1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_mount.h" 26 #include "xfs_defer.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_btree.h" 32 #include "xfs_error.h" 33 #include "xfs_trace.h" 34 #include "xfs_cksum.h" 35 #include "xfs_alloc.h" 36 #include "xfs_log.h" 37 38 /* 39 * Cursor allocation zone. 40 */ 41 kmem_zone_t *xfs_btree_cur_zone; 42 43 /* 44 * Btree magic numbers. 45 */ 46 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 47 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 48 XFS_FIBT_MAGIC, 0 }, 49 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 50 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 51 XFS_REFC_CRC_MAGIC } 52 }; 53 54 uint32_t 55 xfs_btree_magic( 56 int crc, 57 xfs_btnum_t btnum) 58 { 59 uint32_t magic = xfs_magics[crc][btnum]; 60 61 /* Ensure we asked for crc for crc-only magics. */ 62 ASSERT(magic != 0); 63 return magic; 64 } 65 66 STATIC int /* error (0 or EFSCORRUPTED) */ 67 xfs_btree_check_lblock( 68 struct xfs_btree_cur *cur, /* btree cursor */ 69 struct xfs_btree_block *block, /* btree long form block pointer */ 70 int level, /* level of the btree block */ 71 struct xfs_buf *bp) /* buffer for block, if any */ 72 { 73 int lblock_ok = 1; /* block passes checks */ 74 struct xfs_mount *mp; /* file system mount point */ 75 xfs_btnum_t btnum = cur->bc_btnum; 76 int crc; 77 78 mp = cur->bc_mp; 79 crc = xfs_sb_version_hascrc(&mp->m_sb); 80 81 if (crc) { 82 lblock_ok = lblock_ok && 83 uuid_equal(&block->bb_u.l.bb_uuid, 84 &mp->m_sb.sb_meta_uuid) && 85 block->bb_u.l.bb_blkno == cpu_to_be64( 86 bp ? bp->b_bn : XFS_BUF_DADDR_NULL); 87 } 88 89 lblock_ok = lblock_ok && 90 be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) && 91 be16_to_cpu(block->bb_level) == level && 92 be16_to_cpu(block->bb_numrecs) <= 93 cur->bc_ops->get_maxrecs(cur, level) && 94 block->bb_u.l.bb_leftsib && 95 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) || 96 XFS_FSB_SANITY_CHECK(mp, 97 be64_to_cpu(block->bb_u.l.bb_leftsib))) && 98 block->bb_u.l.bb_rightsib && 99 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) || 100 XFS_FSB_SANITY_CHECK(mp, 101 be64_to_cpu(block->bb_u.l.bb_rightsib))); 102 103 if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp, 104 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) { 105 if (bp) 106 trace_xfs_btree_corrupt(bp, _RET_IP_); 107 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 108 return -EFSCORRUPTED; 109 } 110 return 0; 111 } 112 113 STATIC int /* error (0 or EFSCORRUPTED) */ 114 xfs_btree_check_sblock( 115 struct xfs_btree_cur *cur, /* btree cursor */ 116 struct xfs_btree_block *block, /* btree short form block pointer */ 117 int level, /* level of the btree block */ 118 struct xfs_buf *bp) /* buffer containing block */ 119 { 120 struct xfs_mount *mp; /* file system mount point */ 121 struct xfs_buf *agbp; /* buffer for ag. freespace struct */ 122 struct xfs_agf *agf; /* ag. freespace structure */ 123 xfs_agblock_t agflen; /* native ag. freespace length */ 124 int sblock_ok = 1; /* block passes checks */ 125 xfs_btnum_t btnum = cur->bc_btnum; 126 int crc; 127 128 mp = cur->bc_mp; 129 crc = xfs_sb_version_hascrc(&mp->m_sb); 130 agbp = cur->bc_private.a.agbp; 131 agf = XFS_BUF_TO_AGF(agbp); 132 agflen = be32_to_cpu(agf->agf_length); 133 134 if (crc) { 135 sblock_ok = sblock_ok && 136 uuid_equal(&block->bb_u.s.bb_uuid, 137 &mp->m_sb.sb_meta_uuid) && 138 block->bb_u.s.bb_blkno == cpu_to_be64( 139 bp ? bp->b_bn : XFS_BUF_DADDR_NULL); 140 } 141 142 sblock_ok = sblock_ok && 143 be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) && 144 be16_to_cpu(block->bb_level) == level && 145 be16_to_cpu(block->bb_numrecs) <= 146 cur->bc_ops->get_maxrecs(cur, level) && 147 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) || 148 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) && 149 block->bb_u.s.bb_leftsib && 150 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) || 151 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) && 152 block->bb_u.s.bb_rightsib; 153 154 if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp, 155 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) { 156 if (bp) 157 trace_xfs_btree_corrupt(bp, _RET_IP_); 158 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 159 return -EFSCORRUPTED; 160 } 161 return 0; 162 } 163 164 /* 165 * Debug routine: check that block header is ok. 166 */ 167 int 168 xfs_btree_check_block( 169 struct xfs_btree_cur *cur, /* btree cursor */ 170 struct xfs_btree_block *block, /* generic btree block pointer */ 171 int level, /* level of the btree block */ 172 struct xfs_buf *bp) /* buffer containing block, if any */ 173 { 174 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 175 return xfs_btree_check_lblock(cur, block, level, bp); 176 else 177 return xfs_btree_check_sblock(cur, block, level, bp); 178 } 179 180 /* 181 * Check that (long) pointer is ok. 182 */ 183 int /* error (0 or EFSCORRUPTED) */ 184 xfs_btree_check_lptr( 185 struct xfs_btree_cur *cur, /* btree cursor */ 186 xfs_fsblock_t bno, /* btree block disk address */ 187 int level) /* btree block level */ 188 { 189 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, 190 level > 0 && 191 bno != NULLFSBLOCK && 192 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno)); 193 return 0; 194 } 195 196 #ifdef DEBUG 197 /* 198 * Check that (short) pointer is ok. 199 */ 200 STATIC int /* error (0 or EFSCORRUPTED) */ 201 xfs_btree_check_sptr( 202 struct xfs_btree_cur *cur, /* btree cursor */ 203 xfs_agblock_t bno, /* btree block disk address */ 204 int level) /* btree block level */ 205 { 206 xfs_agblock_t agblocks = cur->bc_mp->m_sb.sb_agblocks; 207 208 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, 209 level > 0 && 210 bno != NULLAGBLOCK && 211 bno != 0 && 212 bno < agblocks); 213 return 0; 214 } 215 216 /* 217 * Check that block ptr is ok. 218 */ 219 STATIC int /* error (0 or EFSCORRUPTED) */ 220 xfs_btree_check_ptr( 221 struct xfs_btree_cur *cur, /* btree cursor */ 222 union xfs_btree_ptr *ptr, /* btree block disk address */ 223 int index, /* offset from ptr to check */ 224 int level) /* btree block level */ 225 { 226 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 227 return xfs_btree_check_lptr(cur, 228 be64_to_cpu((&ptr->l)[index]), level); 229 } else { 230 return xfs_btree_check_sptr(cur, 231 be32_to_cpu((&ptr->s)[index]), level); 232 } 233 } 234 #endif 235 236 /* 237 * Calculate CRC on the whole btree block and stuff it into the 238 * long-form btree header. 239 * 240 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 241 * it into the buffer so recovery knows what the last modification was that made 242 * it to disk. 243 */ 244 void 245 xfs_btree_lblock_calc_crc( 246 struct xfs_buf *bp) 247 { 248 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 249 struct xfs_buf_log_item *bip = bp->b_fspriv; 250 251 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb)) 252 return; 253 if (bip) 254 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 255 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 256 } 257 258 bool 259 xfs_btree_lblock_verify_crc( 260 struct xfs_buf *bp) 261 { 262 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 263 struct xfs_mount *mp = bp->b_target->bt_mount; 264 265 if (xfs_sb_version_hascrc(&mp->m_sb)) { 266 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 267 return false; 268 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 269 } 270 271 return true; 272 } 273 274 /* 275 * Calculate CRC on the whole btree block and stuff it into the 276 * short-form btree header. 277 * 278 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 279 * it into the buffer so recovery knows what the last modification was that made 280 * it to disk. 281 */ 282 void 283 xfs_btree_sblock_calc_crc( 284 struct xfs_buf *bp) 285 { 286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 287 struct xfs_buf_log_item *bip = bp->b_fspriv; 288 289 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb)) 290 return; 291 if (bip) 292 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 293 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 294 } 295 296 bool 297 xfs_btree_sblock_verify_crc( 298 struct xfs_buf *bp) 299 { 300 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 301 struct xfs_mount *mp = bp->b_target->bt_mount; 302 303 if (xfs_sb_version_hascrc(&mp->m_sb)) { 304 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 305 return false; 306 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 307 } 308 309 return true; 310 } 311 312 static int 313 xfs_btree_free_block( 314 struct xfs_btree_cur *cur, 315 struct xfs_buf *bp) 316 { 317 int error; 318 319 error = cur->bc_ops->free_block(cur, bp); 320 if (!error) { 321 xfs_trans_binval(cur->bc_tp, bp); 322 XFS_BTREE_STATS_INC(cur, free); 323 } 324 return error; 325 } 326 327 /* 328 * Delete the btree cursor. 329 */ 330 void 331 xfs_btree_del_cursor( 332 xfs_btree_cur_t *cur, /* btree cursor */ 333 int error) /* del because of error */ 334 { 335 int i; /* btree level */ 336 337 /* 338 * Clear the buffer pointers, and release the buffers. 339 * If we're doing this in the face of an error, we 340 * need to make sure to inspect all of the entries 341 * in the bc_bufs array for buffers to be unlocked. 342 * This is because some of the btree code works from 343 * level n down to 0, and if we get an error along 344 * the way we won't have initialized all the entries 345 * down to 0. 346 */ 347 for (i = 0; i < cur->bc_nlevels; i++) { 348 if (cur->bc_bufs[i]) 349 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 350 else if (!error) 351 break; 352 } 353 /* 354 * Can't free a bmap cursor without having dealt with the 355 * allocated indirect blocks' accounting. 356 */ 357 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || 358 cur->bc_private.b.allocated == 0); 359 /* 360 * Free the cursor. 361 */ 362 kmem_zone_free(xfs_btree_cur_zone, cur); 363 } 364 365 /* 366 * Duplicate the btree cursor. 367 * Allocate a new one, copy the record, re-get the buffers. 368 */ 369 int /* error */ 370 xfs_btree_dup_cursor( 371 xfs_btree_cur_t *cur, /* input cursor */ 372 xfs_btree_cur_t **ncur) /* output cursor */ 373 { 374 xfs_buf_t *bp; /* btree block's buffer pointer */ 375 int error; /* error return value */ 376 int i; /* level number of btree block */ 377 xfs_mount_t *mp; /* mount structure for filesystem */ 378 xfs_btree_cur_t *new; /* new cursor value */ 379 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 380 381 tp = cur->bc_tp; 382 mp = cur->bc_mp; 383 384 /* 385 * Allocate a new cursor like the old one. 386 */ 387 new = cur->bc_ops->dup_cursor(cur); 388 389 /* 390 * Copy the record currently in the cursor. 391 */ 392 new->bc_rec = cur->bc_rec; 393 394 /* 395 * For each level current, re-get the buffer and copy the ptr value. 396 */ 397 for (i = 0; i < new->bc_nlevels; i++) { 398 new->bc_ptrs[i] = cur->bc_ptrs[i]; 399 new->bc_ra[i] = cur->bc_ra[i]; 400 bp = cur->bc_bufs[i]; 401 if (bp) { 402 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 403 XFS_BUF_ADDR(bp), mp->m_bsize, 404 0, &bp, 405 cur->bc_ops->buf_ops); 406 if (error) { 407 xfs_btree_del_cursor(new, error); 408 *ncur = NULL; 409 return error; 410 } 411 } 412 new->bc_bufs[i] = bp; 413 } 414 *ncur = new; 415 return 0; 416 } 417 418 /* 419 * XFS btree block layout and addressing: 420 * 421 * There are two types of blocks in the btree: leaf and non-leaf blocks. 422 * 423 * The leaf record start with a header then followed by records containing 424 * the values. A non-leaf block also starts with the same header, and 425 * then first contains lookup keys followed by an equal number of pointers 426 * to the btree blocks at the previous level. 427 * 428 * +--------+-------+-------+-------+-------+-------+-------+ 429 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 430 * +--------+-------+-------+-------+-------+-------+-------+ 431 * 432 * +--------+-------+-------+-------+-------+-------+-------+ 433 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 434 * +--------+-------+-------+-------+-------+-------+-------+ 435 * 436 * The header is called struct xfs_btree_block for reasons better left unknown 437 * and comes in different versions for short (32bit) and long (64bit) block 438 * pointers. The record and key structures are defined by the btree instances 439 * and opaque to the btree core. The block pointers are simple disk endian 440 * integers, available in a short (32bit) and long (64bit) variant. 441 * 442 * The helpers below calculate the offset of a given record, key or pointer 443 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 444 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 445 * inside the btree block is done using indices starting at one, not zero! 446 * 447 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 448 * overlapping intervals. In such a tree, records are still sorted lowest to 449 * highest and indexed by the smallest key value that refers to the record. 450 * However, nodes are different: each pointer has two associated keys -- one 451 * indexing the lowest key available in the block(s) below (the same behavior 452 * as the key in a regular btree) and another indexing the highest key 453 * available in the block(s) below. Because records are /not/ sorted by the 454 * highest key, all leaf block updates require us to compute the highest key 455 * that matches any record in the leaf and to recursively update the high keys 456 * in the nodes going further up in the tree, if necessary. Nodes look like 457 * this: 458 * 459 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 460 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 461 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 462 * 463 * To perform an interval query on an overlapped tree, perform the usual 464 * depth-first search and use the low and high keys to decide if we can skip 465 * that particular node. If a leaf node is reached, return the records that 466 * intersect the interval. Note that an interval query may return numerous 467 * entries. For a non-overlapped tree, simply search for the record associated 468 * with the lowest key and iterate forward until a non-matching record is 469 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 470 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 471 * more detail. 472 * 473 * Why do we care about overlapping intervals? Let's say you have a bunch of 474 * reverse mapping records on a reflink filesystem: 475 * 476 * 1: +- file A startblock B offset C length D -----------+ 477 * 2: +- file E startblock F offset G length H --------------+ 478 * 3: +- file I startblock F offset J length K --+ 479 * 4: +- file L... --+ 480 * 481 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 482 * we'd simply increment the length of record 1. But how do we find the record 483 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 484 * record 3 because the keys are ordered first by startblock. An interval 485 * query would return records 1 and 2 because they both overlap (B+D-1), and 486 * from that we can pick out record 1 as the appropriate left neighbor. 487 * 488 * In the non-overlapped case you can do a LE lookup and decrement the cursor 489 * because a record's interval must end before the next record. 490 */ 491 492 /* 493 * Return size of the btree block header for this btree instance. 494 */ 495 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 496 { 497 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 498 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 499 return XFS_BTREE_LBLOCK_CRC_LEN; 500 return XFS_BTREE_LBLOCK_LEN; 501 } 502 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 503 return XFS_BTREE_SBLOCK_CRC_LEN; 504 return XFS_BTREE_SBLOCK_LEN; 505 } 506 507 /* 508 * Return size of btree block pointers for this btree instance. 509 */ 510 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 511 { 512 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 513 sizeof(__be64) : sizeof(__be32); 514 } 515 516 /* 517 * Calculate offset of the n-th record in a btree block. 518 */ 519 STATIC size_t 520 xfs_btree_rec_offset( 521 struct xfs_btree_cur *cur, 522 int n) 523 { 524 return xfs_btree_block_len(cur) + 525 (n - 1) * cur->bc_ops->rec_len; 526 } 527 528 /* 529 * Calculate offset of the n-th key in a btree block. 530 */ 531 STATIC size_t 532 xfs_btree_key_offset( 533 struct xfs_btree_cur *cur, 534 int n) 535 { 536 return xfs_btree_block_len(cur) + 537 (n - 1) * cur->bc_ops->key_len; 538 } 539 540 /* 541 * Calculate offset of the n-th high key in a btree block. 542 */ 543 STATIC size_t 544 xfs_btree_high_key_offset( 545 struct xfs_btree_cur *cur, 546 int n) 547 { 548 return xfs_btree_block_len(cur) + 549 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 550 } 551 552 /* 553 * Calculate offset of the n-th block pointer in a btree block. 554 */ 555 STATIC size_t 556 xfs_btree_ptr_offset( 557 struct xfs_btree_cur *cur, 558 int n, 559 int level) 560 { 561 return xfs_btree_block_len(cur) + 562 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 563 (n - 1) * xfs_btree_ptr_len(cur); 564 } 565 566 /* 567 * Return a pointer to the n-th record in the btree block. 568 */ 569 union xfs_btree_rec * 570 xfs_btree_rec_addr( 571 struct xfs_btree_cur *cur, 572 int n, 573 struct xfs_btree_block *block) 574 { 575 return (union xfs_btree_rec *) 576 ((char *)block + xfs_btree_rec_offset(cur, n)); 577 } 578 579 /* 580 * Return a pointer to the n-th key in the btree block. 581 */ 582 union xfs_btree_key * 583 xfs_btree_key_addr( 584 struct xfs_btree_cur *cur, 585 int n, 586 struct xfs_btree_block *block) 587 { 588 return (union xfs_btree_key *) 589 ((char *)block + xfs_btree_key_offset(cur, n)); 590 } 591 592 /* 593 * Return a pointer to the n-th high key in the btree block. 594 */ 595 union xfs_btree_key * 596 xfs_btree_high_key_addr( 597 struct xfs_btree_cur *cur, 598 int n, 599 struct xfs_btree_block *block) 600 { 601 return (union xfs_btree_key *) 602 ((char *)block + xfs_btree_high_key_offset(cur, n)); 603 } 604 605 /* 606 * Return a pointer to the n-th block pointer in the btree block. 607 */ 608 union xfs_btree_ptr * 609 xfs_btree_ptr_addr( 610 struct xfs_btree_cur *cur, 611 int n, 612 struct xfs_btree_block *block) 613 { 614 int level = xfs_btree_get_level(block); 615 616 ASSERT(block->bb_level != 0); 617 618 return (union xfs_btree_ptr *) 619 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 620 } 621 622 /* 623 * Get the root block which is stored in the inode. 