295  * Check that a given (indexed) btree pointer at a certain level of a
296  * btree is valid and doesn't point past where it should.
297  */
298 static int
299 xfs_btree_check_ptr(
300 	struct xfs_btree_cur		*cur,
301 	const union xfs_btree_ptr	*ptr,
302 	int				index,
303 	int				level)
304 {
305 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
306 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
307 				level))
308 			return 0;
309 		xfs_err(cur->bc_mp,
310 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
311 				cur->bc_ino.ip->i_ino,
312 				cur->bc_ino.whichfork, cur->bc_btnum,
313 				level, index);
314 	} else {
315 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
316 				level))
317 			return 0;
318 		xfs_err(cur->bc_mp,
319 "AG %u: Corrupt btree %d pointer at level %d index %d.",
320 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
321 				level, index);
322 	}
323 
324 	return -EFSCORRUPTED;
325 }
326 
327 #ifdef DEBUG
328 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
329 #else
330 # define xfs_btree_debug_check_ptr(...)	(0)
331 #endif
332 
333 /*
334  * Calculate CRC on the whole btree block and stuff it into the
335  * long-form btree header.
336  *
337  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
338  * it into the buffer so recovery knows what the last modification was that made
339  * it to disk.
340  */
341 void
342 xfs_btree_lblock_calc_crc(
343 	struct xfs_buf		*bp)
344 {
345 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
346 	struct xfs_buf_log_item	*bip = bp->b_log_item;
347 
348 	if (!xfs_has_crc(bp->b_mount))
349 		return;
350 	if (bip)
351 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
352 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
353 }
354 
355 bool
356 xfs_btree_lblock_verify_crc(
357 	struct xfs_buf		*bp)
358 {
359 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
360 	struct xfs_mount	*mp = bp->b_mount;
361 
362 	if (xfs_has_crc(mp)) {
363 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
364 			return false;
365 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
366 	}
367 
368 	return true;
369 }
370 
371 /*
372  * Calculate CRC on the whole btree block and stuff it into the
373  * short-form btree header.
374  *
375  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
376  * it into the buffer so recovery knows what the last modification was that made
377  * it to disk.
378  */
379 void
380 xfs_btree_sblock_calc_crc(
381 	struct xfs_buf		*bp)
382 {
383 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
384 	struct xfs_buf_log_item	*bip = bp->b_log_item;
385 
386 	if (!xfs_has_crc(bp->b_mount))
387 		return;
388 	if (bip)
389 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
390 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
391 }
392 
393 bool
394 xfs_btree_sblock_verify_crc(
395 	struct xfs_buf		*bp)
396 {
397 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
398 	struct xfs_mount	*mp = bp->b_mount;
399 
400 	if (xfs_has_crc(mp)) {
401 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
402 			return false;
403 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
404 	}
405 
406 	return true;
407 }
408 
409 static int
410 xfs_btree_free_block(
411 	struct xfs_btree_cur	*cur,
412 	struct xfs_buf		*bp)
413 {
414 	int			error;
415 
416 	error = cur->bc_ops->free_block(cur, bp);
417 	if (!error) {
418 		xfs_trans_binval(cur->bc_tp, bp);
419 		XFS_BTREE_STATS_INC(cur, free);
420 	}
421 	return error;
422 }
423 
424 /*
425  * Delete the btree cursor.
426  */
427 void
428 xfs_btree_del_cursor(
429 	struct xfs_btree_cur	*cur,		/* btree cursor */
430 	int			error)		/* del because of error */
431 {
432 	int			i;		/* btree level */
433 
434 	/*
435 	 * Clear the buffer pointers and release the buffers. If we're doing
436 	 * this because of an error, inspect all of the entries in the bc_bufs
437 	 * array for buffers to be unlocked. This is because some of the btree
438 	 * code works from level n down to 0, and if we get an error along the
439 	 * way we won't have initialized all the entries down to 0.
440 	 */
441 	for (i = 0; i < cur->bc_nlevels; i++) {
442 		if (cur->bc_levels[i].bp)
443 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
444 		else if (!error)
445 			break;
446 	}
447 
448 	/*
449 	 * If we are doing a BMBT update, the number of unaccounted blocks
450 	 * allocated during this cursor life time should be zero. If it's not
451 	 * zero, then we should be shut down or on our way to shutdown due to
452 	 * cancelling a dirty transaction on error.
453 	 */
454 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
455 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
456 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
457 		kmem_free(cur->bc_ops);
458 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
459 		xfs_perag_put(cur->bc_ag.pag);
460 	kmem_cache_free(cur->bc_cache, cur);
461 }
462 
463 /*
464  * Duplicate the btree cursor.
465  * Allocate a new one, copy the record, re-get the buffers.
466  */
467 int					/* error */
468 xfs_btree_dup_cursor(
469 	struct xfs_btree_cur *cur,		/* input cursor */
470 	struct xfs_btree_cur **ncur)		/* output cursor */
471 {
472 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
473 	int		error;		/* error return value */
474 	int		i;		/* level number of btree block */
475 	xfs_mount_t	*mp;		/* mount structure for filesystem */
476 	struct xfs_btree_cur *new;		/* new cursor value */
477 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
478 
479 	tp = cur->bc_tp;
480 	mp = cur->bc_mp;
481 
482 	/*
483 	 * Allocate a new cursor like the old one.
484 	 */
485 	new = cur->bc_ops->dup_cursor(cur);
486 
487 	/*
488 	 * Copy the record currently in the cursor.
489 	 */
490 	new->bc_rec = cur->bc_rec;
491 
492 	/*
493 	 * For each level current, re-get the buffer and copy the ptr value.
494 	 */
495 	for (i = 0; i < new->bc_nlevels; i++) {
496 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
497 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
498 		bp = cur->bc_levels[i].bp;
499 		if (bp) {
500 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
501 						   xfs_buf_daddr(bp), mp->m_bsize,
502 						   0, &bp,
503 						   cur->bc_ops->buf_ops);
504 			if (error) {
505 				xfs_btree_del_cursor(new, error);
506 				*ncur = NULL;
507 				return error;
508 			}
509 		}
510 		new->bc_levels[i].bp = bp;
511 	}
512 	*ncur = new;
513 	return 0;
514 }
515 
516 /*
517  * XFS btree block layout and addressing:
518  *
519  * There are two types of blocks in the btree: leaf and non-leaf blocks.
520  *
521  * The leaf record start with a header then followed by records containing
522  * the values.  A non-leaf block also starts with the same header, and
523  * then first contains lookup keys followed by an equal number of pointers
524  * to the btree blocks at the previous level.
525  *
526  *		+--------+-------+-------+-------+-------+-------+-------+
527  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
528  *		+--------+-------+-------+-------+-------+-------+-------+
529  *
530  *		+--------+-------+-------+-------+-------+-------+-------+
531  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
532  *		+--------+-------+-------+-------+-------+-------+-------+
533  *
534  * The header is called struct xfs_btree_block for reasons better left unknown
535  * and comes in different versions for short (32bit) and long (64bit) block
536  * pointers.  The record and key structures are defined by the btree instances
537  * and opaque to the btree core.  The block pointers are simple disk endian
538  * integers, available in a short (32bit) and long (64bit) variant.
539  *
540  * The helpers below calculate the offset of a given record, key or pointer
541  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
542  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
543  * inside the btree block is done using indices starting at one, not zero!
544  *
545  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
546  * overlapping intervals.  In such a tree, records are still sorted lowest to
547  * highest and indexed by the smallest key value that refers to the record.
548  * However, nodes are different: each pointer has two associated keys -- one
549  * indexing the lowest key available in the block(s) below (the same behavior
550  * as the key in a regular btree) and another indexing the highest key
551  * available in the block(s) below.  Because records are /not/ sorted by the
552  * highest key, all leaf block updates require us to compute the highest key
553  * that matches any record in the leaf and to recursively update the high keys
554  * in the nodes going further up in the tree, if necessary.  Nodes look like
555  * this:
556  *
557  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
558  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
559  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
560  *
561  * To perform an interval query on an overlapped tree, perform the usual
562  * depth-first search and use the low and high keys to decide if we can skip
563  * that particular node.  If a leaf node is reached, return the records that
564  * intersect the interval.  Note that an interval query may return numerous
565  * entries.  For a non-overlapped tree, simply search for the record associated
566  * with the lowest key and iterate forward until a non-matching record is
567  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
568  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
569  * more detail.
570  *
571  * Why do we care about overlapping intervals?  Let's say you have a bunch of
572  * reverse mapping records on a reflink filesystem:
573  *
574  * 1: +- file A startblock B offset C length D -----------+
575  * 2:      +- file E startblock F offset G length H --------------+
576  * 3:      +- file I startblock F offset J length K --+
577  * 4:                                                        +- file L... --+
578  *
579  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
580  * we'd simply increment the length of record 1.  But how do we find the record
581  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
582  * record 3 because the keys are ordered first by startblock.  An interval
583  * query would return records 1 and 2 because they both overlap (B+D-1), and
584  * from that we can pick out record 1 as the appropriate left neighbor.
585  *
586  * In the non-overlapped case you can do a LE lookup and decrement the cursor
587  * because a record's interval must end before the next record.
588  */
589 
590 /*
591  * Return size of the btree block header for this btree instance.
592  */
593 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
594 {
595 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
596 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
597 			return XFS_BTREE_LBLOCK_CRC_LEN;
598 		return XFS_BTREE_LBLOCK_LEN;
599 	}
600 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
601 		return XFS_BTREE_SBLOCK_CRC_LEN;
602 	return XFS_BTREE_SBLOCK_LEN;
603 }
604 
605 /*
606  * Return size of btree block pointers for this btree instance.
607  */
608 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
609 {
610 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
611 		sizeof(__be64) : sizeof(__be32);
612 }
613 
614 /*
615  * Calculate offset of the n-th record in a btree block.
616  */
617 STATIC size_t
618 xfs_btree_rec_offset(
619 	struct xfs_btree_cur	*cur,
620 	int			n)
621 {
622 	return xfs_btree_block_len(cur) +
623 		(n - 1) * cur->bc_ops->rec_len;
624 }
625 
626 /*
627  * Calculate offset of the n-th key in a btree block.
628  */
629 STATIC size_t
630 xfs_btree_key_offset(
631 	struct xfs_btree_cur	*cur,
632 	int			n)
633 {
634 	return xfs_btree_block_len(cur) +
635 		(n - 1) * cur->bc_ops->key_len;
636 }
637 
638 /*
639  * Calculate offset of the n-th high key in a btree block.
640  */
641 STATIC size_t
642 xfs_btree_high_key_offset(
643 	struct xfs_btree_cur	*cur,
644 	int			n)
645 {
646 	return xfs_btree_block_len(cur) +
647 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
648 }
649 
650 /*
651  * Calculate offset of the n-th block pointer in a btree block.
652  */
653 STATIC size_t
654 xfs_btree_ptr_offset(
655 	struct xfs_btree_cur	*cur,
656 	int			n,
657 	int			level)
658 {
659 	return xfs_btree_block_len(cur) +
660 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
661 		(n - 1) * xfs_btree_ptr_len(cur);
662 }
663 
664 /*
665  * Return a pointer to the n-th record in the btree block.
666  */
667 union xfs_btree_rec *
668 xfs_btree_rec_addr(
669 	struct xfs_btree_cur	*cur,
670 	int			n,
671 	struct xfs_btree_block	*block)
672 {
673 	return (union xfs_btree_rec *)
674 		((char *)block + xfs_btree_rec_offset(cur, n));
675 }
676 
677 /*
678  * Return a pointer to the n-th key in the btree block.
679  */
680 union xfs_btree_key *
681 xfs_btree_key_addr(
682 	struct xfs_btree_cur	*cur,
683 	int			n,
684 	struct xfs_btree_block	*block)
685 {
686 	return (union xfs_btree_key *)
687 		((char *)block + xfs_btree_key_offset(cur, n));
688 }
689 
690 /*
691  * Return a pointer to the n-th high key in the btree block.
692  */
693 union xfs_btree_key *
694 xfs_btree_high_key_addr(
695 	struct xfs_btree_cur	*cur,
696 	int			n,
697 	struct xfs_btree_block	*block)
698 {
699 	return (union xfs_btree_key *)
700 		((char *)block + xfs_btree_high_key_offset(cur, n));
701 }
702 
703 /*
704  * Return a pointer to the n-th block pointer in the btree block.
705  */
706 union xfs_btree_ptr *
707 xfs_btree_ptr_addr(
708 	struct xfs_btree_cur	*cur,
709 	int			n,
710 	struct xfs_btree_block	*block)
711 {
712 	int			level = xfs_btree_get_level(block);
713 
714 	ASSERT(block->bb_level != 0);
715 
716 	return (union xfs_btree_ptr *)
717 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
718 }
719 
720 struct xfs_ifork *
721 xfs_btree_ifork_ptr(
722 	struct xfs_btree_cur	*cur)
723 {
724 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
725 
726 	if (cur->bc_flags & XFS_BTREE_STAGING)
727 		return cur->bc_ino.ifake->if_fork;
728 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
729 }
730 
731 /*
732  * Get the root block which is stored in the inode.
733  *
734  * For now this btree implementation assumes the btree root is always
735  * stored in the if_broot field of an inode fork.
736  */
737 STATIC struct xfs_btree_block *
738 xfs_btree_get_iroot(
739 	struct xfs_btree_cur	*cur)
740 {
741 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
742 
743 	return (struct xfs_btree_block *)ifp->if_broot;
744 }
745 
746 /*
747  * Retrieve the block pointer from the cursor at the given level.
748  * This may be an inode btree root or from a buffer.
749  */
750 struct xfs_btree_block *		/* generic btree block pointer */
751 xfs_btree_get_block(
752 	struct xfs_btree_cur	*cur,	/* btree cursor */
753 	int			level,	/* level in btree */
754 	struct xfs_buf		**bpp)	/* buffer containing the block */
755 {
756 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
757 	    (level == cur->bc_nlevels - 1)) {
758 		*bpp = NULL;
759 		return xfs_btree_get_iroot(cur);
760 	}
761 
762 	*bpp = cur->bc_levels[level].bp;
763 	return XFS_BUF_TO_BLOCK(*bpp);
764 }
765 
766 /*
767  * Change the cursor to point to the first record at the given level.
768  * Other levels are unaffected.
769  */
770 STATIC int				/* success=1, failure=0 */
771 xfs_btree_firstrec(
772 	struct xfs_btree_cur	*cur,	/* btree cursor */
773 	int			level)	/* level to change */
774 {
775 	struct xfs_btree_block	*block;	/* generic btree block pointer */
776 	struct xfs_buf		*bp;	/* buffer containing block */
777 
778 	/*
779 	 * Get the block pointer for this level.
780 	 */
781 	block = xfs_btree_get_block(cur, level, &bp);
782 	if (xfs_btree_check_block(cur, block, level, bp))
783 		return 0;
784 	/*
785 	 * It's empty, there is no such record.
786 	 */
787 	if (!block->bb_numrecs)
788 		return 0;
789 	/*
790 	 * Set the ptr value to 1, that's the first record/key.
791 	 */
792 	cur->bc_levels[level].ptr = 1;
793 	return 1;
794 }
795 
796 /*
797  * Change the cursor to point to the last record in the current block
798  * at the given level.  Other levels are unaffected.
799  */
800 STATIC int				/* success=1, failure=0 */
801 xfs_btree_lastrec(
802 	struct xfs_btree_cur	*cur,	/* btree cursor */
803 	int			level)	/* level to change */
804 {
805 	struct xfs_btree_block	*block;	/* generic btree block pointer */
806 	struct xfs_buf		*bp;	/* buffer containing block */
807 
808 	/*
809 	 * Get the block pointer for this level.
810 	 */
811 	block = xfs_btree_get_block(cur, level, &bp);
812 	if (xfs_btree_check_block(cur, block, level, bp))
813 		return 0;
814 	/*
815 	 * It's empty, there is no such record.
816 	 */
817 	if (!block->bb_numrecs)
818 		return 0;
819 	/*
820 	 * Set the ptr value to numrecs, that's the last record/key.
821 	 */
822 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
823 	return 1;
824 }
825 
826 /*
827  * Compute first and last byte offsets for the fields given.
828  * Interprets the offsets table, which contains struct field offsets.
829  */
830 void
831 xfs_btree_offsets(
832 	uint32_t	fields,		/* bitmask of fields */
833 	const short	*offsets,	/* table of field offsets */
834 	int		nbits,		/* number of bits to inspect */
835 	int		*first,		/* output: first byte offset */
836 	int		*last)		/* output: last byte offset */
837 {
838 	int		i;		/* current bit number */
839 	uint32_t	imask;		/* mask for current bit number */
840 
841 	ASSERT(fields != 0);
842 	/*
843 	 * Find the lowest bit, so the first byte offset.
844 	 */
845 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
846 		if (imask & fields) {
847 			*first = offsets[i];
848 			break;
849 		}
850 	}
851 	/*
852 	 * Find the highest bit, so the last byte offset.
853 	 */
854 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
855 		if (imask & fields) {
856 			*last = offsets[i + 1] - 1;
857 			break;
858 		}
859 	}
860 }
861 
862 /*
863  * Get a buffer for the block, return it read in.
864  * Long-form addressing.
865  */
866 int
867 xfs_btree_read_bufl(
868 	struct xfs_mount	*mp,		/* file system mount point */
869 	struct xfs_trans	*tp,		/* transaction pointer */
870 	xfs_fsblock_t		fsbno,		/* file system block number */
871 	struct xfs_buf		**bpp,		/* buffer for fsbno */
872 	int			refval,		/* ref count value for buffer */
873 	const struct xfs_buf_ops *ops)
874 {
875 	struct xfs_buf		*bp;		/* return value */
876 	xfs_daddr_t		d;		/* real disk block address */
877 	int			error;
878 
879 	if (!xfs_verify_fsbno(mp, fsbno))
880 		return -EFSCORRUPTED;
881 	d = XFS_FSB_TO_DADDR(mp, fsbno);
882 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
883 				   mp->m_bsize, 0, &bp, ops);
884 	if (error)
885 		return error;
886 	if (bp)
887 		xfs_buf_set_ref(bp, refval);
888 	*bpp = bp;
889 	return 0;
890 }
891 
892 /*
893  * Read-ahead the block, don't wait for it, don't return a buffer.
