xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 68198dca)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_alloc.h"
37 #include "xfs_log.h"
38 
39 /*
40  * Cursor allocation zone.
41  */
42 kmem_zone_t	*xfs_btree_cur_zone;
43 
44 /*
45  * Btree magic numbers.
46  */
47 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
48 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
49 	  XFS_FIBT_MAGIC, 0 },
50 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
51 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
52 	  XFS_REFC_CRC_MAGIC }
53 };
54 
55 uint32_t
56 xfs_btree_magic(
57 	int			crc,
58 	xfs_btnum_t		btnum)
59 {
60 	uint32_t		magic = xfs_magics[crc][btnum];
61 
62 	/* Ensure we asked for crc for crc-only magics. */
63 	ASSERT(magic != 0);
64 	return magic;
65 }
66 
67 /*
68  * Check a long btree block header.  Return the address of the failing check,
69  * or NULL if everything is ok.
70  */
71 xfs_failaddr_t
72 __xfs_btree_check_lblock(
73 	struct xfs_btree_cur	*cur,
74 	struct xfs_btree_block	*block,
75 	int			level,
76 	struct xfs_buf		*bp)
77 {
78 	struct xfs_mount	*mp = cur->bc_mp;
79 	xfs_btnum_t		btnum = cur->bc_btnum;
80 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
81 
82 	if (crc) {
83 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
84 			return __this_address;
85 		if (block->bb_u.l.bb_blkno !=
86 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
87 			return __this_address;
88 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
89 			return __this_address;
90 	}
91 
92 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
93 		return __this_address;
94 	if (be16_to_cpu(block->bb_level) != level)
95 		return __this_address;
96 	if (be16_to_cpu(block->bb_numrecs) >
97 	    cur->bc_ops->get_maxrecs(cur, level))
98 		return __this_address;
99 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
100 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
101 			level + 1))
102 		return __this_address;
103 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
104 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
105 			level + 1))
106 		return __this_address;
107 
108 	return NULL;
109 }
110 
111 /* Check a long btree block header. */
112 static int
113 xfs_btree_check_lblock(
114 	struct xfs_btree_cur	*cur,
115 	struct xfs_btree_block	*block,
116 	int			level,
117 	struct xfs_buf		*bp)
118 {
119 	struct xfs_mount	*mp = cur->bc_mp;
120 	xfs_failaddr_t		fa;
121 
122 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
123 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
124 			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
125 		if (bp)
126 			trace_xfs_btree_corrupt(bp, _RET_IP_);
127 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
128 		return -EFSCORRUPTED;
129 	}
130 	return 0;
131 }
132 
133 /*
134  * Check a short btree block header.  Return the address of the failing check,
135  * or NULL if everything is ok.
136  */
137 xfs_failaddr_t
138 __xfs_btree_check_sblock(
139 	struct xfs_btree_cur	*cur,
140 	struct xfs_btree_block	*block,
141 	int			level,
142 	struct xfs_buf		*bp)
143 {
144 	struct xfs_mount	*mp = cur->bc_mp;
145 	xfs_btnum_t		btnum = cur->bc_btnum;
146 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
147 
148 	if (crc) {
149 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
150 			return __this_address;
151 		if (block->bb_u.s.bb_blkno !=
152 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
153 			return __this_address;
154 	}
155 
156 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
157 		return __this_address;
158 	if (be16_to_cpu(block->bb_level) != level)
159 		return __this_address;
160 	if (be16_to_cpu(block->bb_numrecs) >
161 	    cur->bc_ops->get_maxrecs(cur, level))
162 		return __this_address;
163 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
164 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
165 			level + 1))
166 		return __this_address;
167 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
168 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
169 			level + 1))
170 		return __this_address;
171 
172 	return NULL;
173 }
174 
175 /* Check a short btree block header. */
176 STATIC int
177 xfs_btree_check_sblock(
178 	struct xfs_btree_cur	*cur,
179 	struct xfs_btree_block	*block,
180 	int			level,
181 	struct xfs_buf		*bp)
182 {
183 	struct xfs_mount	*mp = cur->bc_mp;
184 	xfs_failaddr_t		fa;
185 
186 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
187 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
188 			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
189 		if (bp)
190 			trace_xfs_btree_corrupt(bp, _RET_IP_);
191 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
192 		return -EFSCORRUPTED;
193 	}
194 	return 0;
195 }
196 
197 /*
198  * Debug routine: check that block header is ok.
199  */
200 int
201 xfs_btree_check_block(
202 	struct xfs_btree_cur	*cur,	/* btree cursor */
203 	struct xfs_btree_block	*block,	/* generic btree block pointer */
204 	int			level,	/* level of the btree block */
205 	struct xfs_buf		*bp)	/* buffer containing block, if any */
206 {
207 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
208 		return xfs_btree_check_lblock(cur, block, level, bp);
209 	else
210 		return xfs_btree_check_sblock(cur, block, level, bp);
211 }
212 
213 /* Check that this long pointer is valid and points within the fs. */
214 bool
215 xfs_btree_check_lptr(
216 	struct xfs_btree_cur	*cur,
217 	xfs_fsblock_t		fsbno,
218 	int			level)
219 {
220 	if (level <= 0)
221 		return false;
222 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
223 }
224 
225 /* Check that this short pointer is valid and points within the AG. */
226 bool
227 xfs_btree_check_sptr(
228 	struct xfs_btree_cur	*cur,
229 	xfs_agblock_t		agbno,
230 	int			level)
231 {
232 	if (level <= 0)
233 		return false;
234 	return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
235 }
236 
237 #ifdef DEBUG
238 /*
239  * Check that a given (indexed) btree pointer at a certain level of a
240  * btree is valid and doesn't point past where it should.
241  */
242 static int
243 xfs_btree_check_ptr(
244 	struct xfs_btree_cur	*cur,
245 	union xfs_btree_ptr	*ptr,
246 	int			index,
247 	int			level)
248 {
249 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
250 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 				xfs_btree_check_lptr(cur,
252 					be64_to_cpu((&ptr->l)[index]), level));
253 	} else {
254 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
255 				xfs_btree_check_sptr(cur,
256 					be32_to_cpu((&ptr->s)[index]), level));
257 	}
258 
259 	return 0;
260 }
261 #endif
262 
263 /*
264  * Calculate CRC on the whole btree block and stuff it into the
265  * long-form btree header.
266  *
267  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
268  * it into the buffer so recovery knows what the last modification was that made
269  * it to disk.
270  */
271 void
272 xfs_btree_lblock_calc_crc(
273 	struct xfs_buf		*bp)
274 {
275 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
276 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
277 
278 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
279 		return;
280 	if (bip)
281 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
282 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
283 }
284 
285 bool
286 xfs_btree_lblock_verify_crc(
287 	struct xfs_buf		*bp)
288 {
289 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
290 	struct xfs_mount	*mp = bp->b_target->bt_mount;
291 
292 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
293 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
294 			return false;
295 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
296 	}
297 
298 	return true;
299 }
300 
301 /*
302  * Calculate CRC on the whole btree block and stuff it into the
303  * short-form btree header.
304  *
305  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
306  * it into the buffer so recovery knows what the last modification was that made
307  * it to disk.
308  */
309 void
310 xfs_btree_sblock_calc_crc(
311 	struct xfs_buf		*bp)
312 {
313 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
314 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
315 
316 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
317 		return;
318 	if (bip)
319 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
320 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
321 }
322 
323 bool
324 xfs_btree_sblock_verify_crc(
325 	struct xfs_buf		*bp)
326 {
327 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
328 	struct xfs_mount	*mp = bp->b_target->bt_mount;
329 
330 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
331 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
332 			return false;
333 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
334 	}
335 
336 	return true;
337 }
338 
339 static int
340 xfs_btree_free_block(
341 	struct xfs_btree_cur	*cur,
342 	struct xfs_buf		*bp)
343 {
344 	int			error;
345 
346 	error = cur->bc_ops->free_block(cur, bp);
347 	if (!error) {
348 		xfs_trans_binval(cur->bc_tp, bp);
349 		XFS_BTREE_STATS_INC(cur, free);
350 	}
351 	return error;
352 }
353 
354 /*
355  * Delete the btree cursor.