624 * 625 * For now this btree implementation assumes the btree root is always 626 * stored in the if_broot field of an inode fork. 627 */ 628 STATIC struct xfs_btree_block * 629 xfs_btree_get_iroot( 630 struct xfs_btree_cur *cur) 631 { 632 struct xfs_ifork *ifp; 633 634 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork); 635 return (struct xfs_btree_block *)ifp->if_broot; 636 } 637 638 /* 639 * Retrieve the block pointer from the cursor at the given level. 640 * This may be an inode btree root or from a buffer. 641 */ 642 struct xfs_btree_block * /* generic btree block pointer */ 643 xfs_btree_get_block( 644 struct xfs_btree_cur *cur, /* btree cursor */ 645 int level, /* level in btree */ 646 struct xfs_buf **bpp) /* buffer containing the block */ 647 { 648 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 649 (level == cur->bc_nlevels - 1)) { 650 *bpp = NULL; 651 return xfs_btree_get_iroot(cur); 652 } 653 654 *bpp = cur->bc_bufs[level]; 655 return XFS_BUF_TO_BLOCK(*bpp); 656 } 657 658 /* 659 * Get a buffer for the block, return it with no data read. 660 * Long-form addressing. 661 */ 662 xfs_buf_t * /* buffer for fsbno */ 663 xfs_btree_get_bufl( 664 xfs_mount_t *mp, /* file system mount point */ 665 xfs_trans_t *tp, /* transaction pointer */ 666 xfs_fsblock_t fsbno, /* file system block number */ 667 uint lock) /* lock flags for get_buf */ 668 { 669 xfs_daddr_t d; /* real disk block address */ 670 671 ASSERT(fsbno != NULLFSBLOCK); 672 d = XFS_FSB_TO_DADDR(mp, fsbno); 673 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock); 674 } 675 676 /* 677 * Get a buffer for the block, return it with no data read. 678 * Short-form addressing. 679 */ 680 xfs_buf_t * /* buffer for agno/agbno */ 681 xfs_btree_get_bufs( 682 xfs_mount_t *mp, /* file system mount point */ 683 xfs_trans_t *tp, /* transaction pointer */ 684 xfs_agnumber_t agno, /* allocation group number */ 685 xfs_agblock_t agbno, /* allocation group block number */ 686 uint lock) /* lock flags for get_buf */ 687 { 688 xfs_daddr_t d; /* real disk block address */ 689 690 ASSERT(agno != NULLAGNUMBER); 691 ASSERT(agbno != NULLAGBLOCK); 692 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 693 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock); 694 } 695 696 /* 697 * Check for the cursor referring to the last block at the given level. 698 */ 699 int /* 1=is last block, 0=not last block */ 700 xfs_btree_islastblock( 701 xfs_btree_cur_t *cur, /* btree cursor */ 702 int level) /* level to check */ 703 { 704 struct xfs_btree_block *block; /* generic btree block pointer */ 705 xfs_buf_t *bp; /* buffer containing block */ 706 707 block = xfs_btree_get_block(cur, level, &bp); 708 xfs_btree_check_block(cur, block, level, bp); 709 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 710 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK); 711 else 712 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK); 713 } 714 715 /* 716 * Change the cursor to point to the first record at the given level. 717 * Other levels are unaffected. 718 */ 719 STATIC int /* success=1, failure=0 */ 720 xfs_btree_firstrec( 721 xfs_btree_cur_t *cur, /* btree cursor */ 722 int level) /* level to change */ 723 { 724 struct xfs_btree_block *block; /* generic btree block pointer */ 725 xfs_buf_t *bp; /* buffer containing block */ 726 727 /* 728 * Get the block pointer for this level. 729 */ 730 block = xfs_btree_get_block(cur, level, &bp); 731 if (xfs_btree_check_block(cur, block, level, bp)) 732 return 0; 733 /* 734 * It's empty, there is no such record. 735 */ 736 if (!block->bb_numrecs) 737 return 0; 738 /* 739 * Set the ptr value to 1, that's the first record/key. 740 */ 741 cur->bc_ptrs[level] = 1; 742 return 1; 743 } 744 745 /* 746 * Change the cursor to point to the last record in the current block 747 * at the given level. Other levels are unaffected. 748 */ 749 STATIC int /* success=1, failure=0 */ 750 xfs_btree_lastrec( 751 xfs_btree_cur_t *cur, /* btree cursor */ 752 int level) /* level to change */ 753 { 754 struct xfs_btree_block *block; /* generic btree block pointer */ 755 xfs_buf_t *bp; /* buffer containing block */ 756 757 /* 758 * Get the block pointer for this level. 759 */ 760 block = xfs_btree_get_block(cur, level, &bp); 761 if (xfs_btree_check_block(cur, block, level, bp)) 762 return 0; 763 /* 764 * It's empty, there is no such record. 765 */ 766 if (!block->bb_numrecs) 767 return 0; 768 /* 769 * Set the ptr value to numrecs, that's the last record/key. 770 */ 771 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs); 772 return 1; 773 } 774 775 /* 776 * Compute first and last byte offsets for the fields given. 777 * Interprets the offsets table, which contains struct field offsets. 778 */ 779 void 780 xfs_btree_offsets( 781 int64_t fields, /* bitmask of fields */ 782 const short *offsets, /* table of field offsets */ 783 int nbits, /* number of bits to inspect */ 784 int *first, /* output: first byte offset */ 785 int *last) /* output: last byte offset */ 786 { 787 int i; /* current bit number */ 788 int64_t imask; /* mask for current bit number */ 789 790 ASSERT(fields != 0); 791 /* 792 * Find the lowest bit, so the first byte offset. 793 */ 794 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 795 if (imask & fields) { 796 *first = offsets[i]; 797 break; 798 } 799 } 800 /* 801 * Find the highest bit, so the last byte offset. 802 */ 803 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 804 if (imask & fields) { 805 *last = offsets[i + 1] - 1; 806 break; 807 } 808 } 809 } 810 811 /* 812 * Get a buffer for the block, return it read in. 813 * Long-form addressing. 814 */ 815 int 816 xfs_btree_read_bufl( 817 struct xfs_mount *mp, /* file system mount point */ 818 struct xfs_trans *tp, /* transaction pointer */ 819 xfs_fsblock_t fsbno, /* file system block number */ 820 uint lock, /* lock flags for read_buf */ 821 struct xfs_buf **bpp, /* buffer for fsbno */ 822 int refval, /* ref count value for buffer */ 823 const struct xfs_buf_ops *ops) 824 { 825 struct xfs_buf *bp; /* return value */ 826 xfs_daddr_t d; /* real disk block address */ 827 int error; 828 829 if (!XFS_FSB_SANITY_CHECK(mp, fsbno)) 830 return -EFSCORRUPTED; 831 d = XFS_FSB_TO_DADDR(mp, fsbno); 832 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 833 mp->m_bsize, lock, &bp, ops); 834 if (error) 835 return error; 836 if (bp) 837 xfs_buf_set_ref(bp, refval); 838 *bpp = bp; 839 return 0; 840 } 841 842 /* 843 * Read-ahead the block, don't wait for it, don't return a buffer. 844 * Long-form addressing. 845 */ 846 /* ARGSUSED */ 847 void 848 xfs_btree_reada_bufl( 849 struct xfs_mount *mp, /* file system mount point */ 850 xfs_fsblock_t fsbno, /* file system block number */ 851 xfs_extlen_t count, /* count of filesystem blocks */ 852 const struct xfs_buf_ops *ops) 853 { 854 xfs_daddr_t d; 855 856 ASSERT(fsbno != NULLFSBLOCK); 857 d = XFS_FSB_TO_DADDR(mp, fsbno); 858 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 859 } 860 861 /* 862 * Read-ahead the block, don't wait for it, don't return a buffer. 863 * Short-form addressing. 864 */ 865 /* ARGSUSED */ 866 void 867 xfs_btree_reada_bufs( 868 struct xfs_mount *mp, /* file system mount point */ 869 xfs_agnumber_t agno, /* allocation group number */ 870 xfs_agblock_t agbno, /* allocation group block number */ 871 xfs_extlen_t count, /* count of filesystem blocks */ 872 const struct xfs_buf_ops *ops) 873 { 874 xfs_daddr_t d; 875 876 ASSERT(agno != NULLAGNUMBER); 877 ASSERT(agbno != NULLAGBLOCK); 878 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 879 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 880 } 881 882 STATIC int 883 xfs_btree_readahead_lblock( 884 struct xfs_btree_cur *cur, 885 int lr, 886 struct xfs_btree_block *block) 887 { 888 int rval = 0; 889 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 890 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 891 892 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 893 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 894 cur->bc_ops->buf_ops); 895 rval++; 896 } 897 898 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 899 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 900 cur->bc_ops->buf_ops); 901 rval++; 902 } 903 904 return rval; 905 } 906 907 STATIC int 908 xfs_btree_readahead_sblock( 909 struct xfs_btree_cur *cur, 910 int lr, 911 struct xfs_btree_block *block) 912 { 913 int rval = 0; 914 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 915 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 916 917 918 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 919 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno, 920 left, 1, cur->bc_ops->buf_ops); 921 rval++; 922 } 923 924 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 925 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno, 926 right, 1, cur->bc_ops->buf_ops); 927 rval++; 928 } 929 930 return rval; 931 } 932 933 /* 934 * Read-ahead btree blocks, at the given level. 935 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 936 */ 937 STATIC int 938 xfs_btree_readahead( 939 struct xfs_btree_cur *cur, /* btree cursor */ 940 int lev, /* level in btree */ 941 int lr) /* left/right bits */ 942 { 943 struct xfs_btree_block *block; 944 945 /* 946 * No readahead needed if we are at the root level and the 947 * btree root is stored in the inode. 948 */ 949 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 950 (lev == cur->bc_nlevels - 1)) 951 return 0; 952 953 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev]) 954 return 0; 955 956 cur->bc_ra[lev] |= lr; 957 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]); 958 959 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 960 return xfs_btree_readahead_lblock(cur, lr, block); 961 return xfs_btree_readahead_sblock(cur, lr, block); 962 } 963 964 STATIC xfs_daddr_t 965 xfs_btree_ptr_to_daddr( 966 struct xfs_btree_cur *cur, 967 union xfs_btree_ptr *ptr) 968 { 969 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 970 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK)); 971 972 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l)); 973 } else { 974 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER); 975 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK)); 976 977 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno, 978 be32_to_cpu(ptr->s)); 979 } 980 } 981 982 /* 983 * Readahead @count btree blocks at the given @ptr location. 984 * 985 * We don't need to care about long or short form btrees here as we have a 986 * method of converting the ptr directly to a daddr available to us. 987 */ 988 STATIC void 989 xfs_btree_readahead_ptr( 990 struct xfs_btree_cur *cur, 991 union xfs_btree_ptr *ptr, 992 xfs_extlen_t count) 993 { 994 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, 995 xfs_btree_ptr_to_daddr(cur, ptr), 996 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 997 } 998 999 /* 1000 * Set the buffer for level "lev" in the cursor to bp, releasing 1001 * any previous buffer. 1002 */ 1003 STATIC void 1004 xfs_btree_setbuf( 1005 xfs_btree_cur_t *cur, /* btree cursor */ 1006 int lev, /* level in btree */ 1007 xfs_buf_t *bp) /* new buffer to set */ 1008 { 1009 struct xfs_btree_block *b; /* btree block */ 1010 1011 if (cur->bc_bufs[lev]) 1012 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]); 1013 cur->bc_bufs[lev] = bp; 1014 cur->bc_ra[lev] = 0; 1015 1016 b = XFS_BUF_TO_BLOCK(bp); 1017 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1018 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1019 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1020 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1021 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1022 } else { 1023 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1024 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1025 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1026 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1027 } 1028 } 1029 1030 STATIC int 1031 xfs_btree_ptr_is_null( 1032 struct xfs_btree_cur *cur, 1033 union xfs_btree_ptr *ptr) 1034 { 1035 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1036 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1037 else 1038 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1039 } 1040 1041 STATIC void 1042 xfs_btree_set_ptr_null( 1043 struct xfs_btree_cur *cur, 1044 union xfs_btree_ptr *ptr) 1045 { 1046 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1047 ptr->l = cpu_to_be64(NULLFSBLOCK); 1048 else 1049 ptr->s = cpu_to_be32(NULLAGBLOCK); 1050 } 1051 1052 /* 1053 * Get/set/init sibling pointers 1054 */ 1055 STATIC void 1056 xfs_btree_get_sibling( 1057 struct xfs_btree_cur *cur, 1058 struct xfs_btree_block *block, 1059 union xfs_btree_ptr *ptr, 1060 int lr) 1061 { 1062 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1063 1064 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1065 if (lr == XFS_BB_RIGHTSIB) 1066 ptr->l = block->bb_u.l.bb_rightsib; 1067 else 1068 ptr->l = block->bb_u.l.bb_leftsib; 1069 } else { 1070 if (lr == XFS_BB_RIGHTSIB) 1071 ptr->s = block->bb_u.s.bb_rightsib; 1072 else 1073 ptr->s = block->bb_u.s.bb_leftsib; 1074 } 1075 } 1076 1077 STATIC void 1078 xfs_btree_set_sibling( 1079 struct xfs_btree_cur *cur, 1080 struct xfs_btree_block *block, 1081 union xfs_btree_ptr *ptr, 1082 int lr) 1083 { 1084 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1085 1086 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1087 if (lr == XFS_BB_RIGHTSIB) 1088 block->bb_u.l.bb_rightsib = ptr->l; 1089 else 1090 block->bb_u.l.bb_leftsib = ptr->l; 1091 } else { 1092 if (lr == XFS_BB_RIGHTSIB) 1093 block->bb_u.s.bb_rightsib = ptr->s; 1094 else 1095 block->bb_u.s.bb_leftsib = ptr->s; 1096 } 1097 } 1098 1099 void 1100 xfs_btree_init_block_int( 1101 struct xfs_mount *mp, 1102 struct xfs_btree_block *buf, 1103 xfs_daddr_t blkno, 1104 xfs_btnum_t btnum, 1105 __u16 level, 1106 __u16 numrecs, 1107 __u64 owner, 1108 unsigned int flags) 1109 { 1110 int crc = xfs_sb_version_hascrc(&mp->m_sb); 1111 __u32 magic = xfs_btree_magic(crc, btnum); 1112 1113 buf->bb_magic = cpu_to_be32(magic); 1114 buf->bb_level = cpu_to_be16(level); 1115 buf->bb_numrecs = cpu_to_be16(numrecs); 1116 1117 if (flags & XFS_BTREE_LONG_PTRS) { 1118 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1119 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1120 if (crc) { 1121 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1122 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1123 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1124 buf->bb_u.l.bb_pad = 0; 1125 buf->bb_u.l.bb_lsn = 0; 1126 } 1127 } else { 1128 /* owner is a 32 bit value on short blocks */ 1129 __u32 __owner = (__u32)owner; 1130 1131 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1132 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1133 if (crc) { 1134 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1135 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1136 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1137 buf->bb_u.s.bb_lsn = 0; 1138 } 1139 } 1140 } 1141 1142 void 1143 xfs_btree_init_block( 1144 struct xfs_mount *mp, 1145 struct xfs_buf *bp, 1146 xfs_btnum_t btnum, 1147 __u16 level, 1148 __u16 numrecs, 1149 __u64 owner, 1150 unsigned int flags) 1151 { 1152 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1153 btnum, level, numrecs, owner, flags); 1154 } 1155 1156 STATIC void 1157 xfs_btree_init_block_cur( 1158 struct xfs_btree_cur *cur, 1159 struct xfs_buf *bp, 1160 int level, 1161 int numrecs) 1162 { 1163 __u64 owner; 1164 1165 /* 1166 * we can pull the owner from the cursor right now as the different 1167 * owners align directly with the pointer size of the btree. This may 1168 * change in future, but is safe for current users of the generic btree 1169 * code. 1170 */ 1171 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1172 owner = cur->bc_private.b.ip->i_ino; 1173 else 1174 owner = cur->bc_private.a.agno; 1175 1176 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1177 cur->bc_btnum, level, numrecs, 1178 owner, cur->bc_flags); 1179 } 1180 1181 /* 1182 * Return true if ptr is the last record in the btree and 1183 * we need to track updates to this record. The decision 1184 * will be further refined in the update_lastrec method. 1185 */ 1186 STATIC int 1187 xfs_btree_is_lastrec( 1188 struct xfs_btree_cur *cur, 1189 struct xfs_btree_block *block, 1190 int level) 1191 { 1192 union xfs_btree_ptr ptr; 1193 1194 if (level > 0) 1195 return 0; 1196 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1197 return 0; 1198 1199 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1200 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1201 return 0; 1202 return 1; 1203 } 1204 1205 STATIC void 1206 xfs_btree_buf_to_ptr( 1207 struct xfs_btree_cur *cur, 1208 struct xfs_buf *bp, 1209 union xfs_btree_ptr *ptr) 1210 { 1211 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1212 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1213 XFS_BUF_ADDR(bp))); 1214 else { 1215 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1216 XFS_BUF_ADDR(bp))); 1217 } 1218 } 1219 1220 STATIC void 1221 xfs_btree_set_refs( 1222 struct xfs_btree_cur *cur, 1223 struct xfs_buf *bp) 1224 { 1225 switch (cur->bc_btnum) { 1226 case XFS_BTNUM_BNO: 1227 case XFS_BTNUM_CNT: 1228 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1229 break; 1230 case XFS_BTNUM_INO: 1231 case XFS_BTNUM_FINO: 1232 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1233 break; 1234 case XFS_BTNUM_BMAP: 1235 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1236 break; 1237 case XFS_BTNUM_RMAP: 1238 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1239 break; 1240 case XFS_BTNUM_REFC: 1241 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1242 break; 1243 default: 1244 ASSERT(0); 1245 } 1246 } 1247 1248 STATIC int 1249 xfs_btree_get_buf_block( 1250 struct xfs_btree_cur *cur, 1251 union xfs_btree_ptr *ptr, 1252 int flags, 1253 struct xfs_btree_block **block, 1254 struct xfs_buf **bpp) 1255 { 1256 struct xfs_mount *mp = cur->bc_mp; 1257 xfs_daddr_t d; 1258 1259 /* need to sort out how callers deal with failures first */ 1260 ASSERT(!(flags & XBF_TRYLOCK)); 1261 1262 d = xfs_btree_ptr_to_daddr(cur, ptr); 1263 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, 1264 mp->m_bsize, flags); 1265 1266 if (!