894  * Long-form addressing.
895  */
896 /* ARGSUSED */
897 void
898 xfs_btree_reada_bufl(
899 	struct xfs_mount	*mp,		/* file system mount point */
900 	xfs_fsblock_t		fsbno,		/* file system block number */
901 	xfs_extlen_t		count,		/* count of filesystem blocks */
902 	const struct xfs_buf_ops *ops)
903 {
904 	xfs_daddr_t		d;
905 
906 	ASSERT(fsbno != NULLFSBLOCK);
907 	d = XFS_FSB_TO_DADDR(mp, fsbno);
908 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
909 }
910 
911 /*
912  * Read-ahead the block, don't wait for it, don't return a buffer.
913  * Short-form addressing.
914  */
915 /* ARGSUSED */
916 void
917 xfs_btree_reada_bufs(
918 	struct xfs_mount	*mp,		/* file system mount point */
919 	xfs_agnumber_t		agno,		/* allocation group number */
920 	xfs_agblock_t		agbno,		/* allocation group block number */
921 	xfs_extlen_t		count,		/* count of filesystem blocks */
922 	const struct xfs_buf_ops *ops)
923 {
924 	xfs_daddr_t		d;
925 
926 	ASSERT(agno != NULLAGNUMBER);
927 	ASSERT(agbno != NULLAGBLOCK);
928 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
929 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
930 }
931 
932 STATIC int
933 xfs_btree_readahead_lblock(
934 	struct xfs_btree_cur	*cur,
935 	int			lr,
936 	struct xfs_btree_block	*block)
937 {
938 	int			rval = 0;
939 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
940 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
941 
942 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
943 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
944 				     cur->bc_ops->buf_ops);
945 		rval++;
946 	}
947 
948 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
949 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
950 				     cur->bc_ops->buf_ops);
951 		rval++;
952 	}
953 
954 	return rval;
955 }
956 
957 STATIC int
958 xfs_btree_readahead_sblock(
959 	struct xfs_btree_cur	*cur,
960 	int			lr,
961 	struct xfs_btree_block *block)
962 {
963 	int			rval = 0;
964 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
965 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
966 
967 
968 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
969 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
970 				     left, 1, cur->bc_ops->buf_ops);
971 		rval++;
972 	}
973 
974 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
975 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
976 				     right, 1, cur->bc_ops->buf_ops);
977 		rval++;
978 	}
979 
980 	return rval;
981 }
982 
983 /*
984  * Read-ahead btree blocks, at the given level.
985  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
986  */
987 STATIC int
988 xfs_btree_readahead(
989 	struct xfs_btree_cur	*cur,		/* btree cursor */
990 	int			lev,		/* level in btree */
991 	int			lr)		/* left/right bits */
992 {
993 	struct xfs_btree_block	*block;
994 
995 	/*
996 	 * No readahead needed if we are at the root level and the
997 	 * btree root is stored in the inode.
998 	 */
999 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1000 	    (lev == cur->bc_nlevels - 1))
1001 		return 0;
1002 
1003 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1004 		return 0;
1005 
1006 	cur->bc_levels[lev].ra |= lr;
1007 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1008 
1009 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1010 		return xfs_btree_readahead_lblock(cur, lr, block);
1011 	return xfs_btree_readahead_sblock(cur, lr, block);
1012 }
1013 
1014 STATIC int
1015 xfs_btree_ptr_to_daddr(
1016 	struct xfs_btree_cur		*cur,
1017 	const union xfs_btree_ptr	*ptr,
1018 	xfs_daddr_t			*daddr)
1019 {
1020 	xfs_fsblock_t		fsbno;
1021 	xfs_agblock_t		agbno;
1022 	int			error;
1023 
1024 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1025 	if (error)
1026 		return error;
1027 
1028 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1029 		fsbno = be64_to_cpu(ptr->l);
1030 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1031 	} else {
1032 		agbno = be32_to_cpu(ptr->s);
1033 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1034 				agbno);
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Readahead @count btree blocks at the given @ptr location.
1042  *
1043  * We don't need to care about long or short form btrees here as we have a
1044  * method of converting the ptr directly to a daddr available to us.
1045  */
1046 STATIC void
1047 xfs_btree_readahead_ptr(
1048 	struct xfs_btree_cur	*cur,
1049 	union xfs_btree_ptr	*ptr,
1050 	xfs_extlen_t		count)
1051 {
1052 	xfs_daddr_t		daddr;
1053 
1054 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1055 		return;
1056 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1057 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1058 }
1059 
1060 /*
1061  * Set the buffer for level "lev" in the cursor to bp, releasing
1062  * any previous buffer.
1063  */
1064 STATIC void
1065 xfs_btree_setbuf(
1066 	struct xfs_btree_cur	*cur,	/* btree cursor */
1067 	int			lev,	/* level in btree */
1068 	struct xfs_buf		*bp)	/* new buffer to set */
1069 {
1070 	struct xfs_btree_block	*b;	/* btree block */
1071 
1072 	if (cur->bc_levels[lev].bp)
1073 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1074 	cur->bc_levels[lev].bp = bp;
1075 	cur->bc_levels[lev].ra = 0;
1076 
1077 	b = XFS_BUF_TO_BLOCK(bp);
1078 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1079 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1080 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1081 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1082 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1083 	} else {
1084 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1085 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1086 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1087 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1088 	}
1089 }
1090 
1091 bool
1092 xfs_btree_ptr_is_null(
1093 	struct xfs_btree_cur		*cur,
1094 	const union xfs_btree_ptr	*ptr)
1095 {
1096 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1097 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1098 	else
1099 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1100 }
1101 
1102 void
1103 xfs_btree_set_ptr_null(
1104 	struct xfs_btree_cur	*cur,
1105 	union xfs_btree_ptr	*ptr)
1106 {
1107 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1108 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1109 	else
1110 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1111 }
1112 
1113 /*
1114  * Get/set/init sibling pointers
1115  */
1116 void
1117 xfs_btree_get_sibling(
1118 	struct xfs_btree_cur	*cur,
1119 	struct xfs_btree_block	*block,
1120 	union xfs_btree_ptr	*ptr,
1121 	int			lr)
1122 {
1123 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1124 
1125 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1126 		if (lr == XFS_BB_RIGHTSIB)
1127 			ptr->l = block->bb_u.l.bb_rightsib;
1128 		else
1129 			ptr->l = block->bb_u.l.bb_leftsib;
1130 	} else {
1131 		if (lr == XFS_BB_RIGHTSIB)
1132 			ptr->s = block->bb_u.s.bb_rightsib;
1133 		else
1134 			ptr->s = block->bb_u.s.bb_leftsib;
1135 	}
1136 }
1137 
1138 void
1139 xfs_btree_set_sibling(
1140 	struct xfs_btree_cur		*cur,
1141 	struct xfs_btree_block		*block,
1142 	const union xfs_btree_ptr	*ptr,
1143 	int				lr)
1144 {
1145 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1146 
1147 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1148 		if (lr == XFS_BB_RIGHTSIB)
1149 			block->bb_u.l.bb_rightsib = ptr->l;
1150 		else
1151 			block->bb_u.l.bb_leftsib = ptr->l;
1152 	} else {
1153 		if (lr == XFS_BB_RIGHTSIB)
1154 			block->bb_u.s.bb_rightsib = ptr->s;
1155 		else
1156 			block->bb_u.s.bb_leftsib = ptr->s;
1157 	}
1158 }
1159 
1160 void
1161 xfs_btree_init_block_int(
1162 	struct xfs_mount	*mp,
1163 	struct xfs_btree_block	*buf,
1164 	xfs_daddr_t		blkno,
1165 	xfs_btnum_t		btnum,
1166 	__u16			level,
1167 	__u16			numrecs,
1168 	__u64			owner,
1169 	unsigned int		flags)
1170 {
1171 	int			crc = xfs_has_crc(mp);
1172 	__u32			magic = xfs_btree_magic(crc, btnum);
1173 
1174 	buf->bb_magic = cpu_to_be32(magic);
1175 	buf->bb_level = cpu_to_be16(level);
1176 	buf->bb_numrecs = cpu_to_be16(numrecs);
1177 
1178 	if (flags & XFS_BTREE_LONG_PTRS) {
1179 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1180 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1181 		if (crc) {
1182 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1183 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1184 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1185 			buf->bb_u.l.bb_pad = 0;
1186 			buf->bb_u.l.bb_lsn = 0;
1187 		}
1188 	} else {
1189 		/* owner is a 32 bit value on short blocks */
1190 		__u32 __owner = (__u32)owner;
1191 
1192 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1193 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1194 		if (crc) {
1195 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1196 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1197 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1198 			buf->bb_u.s.bb_lsn = 0;
1199 		}
1200 	}
1201 }
1202 
1203 void
1204 xfs_btree_init_block(
1205 	struct xfs_mount *mp,
1206 	struct xfs_buf	*bp,
1207 	xfs_btnum_t	btnum,
1208 	__u16		level,
1209 	__u16		numrecs,
1210 	__u64		owner)
1211 {
1212 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1213 				 btnum, level, numrecs, owner, 0);
1214 }
1215 
1216 void
1217 xfs_btree_init_block_cur(
1218 	struct xfs_btree_cur	*cur,
1219 	struct xfs_buf		*bp,
1220 	int			level,
1221 	int			numrecs)
1222 {
1223 	__u64			owner;
1224 
1225 	/*
1226 	 * we can pull the owner from the cursor right now as the different
1227 	 * owners align directly with the pointer size of the btree. This may
1228 	 * change in future, but is safe for current users of the generic btree
1229 	 * code.
1230 	 */
1231 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1232 		owner = cur->bc_ino.ip->i_ino;
1233 	else
1234 		owner = cur->bc_ag.pag->pag_agno;
1235 
1236 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1237 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1238 				numrecs, owner, cur->bc_flags);
1239 }
1240 
1241 /*
1242  * Return true if ptr is the last record in the btree and
1243  * we need to track updates to this record.  The decision
1244  * will be further refined in the update_lastrec method.
1245  */
1246 STATIC int
1247 xfs_btree_is_lastrec(
1248 	struct xfs_btree_cur	*cur,
1249 	struct xfs_btree_block	*block,
1250 	int			level)
1251 {
1252 	union xfs_btree_ptr	ptr;
1253 
1254 	if (level > 0)
1255 		return 0;
1256 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1257 		return 0;
1258 
1259 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1260 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1261 		return 0;
1262 	return 1;
1263 }
1264 
1265 STATIC void
1266 xfs_btree_buf_to_ptr(
1267 	struct xfs_btree_cur	*cur,
1268 	struct xfs_buf		*bp,
1269 	union xfs_btree_ptr	*ptr)
1270 {
1271 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1272 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1273 					xfs_buf_daddr(bp)));
1274 	else {
1275 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1276 					xfs_buf_daddr(bp)));
1277 	}
1278 }
1279 
1280 STATIC void
1281 xfs_btree_set_refs(
1282 	struct xfs_btree_cur	*cur,
1283 	struct xfs_buf		*bp)
1284 {
1285 	switch (cur->bc_btnum) {
1286 	case XFS_BTNUM_BNO:
1287 	case XFS_BTNUM_CNT:
1288 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1289 		break;
1290 	case XFS_BTNUM_INO:
1291 	case XFS_BTNUM_FINO:
1292 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1293 		break;
1294 	case XFS_BTNUM_BMAP:
1295 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1296 		break;
1297 	case XFS_BTNUM_RMAP:
1298 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1299 		break;
1300 	case XFS_BTNUM_REFC:
1301 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1302 		break;
1303 	default:
1304 		ASSERT(0);
1305 	}
1306 }
1307 
1308 int
1309 xfs_btree_get_buf_block(
1310 	struct xfs_btree_cur		*cur,
1311 	const union xfs_btree_ptr	*ptr,
1312 	struct xfs_btree_block		**block,
1313 	struct xfs_buf			**bpp)
1314 {
1315 	struct xfs_mount	*mp = cur->bc_mp;
1316 	xfs_daddr_t		d;
1317 	int			error;
1318 
1319 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1320 	if (error)
1321 		return error;
1322 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1323 			0, bpp);
1324 	if (error)
1325 		return error;
1326 
1327 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1328 	*block = XFS_BUF_TO_BLOCK(*bpp);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Read in the buffer at the given ptr and return the buffer and
1334  * the block pointer within the buffer.
1335  */
1336 STATIC int
1337 xfs_btree_read_buf_block(
1338 	struct xfs_btree_cur		*cur,
1339 	const union xfs_btree_ptr	*ptr,
1340 	int				flags,
1341 	struct xfs_btree_block		**block,
1342 	struct xfs_buf			**bpp)
1343 {
1344 	struct xfs_mount	*mp = cur->bc_mp;
1345 	xfs_daddr_t		d;
1346 	int			error;
1347 
1348 	/* need to sort out how callers deal with failures first */
1349 	ASSERT(!(flags & XBF_TRYLOCK));
1350 
1351 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1352 	if (error)
1353 		return error;
1354 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1355 				   mp->m_bsize, flags, bpp,
1356 				   cur->bc_ops->buf_ops);
1357 	if (error)
1358 		return error;
1359 
1360 	xfs_btree_set_refs(cur, *bpp);
1361 	*block = XFS_BUF_TO_BLOCK(*bpp);
1362 	return 0;
1363 }
1364 
1365 /*
1366  * Copy keys from one btree block to another.
1367  */
1368 void
1369 xfs_btree_copy_keys(
1370 	struct xfs_btree_cur		*cur,
1371 	union xfs_btree_key		*dst_key,
1372 	const union xfs_btree_key	*src_key,
1373 	int				numkeys)
1374 {
1375 	ASSERT(numkeys >= 0);
1376 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1377 }
1378 
1379 /*
1380  * Copy records from one btree block to another.
1381  */
1382 STATIC void
1383 xfs_btree_copy_recs(
1384 	struct xfs_btree_cur	*cur,
1385 	union xfs_btree_rec	*dst_rec,
1386 	union xfs_btree_rec	*src_rec,
1387 	int			numrecs)
1388 {
1389 	ASSERT(numrecs >= 0);
1390 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1391 }
1392 
1393 /*
1394  * Copy block pointers from one btree block to another.
1395  */
1396 void
1397 xfs_btree_copy_ptrs(
1398 	struct xfs_btree_cur	*cur,
1399 	union xfs_btree_ptr	*dst_ptr,
1400 	const union xfs_btree_ptr *src_ptr,
1401 	int			numptrs)
1402 {
1403 	ASSERT(numptrs >= 0);
1404 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1405 }
1406 
1407 /*
1408  * Shift keys one index left/right inside a single btree block.
1409  */
1410 STATIC void
1411 xfs_btree_shift_keys(
1412 	struct xfs_btree_cur	*cur,
1413 	union xfs_btree_key	*key,
1414 	int			dir,
1415 	int			numkeys)
1416 {
1417 	char			*dst_key;
1418 
1419 	ASSERT(numkeys >= 0);
1420 	ASSERT(dir == 1 || dir == -1);
1421 
1422 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1423 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1424 }
1425 
1426 /*
1427  * Shift records one index left/right inside a single btree block.
1428  */
1429 STATIC void
1430 xfs_btree_shift_recs(
1431 	struct xfs_btree_cur	*cur,
1432 	union xfs_btree_rec	*rec,
1433 	int			dir,
1434 	int			numrecs)
1435 {
1436 	char			*dst_rec;
1437 
1438 	ASSERT(numrecs >= 0);
1439 	ASSERT(dir == 1 || dir == -1);
1440 
1441 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1442 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1443 }
1444 
1445 /*
1446  * Shift block pointers one index left/right inside a single btree block.
1447  */
1448 STATIC void
1449 xfs_btree_shift_ptrs(
1450 	struct xfs_btree_cur	*cur,
1451 	union xfs_btree_ptr	*ptr,
1452 	int			dir,
1453 	int			numptrs)
1454 {
1455 	char			*dst_ptr;
1456 
1457 	ASSERT(numptrs >= 0);
1458 	ASSERT(dir == 1 || dir == -1);
1459 
1460 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1461 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1462 }
1463 
1464 /*
1465  * Log key values from the btree block.
1466  */
1467 STATIC void
1468 xfs_btree_log_keys(
1469 	struct xfs_btree_cur	*cur,
1470 	struct xfs_buf		*bp,
1471 	int			first,
1472 	int			last)
1473 {
1474 
1475 	if (bp) {
1476 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1477 		xfs_trans_log_buf(cur->bc_tp, bp,
1478 				  xfs_btree_key_offset(cur, first),
1479 				  xfs_btree_key_offset(cur, last + 1) - 1);
1480 	} else {
1481 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1482 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1483 	}
1484 }
1485 
1486 /*
1487  * Log record values from the btree block.
1488  */
1489 void
1490 xfs_btree_log_recs(
1491 	struct xfs_btree_cur	*cur,
1492 	struct xfs_buf		*bp,
1493 	int			first,
1494 	int			last)
1495 {
1496 
1497 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1498 	xfs_trans_log_buf(cur->bc_tp, bp,
1499 			  xfs_btree_rec_offset(cur, first),
1500 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1501 
1502 }
1503 
1504 /*
1505  * Log block pointer fields from a btree block (nonleaf).
1506  */
1507 STATIC void
1508 xfs_btree_log_ptrs(
1509 	struct xfs_btree_cur	*cur,	/* btree cursor */
1510 	struct xfs_buf		*bp,	/* buffer containing btree block */
1511 	int			first,	/* index of first pointer to log */
1512 	int			last)	/* index of last pointer to log */
1513 {
1514 
1515 	if (bp) {
1516 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1517 		int			level = xfs_btree_get_level(block);
1518 
1519 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520 		xfs_trans_log_buf(cur->bc_tp, bp,
1521 				xfs_btree_ptr_offset(cur, first, level),
1522 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1523 	} else {
1524 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1525 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1526 	}
1527 
1528 }
1529 
1530 /*
1531  * Log fields from a btree block header.