356  */
357 void
358 xfs_btree_del_cursor(
359 	xfs_btree_cur_t	*cur,		/* btree cursor */
360 	int		error)		/* del because of error */
361 {
362 	int		i;		/* btree level */
363 
364 	/*
365 	 * Clear the buffer pointers, and release the buffers.
366 	 * If we're doing this in the face of an error, we
367 	 * need to make sure to inspect all of the entries
368 	 * in the bc_bufs array for buffers to be unlocked.
369 	 * This is because some of the btree code works from
370 	 * level n down to 0, and if we get an error along
371 	 * the way we won't have initialized all the entries
372 	 * down to 0.
373 	 */
374 	for (i = 0; i < cur->bc_nlevels; i++) {
375 		if (cur->bc_bufs[i])
376 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
377 		else if (!error)
378 			break;
379 	}
380 	/*
381 	 * Can't free a bmap cursor without having dealt with the
382 	 * allocated indirect blocks' accounting.
383 	 */
384 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
385 	       cur->bc_private.b.allocated == 0);
386 	/*
387 	 * Free the cursor.
388 	 */
389 	kmem_zone_free(xfs_btree_cur_zone, cur);
390 }
391 
392 /*
393  * Duplicate the btree cursor.
394  * Allocate a new one, copy the record, re-get the buffers.
395  */
396 int					/* error */
397 xfs_btree_dup_cursor(
398 	xfs_btree_cur_t	*cur,		/* input cursor */
399 	xfs_btree_cur_t	**ncur)		/* output cursor */
400 {
401 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
402 	int		error;		/* error return value */
403 	int		i;		/* level number of btree block */
404 	xfs_mount_t	*mp;		/* mount structure for filesystem */
405 	xfs_btree_cur_t	*new;		/* new cursor value */
406 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
407 
408 	tp = cur->bc_tp;
409 	mp = cur->bc_mp;
410 
411 	/*
412 	 * Allocate a new cursor like the old one.
413 	 */
414 	new = cur->bc_ops->dup_cursor(cur);
415 
416 	/*
417 	 * Copy the record currently in the cursor.
418 	 */
419 	new->bc_rec = cur->bc_rec;
420 
421 	/*
422 	 * For each level current, re-get the buffer and copy the ptr value.
423 	 */
424 	for (i = 0; i < new->bc_nlevels; i++) {
425 		new->bc_ptrs[i] = cur->bc_ptrs[i];
426 		new->bc_ra[i] = cur->bc_ra[i];
427 		bp = cur->bc_bufs[i];
428 		if (bp) {
429 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
430 						   XFS_BUF_ADDR(bp), mp->m_bsize,
431 						   0, &bp,
432 						   cur->bc_ops->buf_ops);
433 			if (error) {
434 				xfs_btree_del_cursor(new, error);
435 				*ncur = NULL;
436 				return error;
437 			}
438 		}
439 		new->bc_bufs[i] = bp;
440 	}
441 	*ncur = new;
442 	return 0;
443 }
444 
445 /*
446  * XFS btree block layout and addressing:
447  *
448  * There are two types of blocks in the btree: leaf and non-leaf blocks.
449  *
450  * The leaf record start with a header then followed by records containing
451  * the values.  A non-leaf block also starts with the same header, and
452  * then first contains lookup keys followed by an equal number of pointers
453  * to the btree blocks at the previous level.
454  *
455  *		+--------+-------+-------+-------+-------+-------+-------+
456  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
457  *		+--------+-------+-------+-------+-------+-------+-------+
458  *
459  *		+--------+-------+-------+-------+-------+-------+-------+
460  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
461  *		+--------+-------+-------+-------+-------+-------+-------+
462  *
463  * The header is called struct xfs_btree_block for reasons better left unknown
464  * and comes in different versions for short (32bit) and long (64bit) block
465  * pointers.  The record and key structures are defined by the btree instances
466  * and opaque to the btree core.  The block pointers are simple disk endian
467  * integers, available in a short (32bit) and long (64bit) variant.
468  *
469  * The helpers below calculate the offset of a given record, key or pointer
470  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
471  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
472  * inside the btree block is done using indices starting at one, not zero!
473  *
474  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
475  * overlapping intervals.  In such a tree, records are still sorted lowest to
476  * highest and indexed by the smallest key value that refers to the record.
477  * However, nodes are different: each pointer has two associated keys -- one
478  * indexing the lowest key available in the block(s) below (the same behavior
479  * as the key in a regular btree) and another indexing the highest key
480  * available in the block(s) below.  Because records are /not/ sorted by the
481  * highest key, all leaf block updates require us to compute the highest key
482  * that matches any record in the leaf and to recursively update the high keys
483  * in the nodes going further up in the tree, if necessary.  Nodes look like
484  * this:
485  *
486  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
487  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
488  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
489  *
490  * To perform an interval query on an overlapped tree, perform the usual
491  * depth-first search and use the low and high keys to decide if we can skip
492  * that particular node.  If a leaf node is reached, return the records that
493  * intersect the interval.  Note that an interval query may return numerous
494  * entries.  For a non-overlapped tree, simply search for the record associated
495  * with the lowest key and iterate forward until a non-matching record is
496  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
497  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
498  * more detail.
499  *
500  * Why do we care about overlapping intervals?  Let's say you have a bunch of
501  * reverse mapping records on a reflink filesystem:
502  *
503  * 1: +- file A startblock B offset C length D -----------+
504  * 2:      +- file E startblock F offset G length H --------------+
505  * 3:      +- file I startblock F offset J length K --+
506  * 4:                                                        +- file L... --+
507  *
508  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
509  * we'd simply increment the length of record 1.  But how do we find the record
510  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
511  * record 3 because the keys are ordered first by startblock.  An interval
512  * query would return records 1 and 2 because they both overlap (B+D-1), and
513  * from that we can pick out record 1 as the appropriate left neighbor.
514  *
515  * In the non-overlapped case you can do a LE lookup and decrement the cursor
516  * because a record's interval must end before the next record.
517  */
518 
519 /*
520  * Return size of the btree block header for this btree instance.
521  */
522 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
523 {
524 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
525 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 			return XFS_BTREE_LBLOCK_CRC_LEN;
527 		return XFS_BTREE_LBLOCK_LEN;
528 	}
529 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
530 		return XFS_BTREE_SBLOCK_CRC_LEN;
531 	return XFS_BTREE_SBLOCK_LEN;
532 }
533 
534 /*
535  * Return size of btree block pointers for this btree instance.
536  */
537 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
538 {
539 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
540 		sizeof(__be64) : sizeof(__be32);
541 }
542 
543 /*
544  * Calculate offset of the n-th record in a btree block.
545  */
546 STATIC size_t
547 xfs_btree_rec_offset(
548 	struct xfs_btree_cur	*cur,
549 	int			n)
550 {
551 	return xfs_btree_block_len(cur) +
552 		(n - 1) * cur->bc_ops->rec_len;
553 }
554 
555 /*
556  * Calculate offset of the n-th key in a btree block.
557  */
558 STATIC size_t
559 xfs_btree_key_offset(
560 	struct xfs_btree_cur	*cur,
561 	int			n)
562 {
563 	return xfs_btree_block_len(cur) +
564 		(n - 1) * cur->bc_ops->key_len;
565 }
566 
567 /*
568  * Calculate offset of the n-th high key in a btree block.
569  */
570 STATIC size_t
571 xfs_btree_high_key_offset(
572 	struct xfs_btree_cur	*cur,
573 	int			n)
574 {
575 	return xfs_btree_block_len(cur) +
576 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
577 }
578 
579 /*
580  * Calculate offset of the n-th block pointer in a btree block.