*bpp) 1267 return -ENOMEM; 1268 1269 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1270 *block = XFS_BUF_TO_BLOCK(*bpp); 1271 return 0; 1272 } 1273 1274 /* 1275 * Read in the buffer at the given ptr and return the buffer and 1276 * the block pointer within the buffer. 1277 */ 1278 STATIC int 1279 xfs_btree_read_buf_block( 1280 struct xfs_btree_cur *cur, 1281 union xfs_btree_ptr *ptr, 1282 int flags, 1283 struct xfs_btree_block **block, 1284 struct xfs_buf **bpp) 1285 { 1286 struct xfs_mount *mp = cur->bc_mp; 1287 xfs_daddr_t d; 1288 int error; 1289 1290 /* need to sort out how callers deal with failures first */ 1291 ASSERT(!(flags & XBF_TRYLOCK)); 1292 1293 d = xfs_btree_ptr_to_daddr(cur, ptr); 1294 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1295 mp->m_bsize, flags, bpp, 1296 cur->bc_ops->buf_ops); 1297 if (error) 1298 return error; 1299 1300 xfs_btree_set_refs(cur, *bpp); 1301 *block = XFS_BUF_TO_BLOCK(*bpp); 1302 return 0; 1303 } 1304 1305 /* 1306 * Copy keys from one btree block to another. 1307 */ 1308 STATIC void 1309 xfs_btree_copy_keys( 1310 struct xfs_btree_cur *cur, 1311 union xfs_btree_key *dst_key, 1312 union xfs_btree_key *src_key, 1313 int numkeys) 1314 { 1315 ASSERT(numkeys >= 0); 1316 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1317 } 1318 1319 /* 1320 * Copy records from one btree block to another. 1321 */ 1322 STATIC void 1323 xfs_btree_copy_recs( 1324 struct xfs_btree_cur *cur, 1325 union xfs_btree_rec *dst_rec, 1326 union xfs_btree_rec *src_rec, 1327 int numrecs) 1328 { 1329 ASSERT(numrecs >= 0); 1330 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1331 } 1332 1333 /* 1334 * Copy block pointers from one btree block to another. 1335 */ 1336 STATIC void 1337 xfs_btree_copy_ptrs( 1338 struct xfs_btree_cur *cur, 1339 union xfs_btree_ptr *dst_ptr, 1340 union xfs_btree_ptr *src_ptr, 1341 int numptrs) 1342 { 1343 ASSERT(numptrs >= 0); 1344 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1345 } 1346 1347 /* 1348 * Shift keys one index left/right inside a single btree block. 1349 */ 1350 STATIC void 1351 xfs_btree_shift_keys( 1352 struct xfs_btree_cur *cur, 1353 union xfs_btree_key *key, 1354 int dir, 1355 int numkeys) 1356 { 1357 char *dst_key; 1358 1359 ASSERT(numkeys >= 0); 1360 ASSERT(dir == 1 || dir == -1); 1361 1362 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1363 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1364 } 1365 1366 /* 1367 * Shift records one index left/right inside a single btree block. 1368 */ 1369 STATIC void 1370 xfs_btree_shift_recs( 1371 struct xfs_btree_cur *cur, 1372 union xfs_btree_rec *rec, 1373 int dir, 1374 int numrecs) 1375 { 1376 char *dst_rec; 1377 1378 ASSERT(numrecs >= 0); 1379 ASSERT(dir == 1 || dir == -1); 1380 1381 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1382 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1383 } 1384 1385 /* 1386 * Shift block pointers one index left/right inside a single btree block. 1387 */ 1388 STATIC void 1389 xfs_btree_shift_ptrs( 1390 struct xfs_btree_cur *cur, 1391 union xfs_btree_ptr *ptr, 1392 int dir, 1393 int numptrs) 1394 { 1395 char *dst_ptr; 1396 1397 ASSERT(numptrs >= 0); 1398 ASSERT(dir == 1 || dir == -1); 1399 1400 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1401 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1402 } 1403 1404 /* 1405 * Log key values from the btree block. 1406 */ 1407 STATIC void 1408 xfs_btree_log_keys( 1409 struct xfs_btree_cur *cur, 1410 struct xfs_buf *bp, 1411 int first, 1412 int last) 1413 { 1414 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1415 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last); 1416 1417 if (bp) { 1418 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1419 xfs_trans_log_buf(cur->bc_tp, bp, 1420 xfs_btree_key_offset(cur, first), 1421 xfs_btree_key_offset(cur, last + 1) - 1); 1422 } else { 1423 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1424 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1425 } 1426 1427 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1428 } 1429 1430 /* 1431 * Log record values from the btree block. 1432 */ 1433 void 1434 xfs_btree_log_recs( 1435 struct xfs_btree_cur *cur, 1436 struct xfs_buf *bp, 1437 int first, 1438 int last) 1439 { 1440 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1441 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last); 1442 1443 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1444 xfs_trans_log_buf(cur->bc_tp, bp, 1445 xfs_btree_rec_offset(cur, first), 1446 xfs_btree_rec_offset(cur, last + 1) - 1); 1447 1448 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1449 } 1450 1451 /* 1452 * Log block pointer fields from a btree block (nonleaf). 1453 */ 1454 STATIC void 1455 xfs_btree_log_ptrs( 1456 struct xfs_btree_cur *cur, /* btree cursor */ 1457 struct xfs_buf *bp, /* buffer containing btree block */ 1458 int first, /* index of first pointer to log */ 1459 int last) /* index of last pointer to log */ 1460 { 1461 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1462 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last); 1463 1464 if (bp) { 1465 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1466 int level = xfs_btree_get_level(block); 1467 1468 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1469 xfs_trans_log_buf(cur->bc_tp, bp, 1470 xfs_btree_ptr_offset(cur, first, level), 1471 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1472 } else { 1473 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1474 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1475 } 1476 1477 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1478 } 1479 1480 /* 1481 * Log fields from a btree block header. 1482 */ 1483 void 1484 xfs_btree_log_block( 1485 struct xfs_btree_cur *cur, /* btree cursor */ 1486 struct xfs_buf *bp, /* buffer containing btree block */ 1487 int fields) /* mask of fields: XFS_BB_... */ 1488 { 1489 int first; /* first byte offset logged */ 1490 int last; /* last byte offset logged */ 1491 static const short soffsets[] = { /* table of offsets (short) */ 1492 offsetof(struct xfs_btree_block, bb_magic), 1493 offsetof(struct xfs_btree_block, bb_level), 1494 offsetof(struct xfs_btree_block, bb_numrecs), 1495 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1496 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1497 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1498 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1499 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1500 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1501 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1502 XFS_BTREE_SBLOCK_CRC_LEN 1503 }; 1504 static const short loffsets[] = { /* table of offsets (long) */ 1505 offsetof(struct xfs_btree_block, bb_magic), 1506 offsetof(struct xfs_btree_block, bb_level), 1507 offsetof(struct xfs_btree_block, bb_numrecs), 1508 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1509 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1510 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1511 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1512 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1513 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1514 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1515 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1516 XFS_BTREE_LBLOCK_CRC_LEN 1517 }; 1518 1519 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1520 XFS_BTREE_TRACE_ARGBI(cur, bp, fields); 1521 1522 if (bp) { 1523 int nbits; 1524 1525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1526 /* 1527 * We don't log the CRC when updating a btree 1528 * block but instead recreate it during log 1529 * recovery. As the log buffers have checksums 1530 * of their own this is safe and avoids logging a crc 1531 * update in a lot of places. 1532 */ 1533 if (fields == XFS_BB_ALL_BITS) 1534 fields = XFS_BB_ALL_BITS_CRC; 1535 nbits = XFS_BB_NUM_BITS_CRC; 1536 } else { 1537 nbits = XFS_BB_NUM_BITS; 1538 } 1539 xfs_btree_offsets(fields, 1540 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1541 loffsets : soffsets, 1542 nbits, &first, &last); 1543 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1544 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1545 } else { 1546 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1547 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1548 } 1549 1550 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1551 } 1552 1553 /* 1554 * Increment cursor by one record at the level. 1555 * For nonzero levels the leaf-ward information is untouched. 1556 */ 1557 int /* error */ 1558 xfs_btree_increment( 1559 struct xfs_btree_cur *cur, 1560 int level, 1561 int *stat) /* success/failure */ 1562 { 1563 struct xfs_btree_block *block; 1564 union xfs_btree_ptr ptr; 1565 struct xfs_buf *bp; 1566 int error; /* error return value */ 1567 int lev; 1568 1569 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1570 XFS_BTREE_TRACE_ARGI(cur, level); 1571 1572 ASSERT(level < cur->bc_nlevels); 1573 1574 /* Read-ahead to the right at this level. */ 1575 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1576 1577 /* Get a pointer to the btree block. */ 1578 block = xfs_btree_get_block(cur, level, &bp); 1579 1580 #ifdef DEBUG 1581 error = xfs_btree_check_block(cur, block, level, bp); 1582 if (error) 1583 goto error0; 1584 #endif 1585 1586 /* We're done if we remain in the block after the increment. */ 1587 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block)) 1588 goto out1; 1589 1590 /* Fail if we just went off the right edge of the tree. */ 1591 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1592 if (xfs_btree_ptr_is_null(cur, &ptr)) 1593 goto out0; 1594 1595 XFS_BTREE_STATS_INC(cur, increment); 1596 1597 /* 1598 * March up the tree incrementing pointers. 1599 * Stop when we don't go off the right edge of a block. 1600 */ 1601 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1602 block = xfs_btree_get_block(cur, lev, &bp); 1603 1604 #ifdef DEBUG 1605 error = xfs_btree_check_block(cur, block, lev, bp); 1606 if (error) 1607 goto error0; 1608 #endif 1609 1610 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block)) 1611 break; 1612 1613 /* Read-ahead the right block for the next loop. */ 1614 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1615 } 1616 1617 /* 1618 * If we went off the root then we are either seriously 1619 * confused or have the tree root in an inode. 1620 */ 1621 if (lev == cur->bc_nlevels) { 1622 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1623 goto out0; 1624 ASSERT(0); 1625 error = -EFSCORRUPTED; 1626 goto error0; 1627 } 1628 ASSERT(lev < cur->bc_nlevels); 1629 1630 /* 1631 * Now walk back down the tree, fixing up the cursor's buffer 1632 * pointers and key numbers. 1633 */ 1634 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1635 union xfs_btree_ptr *ptrp; 1636 1637 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1638 --lev; 1639 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1640 if (error) 1641 goto error0; 1642 1643 xfs_btree_setbuf(cur, lev, bp); 1644 cur->bc_ptrs[lev] = 1; 1645 } 1646 out1: 1647 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1648 *stat = 1; 1649 return 0; 1650 1651 out0: 1652 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1653 *stat = 0; 1654 return 0; 1655 1656 error0: 1657 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 1658 return error; 1659 } 1660 1661 /* 1662 * Decrement cursor by one record at the level. 1663 * For nonzero levels the leaf-ward information is untouched. 1664 */ 1665 int /* error */ 1666 xfs_btree_decrement( 1667 struct xfs_btree_cur *cur, 1668 int level, 1669 int *stat) /* success/failure */ 1670 { 1671 struct xfs_btree_block *block; 1672 xfs_buf_t *bp; 1673 int error; /* error return value */ 1674 int lev; 1675 union xfs_btree_ptr ptr; 1676 1677 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1678 XFS_BTREE_TRACE_ARGI(cur, level); 1679 1680 ASSERT(level < cur->bc_nlevels); 1681 1682 /* Read-ahead to the left at this level. */ 1683 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1684 1685 /* We're done if we remain in the block after the decrement. */ 1686 if (--cur->bc_ptrs[level] > 0) 1687 goto out1; 1688 1689 /* Get a pointer to the btree block. */ 1690 block = xfs_btree_get_block(cur, level, &bp); 1691 1692 #ifdef DEBUG 1693 error = xfs_btree_check_block(cur, block, level, bp); 1694 if (error) 1695 goto error0; 1696 #endif 1697 1698 /* Fail if we just went off the left edge of the tree. */ 1699 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1700 if (xfs_btree_ptr_is_null(cur, &ptr)) 1701 goto out0; 1702 1703 XFS_BTREE_STATS_INC(cur, decrement); 1704 1705 /* 1706 * March up the tree decrementing pointers. 1707 * Stop when we don't go off the left edge of a block. 1708 */ 1709 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1710 if (--cur->bc_ptrs[lev] > 0) 1711 break; 1712 /* Read-ahead the left block for the next loop. */ 1713 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1714 } 1715 1716 /* 1717 * If we went off the root then we are seriously confused. 1718 * or the root of the tree is in an inode. 1719 */ 1720 if (lev == cur->bc_nlevels) { 1721 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1722 goto out0; 1723 ASSERT(0); 1724 error = -EFSCORRUPTED; 1725 goto error0; 1726 } 1727 ASSERT(lev < cur->bc_nlevels); 1728 1729 /* 1730 * Now walk back down the tree, fixing up the cursor's buffer 1731 * pointers and key numbers. 1732 */ 1733 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1734 union xfs_btree_ptr *ptrp; 1735 1736 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1737 --lev; 1738 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1739 if (error) 1740 goto error0; 1741 xfs_btree_setbuf(cur, lev, bp); 1742 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block); 1743 } 1744 out1: 1745 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1746 *stat = 1; 1747 return 0; 1748 1749 out0: 1750 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1751 *stat = 0; 1752 return 0; 1753 1754 error0: 1755 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 1756 return error; 1757 } 1758 1759 int 1760 xfs_btree_lookup_get_block( 1761 struct xfs_btree_cur *cur, /* btree cursor */ 1762 int level, /* level in the btree */ 1763 union xfs_btree_ptr *pp, /* ptr to btree block */ 1764 struct xfs_btree_block **blkp) /* return btree block */ 1765 { 1766 struct xfs_buf *bp; /* buffer pointer for btree block */ 1767 int error = 0; 1768 1769 /* special case the root block if in an inode */ 1770 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1771 (level == cur->bc_nlevels - 1)) { 1772 *blkp = xfs_btree_get_iroot(cur); 1773 return 0; 1774 } 1775 1776 /* 1777 * If the old buffer at this level for the disk address we are 1778 * looking for re-use it. 1779 * 1780 * Otherwise throw it away and get a new one. 1781 */ 1782 bp = cur->bc_bufs[level]; 1783 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) { 1784 *blkp = XFS_BUF_TO_BLOCK(bp); 1785 return 0; 1786 } 1787 1788 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1789 if (error) 1790 return error; 1791 1792 /* Check the inode owner since the verifiers don't. */ 1793 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) && 1794 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) && 1795 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1796 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1797 cur->bc_private.b.ip->i_ino) 1798 goto out_bad; 1799 1800 /* Did we get the level we were looking for? */ 1801 if (be16_to_cpu((*blkp)->bb_level) != level) 1802 goto out_bad; 1803 1804 /* Check that internal nodes have at least one record. */ 1805 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1806 goto out_bad; 1807 1808 xfs_btree_setbuf(cur, level, bp); 1809 return 0; 1810 1811 out_bad: 1812 *blkp = NULL; 1813 xfs_trans_brelse(cur->bc_tp, bp); 1814 return -EFSCORRUPTED; 1815 } 1816 1817 /* 1818 * Get current search key. For level 0 we don't actually have a key 1819 * structure so we make one up from the record. For all other levels 1820 * we just return the right key. 1821 */ 1822 STATIC union xfs_btree_key * 1823 xfs_lookup_get_search_key( 1824 struct xfs_btree_cur *cur, 1825 int level, 1826 int keyno, 1827 struct xfs_btree_block *block, 1828 union xfs_btree_key *kp) 1829 { 1830 if (level == 0) { 1831 cur->bc_ops->init_key_from_rec(kp, 1832 xfs_btree_rec_addr(cur, keyno, block)); 1833 return kp; 1834 } 1835 1836 return xfs_btree_key_addr(cur, keyno, block); 1837 } 1838 1839 /* 1840 * Lookup the record. The cursor is made to point to it, based on dir. 1841 * stat is set to 0 if can't find any such record, 1 for success. 1842 */ 1843 int /* error */ 1844 xfs_btree_lookup( 1845 struct xfs_btree_cur *cur, /* btree cursor */ 1846 xfs_lookup_t dir, /* <=, ==, or >= */ 1847 int *stat) /* success/failure */ 1848 { 1849 struct xfs_btree_block *block; /* current btree block */ 1850 int64_t diff; /* difference for the current key */ 1851 int error; /* error return value */ 1852 int keyno; /* current key number */ 1853 int level; /* level in the btree */ 1854 union xfs_btree_ptr *pp; /* ptr to btree block */ 1855 union xfs_btree_ptr ptr; /* ptr to btree block */ 1856 1857 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 1858 XFS_BTREE_TRACE_ARGI(cur, dir); 1859 1860 XFS_BTREE_STATS_INC(cur, lookup); 1861 1862 /* No such thing as a zero-level tree. */ 1863 if (cur->bc_nlevels == 0) 1864 return -EFSCORRUPTED; 1865 1866 block = NULL; 1867 keyno = 0; 1868 1869 /* initialise start pointer from cursor */ 1870 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1871 pp = &ptr; 1872 1873 /* 1874 * Iterate over each level in the btree, starting at the root. 1875 * For each level above the leaves, find the key we need, based 1876 * on the lookup record, then follow the corresponding block 1877 * pointer down to the next level. 1878 */ 1879 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1880 /* Get the block we need to do the lookup on. */ 1881 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1882 if (error) 1883 goto error0; 1884 1885 if (diff == 0) { 1886 /* 1887 * If we already had a key match at a higher level, we 1888 * know we need to use the first entry in this block. 