1532  */
1533 void
1534 xfs_btree_log_block(
1535 	struct xfs_btree_cur	*cur,	/* btree cursor */
1536 	struct xfs_buf		*bp,	/* buffer containing btree block */
1537 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1538 {
1539 	int			first;	/* first byte offset logged */
1540 	int			last;	/* last byte offset logged */
1541 	static const short	soffsets[] = {	/* table of offsets (short) */
1542 		offsetof(struct xfs_btree_block, bb_magic),
1543 		offsetof(struct xfs_btree_block, bb_level),
1544 		offsetof(struct xfs_btree_block, bb_numrecs),
1545 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1546 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1547 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1548 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1549 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1550 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1551 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1552 		XFS_BTREE_SBLOCK_CRC_LEN
1553 	};
1554 	static const short	loffsets[] = {	/* table of offsets (long) */
1555 		offsetof(struct xfs_btree_block, bb_magic),
1556 		offsetof(struct xfs_btree_block, bb_level),
1557 		offsetof(struct xfs_btree_block, bb_numrecs),
1558 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1559 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1560 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1561 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1562 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1563 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1564 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1565 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1566 		XFS_BTREE_LBLOCK_CRC_LEN
1567 	};
1568 
1569 	if (bp) {
1570 		int nbits;
1571 
1572 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1573 			/*
1574 			 * We don't log the CRC when updating a btree
1575 			 * block but instead recreate it during log
1576 			 * recovery.  As the log buffers have checksums
1577 			 * of their own this is safe and avoids logging a crc
1578 			 * update in a lot of places.
1579 			 */
1580 			if (fields == XFS_BB_ALL_BITS)
1581 				fields = XFS_BB_ALL_BITS_CRC;
1582 			nbits = XFS_BB_NUM_BITS_CRC;
1583 		} else {
1584 			nbits = XFS_BB_NUM_BITS;
1585 		}
1586 		xfs_btree_offsets(fields,
1587 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1588 					loffsets : soffsets,
1589 				  nbits, &first, &last);
1590 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1591 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1592 	} else {
1593 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1594 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1595 	}
1596 }
1597 
1598 /*
1599  * Increment cursor by one record at the level.
1600  * For nonzero levels the leaf-ward information is untouched.
1601  */
1602 int						/* error */
1603 xfs_btree_increment(
1604 	struct xfs_btree_cur	*cur,
1605 	int			level,
1606 	int			*stat)		/* success/failure */
1607 {
1608 	struct xfs_btree_block	*block;
1609 	union xfs_btree_ptr	ptr;
1610 	struct xfs_buf		*bp;
1611 	int			error;		/* error return value */
1612 	int			lev;
1613 
1614 	ASSERT(level < cur->bc_nlevels);
1615 
1616 	/* Read-ahead to the right at this level. */
1617 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1618 
1619 	/* Get a pointer to the btree block. */
1620 	block = xfs_btree_get_block(cur, level, &bp);
1621 
1622 #ifdef DEBUG
1623 	error = xfs_btree_check_block(cur, block, level, bp);
1624 	if (error)
1625 		goto error0;
1626 #endif
1627 
1628 	/* We're done if we remain in the block after the increment. */
1629 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1630 		goto out1;
1631 
1632 	/* Fail if we just went off the right edge of the tree. */
1633 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1634 	if (xfs_btree_ptr_is_null(cur, &ptr))
1635 		goto out0;
1636 
1637 	XFS_BTREE_STATS_INC(cur, increment);
1638 
1639 	/*
1640 	 * March up the tree incrementing pointers.
1641 	 * Stop when we don't go off the right edge of a block.
1642 	 */
1643 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1644 		block = xfs_btree_get_block(cur, lev, &bp);
1645 
1646 #ifdef DEBUG
1647 		error = xfs_btree_check_block(cur, block, lev, bp);
1648 		if (error)
1649 			goto error0;
1650 #endif
1651 
1652 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1653 			break;
1654 
1655 		/* Read-ahead the right block for the next loop. */
1656 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1657 	}
1658 
1659 	/*
1660 	 * If we went off the root then we are either seriously
1661 	 * confused or have the tree root in an inode.
1662 	 */
1663 	if (lev == cur->bc_nlevels) {
1664 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1665 			goto out0;
1666 		ASSERT(0);
1667 		error = -EFSCORRUPTED;
1668 		goto error0;
1669 	}
1670 	ASSERT(lev < cur->bc_nlevels);
1671 
1672 	/*
1673 	 * Now walk back down the tree, fixing up the cursor's buffer
1674 	 * pointers and key numbers.
1675 	 */
1676 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1677 		union xfs_btree_ptr	*ptrp;
1678 
1679 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1680 		--lev;
1681 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1682 		if (error)
1683 			goto error0;
1684 
1685 		xfs_btree_setbuf(cur, lev, bp);
1686 		cur->bc_levels[lev].ptr = 1;
1687 	}
1688 out1:
1689 	*stat = 1;
1690 	return 0;
1691 
1692 out0:
1693 	*stat = 0;
1694 	return 0;
1695 
1696 error0:
1697 	return error;
1698 }
1699 
1700 /*
1701  * Decrement cursor by one record at the level.
1702  * For nonzero levels the leaf-ward information is untouched.
1703  */
1704 int						/* error */
1705 xfs_btree_decrement(
1706 	struct xfs_btree_cur	*cur,
1707 	int			level,
1708 	int			*stat)		/* success/failure */
1709 {
1710 	struct xfs_btree_block	*block;
1711 	struct xfs_buf		*bp;
1712 	int			error;		/* error return value */
1713 	int			lev;
1714 	union xfs_btree_ptr	ptr;
1715 
1716 	ASSERT(level < cur->bc_nlevels);
1717 
1718 	/* Read-ahead to the left at this level. */
1719 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1720 
1721 	/* We're done if we remain in the block after the decrement. */
1722 	if (--cur->bc_levels[level].ptr > 0)
1723 		goto out1;
1724 
1725 	/* Get a pointer to the btree block. */
1726 	block = xfs_btree_get_block(cur, level, &bp);
1727 
1728 #ifdef DEBUG
1729 	error = xfs_btree_check_block(cur, block, level, bp);
1730 	if (error)
1731 		goto error0;
1732 #endif
1733 
1734 	/* Fail if we just went off the left edge of the tree. */
1735 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1736 	if (xfs_btree_ptr_is_null(cur, &ptr))
1737 		goto out0;
1738 
1739 	XFS_BTREE_STATS_INC(cur, decrement);
1740 
1741 	/*
1742 	 * March up the tree decrementing pointers.
1743 	 * Stop when we don't go off the left edge of a block.
1744 	 */
1745 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1746 		if (--cur->bc_levels[lev].ptr > 0)
1747 			break;
1748 		/* Read-ahead the left block for the next loop. */
1749 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1750 	}
1751 
1752 	/*
1753 	 * If we went off the root then we are seriously confused.
1754 	 * or the root of the tree is in an inode.
1755 	 */
1756 	if (lev == cur->bc_nlevels) {
1757 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1758 			goto out0;
1759 		ASSERT(0);
1760 		error = -EFSCORRUPTED;
1761 		goto error0;
1762 	}
1763 	ASSERT(lev < cur->bc_nlevels);
1764 
1765 	/*
1766 	 * Now walk back down the tree, fixing up the cursor's buffer
1767 	 * pointers and key numbers.
1768 	 */
1769 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1770 		union xfs_btree_ptr	*ptrp;
1771 
1772 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1773 		--lev;
1774 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1775 		if (error)
1776 			goto error0;
1777 		xfs_btree_setbuf(cur, lev, bp);
1778 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1779 	}
1780 out1:
1781 	*stat = 1;
1782 	return 0;
1783 
1784 out0:
1785 	*stat = 0;
1786 	return 0;
1787 
1788 error0:
1789 	return error;
1790 }
1791 
1792 int
1793 xfs_btree_lookup_get_block(
1794 	struct xfs_btree_cur		*cur,	/* btree cursor */
1795 	int				level,	/* level in the btree */
1796 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1797 	struct xfs_btree_block		**blkp) /* return btree block */
1798 {
1799 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1800 	xfs_daddr_t		daddr;
1801 	int			error = 0;
1802 
1803 	/* special case the root block if in an inode */
1804 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1805 	    (level == cur->bc_nlevels - 1)) {
1806 		*blkp = xfs_btree_get_iroot(cur);
1807 		return 0;
1808 	}
1809 
1810 	/*
1811 	 * If the old buffer at this level for the disk address we are
1812 	 * looking for re-use it.
1813 	 *
1814 	 * Otherwise throw it away and get a new one.
1815 	 */
1816 	bp = cur->bc_levels[level].bp;
1817 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1818 	if (error)
1819 		return error;
1820 	if (bp && xfs_buf_daddr(bp) == daddr) {
1821 		*blkp = XFS_BUF_TO_BLOCK(bp);
1822 		return 0;
1823 	}
1824 
1825 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1826 	if (error)
1827 		return error;
1828 
1829 	/* Check the inode owner since the verifiers don't. */
1830 	if (xfs_has_crc(cur->bc_mp) &&
1831 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1832 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1833 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1834 			cur->bc_ino.ip->i_ino)
1835 		goto out_bad;
1836 
1837 	/* Did we get the level we were looking for? */
1838 	if (be16_to_cpu((*blkp)->bb_level) != level)
1839 		goto out_bad;
1840 
1841 	/* Check that internal nodes have at least one record. */
1842 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1843 		goto out_bad;
1844 
1845 	xfs_btree_setbuf(cur, level, bp);
1846 	return 0;
1847 
1848 out_bad:
1849 	*blkp = NULL;
1850 	xfs_buf_mark_corrupt(bp);
1851 	xfs_trans_brelse(cur->bc_tp, bp);
1852 	return -EFSCORRUPTED;
1853 }
1854 
1855 /*
1856  * Get current search key.  For level 0 we don't actually have a key
1857  * structure so we make one up from the record.  For all other levels
1858  * we just return the right key.
1859  */
1860 STATIC union xfs_btree_key *
1861 xfs_lookup_get_search_key(
1862 	struct xfs_btree_cur	*cur,
1863 	int			level,
1864 	int			keyno,
1865 	struct xfs_btree_block	*block,
1866 	union xfs_btree_key	*kp)
1867 {
1868 	if (level == 0) {
1869 		cur->bc_ops->init_key_from_rec(kp,
1870 				xfs_btree_rec_addr(cur, keyno, block));
1871 		return kp;
1872 	}
1873 
1874 	return xfs_btree_key_addr(cur, keyno, block);
1875 }
1876 
1877 /*
1878  * Lookup the record.  The cursor is made to point to it, based on dir.
1879  * stat is set to 0 if can't find any such record, 1 for success.
1880  */
1881 int					/* error */
1882 xfs_btree_lookup(
1883 	struct xfs_btree_cur	*cur,	/* btree cursor */
1884 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1885 	int			*stat)	/* success/failure */
1886 {
1887 	struct xfs_btree_block	*block;	/* current btree block */
1888 	int64_t			diff;	/* difference for the current key */
1889 	int			error;	/* error return value */
1890 	int			keyno;	/* current key number */
1891 	int			level;	/* level in the btree */
1892 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1893 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1894 
1895 	XFS_BTREE_STATS_INC(cur, lookup);
1896 
1897 	/* No such thing as a zero-level tree. */
1898 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1899 		return -EFSCORRUPTED;
1900 
1901 	block = NULL;
1902 	keyno = 0;
1903 
1904 	/* initialise start pointer from cursor */
1905 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1906 	pp = &ptr;
1907 
1908 	/*
1909 	 * Iterate over each level in the btree, starting at the root.
1910 	 * For each level above the leaves, find the key we need, based
1911 	 * on the lookup record, then follow the corresponding block
1912 	 * pointer down to the next level.
1913 	 */
1914 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1915 		/* Get the block we need to do the lookup on. */
1916 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1917 		if (error)
1918 			goto error0;
1919 
1920 		if (diff == 0) {
1921 			/*
1922 			 * If we already had a key match at a higher level, we
1923 			 * know we need to use the first entry in this block.
1924 			 */
1925 			keyno = 1;
1926 		} else {
1927 			/* Otherwise search this block. Do a binary search. */
1928 
1929 			int	high;	/* high entry number */
1930 			int	low;	/* low entry number */
1931 
1932 			/* Set low and high entry numbers, 1-based. */
1933 			low = 1;
1934 			high = xfs_btree_get_numrecs(block);
1935 			if (!high) {
1936 				/* Block is empty, must be an empty leaf. */
1937 				if (level != 0 || cur->bc_nlevels != 1) {
1938 					XFS_CORRUPTION_ERROR(__func__,
1939 							XFS_ERRLEVEL_LOW,
1940 							cur->bc_mp, block,
1941 							sizeof(*block));
1942 					return -EFSCORRUPTED;
1943 				}
1944 
1945 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1946 				*stat = 0;
1947 				return 0;
1948 			}
1949 
1950 			/* Binary search the block. */
1951 			while (low <= high) {
1952 				union xfs_btree_key	key;
1953 				union xfs_btree_key	*kp;
1954 
1955 				XFS_BTREE_STATS_INC(cur, compare);
1956 
1957 				/* keyno is average of low and high. */
1958 				keyno = (low + high) >> 1;
1959 
1960 				/* Get current search key */
1961 				kp = xfs_lookup_get_search_key(cur, level,
1962 						keyno, block, &key);
1963 
1964 				/*
1965 				 * Compute difference to get next direction:
1966 				 *  - less than, move right
1967 				 *  - greater than, move left
1968 				 *  - equal, we're done
1969 				 */
1970 				diff = cur->bc_ops->key_diff(cur, kp);
1971 				if (diff < 0)
1972 					low = keyno + 1;
1973 				else if (diff > 0)
1974 					high = keyno - 1;
1975 				else
1976 					break;
1977 			}
1978 		}
1979 
1980 		/*
1981 		 * If there are more levels, set up for the next level
1982 		 * by getting the block number and filling in the cursor.
1983 		 */
1984 		if (level > 0) {
1985 			/*
1986 			 * If we moved left, need the previous key number,
1987 			 * unless there isn't one.
1988 			 */
1989 			if (diff > 0 && --keyno < 1)
1990 				keyno = 1;
1991 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1992 
1993 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1994 			if (error)
1995 				goto error0;
1996 
1997 			cur->bc_levels[level].ptr = keyno;
1998 		}
1999 	}
2000 
2001 	/* Done with the search. See if we need to adjust the results. */
2002 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2003 		keyno++;
2004 		/*
2005 		 * If ge search and we went off the end of the block, but it's
2006 		 * not the last block, we're in the wrong block.
2007 		 */
2008 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2009 		if (dir == XFS_LOOKUP_GE &&
2010 		    keyno > xfs_btree_get_numrecs(block) &&
2011 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2012 			int	i;
2013 
2014 			cur->bc_levels[0].ptr = keyno;
2015 			error = xfs_btree_increment(cur, 0, &i);
2016 			if (error)
2017 				goto error0;
2018 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2019 				return -EFSCORRUPTED;
2020 			*stat = 1;
2021 			return 0;
2022 		}
2023 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2024 		keyno--;
2025 	cur->bc_levels[0].ptr = keyno;
2026 
2027 	/* Return if we succeeded or not. */
2028 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2029 		*stat = 0;
2030 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2031 		*stat = 1;
2032 	else
2033 		*stat = 0;
2034 	return 0;
2035 
2036 error0:
2037 	return error;
2038 }
2039 
2040 /* Find the high key storage area from a regular key. */
2041 union xfs_btree_key *
2042 xfs_btree_high_key_from_key(
2043 	struct xfs_btree_cur	*cur,
2044 	union xfs_btree_key	*key)
2045 {
2046 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2047 	return (union xfs_btree_key *)((char *)key +
2048 			(cur->bc_ops->key_len / 2));
2049 }
2050 
2051 /* Determine the low (and high if overlapped) keys of a leaf block */
2052 STATIC void
2053 xfs_btree_get_leaf_keys(
2054 	struct xfs_btree_cur	*cur,
2055 	struct xfs_btree_block	*block,
2056 	union xfs_btree_key	*key)
2057 {
2058 	union xfs_btree_key	max_hkey;
2059 	union xfs_btree_key	hkey;
2060 	union xfs_btree_rec	*rec;
2061 	union xfs_btree_key	*high;
2062 	int			n;
2063 
2064 	rec = xfs_btree_rec_addr(cur, 1, block);
2065 	cur->bc_ops->init_key_from_rec(key, rec);
2066 
2067 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2068 
2069 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2070 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2071 			rec = xfs_btree_rec_addr(cur, n, block);
2072 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2073 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2074 					> 0)
2075 				max_hkey = hkey;
2076 		}
2077 
2078 		high = xfs_btree_high_key_from_key(cur, key);
2079 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2080 	}
2081 }
2082 
2083 /* Determine the low (and high if overlapped) keys of a node block */
2084 STATIC void
2085 xfs_btree_get_node_keys(
2086 	struct xfs_btree_cur	*cur,
2087 	struct xfs_btree_block	*block,
2088 	union xfs_btree_key	*key)
2089 {
2090 	union xfs_btree_key	*hkey;
2091 	union xfs_btree_key	*max_hkey;
2092 	union xfs_btree_key	*high;
2093 	int			n;
2094 
2095 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2096 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2097 				cur->bc_ops->key_len / 2);
2098 
2099 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2100 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2101 			hkey = xfs_btree_high_key_addr(cur, n, block);
2102 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2103 				max_hkey = hkey;
2104 		}
2105 
2106 		high = xfs_btree_high_key_from_key(cur, key);
2107 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2108 	} else {
2109 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2110 				cur->bc_ops->key_len);
2111 	}
2112 }
2113 
2114 /* Derive the keys for any btree block. */
2115 void
2116 xfs_btree_get_keys(
2117 	struct xfs_btree_cur	*cur,
2118 	struct xfs_btree_block	*block,
2119 	union xfs_btree_key	*key)
2120 {
2121 	if (be16_to_cpu(block->bb_level) == 0)
2122 		xfs_btree_get_leaf_keys(cur, block, key);
2123 	else
2124 		xfs_btree_get_node_keys(cur, block, key);
2125 }
2126 
2127 /*
2128  * Decide if we need to update the parent keys of a btree block.  For
2129  * a standard btree this is only necessary if we're updating the first
2130  * record/key.  For an overlapping btree, we must always update the
2131  * keys because the highest key can be in any of the records or keys
2132  * in the block.