581  */
582 STATIC size_t
583 xfs_btree_ptr_offset(
584 	struct xfs_btree_cur	*cur,
585 	int			n,
586 	int			level)
587 {
588 	return xfs_btree_block_len(cur) +
589 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
590 		(n - 1) * xfs_btree_ptr_len(cur);
591 }
592 
593 /*
594  * Return a pointer to the n-th record in the btree block.
595  */
596 union xfs_btree_rec *
597 xfs_btree_rec_addr(
598 	struct xfs_btree_cur	*cur,
599 	int			n,
600 	struct xfs_btree_block	*block)
601 {
602 	return (union xfs_btree_rec *)
603 		((char *)block + xfs_btree_rec_offset(cur, n));
604 }
605 
606 /*
607  * Return a pointer to the n-th key in the btree block.
608  */
609 union xfs_btree_key *
610 xfs_btree_key_addr(
611 	struct xfs_btree_cur	*cur,
612 	int			n,
613 	struct xfs_btree_block	*block)
614 {
615 	return (union xfs_btree_key *)
616 		((char *)block + xfs_btree_key_offset(cur, n));
617 }
618 
619 /*
620  * Return a pointer to the n-th high key in the btree block.
621  */
622 union xfs_btree_key *
623 xfs_btree_high_key_addr(
624 	struct xfs_btree_cur	*cur,
625 	int			n,
626 	struct xfs_btree_block	*block)
627 {
628 	return (union xfs_btree_key *)
629 		((char *)block + xfs_btree_high_key_offset(cur, n));
630 }
631 
632 /*
633  * Return a pointer to the n-th block pointer in the btree block.
634  */
635 union xfs_btree_ptr *
636 xfs_btree_ptr_addr(
637 	struct xfs_btree_cur	*cur,
638 	int			n,
639 	struct xfs_btree_block	*block)
640 {
641 	int			level = xfs_btree_get_level(block);
642 
643 	ASSERT(block->bb_level != 0);
644 
645 	return (union xfs_btree_ptr *)
646 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
647 }
648 
649 /*
650  * Get the root block which is stored in the inode.
651  *
652  * For now this btree implementation assumes the btree root is always
653  * stored in the if_broot field of an inode fork.
654  */
655 STATIC struct xfs_btree_block *
656 xfs_btree_get_iroot(
657 	struct xfs_btree_cur	*cur)
658 {
659 	struct xfs_ifork	*ifp;
660 
661 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
662 	return (struct xfs_btree_block *)ifp->if_broot;
663 }
664 
665 /*
666  * Retrieve the block pointer from the cursor at the given level.
667  * This may be an inode btree root or from a buffer.
668  */
669 struct xfs_btree_block *		/* generic btree block pointer */
670 xfs_btree_get_block(
671 	struct xfs_btree_cur	*cur,	/* btree cursor */
672 	int			level,	/* level in btree */
673 	struct xfs_buf		**bpp)	/* buffer containing the block */
674 {
675 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
676 	    (level == cur->bc_nlevels - 1)) {
677 		*bpp = NULL;
678 		return xfs_btree_get_iroot(cur);
679 	}
680 
681 	*bpp = cur->bc_bufs[level];
682 	return XFS_BUF_TO_BLOCK(*bpp);
683 }
684 
685 /*
686  * Get a buffer for the block, return it with no data read.
687  * Long-form addressing.
688  */
689 xfs_buf_t *				/* buffer for fsbno */
690 xfs_btree_get_bufl(
691 	xfs_mount_t	*mp,		/* file system mount point */
692 	xfs_trans_t	*tp,		/* transaction pointer */
693 	xfs_fsblock_t	fsbno,		/* file system block number */
694 	uint		lock)		/* lock flags for get_buf */
695 {
696 	xfs_daddr_t		d;		/* real disk block address */
697 
698 	ASSERT(fsbno != NULLFSBLOCK);
699 	d = XFS_FSB_TO_DADDR(mp, fsbno);
700 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
701 }
702 
703 /*
704  * Get a buffer for the block, return it with no data read.
705  * Short-form addressing.
706  */
707 xfs_buf_t *				/* buffer for agno/agbno */
708 xfs_btree_get_bufs(
709 	xfs_mount_t	*mp,		/* file system mount point */
710 	xfs_trans_t	*tp,		/* transaction pointer */
711 	xfs_agnumber_t	agno,		/* allocation group number */
712 	xfs_agblock_t	agbno,		/* allocation group block number */
713 	uint		lock)		/* lock flags for get_buf */
714 {
715 	xfs_daddr_t		d;		/* real disk block address */
716 
717 	ASSERT(agno != NULLAGNUMBER);
718 	ASSERT(agbno != NULLAGBLOCK);
719 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
720 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
721 }
722 
723 /*
724  * Check for the cursor referring to the last block at the given level.
725  */
726 int					/* 1=is last block, 0=not last block */
727 xfs_btree_islastblock(
728 	xfs_btree_cur_t		*cur,	/* btree cursor */
729 	int			level)	/* level to check */
730 {
731 	struct xfs_btree_block	*block;	/* generic btree block pointer */
732 	xfs_buf_t		*bp;	/* buffer containing block */
733 
734 	block = xfs_btree_get_block(cur, level, &bp);
735 	xfs_btree_check_block(cur, block, level, bp);
736 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
737 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
738 	else
739 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
740 }
741 
742 /*
743  * Change the cursor to point to the first record at the given level.
744  * Other levels are unaffected.
745  */
746 STATIC int				/* success=1, failure=0 */
747 xfs_btree_firstrec(
748 	xfs_btree_cur_t		*cur,	/* btree cursor */
749 	int			level)	/* level to change */
750 {
751 	struct xfs_btree_block	*block;	/* generic btree block pointer */
752 	xfs_buf_t		*bp;	/* buffer containing block */
753 
754 	/*
755 	 * Get the block pointer for this level.
756 	 */
757 	block = xfs_btree_get_block(cur, level, &bp);
758 	if (xfs_btree_check_block(cur, block, level, bp))
759 		return 0;
760 	/*
761 	 * It's empty, there is no such record.
762 	 */
763 	if (!block->bb_numrecs)
764 		return 0;
765 	/*
766 	 * Set the ptr value to 1, that's the first record/key.
767 	 */
768 	cur->bc_ptrs[level] = 1;
769 	return 1;
770 }
771 
772 /*
773  * Change the cursor to point to the last record in the current block
774  * at the given level.  Other levels are unaffected.
775  */
776 STATIC int				/* success=1, failure=0 */
777 xfs_btree_lastrec(
778 	xfs_btree_cur_t		*cur,	/* btree cursor */
779 	int			level)	/* level to change */
780 {
781 	struct xfs_btree_block	*block;	/* generic btree block pointer */
782 	xfs_buf_t		*bp;	/* buffer containing block */
783 
784 	/*
785 	 * Get the block pointer for this level.
786 	 */
787 	block = xfs_btree_get_block(cur, level, &bp);
788 	if (xfs_btree_check_block(cur, block, level, bp))
789 		return 0;
790 	/*
791 	 * It's empty, there is no such record.
792 	 */
793 	if (!block->bb_numrecs)
794 		return 0;
795 	/*
796 	 * Set the ptr value to numrecs, that's the last record/key.
797 	 */
798 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
799 	return 1;
800 }
801 
802 /*
803  * Compute first and last byte offsets for the fields given.
804  * Interprets the offsets table, which contains struct field offsets.
805  */
806 void
807 xfs_btree_offsets(
808 	int64_t		fields,		/* bitmask of fields */
809 	const short	*offsets,	/* table of field offsets */
810 	int		nbits,		/* number of bits to inspect */
811 	int		*first,		/* output: first byte offset */
812 	int		*last)		/* output: last byte offset */
813 {
814 	int		i;		/* current bit number */
815 	int64_t		imask;		/* mask for current bit number */
816 
817 	ASSERT(fields != 0);
818 	/*
819 	 * Find the lowest bit, so the first byte offset.