1889 */ 1890 keyno = 1; 1891 } else { 1892 /* Otherwise search this block. Do a binary search. */ 1893 1894 int high; /* high entry number */ 1895 int low; /* low entry number */ 1896 1897 /* Set low and high entry numbers, 1-based. */ 1898 low = 1; 1899 high = xfs_btree_get_numrecs(block); 1900 if (!high) { 1901 /* Block is empty, must be an empty leaf. */ 1902 ASSERT(level == 0 && cur->bc_nlevels == 1); 1903 1904 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; 1905 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1906 *stat = 0; 1907 return 0; 1908 } 1909 1910 /* Binary search the block. */ 1911 while (low <= high) { 1912 union xfs_btree_key key; 1913 union xfs_btree_key *kp; 1914 1915 XFS_BTREE_STATS_INC(cur, compare); 1916 1917 /* keyno is average of low and high. */ 1918 keyno = (low + high) >> 1; 1919 1920 /* Get current search key */ 1921 kp = xfs_lookup_get_search_key(cur, level, 1922 keyno, block, &key); 1923 1924 /* 1925 * Compute difference to get next direction: 1926 * - less than, move right 1927 * - greater than, move left 1928 * - equal, we're done 1929 */ 1930 diff = cur->bc_ops->key_diff(cur, kp); 1931 if (diff < 0) 1932 low = keyno + 1; 1933 else if (diff > 0) 1934 high = keyno - 1; 1935 else 1936 break; 1937 } 1938 } 1939 1940 /* 1941 * If there are more levels, set up for the next level 1942 * by getting the block number and filling in the cursor. 1943 */ 1944 if (level > 0) { 1945 /* 1946 * If we moved left, need the previous key number, 1947 * unless there isn't one. 1948 */ 1949 if (diff > 0 && --keyno < 1) 1950 keyno = 1; 1951 pp = xfs_btree_ptr_addr(cur, keyno, block); 1952 1953 #ifdef DEBUG 1954 error = xfs_btree_check_ptr(cur, pp, 0, level); 1955 if (error) 1956 goto error0; 1957 #endif 1958 cur->bc_ptrs[level] = keyno; 1959 } 1960 } 1961 1962 /* Done with the search. See if we need to adjust the results. */ 1963 if (dir != XFS_LOOKUP_LE && diff < 0) { 1964 keyno++; 1965 /* 1966 * If ge search and we went off the end of the block, but it's 1967 * not the last block, we're in the wrong block. 1968 */ 1969 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1970 if (dir == XFS_LOOKUP_GE && 1971 keyno > xfs_btree_get_numrecs(block) && 1972 !xfs_btree_ptr_is_null(cur, &ptr)) { 1973 int i; 1974 1975 cur->bc_ptrs[0] = keyno; 1976 error = xfs_btree_increment(cur, 0, &i); 1977 if (error) 1978 goto error0; 1979 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1980 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1981 *stat = 1; 1982 return 0; 1983 } 1984 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1985 keyno--; 1986 cur->bc_ptrs[0] = keyno; 1987 1988 /* Return if we succeeded or not. */ 1989 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1990 *stat = 0; 1991 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1992 *stat = 1; 1993 else 1994 *stat = 0; 1995 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 1996 return 0; 1997 1998 error0: 1999 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2000 return error; 2001 } 2002 2003 /* Find the high key storage area from a regular key. */ 2004 STATIC union xfs_btree_key * 2005 xfs_btree_high_key_from_key( 2006 struct xfs_btree_cur *cur, 2007 union xfs_btree_key *key) 2008 { 2009 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2010 return (union xfs_btree_key *)((char *)key + 2011 (cur->bc_ops->key_len / 2)); 2012 } 2013 2014 /* Determine the low (and high if overlapped) keys of a leaf block */ 2015 STATIC void 2016 xfs_btree_get_leaf_keys( 2017 struct xfs_btree_cur *cur, 2018 struct xfs_btree_block *block, 2019 union xfs_btree_key *key) 2020 { 2021 union xfs_btree_key max_hkey; 2022 union xfs_btree_key hkey; 2023 union xfs_btree_rec *rec; 2024 union xfs_btree_key *high; 2025 int n; 2026 2027 rec = xfs_btree_rec_addr(cur, 1, block); 2028 cur->bc_ops->init_key_from_rec(key, rec); 2029 2030 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2031 2032 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 2033 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2034 rec = xfs_btree_rec_addr(cur, n, block); 2035 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 2036 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 2037 > 0) 2038 max_hkey = hkey; 2039 } 2040 2041 high = xfs_btree_high_key_from_key(cur, key); 2042 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2043 } 2044 } 2045 2046 /* Determine the low (and high if overlapped) keys of a node block */ 2047 STATIC void 2048 xfs_btree_get_node_keys( 2049 struct xfs_btree_cur *cur, 2050 struct xfs_btree_block *block, 2051 union xfs_btree_key *key) 2052 { 2053 union xfs_btree_key *hkey; 2054 union xfs_btree_key *max_hkey; 2055 union xfs_btree_key *high; 2056 int n; 2057 2058 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2059 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2060 cur->bc_ops->key_len / 2); 2061 2062 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2063 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2064 hkey = xfs_btree_high_key_addr(cur, n, block); 2065 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2066 max_hkey = hkey; 2067 } 2068 2069 high = xfs_btree_high_key_from_key(cur, key); 2070 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2071 } else { 2072 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2073 cur->bc_ops->key_len); 2074 } 2075 } 2076 2077 /* Derive the keys for any btree block. */ 2078 STATIC void 2079 xfs_btree_get_keys( 2080 struct xfs_btree_cur *cur, 2081 struct xfs_btree_block *block, 2082 union xfs_btree_key *key) 2083 { 2084 if (be16_to_cpu(block->bb_level) == 0) 2085 xfs_btree_get_leaf_keys(cur, block, key); 2086 else 2087 xfs_btree_get_node_keys(cur, block, key); 2088 } 2089 2090 /* 2091 * Decide if we need to update the parent keys of a btree block. For 2092 * a standard btree this is only necessary if we're updating the first 2093 * record/key. For an overlapping btree, we must always update the 2094 * keys because the highest key can be in any of the records or keys 2095 * in the block. 2096 */ 2097 static inline bool 2098 xfs_btree_needs_key_update( 2099 struct xfs_btree_cur *cur, 2100 int ptr) 2101 { 2102 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2103 } 2104 2105 /* 2106 * Update the low and high parent keys of the given level, progressing 2107 * towards the root. If force_all is false, stop if the keys for a given 2108 * level do not need updating. 2109 */ 2110 STATIC int 2111 __xfs_btree_updkeys( 2112 struct xfs_btree_cur *cur, 2113 int level, 2114 struct xfs_btree_block *block, 2115 struct xfs_buf *bp0, 2116 bool force_all) 2117 { 2118 union xfs_btree_key key; /* keys from current level */ 2119 union xfs_btree_key *lkey; /* keys from the next level up */ 2120 union xfs_btree_key *hkey; 2121 union xfs_btree_key *nlkey; /* keys from the next level up */ 2122 union xfs_btree_key *nhkey; 2123 struct xfs_buf *bp; 2124 int ptr; 2125 2126 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2127 2128 /* Exit if there aren't any parent levels to update. */ 2129 if (level + 1 >= cur->bc_nlevels) 2130 return 0; 2131 2132 trace_xfs_btree_updkeys(cur, level, bp0); 2133 2134 lkey = &key; 2135 hkey = xfs_btree_high_key_from_key(cur, lkey); 2136 xfs_btree_get_keys(cur, block, lkey); 2137 for (level++; level < cur->bc_nlevels; level++) { 2138 #ifdef DEBUG 2139 int error; 2140 #endif 2141 block = xfs_btree_get_block(cur, level, &bp); 2142 trace_xfs_btree_updkeys(cur, level, bp); 2143 #ifdef DEBUG 2144 error = xfs_btree_check_block(cur, block, level, bp); 2145 if (error) { 2146 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2147 return error; 2148 } 2149 #endif 2150 ptr = cur->bc_ptrs[level]; 2151 nlkey = xfs_btree_key_addr(cur, ptr, block); 2152 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2153 if (!force_all && 2154 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2155 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2156 break; 2157 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2158 xfs_btree_log_keys(cur, bp, ptr, ptr); 2159 if (level + 1 >= cur->bc_nlevels) 2160 break; 2161 xfs_btree_get_node_keys(cur, block, lkey); 2162 } 2163 2164 return 0; 2165 } 2166 2167 /* Update all the keys from some level in cursor back to the root. */ 2168 STATIC int 2169 xfs_btree_updkeys_force( 2170 struct xfs_btree_cur *cur, 2171 int level) 2172 { 2173 struct xfs_buf *bp; 2174 struct xfs_btree_block *block; 2175 2176 block = xfs_btree_get_block(cur, level, &bp); 2177 return __xfs_btree_updkeys(cur, level, block, bp, true); 2178 } 2179 2180 /* 2181 * Update the parent keys of the given level, progressing towards the root. 2182 */ 2183 STATIC int 2184 xfs_btree_update_keys( 2185 struct xfs_btree_cur *cur, 2186 int level) 2187 { 2188 struct xfs_btree_block *block; 2189 struct xfs_buf *bp; 2190 union xfs_btree_key *kp; 2191 union xfs_btree_key key; 2192 int ptr; 2193 2194 ASSERT(level >= 0); 2195 2196 block = xfs_btree_get_block(cur, level, &bp); 2197 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2198 return __xfs_btree_updkeys(cur, level, block, bp, false); 2199 2200 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2201 XFS_BTREE_TRACE_ARGIK(cur, level, keyp); 2202 2203 /* 2204 * Go up the tree from this level toward the root. 2205 * At each level, update the key value to the value input. 2206 * Stop when we reach a level where the cursor isn't pointing 2207 * at the first entry in the block. 2208 */ 2209 xfs_btree_get_keys(cur, block, &key); 2210 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2211 #ifdef DEBUG 2212 int error; 2213 #endif 2214 block = xfs_btree_get_block(cur, level, &bp); 2215 #ifdef DEBUG 2216 error = xfs_btree_check_block(cur, block, level, bp); 2217 if (error) { 2218 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2219 return error; 2220 } 2221 #endif 2222 ptr = cur->bc_ptrs[level]; 2223 kp = xfs_btree_key_addr(cur, ptr, block); 2224 xfs_btree_copy_keys(cur, kp, &key, 1); 2225 xfs_btree_log_keys(cur, bp, ptr, ptr); 2226 } 2227 2228 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2229 return 0; 2230 } 2231 2232 /* 2233 * Update the record referred to by cur to the value in the 2234 * given record. This either works (return 0) or gets an 2235 * EFSCORRUPTED error. 2236 */ 2237 int 2238 xfs_btree_update( 2239 struct xfs_btree_cur *cur, 2240 union xfs_btree_rec *rec) 2241 { 2242 struct xfs_btree_block *block; 2243 struct xfs_buf *bp; 2244 int error; 2245 int ptr; 2246 union xfs_btree_rec *rp; 2247 2248 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2249 XFS_BTREE_TRACE_ARGR(cur, rec); 2250 2251 /* Pick up the current block. */ 2252 block = xfs_btree_get_block(cur, 0, &bp); 2253 2254 #ifdef DEBUG 2255 error = xfs_btree_check_block(cur, block, 0, bp); 2256 if (error) 2257 goto error0; 2258 #endif 2259 /* Get the address of the rec to be updated. */ 2260 ptr = cur->bc_ptrs[0]; 2261 rp = xfs_btree_rec_addr(cur, ptr, block); 2262 2263 /* Fill in the new contents and log them. */ 2264 xfs_btree_copy_recs(cur, rp, rec, 1); 2265 xfs_btree_log_recs(cur, bp, ptr, ptr); 2266 2267 /* 2268 * If we are tracking the last record in the tree and 2269 * we are at the far right edge of the tree, update it. 2270 */ 2271 if (xfs_btree_is_lastrec(cur, block, 0)) { 2272 cur->bc_ops->update_lastrec(cur, block, rec, 2273 ptr, LASTREC_UPDATE); 2274 } 2275 2276 /* Pass new key value up to our parent. */ 2277 if (xfs_btree_needs_key_update(cur, ptr)) { 2278 error = xfs_btree_update_keys(cur, 0); 2279 if (error) 2280 goto error0; 2281 } 2282 2283 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2284 return 0; 2285 2286 error0: 2287 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2288 return error; 2289 } 2290 2291 /* 2292 * Move 1 record left from cur/level if possible. 2293 * Update cur to reflect the new path. 2294 */ 2295 STATIC int /* error */ 2296 xfs_btree_lshift( 2297 struct xfs_btree_cur *cur, 2298 int level, 2299 int *stat) /* success/failure */ 2300 { 2301 struct xfs_buf *lbp; /* left buffer pointer */ 2302 struct xfs_btree_block *left; /* left btree block */ 2303 int lrecs; /* left record count */ 2304 struct xfs_buf *rbp; /* right buffer pointer */ 2305 struct xfs_btree_block *right; /* right btree block */ 2306 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2307 int rrecs; /* right record count */ 2308 union xfs_btree_ptr lptr; /* left btree pointer */ 2309 union xfs_btree_key *rkp = NULL; /* right btree key */ 2310 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2311 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2312 int error; /* error return value */ 2313 int i; 2314 2315 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2316 XFS_BTREE_TRACE_ARGI(cur, level); 2317 2318 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2319 level == cur->bc_nlevels - 1) 2320 goto out0; 2321 2322 /* Set up variables for this block as "right". */ 2323 right = xfs_btree_get_block(cur, level, &rbp); 2324 2325 #ifdef DEBUG 2326 error = xfs_btree_check_block(cur, right, level, rbp); 2327 if (error) 2328 goto error0; 2329 #endif 2330 2331 /* If we've got no left sibling then we can't shift an entry left. */ 2332 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2333 if (xfs_btree_ptr_is_null(cur, &lptr)) 2334 goto out0; 2335 2336 /* 2337 * If the cursor entry is the one that would be moved, don't 2338 * do it... it's too complicated. 2339 */ 2340 if (cur->bc_ptrs[level] <= 1) 2341 goto out0; 2342 2343 /* Set up the left neighbor as "left". */ 2344 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2345 if (error) 2346 goto error0; 2347 2348 /* If it's full, it can't take another entry. */ 2349 lrecs = xfs_btree_get_numrecs(left); 2350 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2351 goto out0; 2352 2353 rrecs = xfs_btree_get_numrecs(right); 2354 2355 /* 2356 * We add one entry to the left side and remove one for the right side. 2357 * Account for it here, the changes will be updated on disk and logged 2358 * later. 2359 */ 2360 lrecs++; 2361 rrecs--; 2362 2363 XFS_BTREE_STATS_INC(cur, lshift); 2364 XFS_BTREE_STATS_ADD(cur, moves, 1); 2365 2366 /* 2367 * If non-leaf, copy a key and a ptr to the left block. 2368 * Log the changes to the left block. 2369 */ 2370 if (level > 0) { 2371 /* It's a non-leaf. Move keys and pointers. */ 2372 union xfs_btree_key *lkp; /* left btree key */ 2373 union xfs_btree_ptr *lpp; /* left address pointer */ 2374 2375 lkp = xfs_btree_key_addr(cur, lrecs, left); 2376 rkp = xfs_btree_key_addr(cur, 1, right); 2377 2378 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2379 rpp = xfs_btree_ptr_addr(cur, 1, right); 2380 #ifdef DEBUG 2381 error = xfs_btree_check_ptr(cur, rpp, 0, level); 2382 if (error) 2383 goto error0; 2384 #endif 2385 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2386 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2387 2388 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2389 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2390 2391 ASSERT(cur->bc_ops->keys_inorder(cur, 2392 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2393 } else { 2394 /* It's a leaf. Move records. */ 2395 union xfs_btree_rec *lrp; /* left record pointer */ 2396 2397 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2398 rrp = xfs_btree_rec_addr(cur, 1, right); 2399 2400 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2401 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2402 2403 ASSERT(cur->bc_ops->recs_inorder(cur, 2404 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2405 } 2406 2407 xfs_btree_set_numrecs(left, lrecs); 2408 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2409 2410 xfs_btree_set_numrecs(right, rrecs); 2411 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2412 2413 /* 2414 * Slide the contents of right down one entry. 2415 */ 2416 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2417 if (level > 0) { 2418 /* It's a nonleaf. operate on keys and ptrs */ 2419 #ifdef DEBUG 2420 int i; /* loop index */ 2421 2422 for (i = 0; i < rrecs; i++) { 2423 error = xfs_btree_check_ptr(cur, rpp, i + 1, level); 2424 if (error) 2425 goto error0; 2426 } 2427 #endif 2428 xfs_btree_shift_keys(cur, 2429 xfs_btree_key_addr(cur, 2, right), 2430 -1, rrecs); 2431 xfs_btree_shift_ptrs(cur, 2432 xfs_btree_ptr_addr(cur, 2, right), 2433 -1, rrecs); 2434 2435 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2436 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2437 } else { 2438 /* It's a leaf. operate on records */ 2439 xfs_btree_shift_recs(cur, 2440 xfs_btree_rec_addr(cur, 2, right), 2441 -1, rrecs); 2442 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2443 } 2444 2445 /* 2446 * Using a temporary cursor, update the parent key values of the 2447 * block on the left. 2448 */ 2449 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2450 error = xfs_btree_dup_cursor(cur, &tcur); 2451 if (error) 2452 goto error0; 2453 i = xfs_btree_firstrec(tcur, level); 2454 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0); 2455 2456 error = xfs_btree_decrement(tcur, level, &i); 2457 if (error) 2458 goto error1; 2459 2460 /* Update the parent high keys of the left block, if needed. */ 2461 error = xfs_btree_update_keys(tcur, level); 2462 if (error) 2463 goto error1; 2464 2465 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2466 } 2467 2468 /* Update the parent keys of the right block. */ 2469 error = xfs_btree_update_keys(cur, level); 2470 if (error) 2471 goto error0; 2472 2473 /* Slide the cursor value left one. */ 2474 cur->bc_ptrs[level]--; 2475 2476 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2477 *stat = 1; 2478 return 0; 2479 2480 out0: 2481 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2482 *stat = 0; 2483 return 0; 2484 2485 error0: 2486 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2487 return error; 2488 2489 error1: 2490 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR); 2491 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2492 return error; 2493 } 2494 2495 /* 2496 * Move 1 record right from cur/level if possible. 