2133  */
2134 static inline bool
2135 xfs_btree_needs_key_update(
2136 	struct xfs_btree_cur	*cur,
2137 	int			ptr)
2138 {
2139 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2140 }
2141 
2142 /*
2143  * Update the low and high parent keys of the given level, progressing
2144  * towards the root.  If force_all is false, stop if the keys for a given
2145  * level do not need updating.
2146  */
2147 STATIC int
2148 __xfs_btree_updkeys(
2149 	struct xfs_btree_cur	*cur,
2150 	int			level,
2151 	struct xfs_btree_block	*block,
2152 	struct xfs_buf		*bp0,
2153 	bool			force_all)
2154 {
2155 	union xfs_btree_key	key;	/* keys from current level */
2156 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2157 	union xfs_btree_key	*hkey;
2158 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2159 	union xfs_btree_key	*nhkey;
2160 	struct xfs_buf		*bp;
2161 	int			ptr;
2162 
2163 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2164 
2165 	/* Exit if there aren't any parent levels to update. */
2166 	if (level + 1 >= cur->bc_nlevels)
2167 		return 0;
2168 
2169 	trace_xfs_btree_updkeys(cur, level, bp0);
2170 
2171 	lkey = &key;
2172 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2173 	xfs_btree_get_keys(cur, block, lkey);
2174 	for (level++; level < cur->bc_nlevels; level++) {
2175 #ifdef DEBUG
2176 		int		error;
2177 #endif
2178 		block = xfs_btree_get_block(cur, level, &bp);
2179 		trace_xfs_btree_updkeys(cur, level, bp);
2180 #ifdef DEBUG
2181 		error = xfs_btree_check_block(cur, block, level, bp);
2182 		if (error)
2183 			return error;
2184 #endif
2185 		ptr = cur->bc_levels[level].ptr;
2186 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2187 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2188 		if (!force_all &&
2189 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2190 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2191 			break;
2192 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2193 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2194 		if (level + 1 >= cur->bc_nlevels)
2195 			break;
2196 		xfs_btree_get_node_keys(cur, block, lkey);
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 /* Update all the keys from some level in cursor back to the root. */
2203 STATIC int
2204 xfs_btree_updkeys_force(
2205 	struct xfs_btree_cur	*cur,
2206 	int			level)
2207 {
2208 	struct xfs_buf		*bp;
2209 	struct xfs_btree_block	*block;
2210 
2211 	block = xfs_btree_get_block(cur, level, &bp);
2212 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2213 }
2214 
2215 /*
2216  * Update the parent keys of the given level, progressing towards the root.
2217  */
2218 STATIC int
2219 xfs_btree_update_keys(
2220 	struct xfs_btree_cur	*cur,
2221 	int			level)
2222 {
2223 	struct xfs_btree_block	*block;
2224 	struct xfs_buf		*bp;
2225 	union xfs_btree_key	*kp;
2226 	union xfs_btree_key	key;
2227 	int			ptr;
2228 
2229 	ASSERT(level >= 0);
2230 
2231 	block = xfs_btree_get_block(cur, level, &bp);
2232 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2233 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2234 
2235 	/*
2236 	 * Go up the tree from this level toward the root.
2237 	 * At each level, update the key value to the value input.
2238 	 * Stop when we reach a level where the cursor isn't pointing
2239 	 * at the first entry in the block.
2240 	 */
2241 	xfs_btree_get_keys(cur, block, &key);
2242 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2243 #ifdef DEBUG
2244 		int		error;
2245 #endif
2246 		block = xfs_btree_get_block(cur, level, &bp);
2247 #ifdef DEBUG
2248 		error = xfs_btree_check_block(cur, block, level, bp);
2249 		if (error)
2250 			return error;
2251 #endif
2252 		ptr = cur->bc_levels[level].ptr;
2253 		kp = xfs_btree_key_addr(cur, ptr, block);
2254 		xfs_btree_copy_keys(cur, kp, &key, 1);
2255 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Update the record referred to by cur to the value in the
2263  * given record. This either works (return 0) or gets an
2264  * EFSCORRUPTED error.
2265  */
2266 int
2267 xfs_btree_update(
2268 	struct xfs_btree_cur	*cur,
2269 	union xfs_btree_rec	*rec)
2270 {
2271 	struct xfs_btree_block	*block;
2272 	struct xfs_buf		*bp;
2273 	int			error;
2274 	int			ptr;
2275 	union xfs_btree_rec	*rp;
2276 
2277 	/* Pick up the current block. */
2278 	block = xfs_btree_get_block(cur, 0, &bp);
2279 
2280 #ifdef DEBUG
2281 	error = xfs_btree_check_block(cur, block, 0, bp);
2282 	if (error)
2283 		goto error0;
2284 #endif
2285 	/* Get the address of the rec to be updated. */
2286 	ptr = cur->bc_levels[0].ptr;
2287 	rp = xfs_btree_rec_addr(cur, ptr, block);
2288 
2289 	/* Fill in the new contents and log them. */
2290 	xfs_btree_copy_recs(cur, rp, rec, 1);
2291 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2292 
2293 	/*
2294 	 * If we are tracking the last record in the tree and
2295 	 * we are at the far right edge of the tree, update it.
2296 	 */
2297 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2298 		cur->bc_ops->update_lastrec(cur, block, rec,
2299 					    ptr, LASTREC_UPDATE);
2300 	}
2301 
2302 	/* Pass new key value up to our parent. */
2303 	if (xfs_btree_needs_key_update(cur, ptr)) {
2304 		error = xfs_btree_update_keys(cur, 0);
2305 		if (error)
2306 			goto error0;
2307 	}
2308 
2309 	return 0;
2310 
2311 error0:
2312 	return error;
2313 }
2314 
2315 /*
2316  * Move 1 record left from cur/level if possible.
2317  * Update cur to reflect the new path.
2318  */
2319 STATIC int					/* error */
2320 xfs_btree_lshift(
2321 	struct xfs_btree_cur	*cur,
2322 	int			level,
2323 	int			*stat)		/* success/failure */
2324 {
2325 	struct xfs_buf		*lbp;		/* left buffer pointer */
2326 	struct xfs_btree_block	*left;		/* left btree block */
2327 	int			lrecs;		/* left record count */
2328 	struct xfs_buf		*rbp;		/* right buffer pointer */
2329 	struct xfs_btree_block	*right;		/* right btree block */
2330 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2331 	int			rrecs;		/* right record count */
2332 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2333 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2334 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2335 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2336 	int			error;		/* error return value */
2337 	int			i;
2338 
2339 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2340 	    level == cur->bc_nlevels - 1)
2341 		goto out0;
2342 
2343 	/* Set up variables for this block as "right". */
2344 	right = xfs_btree_get_block(cur, level, &rbp);
2345 
2346 #ifdef DEBUG
2347 	error = xfs_btree_check_block(cur, right, level, rbp);
2348 	if (error)
2349 		goto error0;
2350 #endif
2351 
2352 	/* If we've got no left sibling then we can't shift an entry left. */
2353 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2354 	if (xfs_btree_ptr_is_null(cur, &lptr))
2355 		goto out0;
2356 
2357 	/*
2358 	 * If the cursor entry is the one that would be moved, don't
2359 	 * do it... it's too complicated.
2360 	 */
2361 	if (cur->bc_levels[level].ptr <= 1)
2362 		goto out0;
2363 
2364 	/* Set up the left neighbor as "left". */
2365 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2366 	if (error)
2367 		goto error0;
2368 
2369 	/* If it's full, it can't take another entry. */
2370 	lrecs = xfs_btree_get_numrecs(left);
2371 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2372 		goto out0;
2373 
2374 	rrecs = xfs_btree_get_numrecs(right);
2375 
2376 	/*
2377 	 * We add one entry to the left side and remove one for the right side.
2378 	 * Account for it here, the changes will be updated on disk and logged
2379 	 * later.
2380 	 */
2381 	lrecs++;
2382 	rrecs--;
2383 
2384 	XFS_BTREE_STATS_INC(cur, lshift);
2385 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2386 
2387 	/*
2388 	 * If non-leaf, copy a key and a ptr to the left block.
2389 	 * Log the changes to the left block.
2390 	 */
2391 	if (level > 0) {
2392 		/* It's a non-leaf.  Move keys and pointers. */
2393 		union xfs_btree_key	*lkp;	/* left btree key */
2394 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2395 
2396 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2397 		rkp = xfs_btree_key_addr(cur, 1, right);
2398 
2399 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2400 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2401 
2402 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2403 		if (error)
2404 			goto error0;
2405 
2406 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2407 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2408 
2409 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2410 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2411 
2412 		ASSERT(cur->bc_ops->keys_inorder(cur,
2413 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2414 	} else {
2415 		/* It's a leaf.  Move records.  */
2416 		union xfs_btree_rec	*lrp;	/* left record pointer */
2417 
2418 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2419 		rrp = xfs_btree_rec_addr(cur, 1, right);
2420 
2421 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2422 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2423 
2424 		ASSERT(cur->bc_ops->recs_inorder(cur,
2425 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2426 	}
2427 
2428 	xfs_btree_set_numrecs(left, lrecs);
2429 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2430 
2431 	xfs_btree_set_numrecs(right, rrecs);
2432 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2433 
2434 	/*
2435 	 * Slide the contents of right down one entry.
2436 	 */
2437 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2438 	if (level > 0) {
2439 		/* It's a nonleaf. operate on keys and ptrs */
2440 		for (i = 0; i < rrecs; i++) {
2441 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2442 			if (error)
2443 				goto error0;
2444 		}
2445 
2446 		xfs_btree_shift_keys(cur,
2447 				xfs_btree_key_addr(cur, 2, right),
2448 				-1, rrecs);
2449 		xfs_btree_shift_ptrs(cur,
2450 				xfs_btree_ptr_addr(cur, 2, right),
2451 				-1, rrecs);
2452 
2453 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2454 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2455 	} else {
2456 		/* It's a leaf. operate on records */
2457 		xfs_btree_shift_recs(cur,
2458 			xfs_btree_rec_addr(cur, 2, right),
2459 			-1, rrecs);
2460 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2461 	}
2462 
2463 	/*
2464 	 * Using a temporary cursor, update the parent key values of the
2465 	 * block on the left.
2466 	 */
2467 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2468 		error = xfs_btree_dup_cursor(cur, &tcur);
2469 		if (error)
2470 			goto error0;
2471 		i = xfs_btree_firstrec(tcur, level);
2472 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2473 			error = -EFSCORRUPTED;
2474 			goto error0;
2475 		}
2476 
2477 		error = xfs_btree_decrement(tcur, level, &i);
2478 		if (error)
2479 			goto error1;
2480 
2481 		/* Update the parent high keys of the left block, if needed. */
2482 		error = xfs_btree_update_keys(tcur, level);
2483 		if (error)
2484 			goto error1;
2485 
2486 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2487 	}
2488 
2489 	/* Update the parent keys of the right block. */
2490 	error = xfs_btree_update_keys(cur, level);
2491 	if (error)
2492 		goto error0;
2493 
2494 	/* Slide the cursor value left one. */
2495 	cur->bc_levels[level].ptr--;
2496 
2497 	*stat = 1;
2498 	return 0;
2499 
2500 out0:
2501 	*stat = 0;
2502 	return 0;
2503 
2504 error0:
2505 	return error;
2506 
2507 error1:
2508 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2509 	return error;
2510 }
2511 
2512 /*
2513  * Move 1 record right from cur/level if possible.
2514  * Update cur to reflect the new path.
2515  */
2516 STATIC int					/* error */
2517 xfs_btree_rshift(
2518 	struct xfs_btree_cur	*cur,
2519 	int			level,
2520 	int			*stat)		/* success/failure */
2521 {
2522 	struct xfs_buf		*lbp;		/* left buffer pointer */
2523 	struct xfs_btree_block	*left;		/* left btree block */
2524 	struct xfs_buf		*rbp;		/* right buffer pointer */
2525 	struct xfs_btree_block	*right;		/* right btree block */
2526 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2527 	union xfs_btree_ptr	rptr;		/* right block pointer */
2528 	union xfs_btree_key	*rkp;		/* right btree key */
2529 	int			rrecs;		/* right record count */
2530 	int			lrecs;		/* left record count */
2531 	int			error;		/* error return value */
2532 	int			i;		/* loop counter */
2533 
2534 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2535 	    (level == cur->bc_nlevels - 1))
2536 		goto out0;
2537 
2538 	/* Set up variables for this block as "left". */
2539 	left = xfs_btree_get_block(cur, level, &lbp);
2540 
2541 #ifdef DEBUG
2542 	error = xfs_btree_check_block(cur, left, level, lbp);
2543 	if (error)
2544 		goto error0;
2545 #endif
2546 
2547 	/* If we've got no right sibling then we can't shift an entry right. */
2548 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2549 	if (xfs_btree_ptr_is_null(cur, &rptr))
2550 		goto out0;
2551 
2552 	/*
2553 	 * If the cursor entry is the one that would be moved, don't
2554 	 * do it... it's too complicated.
2555 	 */
2556 	lrecs = xfs_btree_get_numrecs(left);
2557 	if (cur->bc_levels[level].ptr >= lrecs)
2558 		goto out0;
2559 
2560 	/* Set up the right neighbor as "right". */
2561 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2562 	if (error)
2563 		goto error0;
2564 
2565 	/* If it's full, it can't take another entry. */
2566 	rrecs = xfs_btree_get_numrecs(right);
2567 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2568 		goto out0;
2569 
2570 	XFS_BTREE_STATS_INC(cur, rshift);
2571 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2572 
2573 	/*
2574 	 * Make a hole at the start of the right neighbor block, then
2575 	 * copy the last left block entry to the hole.
2576 	 */
2577 	if (level > 0) {
2578 		/* It's a nonleaf. make a hole in the keys and ptrs */
2579 		union xfs_btree_key	*lkp;
2580 		union xfs_btree_ptr	*lpp;
2581 		union xfs_btree_ptr	*rpp;
2582 
2583 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2584 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2585 		rkp = xfs_btree_key_addr(cur, 1, right);
2586 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2587 
2588 		for (i = rrecs - 1; i >= 0; i--) {
2589 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2590 			if (error)
2591 				goto error0;
2592 		}
2593 
2594 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2595 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2596 
2597 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2598 		if (error)
2599 			goto error0;
2600 
2601 		/* Now put the new data in, and log it. */
2602 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2603 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2604 
2605 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2606 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2607 
2608 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2609 			xfs_btree_key_addr(cur, 2, right)));
2610 	} else {
2611 		/* It's a leaf. make a hole in the records */
2612 		union xfs_btree_rec	*lrp;
2613 		union xfs_btree_rec	*rrp;
2614 
2615 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2616 		rrp = xfs_btree_rec_addr(cur, 1, right);
2617 
2618 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2619 
2620 		/* Now put the new data in, and log it. */
2621 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2622 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2623 	}
2624 
2625 	/*
2626 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2627 	 */
2628 	xfs_btree_set_numrecs(left, --lrecs);
2629 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2630 
2631 	xfs_btree_set_numrecs(right, ++rrecs);
2632 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2633 
2634 	/*
2635 	 * Using a temporary cursor, update the parent key values of the
2636 	 * block on the right.
2637 	 */
2638 	error = xfs_btree_dup_cursor(cur, &tcur);
2639 	if (error)
2640 		goto error0;
2641 	i = xfs_btree_lastrec(tcur, level);
2642 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2643 		error = -EFSCORRUPTED;
2644 		goto error0;
2645 	}
2646 
2647 	error = xfs_btree_increment(tcur, level, &i);
2648 	if (error)
2649 		goto error1;
2650 
2651 	/* Update the parent high keys of the left block, if needed. */
2652 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2653 		error = xfs_btree_update_keys(cur, level);
2654 		if (error)
2655 			goto error1;
2656 	}
2657 
2658 	/* Update the parent keys of the right block. */
2659 	error = xfs_btree_update_keys(tcur, level);
2660 	if (error)
2661 		goto error1;
2662 
2663 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2664 
2665 	*stat = 1;
2666 	return 0;
2667 
2668 out0:
2669 	*stat = 0;
2670 	return 0;
2671 
2672 error0:
2673 	return error;
2674 
2675 error1:
2676 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2677 	return error;
2678 }
2679 
2680 /*
2681  * Split cur/level block in half.
2682  * Return new block number and the key to its first
2683  * record (to be inserted into parent).
2684  */
2685 STATIC int					/* error */
2686 __xfs_btree_split(
2687 	struct xfs_btree_cur	*cur,
2688 	int			level,
2689 	union xfs_btree_ptr	*ptrp,
2690 	union xfs_btree_key	*key,
2691 	struct xfs_btree_cur	**curp,
2692 	int			*stat)		/* success/failure */
2693 {
2694 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2695 	struct xfs_buf		*lbp;		/* left buffer pointer */
2696 	struct xfs_btree_block	*left;		/* left btree block */
2697 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2698 	struct xfs_buf		*rbp;		/* right buffer pointer */
2699 	struct xfs_btree_block	*right;		/* right btree block */
2700 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2701 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2702 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2703 	int			lrecs;
2704 	int			rrecs;
2705 	int			src_index;
2706 	int			error;		/* error return value */
2707 	int			i;
2708 
2709 	XFS_BTREE_STATS_INC(cur, split);
2710 
2711 	/* Set up left block (current one). */
2712 	left = xfs_btree_get_block(cur, level, &lbp);
2713 
2714 #ifdef DEBUG
2715 	error = xfs_btree_check_block(cur, left, level, lbp);
2716 	if (error)
2717 		goto error0;
2718 #endif
2719 
2720 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2721 
2722 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2723 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2724 	if (error)
2725 		goto error0;
2726 	if (*stat == 0)
2727 		goto out0;
2728 	XFS_BTREE_STATS_INC(cur, alloc);
2729 
2730 	/* Set up the new block as "right". */
2731 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2732 	if (error)
2733 		goto error0;
2734 
2735 	/* Fill in the btree header for the new right block. */
2736 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2737 
2738 	/*
2739 	 * Split the entries between the old and the new block evenly.
2740 	 * Make sure that if there's an odd number of entries now, that
2741 	 * each new block will have the same number of entries.