820 	 */
821 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
822 		if (imask & fields) {
823 			*first = offsets[i];
824 			break;
825 		}
826 	}
827 	/*
828 	 * Find the highest bit, so the last byte offset.
829 	 */
830 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
831 		if (imask & fields) {
832 			*last = offsets[i + 1] - 1;
833 			break;
834 		}
835 	}
836 }
837 
838 /*
839  * Get a buffer for the block, return it read in.
840  * Long-form addressing.
841  */
842 int
843 xfs_btree_read_bufl(
844 	struct xfs_mount	*mp,		/* file system mount point */
845 	struct xfs_trans	*tp,		/* transaction pointer */
846 	xfs_fsblock_t		fsbno,		/* file system block number */
847 	uint			lock,		/* lock flags for read_buf */
848 	struct xfs_buf		**bpp,		/* buffer for fsbno */
849 	int			refval,		/* ref count value for buffer */
850 	const struct xfs_buf_ops *ops)
851 {
852 	struct xfs_buf		*bp;		/* return value */
853 	xfs_daddr_t		d;		/* real disk block address */
854 	int			error;
855 
856 	if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
857 		return -EFSCORRUPTED;
858 	d = XFS_FSB_TO_DADDR(mp, fsbno);
859 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
860 				   mp->m_bsize, lock, &bp, ops);
861 	if (error)
862 		return error;
863 	if (bp)
864 		xfs_buf_set_ref(bp, refval);
865 	*bpp = bp;
866 	return 0;
867 }
868 
869 /*
870  * Read-ahead the block, don't wait for it, don't return a buffer.
871  * Long-form addressing.
872  */
873 /* ARGSUSED */
874 void
875 xfs_btree_reada_bufl(
876 	struct xfs_mount	*mp,		/* file system mount point */
877 	xfs_fsblock_t		fsbno,		/* file system block number */
878 	xfs_extlen_t		count,		/* count of filesystem blocks */
879 	const struct xfs_buf_ops *ops)
880 {
881 	xfs_daddr_t		d;
882 
883 	ASSERT(fsbno != NULLFSBLOCK);
884 	d = XFS_FSB_TO_DADDR(mp, fsbno);
885 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
886 }
887 
888 /*
889  * Read-ahead the block, don't wait for it, don't return a buffer.
890  * Short-form addressing.
891  */
892 /* ARGSUSED */
893 void
894 xfs_btree_reada_bufs(
895 	struct xfs_mount	*mp,		/* file system mount point */
896 	xfs_agnumber_t		agno,		/* allocation group number */
897 	xfs_agblock_t		agbno,		/* allocation group block number */
898 	xfs_extlen_t		count,		/* count of filesystem blocks */
899 	const struct xfs_buf_ops *ops)
900 {
901 	xfs_daddr_t		d;
902 
903 	ASSERT(agno != NULLAGNUMBER);
904 	ASSERT(agbno != NULLAGBLOCK);
905 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
906 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
907 }
908 
909 STATIC int
910 xfs_btree_readahead_lblock(
911 	struct xfs_btree_cur	*cur,
912 	int			lr,
913 	struct xfs_btree_block	*block)
914 {
915 	int			rval = 0;
916 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
917 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
918 
919 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
920 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
921 				     cur->bc_ops->buf_ops);
922 		rval++;
923 	}
924 
925 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
926 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
927 				     cur->bc_ops->buf_ops);
928 		rval++;
929 	}
930 
931 	return rval;
932 }
933 
934 STATIC int
935 xfs_btree_readahead_sblock(
936 	struct xfs_btree_cur	*cur,
937 	int			lr,
938 	struct xfs_btree_block *block)
939 {
940 	int			rval = 0;
941 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
942 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
943 
944 
945 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
946 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
947 				     left, 1, cur->bc_ops->buf_ops);
948 		rval++;
949 	}
950 
951 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
952 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
953 				     right, 1, cur->bc_ops->buf_ops);
954 		rval++;
955 	}
956 
957 	return rval;
958 }
959 
960 /*
961  * Read-ahead btree blocks, at the given level.
962  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
963  */
964 STATIC int
965 xfs_btree_readahead(
966 	struct xfs_btree_cur	*cur,		/* btree cursor */
967 	int			lev,		/* level in btree */
968 	int			lr)		/* left/right bits */
969 {
970 	struct xfs_btree_block	*block;
971 
972 	/*
973 	 * No readahead needed if we are at the root level and the
974 	 * btree root is stored in the inode.
975 	 */
976 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
977 	    (lev == cur->bc_nlevels - 1))
978 		return 0;
979 
980 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
981 		return 0;
982 
983 	cur->bc_ra[lev] |= lr;
984 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
985 
986 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
987 		return xfs_btree_readahead_lblock(cur, lr, block);
988 	return xfs_btree_readahead_sblock(cur, lr, block);
989 }
990 
991 STATIC xfs_daddr_t
992 xfs_btree_ptr_to_daddr(
993 	struct xfs_btree_cur	*cur,
994 	union xfs_btree_ptr	*ptr)
995 {
996 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
997 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
998 
999 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000 	} else {
1001 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1003 
1004 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005 					be32_to_cpu(ptr->s));
1006 	}
1007 }
1008 
1009 /*
1010  * Readahead @count btree blocks at the given @ptr location.
1011  *
1012  * We don't need to care about long or short form btrees here as we have a
1013  * method of converting the ptr directly to a daddr available to us.
1014  */
1015 STATIC void
1016 xfs_btree_readahead_ptr(
1017 	struct xfs_btree_cur	*cur,
1018 	union xfs_btree_ptr	*ptr,
1019 	xfs_extlen_t		count)
1020 {
1021 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022 			  xfs_btree_ptr_to_daddr(cur, ptr),
1023 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1024 }
1025 
1026 /*
1027  * Set the buffer for level "lev" in the cursor to bp, releasing
1028  * any previous buffer.