2497 * Update cur to reflect the new path. 2498 */ 2499 STATIC int /* error */ 2500 xfs_btree_rshift( 2501 struct xfs_btree_cur *cur, 2502 int level, 2503 int *stat) /* success/failure */ 2504 { 2505 struct xfs_buf *lbp; /* left buffer pointer */ 2506 struct xfs_btree_block *left; /* left btree block */ 2507 struct xfs_buf *rbp; /* right buffer pointer */ 2508 struct xfs_btree_block *right; /* right btree block */ 2509 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2510 union xfs_btree_ptr rptr; /* right block pointer */ 2511 union xfs_btree_key *rkp; /* right btree key */ 2512 int rrecs; /* right record count */ 2513 int lrecs; /* left record count */ 2514 int error; /* error return value */ 2515 int i; /* loop counter */ 2516 2517 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2518 XFS_BTREE_TRACE_ARGI(cur, level); 2519 2520 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2521 (level == cur->bc_nlevels - 1)) 2522 goto out0; 2523 2524 /* Set up variables for this block as "left". */ 2525 left = xfs_btree_get_block(cur, level, &lbp); 2526 2527 #ifdef DEBUG 2528 error = xfs_btree_check_block(cur, left, level, lbp); 2529 if (error) 2530 goto error0; 2531 #endif 2532 2533 /* If we've got no right sibling then we can't shift an entry right. */ 2534 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2535 if (xfs_btree_ptr_is_null(cur, &rptr)) 2536 goto out0; 2537 2538 /* 2539 * If the cursor entry is the one that would be moved, don't 2540 * do it... it's too complicated. 2541 */ 2542 lrecs = xfs_btree_get_numrecs(left); 2543 if (cur->bc_ptrs[level] >= lrecs) 2544 goto out0; 2545 2546 /* Set up the right neighbor as "right". */ 2547 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2548 if (error) 2549 goto error0; 2550 2551 /* If it's full, it can't take another entry. */ 2552 rrecs = xfs_btree_get_numrecs(right); 2553 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2554 goto out0; 2555 2556 XFS_BTREE_STATS_INC(cur, rshift); 2557 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2558 2559 /* 2560 * Make a hole at the start of the right neighbor block, then 2561 * copy the last left block entry to the hole. 2562 */ 2563 if (level > 0) { 2564 /* It's a nonleaf. make a hole in the keys and ptrs */ 2565 union xfs_btree_key *lkp; 2566 union xfs_btree_ptr *lpp; 2567 union xfs_btree_ptr *rpp; 2568 2569 lkp = xfs_btree_key_addr(cur, lrecs, left); 2570 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2571 rkp = xfs_btree_key_addr(cur, 1, right); 2572 rpp = xfs_btree_ptr_addr(cur, 1, right); 2573 2574 #ifdef DEBUG 2575 for (i = rrecs - 1; i >= 0; i--) { 2576 error = xfs_btree_check_ptr(cur, rpp, i, level); 2577 if (error) 2578 goto error0; 2579 } 2580 #endif 2581 2582 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2583 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2584 2585 #ifdef DEBUG 2586 error = xfs_btree_check_ptr(cur, lpp, 0, level); 2587 if (error) 2588 goto error0; 2589 #endif 2590 2591 /* Now put the new data in, and log it. */ 2592 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2593 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2594 2595 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2596 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2597 2598 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2599 xfs_btree_key_addr(cur, 2, right))); 2600 } else { 2601 /* It's a leaf. make a hole in the records */ 2602 union xfs_btree_rec *lrp; 2603 union xfs_btree_rec *rrp; 2604 2605 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2606 rrp = xfs_btree_rec_addr(cur, 1, right); 2607 2608 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2609 2610 /* Now put the new data in, and log it. */ 2611 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2612 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2613 } 2614 2615 /* 2616 * Decrement and log left's numrecs, bump and log right's numrecs. 2617 */ 2618 xfs_btree_set_numrecs(left, --lrecs); 2619 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2620 2621 xfs_btree_set_numrecs(right, ++rrecs); 2622 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2623 2624 /* 2625 * Using a temporary cursor, update the parent key values of the 2626 * block on the right. 2627 */ 2628 error = xfs_btree_dup_cursor(cur, &tcur); 2629 if (error) 2630 goto error0; 2631 i = xfs_btree_lastrec(tcur, level); 2632 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0); 2633 2634 error = xfs_btree_increment(tcur, level, &i); 2635 if (error) 2636 goto error1; 2637 2638 /* Update the parent high keys of the left block, if needed. */ 2639 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2640 error = xfs_btree_update_keys(cur, level); 2641 if (error) 2642 goto error1; 2643 } 2644 2645 /* Update the parent keys of the right block. */ 2646 error = xfs_btree_update_keys(tcur, level); 2647 if (error) 2648 goto error1; 2649 2650 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2651 2652 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2653 *stat = 1; 2654 return 0; 2655 2656 out0: 2657 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2658 *stat = 0; 2659 return 0; 2660 2661 error0: 2662 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2663 return error; 2664 2665 error1: 2666 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR); 2667 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2668 return error; 2669 } 2670 2671 /* 2672 * Split cur/level block in half. 2673 * Return new block number and the key to its first 2674 * record (to be inserted into parent). 2675 */ 2676 STATIC int /* error */ 2677 __xfs_btree_split( 2678 struct xfs_btree_cur *cur, 2679 int level, 2680 union xfs_btree_ptr *ptrp, 2681 union xfs_btree_key *key, 2682 struct xfs_btree_cur **curp, 2683 int *stat) /* success/failure */ 2684 { 2685 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2686 struct xfs_buf *lbp; /* left buffer pointer */ 2687 struct xfs_btree_block *left; /* left btree block */ 2688 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2689 struct xfs_buf *rbp; /* right buffer pointer */ 2690 struct xfs_btree_block *right; /* right btree block */ 2691 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2692 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2693 struct xfs_btree_block *rrblock; /* right-right btree block */ 2694 int lrecs; 2695 int rrecs; 2696 int src_index; 2697 int error; /* error return value */ 2698 #ifdef DEBUG 2699 int i; 2700 #endif 2701 2702 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2703 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key); 2704 2705 XFS_BTREE_STATS_INC(cur, split); 2706 2707 /* Set up left block (current one). */ 2708 left = xfs_btree_get_block(cur, level, &lbp); 2709 2710 #ifdef DEBUG 2711 error = xfs_btree_check_block(cur, left, level, lbp); 2712 if (error) 2713 goto error0; 2714 #endif 2715 2716 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2717 2718 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2719 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2720 if (error) 2721 goto error0; 2722 if (*stat == 0) 2723 goto out0; 2724 XFS_BTREE_STATS_INC(cur, alloc); 2725 2726 /* Set up the new block as "right". */ 2727 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp); 2728 if (error) 2729 goto error0; 2730 2731 /* Fill in the btree header for the new right block. */ 2732 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2733 2734 /* 2735 * Split the entries between the old and the new block evenly. 2736 * Make sure that if there's an odd number of entries now, that 2737 * each new block will have the same number of entries. 2738 */ 2739 lrecs = xfs_btree_get_numrecs(left); 2740 rrecs = lrecs / 2; 2741 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1) 2742 rrecs++; 2743 src_index = (lrecs - rrecs + 1); 2744 2745 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2746 2747 /* Adjust numrecs for the later get_*_keys() calls. */ 2748 lrecs -= rrecs; 2749 xfs_btree_set_numrecs(left, lrecs); 2750 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2751 2752 /* 2753 * Copy btree block entries from the left block over to the 2754 * new block, the right. Update the right block and log the 2755 * changes. 2756 */ 2757 if (level > 0) { 2758 /* It's a non-leaf. Move keys and pointers. */ 2759 union xfs_btree_key *lkp; /* left btree key */ 2760 union xfs_btree_ptr *lpp; /* left address pointer */ 2761 union xfs_btree_key *rkp; /* right btree key */ 2762 union xfs_btree_ptr *rpp; /* right address pointer */ 2763 2764 lkp = xfs_btree_key_addr(cur, src_index, left); 2765 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2766 rkp = xfs_btree_key_addr(cur, 1, right); 2767 rpp = xfs_btree_ptr_addr(cur, 1, right); 2768 2769 #ifdef DEBUG 2770 for (i = src_index; i < rrecs; i++) { 2771 error = xfs_btree_check_ptr(cur, lpp, i, level); 2772 if (error) 2773 goto error0; 2774 } 2775 #endif 2776 2777 /* Copy the keys & pointers to the new block. */ 2778 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2779 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2780 2781 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2782 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2783 2784 /* Stash the keys of the new block for later insertion. */ 2785 xfs_btree_get_node_keys(cur, right, key); 2786 } else { 2787 /* It's a leaf. Move records. */ 2788 union xfs_btree_rec *lrp; /* left record pointer */ 2789 union xfs_btree_rec *rrp; /* right record pointer */ 2790 2791 lrp = xfs_btree_rec_addr(cur, src_index, left); 2792 rrp = xfs_btree_rec_addr(cur, 1, right); 2793 2794 /* Copy records to the new block. */ 2795 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2796 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2797 2798 /* Stash the keys of the new block for later insertion. */ 2799 xfs_btree_get_leaf_keys(cur, right, key); 2800 } 2801 2802 /* 2803 * Find the left block number by looking in the buffer. 2804 * Adjust sibling pointers. 2805 */ 2806 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2807 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2808 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2809 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2810 2811 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2812 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2813 2814 /* 2815 * If there's a block to the new block's right, make that block 2816 * point back to right instead of to left. 2817 */ 2818 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2819 error = xfs_btree_read_buf_block(cur, &rrptr, 2820 0, &rrblock, &rrbp); 2821 if (error) 2822 goto error0; 2823 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2824 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2825 } 2826 2827 /* Update the parent high keys of the left block, if needed. */ 2828 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2829 error = xfs_btree_update_keys(cur, level); 2830 if (error) 2831 goto error0; 2832 } 2833 2834 /* 2835 * If the cursor is really in the right block, move it there. 2836 * If it's just pointing past the last entry in left, then we'll 2837 * insert there, so don't change anything in that case. 2838 */ 2839 if (cur->bc_ptrs[level] > lrecs + 1) { 2840 xfs_btree_setbuf(cur, level, rbp); 2841 cur->bc_ptrs[level] -= lrecs; 2842 } 2843 /* 2844 * If there are more levels, we'll need another cursor which refers 2845 * the right block, no matter where this cursor was. 2846 */ 2847 if (level + 1 < cur->bc_nlevels) { 2848 error = xfs_btree_dup_cursor(cur, curp); 2849 if (error) 2850 goto error0; 2851 (*curp)->bc_ptrs[level + 1]++; 2852 } 2853 *ptrp = rptr; 2854 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2855 *stat = 1; 2856 return 0; 2857 out0: 2858 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2859 *stat = 0; 2860 return 0; 2861 2862 error0: 2863 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 2864 return error; 2865 } 2866 2867 struct xfs_btree_split_args { 2868 struct xfs_btree_cur *cur; 2869 int level; 2870 union xfs_btree_ptr *ptrp; 2871 union xfs_btree_key *key; 2872 struct xfs_btree_cur **curp; 2873 int *stat; /* success/failure */ 2874 int result; 2875 bool kswapd; /* allocation in kswapd context */ 2876 struct completion *done; 2877 struct work_struct work; 2878 }; 2879 2880 /* 2881 * Stack switching interfaces for allocation 2882 */ 2883 static void 2884 xfs_btree_split_worker( 2885 struct work_struct *work) 2886 { 2887 struct xfs_btree_split_args *args = container_of(work, 2888 struct xfs_btree_split_args, work); 2889 unsigned long pflags; 2890 unsigned long new_pflags = PF_MEMALLOC_NOFS; 2891 2892 /* 2893 * we are in a transaction context here, but may also be doing work 2894 * in kswapd context, and hence we may need to inherit that state 2895 * temporarily to ensure that we don't block waiting for memory reclaim 2896 * in any way. 2897 */ 2898 if (args->kswapd) 2899 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2900 2901 current_set_flags_nested(&pflags, new_pflags); 2902 2903 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2904 args->key, args->curp, args->stat); 2905 complete(args->done); 2906 2907 current_restore_flags_nested(&pflags, new_pflags); 2908 } 2909 2910 /* 2911 * BMBT split requests often come in with little stack to work on. Push 2912 * them off to a worker thread so there is lots of stack to use. For the other 2913 * btree types, just call directly to avoid the context switch overhead here. 2914 */ 2915 STATIC int /* error */ 2916 xfs_btree_split( 2917 struct xfs_btree_cur *cur, 2918 int level, 2919 union xfs_btree_ptr *ptrp, 2920 union xfs_btree_key *key, 2921 struct xfs_btree_cur **curp, 2922 int *stat) /* success/failure */ 2923 { 2924 struct xfs_btree_split_args args; 2925 DECLARE_COMPLETION_ONSTACK(done); 2926 2927 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2928 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2929 2930 args.cur = cur; 2931 args.level = level; 2932 args.ptrp = ptrp; 2933 args.key = key; 2934 args.curp = curp; 2935 args.stat = stat; 2936 args.done = &done; 2937 args.kswapd = current_is_kswapd(); 2938 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2939 queue_work(xfs_alloc_wq, &args.work); 2940 wait_for_completion(&done); 2941 destroy_work_on_stack(&args.work); 2942 return args.result; 2943 } 2944 2945 2946 /* 2947 * Copy the old inode root contents into a real block and make the 2948 * broot point to it. 2949 */ 2950 int /* error */ 2951 xfs_btree_new_iroot( 2952 struct xfs_btree_cur *cur, /* btree cursor */ 2953 int *logflags, /* logging flags for inode */ 2954 int *stat) /* return status - 0 fail */ 2955 { 2956 struct xfs_buf *cbp; /* buffer for cblock */ 2957 struct xfs_btree_block *block; /* btree block */ 2958 struct xfs_btree_block *cblock; /* child btree block */ 2959 union xfs_btree_key *ckp; /* child key pointer */ 2960 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2961 union xfs_btree_key *kp; /* pointer to btree key */ 2962 union xfs_btree_ptr *pp; /* pointer to block addr */ 2963 union xfs_btree_ptr nptr; /* new block addr */ 2964 int level; /* btree level */ 2965 int error; /* error return code */ 2966 #ifdef DEBUG 2967 int i; /* loop counter */ 2968 #endif 2969 2970 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 2971 XFS_BTREE_STATS_INC(cur, newroot); 2972 2973 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2974 2975 level = cur->bc_nlevels - 1; 2976 2977 block = xfs_btree_get_iroot(cur); 2978 pp = xfs_btree_ptr_addr(cur, 1, block); 2979 2980 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2981 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2982 if (error) 2983 goto error0; 2984 if (*stat == 0) { 2985 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 2986 return 0; 2987 } 2988 XFS_BTREE_STATS_INC(cur, alloc); 2989 2990 /* Copy the root into a real block. */ 2991 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp); 2992 if (error) 2993 goto error0; 2994 2995 /* 2996 * we can't just memcpy() the root in for CRC enabled btree blocks. 2997 * In that case have to also ensure the blkno remains correct 2998 */ 2999 memcpy(cblock, block, xfs_btree_block_len(cur)); 3000 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 3001 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 3002 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn); 3003 else 3004 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn); 3005 } 3006 3007 be16_add_cpu(&block->bb_level, 1); 3008 xfs_btree_set_numrecs(block, 1); 3009 cur->bc_nlevels++; 3010 cur->bc_ptrs[level + 1] = 1; 3011 3012 kp = xfs_btree_key_addr(cur, 1, block); 3013 ckp = xfs_btree_key_addr(cur, 1, cblock); 3014 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 3015 3016 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3017 #ifdef DEBUG 3018 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 3019 error = xfs_btree_check_ptr(cur, pp, i, level); 3020 if (error) 3021 goto error0; 3022 } 3023 #endif 3024 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 3025 3026 #ifdef DEBUG 3027 error = xfs_btree_check_ptr(cur, &nptr, 0, level); 3028 if (error) 3029 goto error0; 3030 #endif 3031 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 3032 3033 xfs_iroot_realloc(cur->bc_private.b.ip, 3034 1 - xfs_btree_get_numrecs(cblock), 3035 cur->bc_private.b.whichfork); 3036 3037 xfs_btree_setbuf(cur, level, cbp); 3038 3039 /* 3040 * Do all this logging at the end so that 3041 * the root is at the right level. 