2742 	 */
2743 	lrecs = xfs_btree_get_numrecs(left);
2744 	rrecs = lrecs / 2;
2745 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2746 		rrecs++;
2747 	src_index = (lrecs - rrecs + 1);
2748 
2749 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2750 
2751 	/* Adjust numrecs for the later get_*_keys() calls. */
2752 	lrecs -= rrecs;
2753 	xfs_btree_set_numrecs(left, lrecs);
2754 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2755 
2756 	/*
2757 	 * Copy btree block entries from the left block over to the
2758 	 * new block, the right. Update the right block and log the
2759 	 * changes.
2760 	 */
2761 	if (level > 0) {
2762 		/* It's a non-leaf.  Move keys and pointers. */
2763 		union xfs_btree_key	*lkp;	/* left btree key */
2764 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2765 		union xfs_btree_key	*rkp;	/* right btree key */
2766 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2767 
2768 		lkp = xfs_btree_key_addr(cur, src_index, left);
2769 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2770 		rkp = xfs_btree_key_addr(cur, 1, right);
2771 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2772 
2773 		for (i = src_index; i < rrecs; i++) {
2774 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2775 			if (error)
2776 				goto error0;
2777 		}
2778 
2779 		/* Copy the keys & pointers to the new block. */
2780 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2781 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2782 
2783 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2784 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2785 
2786 		/* Stash the keys of the new block for later insertion. */
2787 		xfs_btree_get_node_keys(cur, right, key);
2788 	} else {
2789 		/* It's a leaf.  Move records.  */
2790 		union xfs_btree_rec	*lrp;	/* left record pointer */
2791 		union xfs_btree_rec	*rrp;	/* right record pointer */
2792 
2793 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2794 		rrp = xfs_btree_rec_addr(cur, 1, right);
2795 
2796 		/* Copy records to the new block. */
2797 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2798 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2799 
2800 		/* Stash the keys of the new block for later insertion. */
2801 		xfs_btree_get_leaf_keys(cur, right, key);
2802 	}
2803 
2804 	/*
2805 	 * Find the left block number by looking in the buffer.
2806 	 * Adjust sibling pointers.
2807 	 */
2808 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2809 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2810 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2811 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2812 
2813 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2814 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2815 
2816 	/*
2817 	 * If there's a block to the new block's right, make that block
2818 	 * point back to right instead of to left.
2819 	 */
2820 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2821 		error = xfs_btree_read_buf_block(cur, &rrptr,
2822 							0, &rrblock, &rrbp);
2823 		if (error)
2824 			goto error0;
2825 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2826 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2827 	}
2828 
2829 	/* Update the parent high keys of the left block, if needed. */
2830 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2831 		error = xfs_btree_update_keys(cur, level);
2832 		if (error)
2833 			goto error0;
2834 	}
2835 
2836 	/*
2837 	 * If the cursor is really in the right block, move it there.
2838 	 * If it's just pointing past the last entry in left, then we'll
2839 	 * insert there, so don't change anything in that case.
2840 	 */
2841 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2842 		xfs_btree_setbuf(cur, level, rbp);
2843 		cur->bc_levels[level].ptr -= lrecs;
2844 	}
2845 	/*
2846 	 * If there are more levels, we'll need another cursor which refers
2847 	 * the right block, no matter where this cursor was.
2848 	 */
2849 	if (level + 1 < cur->bc_nlevels) {
2850 		error = xfs_btree_dup_cursor(cur, curp);
2851 		if (error)
2852 			goto error0;
2853 		(*curp)->bc_levels[level + 1].ptr++;
2854 	}
2855 	*ptrp = rptr;
2856 	*stat = 1;
2857 	return 0;
2858 out0:
2859 	*stat = 0;
2860 	return 0;
2861 
2862 error0:
2863 	return error;
2864 }
2865 
2866 #ifdef __KERNEL__
2867 struct xfs_btree_split_args {
2868 	struct xfs_btree_cur	*cur;
2869 	int			level;
2870 	union xfs_btree_ptr	*ptrp;
2871 	union xfs_btree_key	*key;
2872 	struct xfs_btree_cur	**curp;
2873 	int			*stat;		/* success/failure */
2874 	int			result;
2875 	bool			kswapd;	/* allocation in kswapd context */
2876 	struct completion	*done;
2877 	struct work_struct	work;
2878 };
2879 
2880 /*
2881  * Stack switching interfaces for allocation
2882  */
2883 static void
2884 xfs_btree_split_worker(
2885 	struct work_struct	*work)
2886 {
2887 	struct xfs_btree_split_args	*args = container_of(work,
2888 						struct xfs_btree_split_args, work);
2889 	unsigned long		pflags;
2890 	unsigned long		new_pflags = 0;
2891 
2892 	/*
2893 	 * we are in a transaction context here, but may also be doing work
2894 	 * in kswapd context, and hence we may need to inherit that state
2895 	 * temporarily to ensure that we don't block waiting for memory reclaim
2896 	 * in any way.
2897 	 */
2898 	if (args->kswapd)
2899 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2900 
2901 	current_set_flags_nested(&pflags, new_pflags);
2902 	xfs_trans_set_context(args->cur->bc_tp);
2903 
2904 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2905 					 args->key, args->curp, args->stat);
2906 
2907 	xfs_trans_clear_context(args->cur->bc_tp);
2908 	current_restore_flags_nested(&pflags, new_pflags);
2909 
2910 	/*
2911 	 * Do not access args after complete() has run here. We don't own args
2912 	 * and the owner may run and free args before we return here.
2913 	 */
2914 	complete(args->done);
2915 
2916 }
2917 
2918 /*
2919  * BMBT split requests often come in with little stack to work on. Push
2920  * them off to a worker thread so there is lots of stack to use. For the other
2921  * btree types, just call directly to avoid the context switch overhead here.
2922  */
2923 STATIC int					/* error */
2924 xfs_btree_split(
2925 	struct xfs_btree_cur	*cur,
2926 	int			level,
2927 	union xfs_btree_ptr	*ptrp,
2928 	union xfs_btree_key	*key,
2929 	struct xfs_btree_cur	**curp,
2930 	int			*stat)		/* success/failure */
2931 {
2932 	struct xfs_btree_split_args	args;
2933 	DECLARE_COMPLETION_ONSTACK(done);
2934 
2935 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2936 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2937 
2938 	args.cur = cur;
2939 	args.level = level;
2940 	args.ptrp = ptrp;
2941 	args.key = key;
2942 	args.curp = curp;
2943 	args.stat = stat;
2944 	args.done = &done;
2945 	args.kswapd = current_is_kswapd();
2946 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2947 	queue_work(xfs_alloc_wq, &args.work);
2948 	wait_for_completion(&done);
2949 	destroy_work_on_stack(&args.work);
2950 	return args.result;
2951 }
2952 #else
2953 #define xfs_btree_split	__xfs_btree_split
2954 #endif /* __KERNEL__ */
2955 
2956 
2957 /*
2958  * Copy the old inode root contents into a real block and make the
2959  * broot point to it.
2960  */
2961 int						/* error */
2962 xfs_btree_new_iroot(
2963 	struct xfs_btree_cur	*cur,		/* btree cursor */
2964 	int			*logflags,	/* logging flags for inode */
2965 	int			*stat)		/* return status - 0 fail */
2966 {
2967 	struct xfs_buf		*cbp;		/* buffer for cblock */
2968 	struct xfs_btree_block	*block;		/* btree block */
2969 	struct xfs_btree_block	*cblock;	/* child btree block */
2970 	union xfs_btree_key	*ckp;		/* child key pointer */
2971 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2972 	union xfs_btree_key	*kp;		/* pointer to btree key */
2973 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2974 	union xfs_btree_ptr	nptr;		/* new block addr */
2975 	int			level;		/* btree level */
2976 	int			error;		/* error return code */
2977 	int			i;		/* loop counter */
2978 
2979 	XFS_BTREE_STATS_INC(cur, newroot);
2980 
2981 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2982 
2983 	level = cur->bc_nlevels - 1;
2984 
2985 	block = xfs_btree_get_iroot(cur);
2986 	pp = xfs_btree_ptr_addr(cur, 1, block);
2987 
2988 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2989 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2990 	if (error)
2991 		goto error0;
2992 	if (*stat == 0)
2993 		return 0;
2994 
2995 	XFS_BTREE_STATS_INC(cur, alloc);
2996 
2997 	/* Copy the root into a real block. */
2998 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2999 	if (error)
3000 		goto error0;
3001 
3002 	/*
3003 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3004 	 * In that case have to also ensure the blkno remains correct
3005 	 */
3006 	memcpy(cblock, block, xfs_btree_block_len(cur));
3007 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3008 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3009 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3010 			cblock->bb_u.l.bb_blkno = bno;
3011 		else
3012 			cblock->bb_u.s.bb_blkno = bno;
3013 	}
3014 
3015 	be16_add_cpu(&block->bb_level, 1);
3016 	xfs_btree_set_numrecs(block, 1);
3017 	cur->bc_nlevels++;
3018 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3019 	cur->bc_levels[level + 1].ptr = 1;
3020 
3021 	kp = xfs_btree_key_addr(cur, 1, block);
3022 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3023 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3024 
3025 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3026 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3027 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3028 		if (error)
3029 			goto error0;
3030 	}
3031 
3032 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3033 
3034 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3035 	if (error)
3036 		goto error0;
3037 
3038 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3039 
3040 	xfs_iroot_realloc(cur->bc_ino.ip,
3041 			  1 - xfs_btree_get_numrecs(cblock),
3042 			  cur->bc_ino.whichfork);
3043 
3044 	xfs_btree_setbuf(cur, level, cbp);
3045 
3046 	/*
3047 	 * Do all this logging at the end so that
3048 	 * the root is at the right level.
3049 	 */
3050 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3051 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3052 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3053 
3054 	*logflags |=
3055 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3056 	*stat = 1;
3057 	return 0;
3058 error0:
3059 	return error;
3060 }
3061 
3062 /*
3063  * Allocate a new root block, fill it in.
3064  */
3065 STATIC int				/* error */
3066 xfs_btree_new_root(
3067 	struct xfs_btree_cur	*cur,	/* btree cursor */
3068 	int			*stat)	/* success/failure */
3069 {
3070 	struct xfs_btree_block	*block;	/* one half of the old root block */
3071 	struct xfs_buf		*bp;	/* buffer containing block */
3072 	int			error;	/* error return value */
3073 	struct xfs_buf		*lbp;	/* left buffer pointer */
3074 	struct xfs_btree_block	*left;	/* left btree block */
3075 	struct xfs_buf		*nbp;	/* new (root) buffer */
3076 	struct xfs_btree_block	*new;	/* new (root) btree block */
3077 	int			nptr;	/* new value for key index, 1 or 2 */
3078 	struct xfs_buf		*rbp;	/* right buffer pointer */
3079 	struct xfs_btree_block	*right;	/* right btree block */
3080 	union xfs_btree_ptr	rptr;
3081 	union xfs_btree_ptr	lptr;
3082 
3083 	XFS_BTREE_STATS_INC(cur, newroot);
3084 
3085 	/* initialise our start point from the cursor */
3086 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3087 
3088 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3089 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3090 	if (error)
3091 		goto error0;
3092 	if (*stat == 0)
3093 		goto out0;
3094 	XFS_BTREE_STATS_INC(cur, alloc);
3095 
3096 	/* Set up the new block. */
3097 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3098 	if (error)
3099 		goto error0;
3100 
3101 	/* Set the root in the holding structure  increasing the level by 1. */
3102 	cur->bc_ops->set_root(cur, &lptr, 1);
3103 
3104 	/*
3105 	 * At the previous root level there are now two blocks: the old root,
3106 	 * and the new block generated when it was split.  We don't know which
3107 	 * one the cursor is pointing at, so we set up variables "left" and
3108 	 * "right" for each case.
3109 	 */
3110 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3111 
3112 #ifdef DEBUG
3113 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3114 	if (error)
3115 		goto error0;
3116 #endif
3117 
3118 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3119 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3120 		/* Our block is left, pick up the right block. */
3121 		lbp = bp;
3122 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3123 		left = block;
3124 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3125 		if (error)
3126 			goto error0;
3127 		bp = rbp;
3128 		nptr = 1;
3129 	} else {
3130 		/* Our block is right, pick up the left block. */
3131 		rbp = bp;
3132 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3133 		right = block;
3134 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3135 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3136 		if (error)
3137 			goto error0;
3138 		bp = lbp;
3139 		nptr = 2;
3140 	}
3141 
3142 	/* Fill in the new block's btree header and log it. */
3143 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3144 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3145 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3146 			!xfs_btree_ptr_is_null(cur, &rptr));
3147 
3148 	/* Fill in the key data in the new root. */
3149 	if (xfs_btree_get_level(left) > 0) {
3150 		/*
3151 		 * Get the keys for the left block's keys and put them directly
3152 		 * in the parent block.  Do the same for the right block.
3153 		 */
3154 		xfs_btree_get_node_keys(cur, left,
3155 				xfs_btree_key_addr(cur, 1, new));
3156 		xfs_btree_get_node_keys(cur, right,
3157 				xfs_btree_key_addr(cur, 2, new));
3158 	} else {
3159 		/*
3160 		 * Get the keys for the left block's records and put them
3161 		 * directly in the parent block.  Do the same for the right
3162 		 * block.
3163 		 */
3164 		xfs_btree_get_leaf_keys(cur, left,
3165 			xfs_btree_key_addr(cur, 1, new));
3166 		xfs_btree_get_leaf_keys(cur, right,
3167 			xfs_btree_key_addr(cur, 2, new));
3168 	}
3169 	xfs_btree_log_keys(cur, nbp, 1, 2);
3170 
3171 	/* Fill in the pointer data in the new root. */
3172 	xfs_btree_copy_ptrs(cur,
3173 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3174 	xfs_btree_copy_ptrs(cur,
3175 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3176 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3177 
3178 	/* Fix up the cursor. */
3179 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3180 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3181 	cur->bc_nlevels++;
3182 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3183 	*stat = 1;
3184 	return 0;
3185 error0:
3186 	return error;
3187 out0:
3188 	*stat = 0;
3189 	return 0;
3190 }
3191 
3192 STATIC int
3193 xfs_btree_make_block_unfull(
3194 	struct xfs_btree_cur	*cur,	/* btree cursor */
3195 	int			level,	/* btree level */
3196 	int			numrecs,/* # of recs in block */
3197 	int			*oindex,/* old tree index */
3198 	int			*index,	/* new tree index */
3199 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3200 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3201 	union xfs_btree_key	*key,	/* key of new block */
3202 	int			*stat)
3203 {
3204 	int			error = 0;
3205 
3206 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3207 	    level == cur->bc_nlevels - 1) {
3208 		struct xfs_inode *ip = cur->bc_ino.ip;
3209 
3210 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3211 			/* A root block that can be made bigger. */
3212 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3213 			*stat = 1;
3214 		} else {
3215 			/* A root block that needs replacing */
3216 			int	logflags = 0;
3217 
3218 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3219 			if (error || *stat == 0)
3220 				return error;
3221 
3222 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3223 		}
3224 
3225 		return 0;
3226 	}
3227 
3228 	/* First, try shifting an entry to the right neighbor. */
3229 	error = xfs_btree_rshift(cur, level, stat);
3230 	if (error || *stat)
3231 		return error;
3232 
3233 	/* Next, try shifting an entry to the left neighbor. */
3234 	error = xfs_btree_lshift(cur, level, stat);
3235 	if (error)
3236 		return error;
3237 
3238 	if (*stat) {
3239 		*oindex = *index = cur->bc_levels[level].ptr;
3240 		return 0;
3241 	}
3242 
3243 	/*
3244 	 * Next, try splitting the current block in half.
3245 	 *
3246 	 * If this works we have to re-set our variables because we
3247 	 * could be in a different block now.
3248 	 */
3249 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3250 	if (error || *stat == 0)
3251 		return error;
3252 
3253 
3254 	*index = cur->bc_levels[level].ptr;
3255 	return 0;
3256 }
3257 
3258 /*
3259  * Insert one record/level.  Return information to the caller
3260  * allowing the next level up to proceed if necessary.
3261  */
3262 STATIC int
3263 xfs_btree_insrec(
3264 	struct xfs_btree_cur	*cur,	/* btree cursor */
3265 	int			level,	/* level to insert record at */
3266 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3267 	union xfs_btree_rec	*rec,	/* record to insert */
3268 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3269 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3270 	int			*stat)	/* success/failure */
3271 {
3272 	struct xfs_btree_block	*block;	/* btree block */
3273 	struct xfs_buf		*bp;	/* buffer for block */
3274 	union xfs_btree_ptr	nptr;	/* new block ptr */
3275 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3276 	union xfs_btree_key	nkey;	/* new block key */
3277 	union xfs_btree_key	*lkey;
3278 	int			optr;	/* old key/record index */
3279 	int			ptr;	/* key/record index */
3280 	int			numrecs;/* number of records */
3281 	int			error;	/* error return value */
3282 	int			i;
3283 	xfs_daddr_t		old_bn;
3284 
3285 	ncur = NULL;
3286 	lkey = &nkey;
3287 
3288 	/*
3289 	 * If we have an external root pointer, and we've made it to the
3290 	 * root level, allocate a new root block and we're done.
3291 	 */
3292 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3293 	    (level >= cur->bc_nlevels)) {
3294 		error = xfs_btree_new_root(cur, stat);
3295 		xfs_btree_set_ptr_null(cur, ptrp);
3296 
3297 		return error;
3298 	}
3299 
3300 	/* If we're off the left edge, return failure. */
3301 	ptr = cur->bc_levels[level].ptr;
3302 	if (ptr == 0) {
3303 		*stat = 0;
3304 		return 0;
3305 	}
3306 
3307 	optr = ptr;
3308 
3309 	XFS_BTREE_STATS_INC(cur, insrec);
3310 
3311 	/* Get pointers to the btree buffer and block. */
3312 	block = xfs_btree_get_block(cur, level, &bp);
3313 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3314 	numrecs = xfs_btree_get_numrecs(block);
3315 
3316 #ifdef DEBUG
3317 	error = xfs_btree_check_block(cur, block, level, bp);
3318 	if (error)
3319 		goto error0;
3320 
3321 	/* Check that the new entry is being inserted in the right place. */
3322 	if (ptr <= numrecs) {
3323 		if (level == 0) {
3324 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3325 				xfs_btree_rec_addr(cur, ptr, block)));
3326 		} else {
3327 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3328 				xfs_btree_key_addr(cur, ptr, block)));
3329 		}
3330 	}
3331 #endif
3332 
3333 	/*
3334 	 * If the block is full, we can't insert the new entry until we
3335 	 * make the block un-full.