1029  */
1030 STATIC void
1031 xfs_btree_setbuf(
1032 	xfs_btree_cur_t		*cur,	/* btree cursor */
1033 	int			lev,	/* level in btree */
1034 	xfs_buf_t		*bp)	/* new buffer to set */
1035 {
1036 	struct xfs_btree_block	*b;	/* btree block */
1037 
1038 	if (cur->bc_bufs[lev])
1039 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1040 	cur->bc_bufs[lev] = bp;
1041 	cur->bc_ra[lev] = 0;
1042 
1043 	b = XFS_BUF_TO_BLOCK(bp);
1044 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1045 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1046 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1047 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1048 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049 	} else {
1050 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1051 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1052 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1053 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1054 	}
1055 }
1056 
1057 bool
1058 xfs_btree_ptr_is_null(
1059 	struct xfs_btree_cur	*cur,
1060 	union xfs_btree_ptr	*ptr)
1061 {
1062 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1063 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1064 	else
1065 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1066 }
1067 
1068 STATIC void
1069 xfs_btree_set_ptr_null(
1070 	struct xfs_btree_cur	*cur,
1071 	union xfs_btree_ptr	*ptr)
1072 {
1073 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1074 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1075 	else
1076 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1077 }
1078 
1079 /*
1080  * Get/set/init sibling pointers
1081  */
1082 void
1083 xfs_btree_get_sibling(
1084 	struct xfs_btree_cur	*cur,
1085 	struct xfs_btree_block	*block,
1086 	union xfs_btree_ptr	*ptr,
1087 	int			lr)
1088 {
1089 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1090 
1091 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092 		if (lr == XFS_BB_RIGHTSIB)
1093 			ptr->l = block->bb_u.l.bb_rightsib;
1094 		else
1095 			ptr->l = block->bb_u.l.bb_leftsib;
1096 	} else {
1097 		if (lr == XFS_BB_RIGHTSIB)
1098 			ptr->s = block->bb_u.s.bb_rightsib;
1099 		else
1100 			ptr->s = block->bb_u.s.bb_leftsib;
1101 	}
1102 }
1103 
1104 STATIC void
1105 xfs_btree_set_sibling(
1106 	struct xfs_btree_cur	*cur,
1107 	struct xfs_btree_block	*block,
1108 	union xfs_btree_ptr	*ptr,
1109 	int			lr)
1110 {
1111 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1112 
1113 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114 		if (lr == XFS_BB_RIGHTSIB)
1115 			block->bb_u.l.bb_rightsib = ptr->l;
1116 		else
1117 			block->bb_u.l.bb_leftsib = ptr->l;
1118 	} else {
1119 		if (lr == XFS_BB_RIGHTSIB)
1120 			block->bb_u.s.bb_rightsib = ptr->s;
1121 		else
1122 			block->bb_u.s.bb_leftsib = ptr->s;
1123 	}
1124 }
1125 
1126 void
1127 xfs_btree_init_block_int(
1128 	struct xfs_mount	*mp,
1129 	struct xfs_btree_block	*buf,
1130 	xfs_daddr_t		blkno,
1131 	xfs_btnum_t		btnum,
1132 	__u16			level,
1133 	__u16			numrecs,
1134 	__u64			owner,
1135 	unsigned int		flags)
1136 {
1137 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1138 	__u32			magic = xfs_btree_magic(crc, btnum);
1139 
1140 	buf->bb_magic = cpu_to_be32(magic);
1141 	buf->bb_level = cpu_to_be16(level);
1142 	buf->bb_numrecs = cpu_to_be16(numrecs);
1143 
1144 	if (flags & XFS_BTREE_LONG_PTRS) {
1145 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1147 		if (crc) {
1148 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1150 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1151 			buf->bb_u.l.bb_pad = 0;
1152 			buf->bb_u.l.bb_lsn = 0;
1153 		}
1154 	} else {
1155 		/* owner is a 32 bit value on short blocks */
1156 		__u32 __owner = (__u32)owner;
1157 
1158 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1160 		if (crc) {
1161 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1163 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1164 			buf->bb_u.s.bb_lsn = 0;
1165 		}
1166 	}
1167 }
1168 
1169 void
1170 xfs_btree_init_block(
1171 	struct xfs_mount *mp,
1172 	struct xfs_buf	*bp,
1173 	xfs_btnum_t	btnum,
1174 	__u16		level,
1175 	__u16		numrecs,
1176 	__u64		owner,
1177 	unsigned int	flags)
1178 {
1179 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1180 				 btnum, level, numrecs, owner, flags);
1181 }
1182 
1183 STATIC void
1184 xfs_btree_init_block_cur(
1185 	struct xfs_btree_cur	*cur,
1186 	struct xfs_buf		*bp,
1187 	int			level,
1188 	int			numrecs)
1189 {
1190 	__u64			owner;
1191 
1192 	/*
1193 	 * we can pull the owner from the cursor right now as the different
1194 	 * owners align directly with the pointer size of the btree. This may
1195 	 * change in future, but is safe for current users of the generic btree
1196 	 * code.
1197 	 */
1198 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199 		owner = cur->bc_private.b.ip->i_ino;
1200 	else
1201 		owner = cur->bc_private.a.agno;
1202 
1203 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1204 				 cur->bc_btnum, level, numrecs,
1205 				 owner, cur->bc_flags);
1206 }
1207 
1208 /*
1209  * Return true if ptr is the last record in the btree and
1210  * we need to track updates to this record.  The decision
1211  * will be further refined in the update_lastrec method.
1212  */
1213 STATIC int
1214 xfs_btree_is_lastrec(
1215 	struct xfs_btree_cur	*cur,
1216 	struct xfs_btree_block	*block,
1217 	int			level)
1218 {
1219 	union xfs_btree_ptr	ptr;
1220 
1221 	if (level > 0)
1222 		return 0;
1223 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224 		return 0;
1225 
1226 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1228 		return 0;
1229 	return 1;
1230 }
1231 
1232 STATIC void
1233 xfs_btree_buf_to_ptr(
1234 	struct xfs_btree_cur	*cur,
1235 	struct xfs_buf		*bp,
1236 	union xfs_btree_ptr	*ptr)
1237 {
1238 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240 					XFS_BUF_ADDR(bp)));
1241 	else {
1242 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1243 					XFS_BUF_ADDR(bp)));
1244 	}
1245 }
1246 
1247 STATIC void
1248 xfs_btree_set_refs(
1249 	struct xfs_btree_cur	*cur,
1250 	struct xfs_buf		*bp)
1251 {
1252 	switch (cur->bc_btnum) {
1253 	case XFS_BTNUM_BNO:
1254 	case XFS_BTNUM_CNT:
1255 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1256 		break;
1257 	case XFS_BTNUM_INO:
1258 	case XFS_BTNUM_FINO:
1259 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1260 		break;
1261 	case XFS_BTNUM_BMAP:
1262 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1263 		break;
1264 	case XFS_BTNUM_RMAP:
1265 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266 		break;
1267 	case XFS_BTNUM_REFC:
1268 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269 		break;
1270 	default:
1271 		ASSERT(0);
1272 	}
1273 }
1274 
1275 STATIC int
1276 xfs_btree_get_buf_block(
1277 	struct xfs_btree_cur	*cur,
1278 	union xfs_btree_ptr	*ptr,
1279 	int			flags,
1280 	struct xfs_btree_block	**block,
1281 	struct xfs_buf		**bpp)
1282 {
1283 	struct xfs_mount	*mp = cur->bc_mp;
1284 	xfs_daddr_t		d;
1285 
1286 	/* need to sort out how callers deal with failures first */
1287 	ASSERT(!(flags & XBF_TRYLOCK));
1288 
1289 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1290 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291 				 mp->m_bsize, flags);
1292 
1293 	if (!*bpp)
1294 		return -ENOMEM;
1295 
1296 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1297 	*block = XFS_BUF_TO_BLOCK(*bpp);
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Read in the buffer at the given ptr and return the buffer and
1303  * the block pointer within the buffer.
1304  */
1305 STATIC int
1306 xfs_btree_read_buf_block(
1307 	struct xfs_btree_cur	*cur,
1308 	union xfs_btree_ptr	*ptr,
1309 	int			flags,
1310 	struct xfs_btree_block	**block,
1311 	struct xfs_buf		**bpp)
1312 {
1313 	struct xfs_mount	*mp = cur->bc_mp;
1314 	xfs_daddr_t		d;
1315 	int			error;
1316 
1317 	/* need to sort out how callers deal with failures first */
1318 	ASSERT(!(flags & XBF_TRYLOCK));
1319 
1320 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1321 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1322 				   mp->m_bsize, flags, bpp,
1323 				   cur->bc_ops->buf_ops);
1324 	if (error)
1325 		return error;
1326 
1327 	xfs_btree_set_refs(cur, *bpp);
1328 	*block = XFS_BUF_TO_BLOCK(*bpp);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Copy keys from one btree block to another.
1334  */
1335 STATIC void
1336 xfs_btree_copy_keys(
1337 	struct xfs_btree_cur	*cur,
1338 	union xfs_btree_key	*dst_key,
1339 	union xfs_btree_key	*src_key,
1340 	int			numkeys)
1341 {
1342 	ASSERT(numkeys >= 0);
1343 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1344 }
1345 
1346 /*
1347  * Copy records from one btree block to another.
1348  */
1349 STATIC void
1350 xfs_btree_copy_recs(
1351 	struct xfs_btree_cur	*cur,
1352 	union xfs_btree_rec	*dst_rec,
1353 	union xfs_btree_rec	*src_rec,
1354 	int			numrecs)
1355 {
1356 	ASSERT(numrecs >= 0);
1357 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1358 }
1359 
1360 /*
1361  * Copy block pointers from one btree block to another.