3042 */ 3043 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 3044 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3045 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3046 3047 *logflags |= 3048 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork); 3049 *stat = 1; 3050 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3051 return 0; 3052 error0: 3053 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3054 return error; 3055 } 3056 3057 /* 3058 * Allocate a new root block, fill it in. 3059 */ 3060 STATIC int /* error */ 3061 xfs_btree_new_root( 3062 struct xfs_btree_cur *cur, /* btree cursor */ 3063 int *stat) /* success/failure */ 3064 { 3065 struct xfs_btree_block *block; /* one half of the old root block */ 3066 struct xfs_buf *bp; /* buffer containing block */ 3067 int error; /* error return value */ 3068 struct xfs_buf *lbp; /* left buffer pointer */ 3069 struct xfs_btree_block *left; /* left btree block */ 3070 struct xfs_buf *nbp; /* new (root) buffer */ 3071 struct xfs_btree_block *new; /* new (root) btree block */ 3072 int nptr; /* new value for key index, 1 or 2 */ 3073 struct xfs_buf *rbp; /* right buffer pointer */ 3074 struct xfs_btree_block *right; /* right btree block */ 3075 union xfs_btree_ptr rptr; 3076 union xfs_btree_ptr lptr; 3077 3078 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 3079 XFS_BTREE_STATS_INC(cur, newroot); 3080 3081 /* initialise our start point from the cursor */ 3082 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3083 3084 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3085 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3086 if (error) 3087 goto error0; 3088 if (*stat == 0) 3089 goto out0; 3090 XFS_BTREE_STATS_INC(cur, alloc); 3091 3092 /* Set up the new block. */ 3093 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp); 3094 if (error) 3095 goto error0; 3096 3097 /* Set the root in the holding structure increasing the level by 1. */ 3098 cur->bc_ops->set_root(cur, &lptr, 1); 3099 3100 /* 3101 * At the previous root level there are now two blocks: the old root, 3102 * and the new block generated when it was split. We don't know which 3103 * one the cursor is pointing at, so we set up variables "left" and 3104 * "right" for each case. 3105 */ 3106 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3107 3108 #ifdef DEBUG 3109 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3110 if (error) 3111 goto error0; 3112 #endif 3113 3114 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3115 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3116 /* Our block is left, pick up the right block. */ 3117 lbp = bp; 3118 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3119 left = block; 3120 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3121 if (error) 3122 goto error0; 3123 bp = rbp; 3124 nptr = 1; 3125 } else { 3126 /* Our block is right, pick up the left block. */ 3127 rbp = bp; 3128 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3129 right = block; 3130 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3131 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3132 if (error) 3133 goto error0; 3134 bp = lbp; 3135 nptr = 2; 3136 } 3137 3138 /* Fill in the new block's btree header and log it. */ 3139 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3140 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3141 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3142 !xfs_btree_ptr_is_null(cur, &rptr)); 3143 3144 /* Fill in the key data in the new root. */ 3145 if (xfs_btree_get_level(left) > 0) { 3146 /* 3147 * Get the keys for the left block's keys and put them directly 3148 * in the parent block. Do the same for the right block. 3149 */ 3150 xfs_btree_get_node_keys(cur, left, 3151 xfs_btree_key_addr(cur, 1, new)); 3152 xfs_btree_get_node_keys(cur, right, 3153 xfs_btree_key_addr(cur, 2, new)); 3154 } else { 3155 /* 3156 * Get the keys for the left block's records and put them 3157 * directly in the parent block. Do the same for the right 3158 * block. 3159 */ 3160 xfs_btree_get_leaf_keys(cur, left, 3161 xfs_btree_key_addr(cur, 1, new)); 3162 xfs_btree_get_leaf_keys(cur, right, 3163 xfs_btree_key_addr(cur, 2, new)); 3164 } 3165 xfs_btree_log_keys(cur, nbp, 1, 2); 3166 3167 /* Fill in the pointer data in the new root. */ 3168 xfs_btree_copy_ptrs(cur, 3169 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3170 xfs_btree_copy_ptrs(cur, 3171 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3172 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3173 3174 /* Fix up the cursor. */ 3175 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3176 cur->bc_ptrs[cur->bc_nlevels] = nptr; 3177 cur->bc_nlevels++; 3178 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3179 *stat = 1; 3180 return 0; 3181 error0: 3182 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3183 return error; 3184 out0: 3185 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3186 *stat = 0; 3187 return 0; 3188 } 3189 3190 STATIC int 3191 xfs_btree_make_block_unfull( 3192 struct xfs_btree_cur *cur, /* btree cursor */ 3193 int level, /* btree level */ 3194 int numrecs,/* # of recs in block */ 3195 int *oindex,/* old tree index */ 3196 int *index, /* new tree index */ 3197 union xfs_btree_ptr *nptr, /* new btree ptr */ 3198 struct xfs_btree_cur **ncur, /* new btree cursor */ 3199 union xfs_btree_key *key, /* key of new block */ 3200 int *stat) 3201 { 3202 int error = 0; 3203 3204 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3205 level == cur->bc_nlevels - 1) { 3206 struct xfs_inode *ip = cur->bc_private.b.ip; 3207 3208 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3209 /* A root block that can be made bigger. */ 3210 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork); 3211 *stat = 1; 3212 } else { 3213 /* A root block that needs replacing */ 3214 int logflags = 0; 3215 3216 error = xfs_btree_new_iroot(cur, &logflags, stat); 3217 if (error || *stat == 0) 3218 return error; 3219 3220 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3221 } 3222 3223 return 0; 3224 } 3225 3226 /* First, try shifting an entry to the right neighbor. */ 3227 error = xfs_btree_rshift(cur, level, stat); 3228 if (error || *stat) 3229 return error; 3230 3231 /* Next, try shifting an entry to the left neighbor. */ 3232 error = xfs_btree_lshift(cur, level, stat); 3233 if (error) 3234 return error; 3235 3236 if (*stat) { 3237 *oindex = *index = cur->bc_ptrs[level]; 3238 return 0; 3239 } 3240 3241 /* 3242 * Next, try splitting the current block in half. 3243 * 3244 * If this works we have to re-set our variables because we 3245 * could be in a different block now. 3246 */ 3247 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3248 if (error || *stat == 0) 3249 return error; 3250 3251 3252 *index = cur->bc_ptrs[level]; 3253 return 0; 3254 } 3255 3256 /* 3257 * Insert one record/level. Return information to the caller 3258 * allowing the next level up to proceed if necessary. 3259 */ 3260 STATIC int 3261 xfs_btree_insrec( 3262 struct xfs_btree_cur *cur, /* btree cursor */ 3263 int level, /* level to insert record at */ 3264 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3265 union xfs_btree_rec *rec, /* record to insert */ 3266 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3267 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3268 int *stat) /* success/failure */ 3269 { 3270 struct xfs_btree_block *block; /* btree block */ 3271 struct xfs_buf *bp; /* buffer for block */ 3272 union xfs_btree_ptr nptr; /* new block ptr */ 3273 struct xfs_btree_cur *ncur; /* new btree cursor */ 3274 union xfs_btree_key nkey; /* new block key */ 3275 union xfs_btree_key *lkey; 3276 int optr; /* old key/record index */ 3277 int ptr; /* key/record index */ 3278 int numrecs;/* number of records */ 3279 int error; /* error return value */ 3280 #ifdef DEBUG 3281 int i; 3282 #endif 3283 xfs_daddr_t old_bn; 3284 3285 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 3286 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec); 3287 3288 ncur = NULL; 3289 lkey = &nkey; 3290 3291 /* 3292 * If we have an external root pointer, and we've made it to the 3293 * root level, allocate a new root block and we're done. 3294 */ 3295 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3296 (level >= cur->bc_nlevels)) { 3297 error = xfs_btree_new_root(cur, stat); 3298 xfs_btree_set_ptr_null(cur, ptrp); 3299 3300 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3301 return error; 3302 } 3303 3304 /* If we're off the left edge, return failure. */ 3305 ptr = cur->bc_ptrs[level]; 3306 if (ptr == 0) { 3307 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3308 *stat = 0; 3309 return 0; 3310 } 3311 3312 optr = ptr; 3313 3314 XFS_BTREE_STATS_INC(cur, insrec); 3315 3316 /* Get pointers to the btree buffer and block. */ 3317 block = xfs_btree_get_block(cur, level, &bp); 3318 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL; 3319 numrecs = xfs_btree_get_numrecs(block); 3320 3321 #ifdef DEBUG 3322 error = xfs_btree_check_block(cur, block, level, bp); 3323 if (error) 3324 goto error0; 3325 3326 /* Check that the new entry is being inserted in the right place. */ 3327 if (ptr <= numrecs) { 3328 if (level == 0) { 3329 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3330 xfs_btree_rec_addr(cur, ptr, block))); 3331 } else { 3332 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3333 xfs_btree_key_addr(cur, ptr, block))); 3334 } 3335 } 3336 #endif 3337 3338 /* 3339 * If the block is full, we can't insert the new entry until we 3340 * make the block un-full. 3341 */ 3342 xfs_btree_set_ptr_null(cur, &nptr); 3343 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3344 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3345 &optr, &ptr, &nptr, &ncur, lkey, stat); 3346 if (error || *stat == 0) 3347 goto error0; 3348 } 3349 3350 /* 3351 * The current block may have changed if the block was 3352 * previously full and we have just made space in it. 3353 */ 3354 block = xfs_btree_get_block(cur, level, &bp); 3355 numrecs = xfs_btree_get_numrecs(block); 3356 3357 #ifdef DEBUG 3358 error = xfs_btree_check_block(cur, block, level, bp); 3359 if (error) 3360 return error; 3361 #endif 3362 3363 /* 3364 * At this point we know there's room for our new entry in the block 3365 * we're pointing at. 3366 */ 3367 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3368 3369 if (level > 0) { 3370 /* It's a nonleaf. make a hole in the keys and ptrs */ 3371 union xfs_btree_key *kp; 3372 union xfs_btree_ptr *pp; 3373 3374 kp = xfs_btree_key_addr(cur, ptr, block); 3375 pp = xfs_btree_ptr_addr(cur, ptr, block); 3376 3377 #ifdef DEBUG 3378 for (i = numrecs - ptr; i >= 0; i--) { 3379 error = xfs_btree_check_ptr(cur, pp, i, level); 3380 if (error) 3381 return error; 3382 } 3383 #endif 3384 3385 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3386 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3387 3388 #ifdef DEBUG 3389 error = xfs_btree_check_ptr(cur, ptrp, 0, level); 3390 if (error) 3391 goto error0; 3392 #endif 3393 3394 /* Now put the new data in, bump numrecs and log it. */ 3395 xfs_btree_copy_keys(cur, kp, key, 1); 3396 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3397 numrecs++; 3398 xfs_btree_set_numrecs(block, numrecs); 3399 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3400 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3401 #ifdef DEBUG 3402 if (ptr < numrecs) { 3403 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3404 xfs_btree_key_addr(cur, ptr + 1, block))); 3405 } 3406 #endif 3407 } else { 3408 /* It's a leaf. make a hole in the records */ 3409 union xfs_btree_rec *rp; 3410 3411 rp = xfs_btree_rec_addr(cur, ptr, block); 3412 3413 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3414 3415 /* Now put the new data in, bump numrecs and log it. */ 3416 xfs_btree_copy_recs(cur, rp, rec, 1); 3417 xfs_btree_set_numrecs(block, ++numrecs); 3418 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3419 #ifdef DEBUG 3420 if (ptr < numrecs) { 3421 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3422 xfs_btree_rec_addr(cur, ptr + 1, block))); 3423 } 3424 #endif 3425 } 3426 3427 /* Log the new number of records in the btree header. */ 3428 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3429 3430 /* 3431 * If we just inserted into a new tree block, we have to 3432 * recalculate nkey here because nkey is out of date. 3433 * 3434 * Otherwise we're just updating an existing block (having shoved 3435 * some records into the new tree block), so use the regular key 3436 * update mechanism. 3437 */ 3438 if (bp && bp->b_bn != old_bn) { 3439 xfs_btree_get_keys(cur, block, lkey); 3440 } else if (xfs_btree_needs_key_update(cur, optr)) { 3441 error = xfs_btree_update_keys(cur, level); 3442 if (error) 3443 goto error0; 3444 } 3445 3446 /* 3447 * If we are tracking the last record in the tree and 3448 * we are at the far right edge of the tree, update it. 3449 */ 3450 if (xfs_btree_is_lastrec(cur, block, level)) { 3451 cur->bc_ops->update_lastrec(cur, block, rec, 3452 ptr, LASTREC_INSREC); 3453 } 3454 3455 /* 3456 * Return the new block number, if any. 3457 * If there is one, give back a record value and a cursor too. 3458 */ 3459 *ptrp = nptr; 3460 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3461 xfs_btree_copy_keys(cur, key, lkey, 1); 3462 *curp = ncur; 3463 } 3464 3465 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3466 *stat = 1; 3467 return 0; 3468 3469 error0: 3470 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3471 return error; 3472 } 3473 3474 /* 3475 * Insert the record at the point referenced by cur. 3476 * 3477 * A multi-level split of the tree on insert will invalidate the original 3478 * cursor. All callers of this function should assume that the cursor is 3479 * no longer valid and revalidate it. 3480 */ 3481 int 3482 xfs_btree_insert( 3483 struct xfs_btree_cur *cur, 3484 int *stat) 3485 { 3486 int error; /* error return value */ 3487 int i; /* result value, 0 for failure */ 3488 int level; /* current level number in btree */ 3489 union xfs_btree_ptr nptr; /* new block number (split result) */ 3490 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3491 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3492 union xfs_btree_key bkey; /* key of block to insert */ 3493 union xfs_btree_key *key; 3494 union xfs_btree_rec rec; /* record to insert */ 3495 3496 level = 0; 3497 ncur = NULL; 3498 pcur = cur; 3499 key = &bkey; 3500 3501 xfs_btree_set_ptr_null(cur, &nptr); 3502 3503 /* Make a key out of the record data to be inserted, and save it. */ 3504 cur->bc_ops->init_rec_from_cur(cur, &rec); 3505 cur->bc_ops->init_key_from_rec(key, &rec); 3506 3507 /* 3508 * Loop going up the tree, starting at the leaf level. 3509 * Stop when we don't get a split block, that must mean that 3510 * the insert is finished with this level. 3511 */ 3512 do { 3513 /* 3514 * Insert nrec/nptr into this level of the tree. 3515 * Note if we fail, nptr will be null. 3516 */ 3517 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3518 &ncur, &i); 3519 if (error) { 3520 if (pcur != cur) 3521 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3522 goto error0; 3523 } 3524 3525 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 3526 level++; 3527 3528 /* 3529 * See if the cursor we just used is trash. 3530 * Can't trash the caller's cursor, but otherwise we should 3531 * if ncur is a new cursor or we're about to be done. 3532 */ 3533 if (pcur != cur && 3534 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3535 /* Save the state from the cursor before we trash it */ 3536 if (cur->bc_ops->update_cursor) 3537 cur->bc_ops->update_cursor(pcur, cur); 3538 cur->bc_nlevels = pcur->bc_nlevels; 3539 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3540 } 3541 /* If we got a new cursor, switch to it. */ 3542 if (ncur) { 3543 pcur = ncur; 3544 ncur = NULL; 3545 } 3546 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3547 3548 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3549 *stat = i; 3550 return 0; 3551 error0: 3552 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3553 return error; 3554 } 3555 3556 /* 3557 * Try to merge a non-leaf block back into the inode root. 3558 * 3559 * Note: the killroot names comes from the fact that we're effectively 3560 * killing the old root block. But because we can't just delete the 3561 * inode we have to copy the single block it was pointing to into the 3562 * inode. 3563 */ 3564 STATIC int 3565 xfs_btree_kill_iroot( 3566 struct xfs_btree_cur *cur) 3567 { 3568 int whichfork = cur->bc_private.b.whichfork; 3569 struct xfs_inode *ip = cur->bc_private.b.ip; 3570 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3571 struct xfs_btree_block *block; 3572 struct xfs_btree_block *cblock; 3573 union xfs_btree_key *kp; 3574 union xfs_btree_key *ckp; 3575 union xfs_btree_ptr *pp; 3576 union xfs_btree_ptr *cpp; 3577 struct xfs_buf *cbp; 3578 int level; 3579 int index; 3580 int numrecs; 3581 int error; 3582 #ifdef DEBUG 3583 union xfs_btree_ptr ptr; 3584 int i; 3585 #endif 3586 3587 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 3588 3589 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3590 ASSERT(cur->bc_nlevels > 1); 3591 3592 /* 3593 * Don't deal with the root block needs to be a leaf case. 3594 * We're just going to turn the thing back into extents anyway. 3595 */ 3596 level = cur->bc_nlevels - 1; 3597 if (level == 1) 3598 goto out0; 3599 3600 /* 3601 * Give up if the root has multiple children. 3602 */ 3603 block = xfs_btree_get_iroot(cur); 3604 if (xfs_btree_get_numrecs(block) != 1) 3605 goto out0; 3606 3607 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3608 numrecs = xfs_btree_get_numrecs(cblock); 3609 3610 /* 3611 * Only do this if the next level will fit. 3612 * Then the data must be copied up to the inode, 3613 * instead of freeing the root you free the next level. 3614 */ 3615 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3616 goto out0; 3617 3618 XFS_BTREE_STATS_INC(cur, killroot); 3619 3620 #ifdef DEBUG 3621 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3622 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3623 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3624 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3625 #endif 3626 3627 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3628 if (index) { 3629 xfs_iroot_realloc(cur->bc_private.b.ip, index, 3630 cur->bc_private.b.whichfork); 3631 block = ifp->if_broot; 3632 } 3633 3634 be16_add_cpu(&block->bb_numrecs, index); 3635 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3636 3637 kp = xfs_btree_key_addr(cur, 1, block); 3638 ckp = xfs_btree_key_addr(cur, 1, cblock); 3639 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3640 3641 pp = xfs_btree_ptr_addr(cur, 1, block); 3642 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3643 #ifdef DEBUG 3644 for (i = 0; i < numrecs; i++) { 3645 error = xfs_btree_check_ptr(cur, cpp, i, level - 1); 3646 if (error) { 3647 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3648 return error; 3649 } 3650 } 3651 #endif 3652 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3653 3654 error = xfs_btree_free_block(cur, cbp); 3655 if (error) { 3656 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3657 return error; 3658 } 3659 3660 cur->bc_bufs[level - 1] = NULL; 3661 be16_add_cpu(&block->bb_level, -1); 3662 xfs_trans_log_inode(cur->bc_tp, ip, 3663 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 3664 cur->bc_nlevels--; 3665 out0: 3666 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3667 return 0; 3668 } 3669 3670 /* 3671 * Kill the current root node, and replace it with it's only child node. 3672 */ 3673 STATIC int 3674 xfs_btree_kill_root( 3675 struct xfs_btree_cur *cur, 3676 struct xfs_buf *bp, 3677 int level, 3678 union xfs_btree_ptr *newroot) 3679 { 3680 int error; 3681 3682 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 3683 XFS_BTREE_STATS_INC(cur, killroot); 3684 3685 /* 3686 * Update the root pointer, decreasing the level by 1 and then 3687 * free the old root. 3688 */ 3689 cur->bc_ops->set_root(cur, newroot, -1); 3690 3691 error = xfs_btree_free_block(cur, bp); 3692 if (error) { 3693 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 3694 return error; 3695 } 3696 3697 cur->bc_bufs[level] = NULL; 3698 cur->bc_ra[level] = 0; 3699 cur->bc_nlevels--; 3700 3701 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3702 return 0; 3703 } 3704 3705 STATIC int 3706 xfs_btree_dec_cursor( 3707 struct xfs_btree_cur *cur, 3708 int level, 3709 int *stat) 3710 { 3711 int error; 3712 int i; 3713 3714 if (level > 0) { 3715 error = xfs_btree_decrement(cur, level, &i); 3716 if (error) 3717 return error; 3718 } 3719 3720 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3721 *stat = 1; 3722 return 0; 3723 } 3724 3725 /* 3726 * Single level of the btree record deletion routine. 