3336 	 */
3337 	xfs_btree_set_ptr_null(cur, &nptr);
3338 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3339 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3340 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3341 		if (error || *stat == 0)
3342 			goto error0;
3343 	}
3344 
3345 	/*
3346 	 * The current block may have changed if the block was
3347 	 * previously full and we have just made space in it.
3348 	 */
3349 	block = xfs_btree_get_block(cur, level, &bp);
3350 	numrecs = xfs_btree_get_numrecs(block);
3351 
3352 #ifdef DEBUG
3353 	error = xfs_btree_check_block(cur, block, level, bp);
3354 	if (error)
3355 		goto error0;
3356 #endif
3357 
3358 	/*
3359 	 * At this point we know there's room for our new entry in the block
3360 	 * we're pointing at.
3361 	 */
3362 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3363 
3364 	if (level > 0) {
3365 		/* It's a nonleaf. make a hole in the keys and ptrs */
3366 		union xfs_btree_key	*kp;
3367 		union xfs_btree_ptr	*pp;
3368 
3369 		kp = xfs_btree_key_addr(cur, ptr, block);
3370 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3371 
3372 		for (i = numrecs - ptr; i >= 0; i--) {
3373 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3374 			if (error)
3375 				goto error0;
3376 		}
3377 
3378 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3379 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3380 
3381 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3382 		if (error)
3383 			goto error0;
3384 
3385 		/* Now put the new data in, bump numrecs and log it. */
3386 		xfs_btree_copy_keys(cur, kp, key, 1);
3387 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3388 		numrecs++;
3389 		xfs_btree_set_numrecs(block, numrecs);
3390 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3391 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3392 #ifdef DEBUG
3393 		if (ptr < numrecs) {
3394 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3395 				xfs_btree_key_addr(cur, ptr + 1, block)));
3396 		}
3397 #endif
3398 	} else {
3399 		/* It's a leaf. make a hole in the records */
3400 		union xfs_btree_rec             *rp;
3401 
3402 		rp = xfs_btree_rec_addr(cur, ptr, block);
3403 
3404 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3405 
3406 		/* Now put the new data in, bump numrecs and log it. */
3407 		xfs_btree_copy_recs(cur, rp, rec, 1);
3408 		xfs_btree_set_numrecs(block, ++numrecs);
3409 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3410 #ifdef DEBUG
3411 		if (ptr < numrecs) {
3412 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3413 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3414 		}
3415 #endif
3416 	}
3417 
3418 	/* Log the new number of records in the btree header. */
3419 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3420 
3421 	/*
3422 	 * If we just inserted into a new tree block, we have to
3423 	 * recalculate nkey here because nkey is out of date.
3424 	 *
3425 	 * Otherwise we're just updating an existing block (having shoved
3426 	 * some records into the new tree block), so use the regular key
3427 	 * update mechanism.
3428 	 */
3429 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3430 		xfs_btree_get_keys(cur, block, lkey);
3431 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3432 		error = xfs_btree_update_keys(cur, level);
3433 		if (error)
3434 			goto error0;
3435 	}
3436 
3437 	/*
3438 	 * If we are tracking the last record in the tree and
3439 	 * we are at the far right edge of the tree, update it.
3440 	 */
3441 	if (xfs_btree_is_lastrec(cur, block, level)) {
3442 		cur->bc_ops->update_lastrec(cur, block, rec,
3443 					    ptr, LASTREC_INSREC);
3444 	}
3445 
3446 	/*
3447 	 * Return the new block number, if any.
3448 	 * If there is one, give back a record value and a cursor too.
3449 	 */
3450 	*ptrp = nptr;
3451 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3452 		xfs_btree_copy_keys(cur, key, lkey, 1);
3453 		*curp = ncur;
3454 	}
3455 
3456 	*stat = 1;
3457 	return 0;
3458 
3459 error0:
3460 	if (ncur)
3461 		xfs_btree_del_cursor(ncur, error);
3462 	return error;
3463 }
3464 
3465 /*
3466  * Insert the record at the point referenced by cur.
3467  *
3468  * A multi-level split of the tree on insert will invalidate the original
3469  * cursor.  All callers of this function should assume that the cursor is
3470  * no longer valid and revalidate it.
3471  */
3472 int
3473 xfs_btree_insert(
3474 	struct xfs_btree_cur	*cur,
3475 	int			*stat)
3476 {
3477 	int			error;	/* error return value */
3478 	int			i;	/* result value, 0 for failure */
3479 	int			level;	/* current level number in btree */
3480 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3481 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3482 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3483 	union xfs_btree_key	bkey;	/* key of block to insert */
3484 	union xfs_btree_key	*key;
3485 	union xfs_btree_rec	rec;	/* record to insert */
3486 
3487 	level = 0;
3488 	ncur = NULL;
3489 	pcur = cur;
3490 	key = &bkey;
3491 
3492 	xfs_btree_set_ptr_null(cur, &nptr);
3493 
3494 	/* Make a key out of the record data to be inserted, and save it. */
3495 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3496 	cur->bc_ops->init_key_from_rec(key, &rec);
3497 
3498 	/*
3499 	 * Loop going up the tree, starting at the leaf level.
3500 	 * Stop when we don't get a split block, that must mean that
3501 	 * the insert is finished with this level.
3502 	 */
3503 	do {
3504 		/*
3505 		 * Insert nrec/nptr into this level of the tree.
3506 		 * Note if we fail, nptr will be null.
3507 		 */
3508 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3509 				&ncur, &i);
3510 		if (error) {
3511 			if (pcur != cur)
3512 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3513 			goto error0;
3514 		}
3515 
3516 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3517 			error = -EFSCORRUPTED;
3518 			goto error0;
3519 		}
3520 		level++;
3521 
3522 		/*
3523 		 * See if the cursor we just used is trash.
3524 		 * Can't trash the caller's cursor, but otherwise we should
3525 		 * if ncur is a new cursor or we're about to be done.
3526 		 */
3527 		if (pcur != cur &&
3528 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3529 			/* Save the state from the cursor before we trash it */
3530 			if (cur->bc_ops->update_cursor)
3531 				cur->bc_ops->update_cursor(pcur, cur);
3532 			cur->bc_nlevels = pcur->bc_nlevels;
3533 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3534 		}
3535 		/* If we got a new cursor, switch to it. */
3536 		if (ncur) {
3537 			pcur = ncur;
3538 			ncur = NULL;
3539 		}
3540 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3541 
3542 	*stat = i;
3543 	return 0;
3544 error0:
3545 	return error;
3546 }
3547 
3548 /*
3549  * Try to merge a non-leaf block back into the inode root.
3550  *
3551  * Note: the killroot names comes from the fact that we're effectively
3552  * killing the old root block.  But because we can't just delete the
3553  * inode we have to copy the single block it was pointing to into the
3554  * inode.
3555  */
3556 STATIC int
3557 xfs_btree_kill_iroot(
3558 	struct xfs_btree_cur	*cur)
3559 {
3560 	int			whichfork = cur->bc_ino.whichfork;
3561 	struct xfs_inode	*ip = cur->bc_ino.ip;
3562 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3563 	struct xfs_btree_block	*block;
3564 	struct xfs_btree_block	*cblock;
3565 	union xfs_btree_key	*kp;
3566 	union xfs_btree_key	*ckp;
3567 	union xfs_btree_ptr	*pp;
3568 	union xfs_btree_ptr	*cpp;
3569 	struct xfs_buf		*cbp;
3570 	int			level;
3571 	int			index;
3572 	int			numrecs;
3573 	int			error;
3574 #ifdef DEBUG
3575 	union xfs_btree_ptr	ptr;
3576 #endif
3577 	int			i;
3578 
3579 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3580 	ASSERT(cur->bc_nlevels > 1);
3581 
3582 	/*
3583 	 * Don't deal with the root block needs to be a leaf case.
3584 	 * We're just going to turn the thing back into extents anyway.
3585 	 */
3586 	level = cur->bc_nlevels - 1;
3587 	if (level == 1)
3588 		goto out0;
3589 
3590 	/*
3591 	 * Give up if the root has multiple children.
3592 	 */
3593 	block = xfs_btree_get_iroot(cur);
3594 	if (xfs_btree_get_numrecs(block) != 1)
3595 		goto out0;
3596 
3597 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3598 	numrecs = xfs_btree_get_numrecs(cblock);
3599 
3600 	/*
3601 	 * Only do this if the next level will fit.
3602 	 * Then the data must be copied up to the inode,
3603 	 * instead of freeing the root you free the next level.
3604 	 */
3605 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3606 		goto out0;
3607 
3608 	XFS_BTREE_STATS_INC(cur, killroot);
3609 
3610 #ifdef DEBUG
3611 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3612 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3613 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3614 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3615 #endif
3616 
3617 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3618 	if (index) {
3619 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3620 				  cur->bc_ino.whichfork);
3621 		block = ifp->if_broot;
3622 	}
3623 
3624 	be16_add_cpu(&block->bb_numrecs, index);
3625 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3626 
3627 	kp = xfs_btree_key_addr(cur, 1, block);
3628 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3629 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3630 
3631 	pp = xfs_btree_ptr_addr(cur, 1, block);
3632 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3633 
3634 	for (i = 0; i < numrecs; i++) {
3635 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3636 		if (error)
3637 			return error;
3638 	}
3639 
3640 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3641 
3642 	error = xfs_btree_free_block(cur, cbp);
3643 	if (error)
3644 		return error;
3645 
3646 	cur->bc_levels[level - 1].bp = NULL;
3647 	be16_add_cpu(&block->bb_level, -1);
3648 	xfs_trans_log_inode(cur->bc_tp, ip,
3649 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3650 	cur->bc_nlevels--;
3651 out0:
3652 	return 0;
3653 }
3654 
3655 /*
3656  * Kill the current root node, and replace it with it's only child node.
3657  */
3658 STATIC int
3659 xfs_btree_kill_root(
3660 	struct xfs_btree_cur	*cur,
3661 	struct xfs_buf		*bp,
3662 	int			level,
3663 	union xfs_btree_ptr	*newroot)
3664 {
3665 	int			error;
3666 
3667 	XFS_BTREE_STATS_INC(cur, killroot);
3668 
3669 	/*
3670 	 * Update the root pointer, decreasing the level by 1 and then
3671 	 * free the old root.
3672 	 */
3673 	cur->bc_ops->set_root(cur, newroot, -1);
3674 
3675 	error = xfs_btree_free_block(cur, bp);
3676 	if (error)
3677 		return error;
3678 
3679 	cur->bc_levels[level].bp = NULL;
3680 	cur->bc_levels[level].ra = 0;
3681 	cur->bc_nlevels--;
3682 
3683 	return 0;
3684 }
3685 
3686 STATIC int
3687 xfs_btree_dec_cursor(
3688 	struct xfs_btree_cur	*cur,
3689 	int			level,
3690 	int			*stat)
3691 {
3692 	int			error;
3693 	int			i;
3694 
3695 	if (level > 0) {
3696 		error = xfs_btree_decrement(cur, level, &i);
3697 		if (error)
3698 			return error;
3699 	}
3700 
3701 	*stat = 1;
3702 	return 0;
3703 }
3704 
3705 /*
3706  * Single level of the btree record deletion routine.
3707  * Delete record pointed to by cur/level.
3708  * Remove the record from its block then rebalance the tree.
3709  * Return 0 for error, 1 for done, 2 to go on to the next level.
3710  */
3711 STATIC int					/* error */
3712 xfs_btree_delrec(
3713 	struct xfs_btree_cur	*cur,		/* btree cursor */
3714 	int			level,		/* level removing record from */
3715 	int			*stat)		/* fail/done/go-on */
3716 {
3717 	struct xfs_btree_block	*block;		/* btree block */
3718 	union xfs_btree_ptr	cptr;		/* current block ptr */
3719 	struct xfs_buf		*bp;		/* buffer for block */
3720 	int			error;		/* error return value */
3721 	int			i;		/* loop counter */
3722 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3723 	struct xfs_buf		*lbp;		/* left buffer pointer */
3724 	struct xfs_btree_block	*left;		/* left btree block */
3725 	int			lrecs = 0;	/* left record count */
3726 	int			ptr;		/* key/record index */
3727 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3728 	struct xfs_buf		*rbp;		/* right buffer pointer */
3729 	struct xfs_btree_block	*right;		/* right btree block */
3730 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3731 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3732 	int			rrecs = 0;	/* right record count */
3733 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3734 	int			numrecs;	/* temporary numrec count */
3735 
3736 	tcur = NULL;
3737 
3738 	/* Get the index of the entry being deleted, check for nothing there. */
3739 	ptr = cur->bc_levels[level].ptr;
3740 	if (ptr == 0) {
3741 		*stat = 0;
3742 		return 0;
3743 	}
3744 
3745 	/* Get the buffer & block containing the record or key/ptr. */
3746 	block = xfs_btree_get_block(cur, level, &bp);
3747 	numrecs = xfs_btree_get_numrecs(block);
3748 
3749 #ifdef DEBUG
3750 	error = xfs_btree_check_block(cur, block, level, bp);
3751 	if (error)
3752 		goto error0;
3753 #endif
3754 
3755 	/* Fail if we're off the end of the block. */
3756 	if (ptr > numrecs) {
3757 		*stat = 0;
3758 		return 0;
3759 	}
3760 
3761 	XFS_BTREE_STATS_INC(cur, delrec);
3762 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3763 
3764 	/* Excise the entries being deleted. */
3765 	if (level > 0) {
3766 		/* It's a nonleaf. operate on keys and ptrs */
3767 		union xfs_btree_key	*lkp;
3768 		union xfs_btree_ptr	*lpp;
3769 
3770 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3771 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3772 
3773 		for (i = 0; i < numrecs - ptr; i++) {
3774 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3775 			if (error)
3776 				goto error0;
3777 		}
3778 
3779 		if (ptr < numrecs) {
3780 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3781 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3782 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3783 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3784 		}
3785 	} else {
3786 		/* It's a leaf. operate on records */
3787 		if (ptr < numrecs) {
3788 			xfs_btree_shift_recs(cur,
3789 				xfs_btree_rec_addr(cur, ptr + 1, block),
3790 				-1, numrecs - ptr);
3791 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3792 		}
3793 	}
3794 
3795 	/*
3796 	 * Decrement and log the number of entries in the block.
3797 	 */
3798 	xfs_btree_set_numrecs(block, --numrecs);
3799 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3800 
3801 	/*
3802 	 * If we are tracking the last record in the tree and
3803 	 * we are at the far right edge of the tree, update it.
3804 	 */
3805 	if (xfs_btree_is_lastrec(cur, block, level)) {
3806 		cur->bc_ops->update_lastrec(cur, block, NULL,
3807 					    ptr, LASTREC_DELREC);
3808 	}
3809 
3810 	/*
3811 	 * We're at the root level.  First, shrink the root block in-memory.
3812 	 * Try to get rid of the next level down.  If we can't then there's
3813 	 * nothing left to do.
3814 	 */
3815 	if (level == cur->bc_nlevels - 1) {
3816 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3817 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3818 					  cur->bc_ino.whichfork);
3819 
3820 			error = xfs_btree_kill_iroot(cur);
3821 			if (error)
3822 				goto error0;
3823 
3824 			error = xfs_btree_dec_cursor(cur, level, stat);
3825 			if (error)
3826 				goto error0;
3827 			*stat = 1;
3828 			return 0;
3829 		}
3830 
3831 		/*
3832 		 * If this is the root level, and there's only one entry left,
3833 		 * and it's NOT the leaf level, then we can get rid of this
3834 		 * level.
3835 		 */
3836 		if (numrecs == 1 && level > 0) {
3837 			union xfs_btree_ptr	*pp;
3838 			/*
3839 			 * pp is still set to the first pointer in the block.
3840 			 * Make it the new root of the btree.
3841 			 */
3842 			pp = xfs_btree_ptr_addr(cur, 1, block);
3843 			error = xfs_btree_kill_root(cur, bp, level, pp);
3844 			if (error)
3845 				goto error0;
3846 		} else if (level > 0) {
3847 			error = xfs_btree_dec_cursor(cur, level, stat);
3848 			if (error)
3849 				goto error0;
3850 		}
3851 		*stat = 1;
3852 		return 0;
3853 	}
3854 
3855 	/*
3856 	 * If we deleted the leftmost entry in the block, update the
3857 	 * key values above us in the tree.
3858 	 */
3859 	if (xfs_btree_needs_key_update(cur, ptr)) {
3860 		error = xfs_btree_update_keys(cur, level);
3861 		if (error)
3862 			goto error0;
3863 	}
3864 
3865 	/*
3866 	 * If the number of records remaining in the block is at least
3867 	 * the minimum, we're done.
3868 	 */
3869 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3870 		error = xfs_btree_dec_cursor(cur, level, stat);
3871 		if (error)
3872 			goto error0;
3873 		return 0;
3874 	}
3875 
3876 	/*
3877 	 * Otherwise, we have to move some records around to keep the
3878 	 * tree balanced.  Look at the left and right sibling blocks to
3879 	 * see if we can re-balance by moving only one record.
3880 	 */
3881 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3882 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3883 
3884 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3885 		/*
3886 		 * One child of root, need to get a chance to copy its contents
3887 		 * into the root and delete it. Can't go up to next level,
3888 		 * there's nothing to delete there.
3889 		 */
3890 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3891 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3892 		    level == cur->bc_nlevels - 2) {
3893 			error = xfs_btree_kill_iroot(cur);
3894 			if (!error)
3895 				error = xfs_btree_dec_cursor(cur, level, stat);
3896 			if (error)
3897 				goto error0;
3898 			return 0;
3899 		}
3900 	}
3901 
3902 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3903 	       !xfs_btree_ptr_is_null(cur, &lptr));
3904 
3905 	/*
3906 	 * Duplicate the cursor so our btree manipulations here won't
3907 	 * disrupt the next level up.
3908 	 */
3909 	error = xfs_btree_dup_cursor(cur, &tcur);
3910 	if (error)
3911 		goto error0;
3912 
3913 	/*
3914 	 * If there's a right sibling, see if it's ok to shift an entry
3915 	 * out of it.