1362  */
1363 STATIC void
1364 xfs_btree_copy_ptrs(
1365 	struct xfs_btree_cur	*cur,
1366 	union xfs_btree_ptr	*dst_ptr,
1367 	union xfs_btree_ptr	*src_ptr,
1368 	int			numptrs)
1369 {
1370 	ASSERT(numptrs >= 0);
1371 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1372 }
1373 
1374 /*
1375  * Shift keys one index left/right inside a single btree block.
1376  */
1377 STATIC void
1378 xfs_btree_shift_keys(
1379 	struct xfs_btree_cur	*cur,
1380 	union xfs_btree_key	*key,
1381 	int			dir,
1382 	int			numkeys)
1383 {
1384 	char			*dst_key;
1385 
1386 	ASSERT(numkeys >= 0);
1387 	ASSERT(dir == 1 || dir == -1);
1388 
1389 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1391 }
1392 
1393 /*
1394  * Shift records one index left/right inside a single btree block.
1395  */
1396 STATIC void
1397 xfs_btree_shift_recs(
1398 	struct xfs_btree_cur	*cur,
1399 	union xfs_btree_rec	*rec,
1400 	int			dir,
1401 	int			numrecs)
1402 {
1403 	char			*dst_rec;
1404 
1405 	ASSERT(numrecs >= 0);
1406 	ASSERT(dir == 1 || dir == -1);
1407 
1408 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1410 }
1411 
1412 /*
1413  * Shift block pointers one index left/right inside a single btree block.
1414  */
1415 STATIC void
1416 xfs_btree_shift_ptrs(
1417 	struct xfs_btree_cur	*cur,
1418 	union xfs_btree_ptr	*ptr,
1419 	int			dir,
1420 	int			numptrs)
1421 {
1422 	char			*dst_ptr;
1423 
1424 	ASSERT(numptrs >= 0);
1425 	ASSERT(dir == 1 || dir == -1);
1426 
1427 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1429 }
1430 
1431 /*
1432  * Log key values from the btree block.
1433  */
1434 STATIC void
1435 xfs_btree_log_keys(
1436 	struct xfs_btree_cur	*cur,
1437 	struct xfs_buf		*bp,
1438 	int			first,
1439 	int			last)
1440 {
1441 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443 
1444 	if (bp) {
1445 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1446 		xfs_trans_log_buf(cur->bc_tp, bp,
1447 				  xfs_btree_key_offset(cur, first),
1448 				  xfs_btree_key_offset(cur, last + 1) - 1);
1449 	} else {
1450 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1451 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1452 	}
1453 
1454 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1455 }
1456 
1457 /*
1458  * Log record values from the btree block.
1459  */
1460 void
1461 xfs_btree_log_recs(
1462 	struct xfs_btree_cur	*cur,
1463 	struct xfs_buf		*bp,
1464 	int			first,
1465 	int			last)
1466 {
1467 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1468 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1469 
1470 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 	xfs_trans_log_buf(cur->bc_tp, bp,
1472 			  xfs_btree_rec_offset(cur, first),
1473 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1474 
1475 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1476 }
1477 
1478 /*
1479  * Log block pointer fields from a btree block (nonleaf).
1480  */
1481 STATIC void
1482 xfs_btree_log_ptrs(
1483 	struct xfs_btree_cur	*cur,	/* btree cursor */
1484 	struct xfs_buf		*bp,	/* buffer containing btree block */
1485 	int			first,	/* index of first pointer to log */
1486 	int			last)	/* index of last pointer to log */
1487 {
1488 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1489 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1490 
1491 	if (bp) {
1492 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1493 		int			level = xfs_btree_get_level(block);
1494 
1495 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1496 		xfs_trans_log_buf(cur->bc_tp, bp,
1497 				xfs_btree_ptr_offset(cur, first, level),
1498 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1499 	} else {
1500 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1501 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1502 	}
1503 
1504 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1505 }
1506 
1507 /*
1508  * Log fields from a btree block header.
1509  */
1510 void
1511 xfs_btree_log_block(
1512 	struct xfs_btree_cur	*cur,	/* btree cursor */
1513 	struct xfs_buf		*bp,	/* buffer containing btree block */
1514 	int			fields)	/* mask of fields: XFS_BB_... */
1515 {
1516 	int			first;	/* first byte offset logged */
1517 	int			last;	/* last byte offset logged */
1518 	static const short	soffsets[] = {	/* table of offsets (short) */
1519 		offsetof(struct xfs_btree_block, bb_magic),
1520 		offsetof(struct xfs_btree_block, bb_level),
1521 		offsetof(struct xfs_btree_block, bb_numrecs),
1522 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1523 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1524 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1525 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1526 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1527 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1528 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1529 		XFS_BTREE_SBLOCK_CRC_LEN
1530 	};
1531 	static const short	loffsets[] = {	/* table of offsets (long) */
1532 		offsetof(struct xfs_btree_block, bb_magic),
1533 		offsetof(struct xfs_btree_block, bb_level),
1534 		offsetof(struct xfs_btree_block, bb_numrecs),
1535 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1536 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1537 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1538 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1539 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1540 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1541 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1542 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1543 		XFS_BTREE_LBLOCK_CRC_LEN
1544 	};
1545 
1546 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1547 	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1548 
1549 	if (bp) {
1550 		int nbits;
1551 
1552 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1553 			/*
1554 			 * We don't log the CRC when updating a btree
1555 			 * block but instead recreate it during log
1556 			 * recovery.  As the log buffers have checksums
1557 			 * of their own this is safe and avoids logging a crc
1558 			 * update in a lot of places.
1559 			 */
1560 			if (fields == XFS_BB_ALL_BITS)
1561 				fields = XFS_BB_ALL_BITS_CRC;
1562 			nbits = XFS_BB_NUM_BITS_CRC;
1563 		} else {
1564 			nbits = XFS_BB_NUM_BITS;
1565 		}
1566 		xfs_btree_offsets(fields,
1567 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1568 					loffsets : soffsets,
1569 				  nbits, &first, &last);
1570 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1571 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1572 	} else {
1573 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1574 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1575 	}
1576 
1577 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1578 }
1579 
1580 /*
1581  * Increment cursor by one record at the level.
1582  * For nonzero levels the leaf-ward information is untouched.
1583  */
1584 int						/* error */
1585 xfs_btree_increment(
1586 	struct xfs_btree_cur	*cur,
1587 	int			level,
1588 	int			*stat)		/* success/failure */
1589 {
1590 	struct xfs_btree_block	*block;
1591 	union xfs_btree_ptr	ptr;
1592 	struct xfs_buf		*bp;
1593 	int			error;		/* error return value */
1594 	int			lev;
1595 
1596 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1597 	XFS_BTREE_TRACE_ARGI(cur, level);
1598 
1599 	ASSERT(level < cur->bc_nlevels);
1600 
1601 	/* Read-ahead to the right at this level. */
1602 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1603 
1604 	/* Get a pointer to the btree block. */
1605 	block = xfs_btree_get_block(cur, level, &bp);
1606 
1607 #ifdef DEBUG
1608 	error = xfs_btree_check_block(cur, block, level, bp);
1609 	if (error)
1610 		goto error0;
1611 #endif
1612 
1613 	/* We're done if we remain in the block after the increment. */
1614 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1615 		goto out1;
1616 
1617 	/* Fail if we just went off the right edge of the tree. */
1618 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1619 	if (xfs_btree_ptr_is_null(cur, &ptr))
1620 		goto out0;
1621 
1622 	XFS_BTREE_STATS_INC(cur, increment);
1623 
1624 	/*
1625 	 * March up the tree incrementing pointers.
1626 	 * Stop when we don't go off the right edge of a block.