3727 * Delete record pointed to by cur/level. 3728 * Remove the record from its block then rebalance the tree. 3729 * Return 0 for error, 1 for done, 2 to go on to the next level. 3730 */ 3731 STATIC int /* error */ 3732 xfs_btree_delrec( 3733 struct xfs_btree_cur *cur, /* btree cursor */ 3734 int level, /* level removing record from */ 3735 int *stat) /* fail/done/go-on */ 3736 { 3737 struct xfs_btree_block *block; /* btree block */ 3738 union xfs_btree_ptr cptr; /* current block ptr */ 3739 struct xfs_buf *bp; /* buffer for block */ 3740 int error; /* error return value */ 3741 int i; /* loop counter */ 3742 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3743 struct xfs_buf *lbp; /* left buffer pointer */ 3744 struct xfs_btree_block *left; /* left btree block */ 3745 int lrecs = 0; /* left record count */ 3746 int ptr; /* key/record index */ 3747 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3748 struct xfs_buf *rbp; /* right buffer pointer */ 3749 struct xfs_btree_block *right; /* right btree block */ 3750 struct xfs_btree_block *rrblock; /* right-right btree block */ 3751 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3752 int rrecs = 0; /* right record count */ 3753 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3754 int numrecs; /* temporary numrec count */ 3755 3756 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 3757 XFS_BTREE_TRACE_ARGI(cur, level); 3758 3759 tcur = NULL; 3760 3761 /* Get the index of the entry being deleted, check for nothing there. */ 3762 ptr = cur->bc_ptrs[level]; 3763 if (ptr == 0) { 3764 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3765 *stat = 0; 3766 return 0; 3767 } 3768 3769 /* Get the buffer & block containing the record or key/ptr. */ 3770 block = xfs_btree_get_block(cur, level, &bp); 3771 numrecs = xfs_btree_get_numrecs(block); 3772 3773 #ifdef DEBUG 3774 error = xfs_btree_check_block(cur, block, level, bp); 3775 if (error) 3776 goto error0; 3777 #endif 3778 3779 /* Fail if we're off the end of the block. */ 3780 if (ptr > numrecs) { 3781 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 3782 *stat = 0; 3783 return 0; 3784 } 3785 3786 XFS_BTREE_STATS_INC(cur, delrec); 3787 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3788 3789 /* Excise the entries being deleted. */ 3790 if (level > 0) { 3791 /* It's a nonleaf. operate on keys and ptrs */ 3792 union xfs_btree_key *lkp; 3793 union xfs_btree_ptr *lpp; 3794 3795 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3796 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3797 3798 #ifdef DEBUG 3799 for (i = 0; i < numrecs - ptr; i++) { 3800 error = xfs_btree_check_ptr(cur, lpp, i, level); 3801 if (error) 3802 goto error0; 3803 } 3804 #endif 3805 3806 if (ptr < numrecs) { 3807 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3808 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3809 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3810 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3811 } 3812 } else { 3813 /* It's a leaf. operate on records */ 3814 if (ptr < numrecs) { 3815 xfs_btree_shift_recs(cur, 3816 xfs_btree_rec_addr(cur, ptr + 1, block), 3817 -1, numrecs - ptr); 3818 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3819 } 3820 } 3821 3822 /* 3823 * Decrement and log the number of entries in the block. 3824 */ 3825 xfs_btree_set_numrecs(block, --numrecs); 3826 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3827 3828 /* 3829 * If we are tracking the last record in the tree and 3830 * we are at the far right edge of the tree, update it. 3831 */ 3832 if (xfs_btree_is_lastrec(cur, block, level)) { 3833 cur->bc_ops->update_lastrec(cur, block, NULL, 3834 ptr, LASTREC_DELREC); 3835 } 3836 3837 /* 3838 * We're at the root level. First, shrink the root block in-memory. 3839 * Try to get rid of the next level down. If we can't then there's 3840 * nothing left to do. 3841 */ 3842 if (level == cur->bc_nlevels - 1) { 3843 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3844 xfs_iroot_realloc(cur->bc_private.b.ip, -1, 3845 cur->bc_private.b.whichfork); 3846 3847 error = xfs_btree_kill_iroot(cur); 3848 if (error) 3849 goto error0; 3850 3851 error = xfs_btree_dec_cursor(cur, level, stat); 3852 if (error) 3853 goto error0; 3854 *stat = 1; 3855 return 0; 3856 } 3857 3858 /* 3859 * If this is the root level, and there's only one entry left, 3860 * and it's NOT the leaf level, then we can get rid of this 3861 * level. 3862 */ 3863 if (numrecs == 1 && level > 0) { 3864 union xfs_btree_ptr *pp; 3865 /* 3866 * pp is still set to the first pointer in the block. 3867 * Make it the new root of the btree. 3868 */ 3869 pp = xfs_btree_ptr_addr(cur, 1, block); 3870 error = xfs_btree_kill_root(cur, bp, level, pp); 3871 if (error) 3872 goto error0; 3873 } else if (level > 0) { 3874 error = xfs_btree_dec_cursor(cur, level, stat); 3875 if (error) 3876 goto error0; 3877 } 3878 *stat = 1; 3879 return 0; 3880 } 3881 3882 /* 3883 * If we deleted the leftmost entry in the block, update the 3884 * key values above us in the tree. 3885 */ 3886 if (xfs_btree_needs_key_update(cur, ptr)) { 3887 error = xfs_btree_update_keys(cur, level); 3888 if (error) 3889 goto error0; 3890 } 3891 3892 /* 3893 * If the number of records remaining in the block is at least 3894 * the minimum, we're done. 3895 */ 3896 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3897 error = xfs_btree_dec_cursor(cur, level, stat); 3898 if (error) 3899 goto error0; 3900 return 0; 3901 } 3902 3903 /* 3904 * Otherwise, we have to move some records around to keep the 3905 * tree balanced. Look at the left and right sibling blocks to 3906 * see if we can re-balance by moving only one record. 3907 */ 3908 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3909 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3910 3911 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3912 /* 3913 * One child of root, need to get a chance to copy its contents 3914 * into the root and delete it. Can't go up to next level, 3915 * there's nothing to delete there. 3916 */ 3917 if (xfs_btree_ptr_is_null(cur, &rptr) && 3918 xfs_btree_ptr_is_null(cur, &lptr) && 3919 level == cur->bc_nlevels - 2) { 3920 error = xfs_btree_kill_iroot(cur); 3921 if (!error) 3922 error = xfs_btree_dec_cursor(cur, level, stat); 3923 if (error) 3924 goto error0; 3925 return 0; 3926 } 3927 } 3928 3929 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3930 !xfs_btree_ptr_is_null(cur, &lptr)); 3931 3932 /* 3933 * Duplicate the cursor so our btree manipulations here won't 3934 * disrupt the next level up. 3935 */ 3936 error = xfs_btree_dup_cursor(cur, &tcur); 3937 if (error) 3938 goto error0; 3939 3940 /* 3941 * If there's a right sibling, see if it's ok to shift an entry 3942 * out of it. 3943 */ 3944 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3945 /* 3946 * Move the temp cursor to the last entry in the next block. 3947 * Actually any entry but the first would suffice. 3948 */ 3949 i = xfs_btree_lastrec(tcur, level); 3950 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 3951 3952 error = xfs_btree_increment(tcur, level, &i); 3953 if (error) 3954 goto error0; 3955 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 3956 3957 i = xfs_btree_lastrec(tcur, level); 3958 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 3959 3960 /* Grab a pointer to the block. */ 3961 right = xfs_btree_get_block(tcur, level, &rbp); 3962 #ifdef DEBUG 3963 error = xfs_btree_check_block(tcur, right, level, rbp); 3964 if (error) 3965 goto error0; 3966 #endif 3967 /* Grab the current block number, for future use. */ 3968 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3969 3970 /* 3971 * If right block is full enough so that removing one entry 3972 * won't make it too empty, and left-shifting an entry out 3973 * of right to us works, we're done. 3974 */ 3975 if (xfs_btree_get_numrecs(right) - 1 >= 3976 cur->bc_ops->get_minrecs(tcur, level)) { 3977 error = xfs_btree_lshift(tcur, level, &i); 3978 if (error) 3979 goto error0; 3980 if (i) { 3981 ASSERT(xfs_btree_get_numrecs(block) >= 3982 cur->bc_ops->get_minrecs(tcur, level)); 3983 3984 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3985 tcur = NULL; 3986 3987 error = xfs_btree_dec_cursor(cur, level, stat); 3988 if (error) 3989 goto error0; 3990 return 0; 3991 } 3992 } 3993 3994 /* 3995 * Otherwise, grab the number of records in right for 3996 * future reference, and fix up the temp cursor to point 3997 * to our block again (last record). 3998 */ 3999 rrecs = xfs_btree_get_numrecs(right); 4000 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 4001 i = xfs_btree_firstrec(tcur, level); 4002 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 4003 4004 error = xfs_btree_decrement(tcur, level, &i); 4005 if (error) 4006 goto error0; 4007 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 4008 } 4009 } 4010 4011 /* 4012 * If there's a left sibling, see if it's ok to shift an entry 4013 * out of it. 4014 */ 4015 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 4016 /* 4017 * Move the temp cursor to the first entry in the 4018 * previous block. 4019 */ 4020 i = xfs_btree_firstrec(tcur, level); 4021 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 4022 4023 error = xfs_btree_decrement(tcur, level, &i); 4024 if (error) 4025 goto error0; 4026 i = xfs_btree_firstrec(tcur, level); 4027 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0); 4028 4029 /* Grab a pointer to the block. */ 4030 left = xfs_btree_get_block(tcur, level, &lbp); 4031 #ifdef DEBUG 4032 error = xfs_btree_check_block(cur, left, level, lbp); 4033 if (error) 4034 goto error0; 4035 #endif 4036 /* Grab the current block number, for future use. */ 4037 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 4038 4039 /* 4040 * If left block is full enough so that removing one entry 4041 * won't make it too empty, and right-shifting an entry out 4042 * of left to us works, we're done. 4043 */ 4044 if (xfs_btree_get_numrecs(left) - 1 >= 4045 cur->bc_ops->get_minrecs(tcur, level)) { 4046 error = xfs_btree_rshift(tcur, level, &i); 4047 if (error) 4048 goto error0; 4049 if (i) { 4050 ASSERT(xfs_btree_get_numrecs(block) >= 4051 cur->bc_ops->get_minrecs(tcur, level)); 4052 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4053 tcur = NULL; 4054 if (level == 0) 4055 cur->bc_ptrs[0]++; 4056 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 4057 *stat = 1; 4058 return 0; 4059 } 4060 } 4061 4062 /* 4063 * Otherwise, grab the number of records in right for 4064 * future reference. 4065 */ 4066 lrecs = xfs_btree_get_numrecs(left); 4067 } 4068 4069 /* Delete the temp cursor, we're done with it. */ 4070 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4071 tcur = NULL; 4072 4073 /* If here, we need to do a join to keep the tree balanced. */ 4074 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 4075 4076 if (!xfs_btree_ptr_is_null(cur, &lptr) && 4077 lrecs + xfs_btree_get_numrecs(block) <= 4078 cur->bc_ops->get_maxrecs(cur, level)) { 4079 /* 4080 * Set "right" to be the starting block, 4081 * "left" to be the left neighbor. 4082 */ 4083 rptr = cptr; 4084 right = block; 4085 rbp = bp; 4086 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 4087 if (error) 4088 goto error0; 4089 4090 /* 4091 * If that won't work, see if we can join with the right neighbor block. 4092 */ 4093 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4094 rrecs + xfs_btree_get_numrecs(block) <= 4095 cur->bc_ops->get_maxrecs(cur, level)) { 4096 /* 4097 * Set "left" to be the starting block, 4098 * "right" to be the right neighbor. 4099 */ 4100 lptr = cptr; 4101 left = block; 4102 lbp = bp; 4103 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4104 if (error) 4105 goto error0; 4106 4107 /* 4108 * Otherwise, we can't fix the imbalance. 4109 * Just return. This is probably a logic error, but it's not fatal. 4110 */ 4111 } else { 4112 error = xfs_btree_dec_cursor(cur, level, stat); 4113 if (error) 4114 goto error0; 4115 return 0; 4116 } 4117 4118 rrecs = xfs_btree_get_numrecs(right); 4119 lrecs = xfs_btree_get_numrecs(left); 4120 4121 /* 4122 * We're now going to join "left" and "right" by moving all the stuff 4123 * in "right" to "left" and deleting "right". 4124 */ 4125 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4126 if (level > 0) { 4127 /* It's a non-leaf. Move keys and pointers. */ 4128 union xfs_btree_key *lkp; /* left btree key */ 4129 union xfs_btree_ptr *lpp; /* left address pointer */ 4130 union xfs_btree_key *rkp; /* right btree key */ 4131 union xfs_btree_ptr *rpp; /* right address pointer */ 4132 4133 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4134 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4135 rkp = xfs_btree_key_addr(cur, 1, right); 4136 rpp = xfs_btree_ptr_addr(cur, 1, right); 4137 #ifdef DEBUG 4138 for (i = 1; i < rrecs; i++) { 4139 error = xfs_btree_check_ptr(cur, rpp, i, level); 4140 if (error) 4141 goto error0; 4142 } 4143 #endif 4144 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4145 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4146 4147 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4148 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4149 } else { 4150 /* It's a leaf. Move records. */ 4151 union xfs_btree_rec *lrp; /* left record pointer */ 4152 union xfs_btree_rec *rrp; /* right record pointer */ 4153 4154 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4155 rrp = xfs_btree_rec_addr(cur, 1, right); 4156 4157 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4158 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4159 } 4160 4161 XFS_BTREE_STATS_INC(cur, join); 4162 4163 /* 4164 * Fix up the number of records and right block pointer in the 4165 * surviving block, and log it. 4166 */ 4167 xfs_btree_set_numrecs(left, lrecs + rrecs); 4168 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB), 4169 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4170 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4171 4172 /* If there is a right sibling, point it to the remaining block. */ 4173 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4174 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4175 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4176 if (error) 4177 goto error0; 4178 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4179 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4180 } 4181 4182 /* Free the deleted block. */ 4183 error = xfs_btree_free_block(cur, rbp); 4184 if (error) 4185 goto error0; 4186 4187 /* 4188 * If we joined with the left neighbor, set the buffer in the 4189 * cursor to the left block, and fix up the index. 4190 */ 4191 if (bp != lbp) { 4192 cur->bc_bufs[level] = lbp; 4193 cur->bc_ptrs[level] += lrecs; 4194 cur->bc_ra[level] = 0; 4195 } 4196 /* 4197 * If we joined with the right neighbor and there's a level above 4198 * us, increment the cursor at that level. 4199 */ 4200 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4201 (level + 1 < cur->bc_nlevels)) { 4202 error = xfs_btree_increment(cur, level + 1, &i); 4203 if (error) 4204 goto error0; 4205 } 4206 4207 /* 4208 * Readjust the ptr at this level if it's not a leaf, since it's 4209 * still pointing at the deletion point, which makes the cursor 4210 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4211 * We can't use decrement because it would change the next level up. 4212 */ 4213 if (level > 0) 4214 cur->bc_ptrs[level]--; 4215 4216 /* 4217 * We combined blocks, so we have to update the parent keys if the 4218 * btree supports overlapped intervals. However, bc_ptrs[level + 1] 4219 * points to the old block so that the caller knows which record to 4220 * delete. Therefore, the caller must be savvy enough to call updkeys 4221 * for us if we return stat == 2. The other exit points from this 4222 * function don't require deletions further up the tree, so they can 4223 * call updkeys directly. 4224 */ 4225 4226 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 4227 /* Return value means the next level up has something to do. */ 4228 *stat = 2; 4229 return 0; 4230 4231 error0: 4232 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 4233 if (tcur) 4234 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4235 return error; 4236 } 4237 4238 /* 4239 * Delete the record pointed to by cur. 4240 * The cursor refers to the place where the record was (could be inserted) 4241 * when the operation returns. 4242 */ 4243 int /* error */ 4244 xfs_btree_delete( 4245 struct xfs_btree_cur *cur, 4246 int *stat) /* success/failure */ 4247 { 4248 int error; /* error return value */ 4249 int level; 4250 int i; 4251 bool joined = false; 4252 4253 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 4254 4255 /* 4256 * Go up the tree, starting at leaf level. 4257 * 4258 * If 2 is returned then a join was done; go to the next level. 4259 * Otherwise we are done. 4260 */ 4261 for (level = 0, i = 2; i == 2; level++) { 4262 error = xfs_btree_delrec(cur, level, &i); 4263 if (error) 4264 goto error0; 4265 if (i == 2) 4266 joined = true; 4267 } 4268 4269 /* 4270 * If we combined blocks as part of deleting the record, delrec won't 4271 * have updated the parent high keys so we have to do that here. 4272 */ 4273 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4274 error = xfs_btree_updkeys_force(cur, 0); 4275 if (error) 4276 goto error0; 4277 } 4278 4279 if (i == 0) { 4280 for (level = 1; level < cur->bc_nlevels; level++) { 4281 if (cur->bc_ptrs[level] == 0) { 4282 error = xfs_btree_decrement(cur, level, &i); 4283 if (error) 4284 goto error0; 4285 break; 4286 } 4287 } 4288 } 4289 4290 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 4291 *stat = i; 4292 return 0; 4293 error0: 4294 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 4295 return error; 4296 } 4297 4298 /* 4299 * Get the data from the pointed-to record. 