3916 	 */
3917 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3918 		/*
3919 		 * Move the temp cursor to the last entry in the next block.
3920 		 * Actually any entry but the first would suffice.
3921 		 */
3922 		i = xfs_btree_lastrec(tcur, level);
3923 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3924 			error = -EFSCORRUPTED;
3925 			goto error0;
3926 		}
3927 
3928 		error = xfs_btree_increment(tcur, level, &i);
3929 		if (error)
3930 			goto error0;
3931 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3932 			error = -EFSCORRUPTED;
3933 			goto error0;
3934 		}
3935 
3936 		i = xfs_btree_lastrec(tcur, level);
3937 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3938 			error = -EFSCORRUPTED;
3939 			goto error0;
3940 		}
3941 
3942 		/* Grab a pointer to the block. */
3943 		right = xfs_btree_get_block(tcur, level, &rbp);
3944 #ifdef DEBUG
3945 		error = xfs_btree_check_block(tcur, right, level, rbp);
3946 		if (error)
3947 			goto error0;
3948 #endif
3949 		/* Grab the current block number, for future use. */
3950 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3951 
3952 		/*
3953 		 * If right block is full enough so that removing one entry
3954 		 * won't make it too empty, and left-shifting an entry out
3955 		 * of right to us works, we're done.
3956 		 */
3957 		if (xfs_btree_get_numrecs(right) - 1 >=
3958 		    cur->bc_ops->get_minrecs(tcur, level)) {
3959 			error = xfs_btree_lshift(tcur, level, &i);
3960 			if (error)
3961 				goto error0;
3962 			if (i) {
3963 				ASSERT(xfs_btree_get_numrecs(block) >=
3964 				       cur->bc_ops->get_minrecs(tcur, level));
3965 
3966 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3967 				tcur = NULL;
3968 
3969 				error = xfs_btree_dec_cursor(cur, level, stat);
3970 				if (error)
3971 					goto error0;
3972 				return 0;
3973 			}
3974 		}
3975 
3976 		/*
3977 		 * Otherwise, grab the number of records in right for
3978 		 * future reference, and fix up the temp cursor to point
3979 		 * to our block again (last record).
3980 		 */
3981 		rrecs = xfs_btree_get_numrecs(right);
3982 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3983 			i = xfs_btree_firstrec(tcur, level);
3984 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3985 				error = -EFSCORRUPTED;
3986 				goto error0;
3987 			}
3988 
3989 			error = xfs_btree_decrement(tcur, level, &i);
3990 			if (error)
3991 				goto error0;
3992 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3993 				error = -EFSCORRUPTED;
3994 				goto error0;
3995 			}
3996 		}
3997 	}
3998 
3999 	/*
4000 	 * If there's a left sibling, see if it's ok to shift an entry
4001 	 * out of it.
4002 	 */
4003 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4004 		/*
4005 		 * Move the temp cursor to the first entry in the
4006 		 * previous block.
4007 		 */
4008 		i = xfs_btree_firstrec(tcur, level);
4009 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4010 			error = -EFSCORRUPTED;
4011 			goto error0;
4012 		}
4013 
4014 		error = xfs_btree_decrement(tcur, level, &i);
4015 		if (error)
4016 			goto error0;
4017 		i = xfs_btree_firstrec(tcur, level);
4018 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4019 			error = -EFSCORRUPTED;
4020 			goto error0;
4021 		}
4022 
4023 		/* Grab a pointer to the block. */
4024 		left = xfs_btree_get_block(tcur, level, &lbp);
4025 #ifdef DEBUG
4026 		error = xfs_btree_check_block(cur, left, level, lbp);
4027 		if (error)
4028 			goto error0;
4029 #endif
4030 		/* Grab the current block number, for future use. */
4031 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4032 
4033 		/*
4034 		 * If left block is full enough so that removing one entry
4035 		 * won't make it too empty, and right-shifting an entry out
4036 		 * of left to us works, we're done.
4037 		 */
4038 		if (xfs_btree_get_numrecs(left) - 1 >=
4039 		    cur->bc_ops->get_minrecs(tcur, level)) {
4040 			error = xfs_btree_rshift(tcur, level, &i);
4041 			if (error)
4042 				goto error0;
4043 			if (i) {
4044 				ASSERT(xfs_btree_get_numrecs(block) >=
4045 				       cur->bc_ops->get_minrecs(tcur, level));
4046 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4047 				tcur = NULL;
4048 				if (level == 0)
4049 					cur->bc_levels[0].ptr++;
4050 
4051 				*stat = 1;
4052 				return 0;
4053 			}
4054 		}
4055 
4056 		/*
4057 		 * Otherwise, grab the number of records in right for
4058 		 * future reference.
4059 		 */
4060 		lrecs = xfs_btree_get_numrecs(left);
4061 	}
4062 
4063 	/* Delete the temp cursor, we're done with it. */
4064 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4065 	tcur = NULL;
4066 
4067 	/* If here, we need to do a join to keep the tree balanced. */
4068 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4069 
4070 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4071 	    lrecs + xfs_btree_get_numrecs(block) <=
4072 			cur->bc_ops->get_maxrecs(cur, level)) {
4073 		/*
4074 		 * Set "right" to be the starting block,
4075 		 * "left" to be the left neighbor.
4076 		 */
4077 		rptr = cptr;
4078 		right = block;
4079 		rbp = bp;
4080 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4081 		if (error)
4082 			goto error0;
4083 
4084 	/*
4085 	 * If that won't work, see if we can join with the right neighbor block.
4086 	 */
4087 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4088 		   rrecs + xfs_btree_get_numrecs(block) <=
4089 			cur->bc_ops->get_maxrecs(cur, level)) {
4090 		/*
4091 		 * Set "left" to be the starting block,
4092 		 * "right" to be the right neighbor.
4093 		 */
4094 		lptr = cptr;
4095 		left = block;
4096 		lbp = bp;
4097 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4098 		if (error)
4099 			goto error0;
4100 
4101 	/*
4102 	 * Otherwise, we can't fix the imbalance.
4103 	 * Just return.  This is probably a logic error, but it's not fatal.
4104 	 */
4105 	} else {
4106 		error = xfs_btree_dec_cursor(cur, level, stat);
4107 		if (error)
4108 			goto error0;
4109 		return 0;
4110 	}
4111 
4112 	rrecs = xfs_btree_get_numrecs(right);
4113 	lrecs = xfs_btree_get_numrecs(left);
4114 
4115 	/*
4116 	 * We're now going to join "left" and "right" by moving all the stuff
4117 	 * in "right" to "left" and deleting "right".
4118 	 */
4119 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4120 	if (level > 0) {
4121 		/* It's a non-leaf.  Move keys and pointers. */
4122 		union xfs_btree_key	*lkp;	/* left btree key */
4123 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4124 		union xfs_btree_key	*rkp;	/* right btree key */
4125 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4126 
4127 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4128 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4129 		rkp = xfs_btree_key_addr(cur, 1, right);
4130 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4131 
4132 		for (i = 1; i < rrecs; i++) {
4133 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4134 			if (error)
4135 				goto error0;
4136 		}
4137 
4138 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4139 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4140 
4141 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4142 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4143 	} else {
4144 		/* It's a leaf.  Move records.  */
4145 		union xfs_btree_rec	*lrp;	/* left record pointer */
4146 		union xfs_btree_rec	*rrp;	/* right record pointer */
4147 
4148 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4149 		rrp = xfs_btree_rec_addr(cur, 1, right);
4150 
4151 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4152 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153 	}
4154 
4155 	XFS_BTREE_STATS_INC(cur, join);
4156 
4157 	/*
4158 	 * Fix up the number of records and right block pointer in the
4159 	 * surviving block, and log it.
4160 	 */
4161 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4162 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4163 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4164 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4165 
4166 	/* If there is a right sibling, point it to the remaining block. */
4167 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4168 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4169 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4170 		if (error)
4171 			goto error0;
4172 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4173 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4174 	}
4175 
4176 	/* Free the deleted block. */
4177 	error = xfs_btree_free_block(cur, rbp);
4178 	if (error)
4179 		goto error0;
4180 
4181 	/*
4182 	 * If we joined with the left neighbor, set the buffer in the
4183 	 * cursor to the left block, and fix up the index.
4184 	 */
4185 	if (bp != lbp) {
4186 		cur->bc_levels[level].bp = lbp;
4187 		cur->bc_levels[level].ptr += lrecs;
4188 		cur->bc_levels[level].ra = 0;
4189 	}
4190 	/*
4191 	 * If we joined with the right neighbor and there's a level above
4192 	 * us, increment the cursor at that level.
4193 	 */
4194 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4195 		   (level + 1 < cur->bc_nlevels)) {
4196 		error = xfs_btree_increment(cur, level + 1, &i);
4197 		if (error)
4198 			goto error0;
4199 	}
4200 
4201 	/*
4202 	 * Readjust the ptr at this level if it's not a leaf, since it's
4203 	 * still pointing at the deletion point, which makes the cursor
4204 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4205 	 * We can't use decrement because it would change the next level up.
4206 	 */
4207 	if (level > 0)
4208 		cur->bc_levels[level].ptr--;
4209 
4210 	/*
4211 	 * We combined blocks, so we have to update the parent keys if the
4212 	 * btree supports overlapped intervals.  However,
4213 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4214 	 * knows which record to delete.  Therefore, the caller must be savvy
4215 	 * enough to call updkeys for us if we return stat == 2.  The other
4216 	 * exit points from this function don't require deletions further up
4217 	 * the tree, so they can call updkeys directly.
4218 	 */
4219 
4220 	/* Return value means the next level up has something to do. */
4221 	*stat = 2;
4222 	return 0;
4223 
4224 error0:
4225 	if (tcur)
4226 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4227 	return error;
4228 }
4229 
4230 /*
4231  * Delete the record pointed to by cur.
4232  * The cursor refers to the place where the record was (could be inserted)
4233  * when the operation returns.
4234  */
4235 int					/* error */
4236 xfs_btree_delete(
4237 	struct xfs_btree_cur	*cur,
4238 	int			*stat)	/* success/failure */
4239 {
4240 	int			error;	/* error return value */
4241 	int			level;
4242 	int			i;
4243 	bool			joined = false;
4244 
4245 	/*
4246 	 * Go up the tree, starting at leaf level.
4247 	 *
4248 	 * If 2 is returned then a join was done; go to the next level.
4249 	 * Otherwise we are done.
4250 	 */
4251 	for (level = 0, i = 2; i == 2; level++) {
4252 		error = xfs_btree_delrec(cur, level, &i);
4253 		if (error)
4254 			goto error0;
4255 		if (i == 2)
4256 			joined = true;
4257 	}
4258 
4259 	/*
4260 	 * If we combined blocks as part of deleting the record, delrec won't
4261 	 * have updated the parent high keys so we have to do that here.
4262 	 */
4263 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4264 		error = xfs_btree_updkeys_force(cur, 0);
4265 		if (error)
4266 			goto error0;
4267 	}
4268 
4269 	if (i == 0) {
4270 		for (level = 1; level < cur->bc_nlevels; level++) {
4271 			if (cur->bc_levels[level].ptr == 0) {
4272 				error = xfs_btree_decrement(cur, level, &i);
4273 				if (error)
4274 					goto error0;
4275 				break;
4276 			}
4277 		}
4278 	}
4279 
4280 	*stat = i;
4281 	return 0;
4282 error0:
4283 	return error;
4284 }
4285 
4286 /*
4287  * Get the data from the pointed-to record.
4288  */
4289 int					/* error */
4290 xfs_btree_get_rec(
4291 	struct xfs_btree_cur	*cur,	/* btree cursor */
4292 	union xfs_btree_rec	**recp,	/* output: btree record */
4293 	int			*stat)	/* output: success/failure */
4294 {
4295 	struct xfs_btree_block	*block;	/* btree block */
4296 	struct xfs_buf		*bp;	/* buffer pointer */
4297 	int			ptr;	/* record number */
4298 #ifdef DEBUG
4299 	int			error;	/* error return value */
4300 #endif
4301 
4302 	ptr = cur->bc_levels[0].ptr;
4303 	block = xfs_btree_get_block(cur, 0, &bp);
4304 
4305 #ifdef DEBUG
4306 	error = xfs_btree_check_block(cur, block, 0, bp);
4307 	if (error)
4308 		return error;
4309 #endif
4310 
4311 	/*
4312 	 * Off the right end or left end, return failure.
4313 	 */
4314 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4315 		*stat = 0;
4316 		return 0;
4317 	}
4318 
4319 	/*
4320 	 * Point to the record and extract its data.
4321 	 */
4322 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4323 	*stat = 1;
4324 	return 0;
4325 }
4326 
4327 /* Visit a block in a btree. */
4328 STATIC int
4329 xfs_btree_visit_block(
4330 	struct xfs_btree_cur		*cur,
4331 	int				level,
4332 	xfs_btree_visit_blocks_fn	fn,
4333 	void				*data)
4334 {
4335 	struct xfs_btree_block		*block;
4336 	struct xfs_buf			*bp;
4337 	union xfs_btree_ptr		rptr;
4338 	int				error;
4339 
4340 	/* do right sibling readahead */
4341 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4342 	block = xfs_btree_get_block(cur, level, &bp);
4343 
4344 	/* process the block */
4345 	error = fn(cur, level, data);
4346 	if (error)
4347 		return error;
4348 
4349 	/* now read rh sibling block for next iteration */
4350 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4351 	if (xfs_btree_ptr_is_null(cur, &rptr))
4352 		return -ENOENT;
4353 
4354 	/*
4355 	 * We only visit blocks once in this walk, so we have to avoid the
4356 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4357 	 * return the same block without checking if the right sibling points
4358 	 * back to us and creates a cyclic reference in the btree.
4359 	 */
4360 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361 		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4362 							xfs_buf_daddr(bp)))
4363 			return -EFSCORRUPTED;
4364 	} else {
4365 		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4366 							xfs_buf_daddr(bp)))
4367 			return -EFSCORRUPTED;
4368 	}
4369 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4370 }
4371 
4372 
4373 /* Visit every block in a btree. */
4374 int
4375 xfs_btree_visit_blocks(
4376 	struct xfs_btree_cur		*cur,
4377 	xfs_btree_visit_blocks_fn	fn,
4378 	unsigned int			flags,
4379 	void				*data)
4380 {
4381 	union xfs_btree_ptr		lptr;
4382 	int				level;
4383 	struct xfs_btree_block		*block = NULL;
4384 	int				error = 0;
4385 
4386 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4387 
4388 	/* for each level */
4389 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4390 		/* grab the left hand block */
4391 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4392 		if (error)
4393 			return error;
4394 
4395 		/* readahead the left most block for the next level down */
4396 		if (level > 0) {
4397 			union xfs_btree_ptr     *ptr;
4398 
4399 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4400 			xfs_btree_readahead_ptr(cur, ptr, 1);
4401 
4402 			/* save for the next iteration of the loop */
4403 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4404 
4405 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4406 				continue;
4407 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4408 			continue;
4409 		}
4410 
4411 		/* for each buffer in the level */
4412 		do {
4413 			error = xfs_btree_visit_block(cur, level, fn, data);
4414 		} while (!error);
4415 
4416 		if (error != -ENOENT)
4417 			return error;
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 /*
4424  * Change the owner of a btree.
4425  *
4426  * The mechanism we use here is ordered buffer logging. Because we don't know
4427  * how many buffers were are going to need to modify, we don't really want to
4428  * have to make transaction reservations for the worst case of every buffer in a
4429  * full size btree as that may be more space that we can fit in the log....
4430  *
4431  * We do the btree walk in the most optimal manner possible - we have sibling
4432  * pointers so we can just walk all the blocks on each level from left to right
4433  * in a single pass, and then move to the next level and do the same. We can
4434  * also do readahead on the sibling pointers to get IO moving more quickly,
4435  * though for slow disks this is unlikely to make much difference to performance
4436  * as the amount of CPU work we have to do before moving to the next block is
4437  * relatively small.
4438  *
4439  * For each btree block that we load, modify the owner appropriately, set the
4440  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4441  * we mark the region we change dirty so that if the buffer is relogged in
4442  * a subsequent transaction the changes we make here as an ordered buffer are
4443  * correctly relogged in that transaction.  If we are in recovery context, then
4444  * just queue the modified buffer as delayed write buffer so the transaction
4445  * recovery completion writes the changes to disk.
4446  */
4447 struct xfs_btree_block_change_owner_info {
4448 	uint64_t		new_owner;
4449 	struct list_head	*buffer_list;
4450 };
4451 
4452 static int
4453 xfs_btree_block_change_owner(
4454 	struct xfs_btree_cur	*cur,
4455 	int			level,
4456 	void			*data)
4457 {
4458 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4459 	struct xfs_btree_block	*block;
4460 	struct xfs_buf		*bp;
4461 
4462 	/* modify the owner */
4463 	block = xfs_btree_get_block(cur, level, &bp);
4464 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4465 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4466 			return 0;
4467 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4468 	} else {
4469 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4470 			return 0;
4471 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4472 	}
4473 
4474 	/*
4475 	 * If the block is a root block hosted in an inode, we might not have a
4476 	 * buffer pointer here and we shouldn't attempt to log the change as the
4477 	 * information is already held in the inode and discarded when the root
4478 	 * block is formatted into the on-disk inode fork. We still change it,
4479 	 * though, so everything is consistent in memory.