1627 	 */
1628 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1629 		block = xfs_btree_get_block(cur, lev, &bp);
1630 
1631 #ifdef DEBUG
1632 		error = xfs_btree_check_block(cur, block, lev, bp);
1633 		if (error)
1634 			goto error0;
1635 #endif
1636 
1637 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1638 			break;
1639 
1640 		/* Read-ahead the right block for the next loop. */
1641 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1642 	}
1643 
1644 	/*
1645 	 * If we went off the root then we are either seriously
1646 	 * confused or have the tree root in an inode.
1647 	 */
1648 	if (lev == cur->bc_nlevels) {
1649 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1650 			goto out0;
1651 		ASSERT(0);
1652 		error = -EFSCORRUPTED;
1653 		goto error0;
1654 	}
1655 	ASSERT(lev < cur->bc_nlevels);
1656 
1657 	/*
1658 	 * Now walk back down the tree, fixing up the cursor's buffer
1659 	 * pointers and key numbers.
1660 	 */
1661 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1662 		union xfs_btree_ptr	*ptrp;
1663 
1664 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1665 		--lev;
1666 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1667 		if (error)
1668 			goto error0;
1669 
1670 		xfs_btree_setbuf(cur, lev, bp);
1671 		cur->bc_ptrs[lev] = 1;
1672 	}
1673 out1:
1674 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1675 	*stat = 1;
1676 	return 0;
1677 
1678 out0:
1679 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1680 	*stat = 0;
1681 	return 0;
1682 
1683 error0:
1684 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1685 	return error;
1686 }
1687 
1688 /*
1689  * Decrement cursor by one record at the level.
1690  * For nonzero levels the leaf-ward information is untouched.
1691  */
1692 int						/* error */
1693 xfs_btree_decrement(
1694 	struct xfs_btree_cur	*cur,
1695 	int			level,
1696 	int			*stat)		/* success/failure */
1697 {
1698 	struct xfs_btree_block	*block;
1699 	xfs_buf_t		*bp;
1700 	int			error;		/* error return value */
1701 	int			lev;
1702 	union xfs_btree_ptr	ptr;
1703 
1704 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1705 	XFS_BTREE_TRACE_ARGI(cur, level);
1706 
1707 	ASSERT(level < cur->bc_nlevels);
1708 
1709 	/* Read-ahead to the left at this level. */
1710 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1711 
1712 	/* We're done if we remain in the block after the decrement. */
1713 	if (--cur->bc_ptrs[level] > 0)
1714 		goto out1;
1715 
1716 	/* Get a pointer to the btree block. */
1717 	block = xfs_btree_get_block(cur, level, &bp);
1718 
1719 #ifdef DEBUG
1720 	error = xfs_btree_check_block(cur, block, level, bp);
1721 	if (error)
1722 		goto error0;
1723 #endif
1724 
1725 	/* Fail if we just went off the left edge of the tree. */
1726 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1727 	if (xfs_btree_ptr_is_null(cur, &ptr))
1728 		goto out0;
1729 
1730 	XFS_BTREE_STATS_INC(cur, decrement);
1731 
1732 	/*
1733 	 * March up the tree decrementing pointers.
1734 	 * Stop when we don't go off the left edge of a block.
1735 	 */
1736 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1737 		if (--cur->bc_ptrs[lev] > 0)
1738 			break;
1739 		/* Read-ahead the left block for the next loop. */
1740 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1741 	}
1742 
1743 	/*
1744 	 * If we went off the root then we are seriously confused.
1745 	 * or the root of the tree is in an inode.
1746 	 */
1747 	if (lev == cur->bc_nlevels) {
1748 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1749 			goto out0;
1750 		ASSERT(0);
1751 		error = -EFSCORRUPTED;
1752 		goto error0;
1753 	}
1754 	ASSERT(lev < cur->bc_nlevels);
1755 
1756 	/*
1757 	 * Now walk back down the tree, fixing up the cursor's buffer
1758 	 * pointers and key numbers.
1759 	 */
1760 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1761 		union xfs_btree_ptr	*ptrp;
1762 
1763 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1764 		--lev;
1765 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1766 		if (error)
1767 			goto error0;
1768 		xfs_btree_setbuf(cur, lev, bp);
1769 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1770 	}
1771 out1:
1772 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1773 	*stat = 1;
1774 	return 0;
1775 
1776 out0:
1777 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1778 	*stat = 0;
1779 	return 0;
1780 
1781 error0:
1782 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1783 	return error;
1784 }
1785 
1786 int
1787 xfs_btree_lookup_get_block(
1788 	struct xfs_btree_cur	*cur,	/* btree cursor */
1789 	int			level,	/* level in the btree */
1790 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1791 	struct xfs_btree_block	**blkp) /* return btree block */
1792 {
1793 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1794 	int			error = 0;
1795 
1796 	/* special case the root block if in an inode */
1797 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1798 	    (level == cur->bc_nlevels - 1)) {
1799 		*blkp = xfs_btree_get_iroot(cur);
1800 		return 0;
1801 	}
1802 
1803 	/*
1804 	 * If the old buffer at this level for the disk address we are
1805 	 * looking for re-use it.
1806 	 *
1807 	 * Otherwise throw it away and get a new one.
1808 	 */
1809 	bp = cur->bc_bufs[level];
1810 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1811 		*blkp = XFS_BUF_TO_BLOCK(bp);
1812 		return 0;
1813 	}
1814 
1815 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1816 	if (error)
1817 		return error;
1818 
1819 	/* Check the inode owner since the verifiers don't. */
1820 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1821 	    !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1822 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1823 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1824 			cur->bc_private.b.ip->i_ino)
1825 		goto out_bad;
1826 
1827 	/* Did we get the level we were looking for? */
1828 	if (be16_to_cpu((*blkp)->bb_level) != level)
1829 		goto out_bad;
1830 
1831 	/* Check that internal nodes have at least one record. */
1832 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1833 		goto out_bad;
1834 
1835 	xfs_btree_setbuf(cur, level, bp);
1836 	return 0;
1837 
1838 out_bad:
1839 	*blkp = NULL;
1840 	xfs_trans_brelse(cur->bc_tp, bp);
1841 	return -EFSCORRUPTED;
1842 }
1843 
1844 /*
1845  * Get current search key.  For level 0 we don't actually have a key
1846  * structure so we make one up from the record.  For all other levels
1847  * we just return the right key.
1848  */
1849 STATIC union xfs_btree_key *
1850 xfs_lookup_get_search_key(
1851 	struct xfs_btree_cur	*cur,
1852 	int			level,
1853 	int			keyno,
1854 	struct xfs_btree_block	*block,
1855 	union xfs_btree_key	*kp)
1856 {
1857 	if (level == 0) {
1858 		cur->bc_ops->init_key_from_rec(kp,
1859 				xfs_btree_rec_addr(cur, keyno, block));
1860 		return kp;
1861 	}
1862 
1863 	return xfs_btree_key_addr(cur, keyno, block);
1864 }
1865 
1866 /*
1867  * Lookup the record.  The cursor is made to point to it, based on dir.
1868  * stat is set to 0 if can't find any such record, 1 for success.
1869  */
1870 int					/* error */
1871 xfs_btree_lookup(
1872 	struct xfs_btree_cur	*cur,	/* btree cursor */
1873 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1874 	int			*stat)	/* success/failure */
1875 {
1876 	struct xfs_btree_block	*block;	/* current btree block */
1877 	int64_t			diff;	/* difference for the current key */
1878 	int			error;	/* error return value */
1879 	int			keyno;	/* current key number */
1880 	int			level;	/* level in the btree */
1881 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1882 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1883 
1884 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1885 	XFS_BTREE_TRACE_ARGI(cur, dir);
1886 
1887 	XFS_BTREE_STATS_INC(cur, lookup);
1888 
1889 	/* No such thing as a zero-level tree. */
1890 	if (cur->bc_nlevels == 0)
1891 		return -EFSCORRUPTED;
1892 
1893 	block = NULL;
1894 	keyno = 0;
1895 
1896 	/* initialise start pointer from cursor */
1897 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1898 	pp = &ptr;
1899 
1900 	/*
1901 	 * Iterate over each level in the btree, starting at the root.