4300 */ 4301 int /* error */ 4302 xfs_btree_get_rec( 4303 struct xfs_btree_cur *cur, /* btree cursor */ 4304 union xfs_btree_rec **recp, /* output: btree record */ 4305 int *stat) /* output: success/failure */ 4306 { 4307 struct xfs_btree_block *block; /* btree block */ 4308 struct xfs_buf *bp; /* buffer pointer */ 4309 int ptr; /* record number */ 4310 #ifdef DEBUG 4311 int error; /* error return value */ 4312 #endif 4313 4314 ptr = cur->bc_ptrs[0]; 4315 block = xfs_btree_get_block(cur, 0, &bp); 4316 4317 #ifdef DEBUG 4318 error = xfs_btree_check_block(cur, block, 0, bp); 4319 if (error) 4320 return error; 4321 #endif 4322 4323 /* 4324 * Off the right end or left end, return failure. 4325 */ 4326 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4327 *stat = 0; 4328 return 0; 4329 } 4330 4331 /* 4332 * Point to the record and extract its data. 4333 */ 4334 *recp = xfs_btree_rec_addr(cur, ptr, block); 4335 *stat = 1; 4336 return 0; 4337 } 4338 4339 /* Visit a block in a btree. */ 4340 STATIC int 4341 xfs_btree_visit_block( 4342 struct xfs_btree_cur *cur, 4343 int level, 4344 xfs_btree_visit_blocks_fn fn, 4345 void *data) 4346 { 4347 struct xfs_btree_block *block; 4348 struct xfs_buf *bp; 4349 union xfs_btree_ptr rptr; 4350 int error; 4351 4352 /* do right sibling readahead */ 4353 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4354 block = xfs_btree_get_block(cur, level, &bp); 4355 4356 /* process the block */ 4357 error = fn(cur, level, data); 4358 if (error) 4359 return error; 4360 4361 /* now read rh sibling block for next iteration */ 4362 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4363 if (xfs_btree_ptr_is_null(cur, &rptr)) 4364 return -ENOENT; 4365 4366 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4367 } 4368 4369 4370 /* Visit every block in a btree. */ 4371 int 4372 xfs_btree_visit_blocks( 4373 struct xfs_btree_cur *cur, 4374 xfs_btree_visit_blocks_fn fn, 4375 void *data) 4376 { 4377 union xfs_btree_ptr lptr; 4378 int level; 4379 struct xfs_btree_block *block = NULL; 4380 int error = 0; 4381 4382 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4383 4384 /* for each level */ 4385 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4386 /* grab the left hand block */ 4387 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4388 if (error) 4389 return error; 4390 4391 /* readahead the left most block for the next level down */ 4392 if (level > 0) { 4393 union xfs_btree_ptr *ptr; 4394 4395 ptr = xfs_btree_ptr_addr(cur, 1, block); 4396 xfs_btree_readahead_ptr(cur, ptr, 1); 4397 4398 /* save for the next iteration of the loop */ 4399 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4400 } 4401 4402 /* for each buffer in the level */ 4403 do { 4404 error = xfs_btree_visit_block(cur, level, fn, data); 4405 } while (!error); 4406 4407 if (error != -ENOENT) 4408 return error; 4409 } 4410 4411 return 0; 4412 } 4413 4414 /* 4415 * Change the owner of a btree. 4416 * 4417 * The mechanism we use here is ordered buffer logging. Because we don't know 4418 * how many buffers were are going to need to modify, we don't really want to 4419 * have to make transaction reservations for the worst case of every buffer in a 4420 * full size btree as that may be more space that we can fit in the log.... 4421 * 4422 * We do the btree walk in the most optimal manner possible - we have sibling 4423 * pointers so we can just walk all the blocks on each level from left to right 4424 * in a single pass, and then move to the next level and do the same. We can 4425 * also do readahead on the sibling pointers to get IO moving more quickly, 4426 * though for slow disks this is unlikely to make much difference to performance 4427 * as the amount of CPU work we have to do before moving to the next block is 4428 * relatively small. 4429 * 4430 * For each btree block that we load, modify the owner appropriately, set the 4431 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4432 * we mark the region we change dirty so that if the buffer is relogged in 4433 * a subsequent transaction the changes we make here as an ordered buffer are 4434 * correctly relogged in that transaction. If we are in recovery context, then 4435 * just queue the modified buffer as delayed write buffer so the transaction 4436 * recovery completion writes the changes to disk. 4437 */ 4438 struct xfs_btree_block_change_owner_info { 4439 uint64_t new_owner; 4440 struct list_head *buffer_list; 4441 }; 4442 4443 static int 4444 xfs_btree_block_change_owner( 4445 struct xfs_btree_cur *cur, 4446 int level, 4447 void *data) 4448 { 4449 struct xfs_btree_block_change_owner_info *bbcoi = data; 4450 struct xfs_btree_block *block; 4451 struct xfs_buf *bp; 4452 4453 /* modify the owner */ 4454 block = xfs_btree_get_block(cur, level, &bp); 4455 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4456 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4457 return 0; 4458 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4459 } else { 4460 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4461 return 0; 4462 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4463 } 4464 4465 /* 4466 * If the block is a root block hosted in an inode, we might not have a 4467 * buffer pointer here and we shouldn't attempt to log the change as the 4468 * information is already held in the inode and discarded when the root 4469 * block is formatted into the on-disk inode fork. We still change it, 4470 * though, so everything is consistent in memory. 4471 */ 4472 if (!bp) { 4473 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4474 ASSERT(level == cur->bc_nlevels - 1); 4475 return 0; 4476 } 4477 4478 if (cur->bc_tp) { 4479 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4480 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4481 return -EAGAIN; 4482 } 4483 } else { 4484 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4485 } 4486 4487 return 0; 4488 } 4489 4490 int 4491 xfs_btree_change_owner( 4492 struct xfs_btree_cur *cur, 4493 uint64_t new_owner, 4494 struct list_head *buffer_list) 4495 { 4496 struct xfs_btree_block_change_owner_info bbcoi; 4497 4498 bbcoi.new_owner = new_owner; 4499 bbcoi.buffer_list = buffer_list; 4500 4501 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4502 &bbcoi); 4503 } 4504 4505 /** 4506 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4507 * btree block 4508 * 4509 * @bp: buffer containing the btree block 4510 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount 4511 * @pag_max_level: pointer to the per-ag max level field 4512 */ 4513 bool 4514 xfs_btree_sblock_v5hdr_verify( 4515 struct xfs_buf *bp) 4516 { 4517 struct xfs_mount *mp = bp->b_target->bt_mount; 4518 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4519 struct xfs_perag *pag = bp->b_pag; 4520 4521 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4522 return false; 4523 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4524 return false; 4525 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn)) 4526 return false; 4527 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4528 return false; 4529 return true; 4530 } 4531 4532 /** 4533 * xfs_btree_sblock_verify() -- verify a short-format btree block 4534 * 4535 * @bp: buffer containing the btree block 4536 * @max_recs: maximum records allowed in this btree node 4537 */ 4538 bool 4539 xfs_btree_sblock_verify( 4540 struct xfs_buf *bp, 4541 unsigned int max_recs) 4542 { 4543 struct xfs_mount *mp = bp->b_target->bt_mount; 4544 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4545 4546 /* numrecs verification */ 4547 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4548 return false; 4549 4550 /* sibling pointer verification */ 4551 if (!block->bb_u.s.bb_leftsib || 4552 (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks && 4553 block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK))) 4554 return false; 4555 if (!block->bb_u.s.bb_rightsib || 4556 (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks && 4557 block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK))) 4558 return false; 4559 4560 return true; 4561 } 4562 4563 /* 4564 * Calculate the number of btree levels needed to store a given number of 4565 * records in a short-format btree. 4566 */ 4567 uint 4568 xfs_btree_compute_maxlevels( 4569 struct xfs_mount *mp, 4570 uint *limits, 4571 unsigned long len) 4572 { 4573 uint level; 4574 unsigned long maxblocks; 4575 4576 maxblocks = (len + limits[0] - 1) / limits[0]; 4577 for (level = 1; maxblocks > 1; level++) 4578 maxblocks = (maxblocks + limits[1] - 1) / limits[1]; 4579 return level; 4580 } 4581 4582 /* 4583 * Query a regular btree for all records overlapping a given interval. 4584 * Start with a LE lookup of the key of low_rec and return all records 4585 * until we find a record with a key greater than the key of high_rec. 4586 */ 4587 STATIC int 4588 xfs_btree_simple_query_range( 4589 struct xfs_btree_cur *cur, 4590 union xfs_btree_key *low_key, 4591 union xfs_btree_key *high_key, 4592 xfs_btree_query_range_fn fn, 4593 void *priv) 4594 { 4595 union xfs_btree_rec *recp; 4596 union xfs_btree_key rec_key; 4597 int64_t diff; 4598 int stat; 4599 bool firstrec = true; 4600 int error; 4601 4602 ASSERT(cur->bc_ops->init_high_key_from_rec); 4603 ASSERT(cur->bc_ops->diff_two_keys); 4604 4605 /* 4606 * Find the leftmost record. The btree cursor must be set 4607 * to the low record used to generate low_key. 4608 */ 4609 stat = 0; 4610 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4611 if (error) 4612 goto out; 4613 4614 /* Nothing? See if there's anything to the right. */ 4615 if (!stat) { 4616 error = xfs_btree_increment(cur, 0, &stat); 4617 if (error) 4618 goto out; 4619 } 4620 4621 while (stat) { 4622 /* Find the record. */ 4623 error = xfs_btree_get_rec(cur, &recp, &stat); 4624 if (error || !stat) 4625 break; 4626 4627 /* Skip if high_key(rec) < low_key. */ 4628 if (firstrec) { 4629 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4630 firstrec = false; 4631 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4632 &rec_key); 4633 if (diff > 0) 4634 goto advloop; 4635 } 4636 4637 /* Stop if high_key < low_key(rec). */ 4638 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4639 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4640 if (diff > 0) 4641 break; 4642 4643 /* Callback */ 4644 error = fn(cur, recp, priv); 4645 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT) 4646 break; 4647 4648 advloop: 4649 /* Move on to the next record. */ 4650 error = xfs_btree_increment(cur, 0, &stat); 4651 if (error) 4652 break; 4653 } 4654 4655 out: 4656 return error; 4657 } 4658 4659 /* 4660 * Query an overlapped interval btree for all records overlapping a given 4661 * interval. This function roughly follows the algorithm given in 4662 * "Interval Trees" of _Introduction to Algorithms_, which is section 4663 * 14.3 in the 2nd and 3rd editions. 4664 * 4665 * First, generate keys for the low and high records passed in. 4666 * 4667 * For any leaf node, generate the high and low keys for the record. 4668 * If the record keys overlap with the query low/high keys, pass the 4669 * record to the function iterator. 4670 * 4671 * For any internal node, compare the low and high keys of each 4672 * pointer against the query low/high keys. If there's an overlap, 4673 * follow the pointer. 4674 * 4675 * As an optimization, we stop scanning a block when we find a low key 4676 * that is greater than the query's high key. 4677 */ 4678 STATIC int 4679 xfs_btree_overlapped_query_range( 4680 struct xfs_btree_cur *cur, 4681 union xfs_btree_key *low_key, 4682 union xfs_btree_key *high_key, 4683 xfs_btree_query_range_fn fn, 4684 void *priv) 4685 { 4686 union xfs_btree_ptr ptr; 4687 union xfs_btree_ptr *pp; 4688 union xfs_btree_key rec_key; 4689 union xfs_btree_key rec_hkey; 4690 union xfs_btree_key *lkp; 4691 union xfs_btree_key *hkp; 4692 union xfs_btree_rec *recp; 4693 struct xfs_btree_block *block; 4694 int64_t ldiff; 4695 int64_t hdiff; 4696 int level; 4697 struct xfs_buf *bp; 4698 int i; 4699 int error; 4700 4701 /* Load the root of the btree. */ 4702 level = cur->bc_nlevels - 1; 4703 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4704 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4705 if (error) 4706 return error; 4707 xfs_btree_get_block(cur, level, &bp); 4708 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4709 #ifdef DEBUG 4710 error = xfs_btree_check_block(cur, block, level, bp); 4711 if (error) 4712 goto out; 4713 #endif 4714 cur->bc_ptrs[level] = 1; 4715 4716 while (level < cur->bc_nlevels) { 4717 block = xfs_btree_get_block(cur, level, &bp); 4718 4719 /* End of node, pop back towards the root. */ 4720 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) { 4721 pop_up: 4722 if (level < cur->bc_nlevels - 1) 4723 cur->bc_ptrs[level + 1]++; 4724 level++; 4725 continue; 4726 } 4727 4728 if (level == 0) { 4729 /* Handle a leaf node. */ 4730 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block); 4731 4732 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4733 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4734 low_key); 4735 4736 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4737 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4738 &rec_key); 4739 4740 /* 4741 * If (record's high key >= query's low key) and 4742 * (query's high key >= record's low key), then 4743 * this record overlaps the query range; callback. 4744 */ 4745 if (ldiff >= 0 && hdiff >= 0) { 4746 error = fn(cur, recp, priv); 4747 if (error < 0 || 4748 error == XFS_BTREE_QUERY_RANGE_ABORT) 4749 break; 4750 } else if (hdiff < 0) { 4751 /* Record is larger than high key; pop. */ 4752 goto pop_up; 4753 } 4754 cur->bc_ptrs[level]++; 4755 continue; 4756 } 4757 4758 /* Handle an internal node. */ 4759 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block); 4760 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block); 4761 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block); 4762 4763 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4764 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4765 4766 /* 4767 * If (pointer's high key >= query's low key) and 4768 * (query's high key >= pointer's low key), then 4769 * this record overlaps the query range; follow pointer. 4770 */ 4771 if (ldiff >= 0 && hdiff >= 0) { 4772 level--; 4773 error = xfs_btree_lookup_get_block(cur, level, pp, 4774 &block); 4775 if (error) 4776 goto out; 4777 xfs_btree_get_block(cur, level, &bp); 4778 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4779 #ifdef DEBUG 4780 error = xfs_btree_check_block(cur, block, level, bp); 4781 if (error) 4782 goto out; 4783 #endif 4784 cur->bc_ptrs[level] = 1; 4785 continue; 4786 } else if (hdiff < 0) { 4787 /* The low key is larger than the upper range; pop. */ 4788 goto pop_up; 4789 } 4790 cur->bc_ptrs[level]++; 4791 } 4792 4793 out: 4794 /* 4795 * If we don't end this function with the cursor pointing at a record 4796 * block, a subsequent non-error cursor deletion will not release 4797 * node-level buffers, causing a buffer leak. This is quite possible 4798 * with a zero-results range query, so release the buffers if we 4799 * failed to return any results. 4800 */ 4801 if (cur->bc_bufs[0] == NULL) { 4802 for (i = 0; i < cur->bc_nlevels; i++) { 4803 if (cur->bc_bufs[i]) { 4804 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 4805 cur->bc_bufs[i] = NULL; 4806 cur->bc_ptrs[i] = 0; 4807 cur->bc_ra[i] = 0; 4808 } 4809 } 4810 } 4811 4812 return error; 4813 } 4814 4815 /* 4816 * Query a btree for all records overlapping a given interval of keys. The 4817 * supplied function will be called with each record found; return one of the 4818 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4819 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a 4820 * negative error code. 4821 */ 4822 int 4823 xfs_btree_query_range( 4824 struct xfs_btree_cur *cur, 4825 union xfs_btree_irec *low_rec, 4826 union xfs_btree_irec *high_rec, 4827 xfs_btree_query_range_fn fn, 4828 void *priv) 4829 { 4830 union xfs_btree_rec rec; 4831 union xfs_btree_key low_key; 4832 union xfs_btree_key high_key; 4833 4834 /* Find the keys of both ends of the interval. */ 4835 cur->bc_rec = *high_rec; 4836 cur->bc_ops->init_rec_from_cur(cur, &rec); 4837 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4838 4839 cur->bc_rec = *low_rec; 4840 cur->bc_ops->init_rec_from_cur(cur, &rec); 4841 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4842 4843 /* Enforce low key < high key. */ 4844 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4845 return -EINVAL; 4846 4847 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4848 return xfs_btree_simple_query_range(cur, &low_key, 4849 &high_key, fn, priv); 4850 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4851 fn, priv); 4852 } 4853 4854 /* Query a btree for all records. */ 4855 int 4856 xfs_btree_query_all( 4857 struct xfs_btree_cur *cur, 4858 xfs_btree_query_range_fn fn, 4859 void *priv) 4860 { 4861 union xfs_btree_key low_key; 4862 union xfs_btree_key high_key; 4863 4864 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4865 memset(&low_key, 0, sizeof(low_key)); 4866 memset(&high_key, 0xFF, sizeof(high_key)); 4867 4868 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4869 } 4870 4871 /* 4872 * Calculate the number of blocks needed to store a given number of records 4873 * in a short-format (per-AG metadata) btree. 4874 */ 4875 xfs_extlen_t 4876 xfs_btree_calc_size( 4877 struct xfs_mount *mp, 4878 uint *limits, 4879 unsigned long long len) 4880 { 4881 int level; 4882 int maxrecs; 4883 xfs_extlen_t rval; 4884 4885 maxrecs = limits[0]; 4886 for (level = 0, rval = 0; len > 1; level++) { 4887 len += maxrecs - 1; 4888 do_div(len, maxrecs); 4889 maxrecs = limits[1]; 4890 rval += len; 4891 } 4892 return rval; 4893 } 4894 4895 static int 4896 xfs_btree_count_blocks_helper( 4897 struct xfs_btree_cur *cur, 4898 int level, 4899 void *data) 4900 { 4901 xfs_extlen_t *blocks = data; 4902 (*blocks)++; 4903 4904 return 0; 4905 } 4906 4907 /* Count the blocks in a btree and return the result in *blocks. */ 4908 int 4909 xfs_btree_count_blocks( 4910 struct xfs_btree_cur *cur, 4911 xfs_extlen_t *blocks) 4912 { 4913 *blocks = 0; 4914 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4915 blocks); 4916 } 4917