4480 	 */
4481 	if (!bp) {
4482 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4483 		ASSERT(level == cur->bc_nlevels - 1);
4484 		return 0;
4485 	}
4486 
4487 	if (cur->bc_tp) {
4488 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4489 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4490 			return -EAGAIN;
4491 		}
4492 	} else {
4493 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 int
4500 xfs_btree_change_owner(
4501 	struct xfs_btree_cur	*cur,
4502 	uint64_t		new_owner,
4503 	struct list_head	*buffer_list)
4504 {
4505 	struct xfs_btree_block_change_owner_info	bbcoi;
4506 
4507 	bbcoi.new_owner = new_owner;
4508 	bbcoi.buffer_list = buffer_list;
4509 
4510 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4511 			XFS_BTREE_VISIT_ALL, &bbcoi);
4512 }
4513 
4514 /* Verify the v5 fields of a long-format btree block. */
4515 xfs_failaddr_t
4516 xfs_btree_lblock_v5hdr_verify(
4517 	struct xfs_buf		*bp,
4518 	uint64_t		owner)
4519 {
4520 	struct xfs_mount	*mp = bp->b_mount;
4521 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4522 
4523 	if (!xfs_has_crc(mp))
4524 		return __this_address;
4525 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4526 		return __this_address;
4527 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4528 		return __this_address;
4529 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4530 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4531 		return __this_address;
4532 	return NULL;
4533 }
4534 
4535 /* Verify a long-format btree block. */
4536 xfs_failaddr_t
4537 xfs_btree_lblock_verify(
4538 	struct xfs_buf		*bp,
4539 	unsigned int		max_recs)
4540 {
4541 	struct xfs_mount	*mp = bp->b_mount;
4542 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4543 	xfs_fsblock_t		fsb;
4544 	xfs_failaddr_t		fa;
4545 
4546 	/* numrecs verification */
4547 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4548 		return __this_address;
4549 
4550 	/* sibling pointer verification */
4551 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4552 	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4553 			block->bb_u.l.bb_leftsib);
4554 	if (!fa)
4555 		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4556 				block->bb_u.l.bb_rightsib);
4557 	return fa;
4558 }
4559 
4560 /**
4561  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4562  *				      btree block
4563  *
4564  * @bp: buffer containing the btree block
4565  */
4566 xfs_failaddr_t
4567 xfs_btree_sblock_v5hdr_verify(
4568 	struct xfs_buf		*bp)
4569 {
4570 	struct xfs_mount	*mp = bp->b_mount;
4571 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4572 	struct xfs_perag	*pag = bp->b_pag;
4573 
4574 	if (!xfs_has_crc(mp))
4575 		return __this_address;
4576 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4577 		return __this_address;
4578 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4579 		return __this_address;
4580 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4581 		return __this_address;
4582 	return NULL;
4583 }
4584 
4585 /**
4586  * xfs_btree_sblock_verify() -- verify a short-format btree block
4587  *
4588  * @bp: buffer containing the btree block
4589  * @max_recs: maximum records allowed in this btree node
4590  */
4591 xfs_failaddr_t
4592 xfs_btree_sblock_verify(
4593 	struct xfs_buf		*bp,
4594 	unsigned int		max_recs)
4595 {
4596 	struct xfs_mount	*mp = bp->b_mount;
4597 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4598 	xfs_agnumber_t		agno;
4599 	xfs_agblock_t		agbno;
4600 	xfs_failaddr_t		fa;
4601 
4602 	/* numrecs verification */
4603 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4604 		return __this_address;
4605 
4606 	/* sibling pointer verification */
4607 	agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4608 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4609 	fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4610 			block->bb_u.s.bb_leftsib);
4611 	if (!fa)
4612 		fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4613 				block->bb_u.s.bb_rightsib);
4614 	return fa;
4615 }
4616 
4617 /*
4618  * For the given limits on leaf and keyptr records per block, calculate the
4619  * height of the tree needed to index the number of leaf records.
4620  */
4621 unsigned int
4622 xfs_btree_compute_maxlevels(
4623 	const unsigned int	*limits,
4624 	unsigned long long	records)
4625 {
4626 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4627 	unsigned int		height = 1;
4628 
4629 	while (level_blocks > 1) {
4630 		level_blocks = howmany_64(level_blocks, limits[1]);
4631 		height++;
4632 	}
4633 
4634 	return height;
4635 }
4636 
4637 /*
4638  * For the given limits on leaf and keyptr records per block, calculate the
4639  * number of blocks needed to index the given number of leaf records.
4640  */
4641 unsigned long long
4642 xfs_btree_calc_size(
4643 	const unsigned int	*limits,
4644 	unsigned long long	records)
4645 {
4646 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4647 	unsigned long long	blocks = level_blocks;
4648 
4649 	while (level_blocks > 1) {
4650 		level_blocks = howmany_64(level_blocks, limits[1]);
4651 		blocks += level_blocks;
4652 	}
4653 
4654 	return blocks;
4655 }
4656 
4657 /*
4658  * Given a number of available blocks for the btree to consume with records and
4659  * pointers, calculate the height of the tree needed to index all the records
4660  * that space can hold based on the number of pointers each interior node
4661  * holds.
4662  *
4663  * We start by assuming a single level tree consumes a single block, then track
4664  * the number of blocks each node level consumes until we no longer have space
4665  * to store the next node level. At this point, we are indexing all the leaf
4666  * blocks in the space, and there's no more free space to split the tree any
4667  * further. That's our maximum btree height.
4668  */
4669 unsigned int
4670 xfs_btree_space_to_height(
4671 	const unsigned int	*limits,
4672 	unsigned long long	leaf_blocks)
4673 {
4674 	unsigned long long	node_blocks = limits[1];
4675 	unsigned long long	blocks_left = leaf_blocks - 1;
4676 	unsigned int		height = 1;
4677 
4678 	if (leaf_blocks < 1)
4679 		return 0;
4680 
4681 	while (node_blocks < blocks_left) {
4682 		blocks_left -= node_blocks;
4683 		node_blocks *= limits[1];
4684 		height++;
4685 	}
4686 
4687 	return height;
4688 }
4689 
4690 /*
4691  * Query a regular btree for all records overlapping a given interval.
4692  * Start with a LE lookup of the key of low_rec and return all records
4693  * until we find a record with a key greater than the key of high_rec.
4694  */
4695 STATIC int
4696 xfs_btree_simple_query_range(
4697 	struct xfs_btree_cur		*cur,
4698 	const union xfs_btree_key	*low_key,
4699 	const union xfs_btree_key	*high_key,
4700 	xfs_btree_query_range_fn	fn,
4701 	void				*priv)
4702 {
4703 	union xfs_btree_rec		*recp;
4704 	union xfs_btree_key		rec_key;
4705 	int64_t				diff;
4706 	int				stat;
4707 	bool				firstrec = true;
4708 	int				error;
4709 
4710 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4711 	ASSERT(cur->bc_ops->diff_two_keys);
4712 
4713 	/*
4714 	 * Find the leftmost record.  The btree cursor must be set
4715 	 * to the low record used to generate low_key.
4716 	 */
4717 	stat = 0;
4718 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4719 	if (error)
4720 		goto out;
4721 
4722 	/* Nothing?  See if there's anything to the right. */
4723 	if (!stat) {
4724 		error = xfs_btree_increment(cur, 0, &stat);
4725 		if (error)
4726 			goto out;
4727 	}
4728 
4729 	while (stat) {
4730 		/* Find the record. */
4731 		error = xfs_btree_get_rec(cur, &recp, &stat);
4732 		if (error || !stat)
4733 			break;
4734 
4735 		/* Skip if high_key(rec) < low_key. */
4736 		if (firstrec) {
4737 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4738 			firstrec = false;
4739 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4740 					&rec_key);
4741 			if (diff > 0)
4742 				goto advloop;
4743 		}
4744 
4745 		/* Stop if high_key < low_key(rec). */
4746 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4747 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4748 		if (diff > 0)
4749 			break;
4750 
4751 		/* Callback */
4752 		error = fn(cur, recp, priv);
4753 		if (error)
4754 			break;
4755 
4756 advloop:
4757 		/* Move on to the next record. */
4758 		error = xfs_btree_increment(cur, 0, &stat);
4759 		if (error)
4760 			break;
4761 	}
4762 
4763 out:
4764 	return error;
4765 }
4766 
4767 /*
4768  * Query an overlapped interval btree for all records overlapping a given
4769  * interval.  This function roughly follows the algorithm given in
4770  * "Interval Trees" of _Introduction to Algorithms_, which is section
4771  * 14.3 in the 2nd and 3rd editions.
4772  *
4773  * First, generate keys for the low and high records passed in.
4774  *
4775  * For any leaf node, generate the high and low keys for the record.
4776  * If the record keys overlap with the query low/high keys, pass the
4777  * record to the function iterator.
4778  *
4779  * For any internal node, compare the low and high keys of each
4780  * pointer against the query low/high keys.  If there's an overlap,
4781  * follow the pointer.
4782  *
4783  * As an optimization, we stop scanning a block when we find a low key
4784  * that is greater than the query's high key.
4785  */
4786 STATIC int
4787 xfs_btree_overlapped_query_range(
4788 	struct xfs_btree_cur		*cur,
4789 	const union xfs_btree_key	*low_key,
4790 	const union xfs_btree_key	*high_key,
4791 	xfs_btree_query_range_fn	fn,
4792 	void				*priv)
4793 {
4794 	union xfs_btree_ptr		ptr;
4795 	union xfs_btree_ptr		*pp;
4796 	union xfs_btree_key		rec_key;
4797 	union xfs_btree_key		rec_hkey;
4798 	union xfs_btree_key		*lkp;
4799 	union xfs_btree_key		*hkp;
4800 	union xfs_btree_rec		*recp;
4801 	struct xfs_btree_block		*block;
4802 	int64_t				ldiff;
4803 	int64_t				hdiff;
4804 	int				level;
4805 	struct xfs_buf			*bp;
4806 	int				i;
4807 	int				error;
4808 
4809 	/* Load the root of the btree. */
4810 	level = cur->bc_nlevels - 1;
4811 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4812 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4813 	if (error)
4814 		return error;
4815 	xfs_btree_get_block(cur, level, &bp);
4816 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4817 #ifdef DEBUG
4818 	error = xfs_btree_check_block(cur, block, level, bp);
4819 	if (error)
4820 		goto out;
4821 #endif
4822 	cur->bc_levels[level].ptr = 1;
4823 
4824 	while (level < cur->bc_nlevels) {
4825 		block = xfs_btree_get_block(cur, level, &bp);
4826 
4827 		/* End of node, pop back towards the root. */
4828 		if (cur->bc_levels[level].ptr >
4829 					be16_to_cpu(block->bb_numrecs)) {
4830 pop_up:
4831 			if (level < cur->bc_nlevels - 1)
4832 				cur->bc_levels[level + 1].ptr++;
4833 			level++;
4834 			continue;
4835 		}
4836 
4837 		if (level == 0) {
4838 			/* Handle a leaf node. */
4839 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4840 					block);
4841 
4842 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4843 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4844 					low_key);
4845 
4846 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4847 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4848 					&rec_key);
4849 
4850 			/*
4851 			 * If (record's high key >= query's low key) and
4852 			 *    (query's high key >= record's low key), then
4853 			 * this record overlaps the query range; callback.
4854 			 */
4855 			if (ldiff >= 0 && hdiff >= 0) {
4856 				error = fn(cur, recp, priv);
4857 				if (error)
4858 					break;
4859 			} else if (hdiff < 0) {
4860 				/* Record is larger than high key; pop. */
4861 				goto pop_up;
4862 			}
4863 			cur->bc_levels[level].ptr++;
4864 			continue;
4865 		}
4866 
4867 		/* Handle an internal node. */
4868 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4869 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4870 				block);
4871 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4872 
4873 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4874 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4875 
4876 		/*
4877 		 * If (pointer's high key >= query's low key) and
4878 		 *    (query's high key >= pointer's low key), then
4879 		 * this record overlaps the query range; follow pointer.
4880 		 */
4881 		if (ldiff >= 0 && hdiff >= 0) {
4882 			level--;
4883 			error = xfs_btree_lookup_get_block(cur, level, pp,
4884 					&block);
4885 			if (error)
4886 				goto out;
4887 			xfs_btree_get_block(cur, level, &bp);
4888 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4889 #ifdef DEBUG
4890 			error = xfs_btree_check_block(cur, block, level, bp);
4891 			if (error)
4892 				goto out;
4893 #endif
4894 			cur->bc_levels[level].ptr = 1;
4895 			continue;
4896 		} else if (hdiff < 0) {
4897 			/* The low key is larger than the upper range; pop. */
4898 			goto pop_up;
4899 		}
4900 		cur->bc_levels[level].ptr++;
4901 	}
4902 
4903 out:
4904 	/*
4905 	 * If we don't end this function with the cursor pointing at a record
4906 	 * block, a subsequent non-error cursor deletion will not release
4907 	 * node-level buffers, causing a buffer leak.  This is quite possible
4908 	 * with a zero-results range query, so release the buffers if we
4909 	 * failed to return any results.
4910 	 */
4911 	if (cur->bc_levels[0].bp == NULL) {
4912 		for (i = 0; i < cur->bc_nlevels; i++) {
4913 			if (cur->bc_levels[i].bp) {
4914 				xfs_trans_brelse(cur->bc_tp,
4915 						cur->bc_levels[i].bp);
4916 				cur->bc_levels[i].bp = NULL;
4917 				cur->bc_levels[i].ptr = 0;
4918 				cur->bc_levels[i].ra = 0;
4919 			}
4920 		}
4921 	}
4922 
4923 	return error;
4924 }
4925 
4926 /*
4927  * Query a btree for all records overlapping a given interval of keys.  The
4928  * supplied function will be called with each record found; return one of the
4929  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4930  * code.  This function returns -ECANCELED, zero, or a negative error code.
4931  */
4932 int
4933 xfs_btree_query_range(
4934 	struct xfs_btree_cur		*cur,
4935 	const union xfs_btree_irec	*low_rec,
4936 	const union xfs_btree_irec	*high_rec,
4937 	xfs_btree_query_range_fn	fn,
4938 	void				*priv)
4939 {
4940 	union xfs_btree_rec		rec;
4941 	union xfs_btree_key		low_key;
4942 	union xfs_btree_key		high_key;
4943 
4944 	/* Find the keys of both ends of the interval. */
4945 	cur->bc_rec = *high_rec;
4946 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4947 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4948 
4949 	cur->bc_rec = *low_rec;
4950 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4951 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4952 
4953 	/* Enforce low key < high key. */
4954 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4955 		return -EINVAL;
4956 
4957 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4958 		return xfs_btree_simple_query_range(cur, &low_key,
4959 				&high_key, fn, priv);
4960 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4961 			fn, priv);
4962 }
4963 
4964 /* Query a btree for all records. */
4965 int
4966 xfs_btree_query_all(
4967 	struct xfs_btree_cur		*cur,
4968 	xfs_btree_query_range_fn	fn,
4969 	void				*priv)
4970 {
4971 	union xfs_btree_key		low_key;
4972 	union xfs_btree_key		high_key;
4973 
4974 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4975 	memset(&low_key, 0, sizeof(low_key));
4976 	memset(&high_key, 0xFF, sizeof(high_key));
4977 
4978 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4979 }
4980 
4981 static int
4982 xfs_btree_count_blocks_helper(
4983 	struct xfs_btree_cur	*cur,
4984 	int			level,
4985 	void			*data)
4986 {
4987 	xfs_extlen_t		*blocks = data;
4988 	(*blocks)++;
4989 
4990 	return 0;
4991 }
4992 
4993 /* Count the blocks in a btree and return the result in *blocks. */
4994 int
4995 xfs_btree_count_blocks(
4996 	struct xfs_btree_cur	*cur,
4997 	xfs_extlen_t		*blocks)
4998 {
4999 	*blocks = 0;
5000 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5001 			XFS_BTREE_VISIT_ALL, blocks);
5002 }
5003 
5004 /* Compare two btree pointers. */
5005 int64_t
5006 xfs_btree_diff_two_ptrs(
5007 	struct xfs_btree_cur		*cur,
5008 	const union xfs_btree_ptr	*a,
5009 	const union xfs_btree_ptr	*b)
5010 {
5011 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5012 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5013 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5014 }
5015 
5016 /* If there's an extent, we're done. */
5017 STATIC int
5018 xfs_btree_has_record_helper(
5019 	struct xfs_btree_cur		*cur,
5020 	const union xfs_btree_rec	*rec,
5021 	void				*priv)
5022 {
5023 	return -ECANCELED;
5024 }
5025 
5026 /* Is there a record covering a given range of keys? */
5027 int
5028 xfs_btree_has_record(
5029 	struct xfs_btree_cur		*cur,
5030 	const union xfs_btree_irec	*low,
5031 	const union xfs_btree_irec	*high,
5032 	bool				*exists)
5033 {
5034 	int				error;
5035 
5036 	error = xfs_btree_query_range(cur, low, high,
5037 			&xfs_btree_has_record_helper, NULL);
5038 	if (error == -ECANCELED) {
5039 		*exists = true;
5040 		return 0;
5041 	}
5042 	*exists = false;
5043 	return error;
5044 }
5045 
5046 /* Are there more records in this btree? */
5047 bool
5048 xfs_btree_has_more_records(
5049 	struct xfs_btree_cur	*cur)
5050 {
5051 	struct xfs_btree_block	*block;
5052 	struct xfs_buf		*bp;
5053 
5054 	block = xfs_btree_get_block(cur, 0, &bp);
5055 
5056 	/* There are still records in this block. */
5057 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5058 		return true;
5059 
5060 	/* There are more record blocks. */
5061 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5062 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5063 	else
5064 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5065 }
5066 
5067 /* Set up all the btree cursor caches. */
5068 int __init
5069 xfs_btree_init_cur_caches(void)
5070 {
5071 	int		error;
5072 
5073 	error = xfs_allocbt_init_cur_cache();
5074 	if (error)
5075 		return error;
5076 	error = xfs_inobt_init_cur_cache();
5077 	if (error)
5078 		goto err;
5079 	error = xfs_bmbt_init_cur_cache();
5080 	if (error)
5081 		goto err;
5082 	error = xfs_rmapbt_init_cur_cache();
5083 	if (error)
5084 		goto err;
5085 	error = xfs_refcountbt_init_cur_cache();
5086 	if (error)
5087 		goto err;
5088 
5089 	return 0;
5090 err:
5091 	xfs_btree_destroy_cur_caches();
5092 	return error;
5093 }
5094 
5095 /* Destroy all the btree cursor caches, if they've been allocated. */
5096 void
5097 xfs_btree_destroy_cur_caches(void)
5098 {
5099 	xfs_allocbt_destroy_cur_cache();
5100 	xfs_inobt_destroy_cur_cache();
5101 	xfs_bmbt_destroy_cur_cache();
5102 	xfs_rmapbt_destroy_cur_cache();
5103 	xfs_refcountbt_destroy_cur_cache();
5104 }
5105