1902 	 * For each level above the leaves, find the key we need, based
1903 	 * on the lookup record, then follow the corresponding block
1904 	 * pointer down to the next level.
1905 	 */
1906 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1907 		/* Get the block we need to do the lookup on. */
1908 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1909 		if (error)
1910 			goto error0;
1911 
1912 		if (diff == 0) {
1913 			/*
1914 			 * If we already had a key match at a higher level, we
1915 			 * know we need to use the first entry in this block.
1916 			 */
1917 			keyno = 1;
1918 		} else {
1919 			/* Otherwise search this block. Do a binary search. */
1920 
1921 			int	high;	/* high entry number */
1922 			int	low;	/* low entry number */
1923 
1924 			/* Set low and high entry numbers, 1-based. */
1925 			low = 1;
1926 			high = xfs_btree_get_numrecs(block);
1927 			if (!high) {
1928 				/* Block is empty, must be an empty leaf. */
1929 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1930 
1931 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1932 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1933 				*stat = 0;
1934 				return 0;
1935 			}
1936 
1937 			/* Binary search the block. */
1938 			while (low <= high) {
1939 				union xfs_btree_key	key;
1940 				union xfs_btree_key	*kp;
1941 
1942 				XFS_BTREE_STATS_INC(cur, compare);
1943 
1944 				/* keyno is average of low and high. */
1945 				keyno = (low + high) >> 1;
1946 
1947 				/* Get current search key */
1948 				kp = xfs_lookup_get_search_key(cur, level,
1949 						keyno, block, &key);
1950 
1951 				/*
1952 				 * Compute difference to get next direction:
1953 				 *  - less than, move right
1954 				 *  - greater than, move left
1955 				 *  - equal, we're done
1956 				 */
1957 				diff = cur->bc_ops->key_diff(cur, kp);
1958 				if (diff < 0)
1959 					low = keyno + 1;
1960 				else if (diff > 0)
1961 					high = keyno - 1;
1962 				else
1963 					break;
1964 			}
1965 		}
1966 
1967 		/*
1968 		 * If there are more levels, set up for the next level
1969 		 * by getting the block number and filling in the cursor.
1970 		 */
1971 		if (level > 0) {
1972 			/*
1973 			 * If we moved left, need the previous key number,
1974 			 * unless there isn't one.
1975 			 */
1976 			if (diff > 0 && --keyno < 1)
1977 				keyno = 1;
1978 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1979 
1980 #ifdef DEBUG
1981 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1982 			if (error)
1983 				goto error0;
1984 #endif
1985 			cur->bc_ptrs[level] = keyno;
1986 		}
1987 	}
1988 
1989 	/* Done with the search. See if we need to adjust the results. */
1990 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1991 		keyno++;
1992 		/*
1993 		 * If ge search and we went off the end of the block, but it's
1994 		 * not the last block, we're in the wrong block.
1995 		 */
1996 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1997 		if (dir == XFS_LOOKUP_GE &&
1998 		    keyno > xfs_btree_get_numrecs(block) &&
1999 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2000 			int	i;
2001 
2002 			cur->bc_ptrs[0] = keyno;
2003 			error = xfs_btree_increment(cur, 0, &i);
2004 			if (error)
2005 				goto error0;
2006 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
2007 			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2008 			*stat = 1;
2009 			return 0;
2010 		}
2011 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2012 		keyno--;
2013 	cur->bc_ptrs[0] = keyno;
2014 
2015 	/* Return if we succeeded or not. */
2016 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2017 		*stat = 0;
2018 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2019 		*stat = 1;
2020 	else
2021 		*stat = 0;
2022 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2023 	return 0;
2024 
2025 error0:
2026 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2027 	return error;
2028 }
2029 
2030 /* Find the high key storage area from a regular key. */
2031 union xfs_btree_key *
2032 xfs_btree_high_key_from_key(
2033 	struct xfs_btree_cur	*cur,
2034 	union xfs_btree_key	*key)
2035 {
2036 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2037 	return (union xfs_btree_key *)((char *)key +
2038 			(cur->bc_ops->key_len / 2));
2039 }
2040 
2041 /* Determine the low (and high if overlapped) keys of a leaf block */
2042 STATIC void
2043 xfs_btree_get_leaf_keys(
2044 	struct xfs_btree_cur	*cur,
2045 	struct xfs_btree_block	*block,
2046 	union xfs_btree_key	*key)
2047 {
2048 	union xfs_btree_key	max_hkey;
2049 	union xfs_btree_key	hkey;
2050 	union xfs_btree_rec	*rec;
2051 	union xfs_btree_key	*high;
2052 	int			n;
2053 
2054 	rec = xfs_btree_rec_addr(cur, 1, block);
2055 	cur->bc_ops->init_key_from_rec(key, rec);
2056 
2057 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2058 
2059 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2060 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2061 			rec = xfs_btree_rec_addr(cur, n, block);
2062 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2063 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2064 					> 0)
2065 				max_hkey = hkey;
2066 		}
2067 
2068 		high = xfs_btree_high_key_from_key(cur, key);
2069 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2070 	}
2071 }
2072 
2073 /* Determine the low (and high if overlapped) keys of a node block */
2074 STATIC void
2075 xfs_btree_get_node_keys(
2076 	struct xfs_btree_cur	*cur,
2077 	struct xfs_btree_block	*block,
2078 	union xfs_btree_key	*key)
2079 {
2080 	union xfs_btree_key	*hkey;
2081 	union xfs_btree_key	*max_hkey;
2082 	union xfs_btree_key	*high;
2083 	int			n;
2084 
2085 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2086 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2087 				cur->bc_ops->key_len / 2);
2088 
2089 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2090 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2091 			hkey = xfs_btree_high_key_addr(cur, n, block);
2092 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2093 				max_hkey = hkey;
2094 		}
2095 
2096 		high = xfs_btree_high_key_from_key(cur, key);
2097 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2098 	} else {
2099 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2100 				cur->bc_ops->key_len);
2101 	}
2102 }
2103 
2104 /* Derive the keys for any btree block. */
2105 void
2106 xfs_btree_get_keys(
2107 	struct xfs_btree_cur	*cur,
2108 	struct xfs_btree_block	*block,
2109 	union xfs_btree_key	*key)
2110 {
2111 	if (be16_to_cpu(block->bb_level) == 0)
2112 		xfs_btree_get_leaf_keys(cur, block, key);
2113 	else
2114 		xfs_btree_get_node_keys(cur, block, key);
2115 }
2116 
2117 /*
2118  * Decide if we need to update the parent keys of a btree block.  For
2119  * a standard btree this is only necessary if we're updating the first
2120  * record/key.  For an overlapping btree, we must always update the
2121  * keys because the highest key can be in any of the records or keys
2122  * in the block.
2123  */
2124 static inline bool
2125 xfs_btree_needs_key_update(
2126 	struct xfs_btree_cur	*cur,
2127 	int			ptr)
2128 {
2129 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2130 }
2131 
2132 /*
2133  * Update the low and high parent keys of the given level, progressing
2134  * towards the root.  If force_all is false, stop if the keys for a given
2135  * level do not need updating.
2136  */
2137 STATIC int
2138 __xfs_btree_updkeys(
2139 	struct xfs_btree_cur	*cur,
2140 	int			level,
2141 	struct xfs_btree_block	*block,
2142 	struct xfs_buf		*bp0,
2143 	bool			force_all)
2144 {
2145 	union xfs_btree_key	key;	/* keys from current level */
2146 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2147 	union xfs_btree_key	*hkey;
2148 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2149 	union xfs_btree_key	*nhkey;
2150 	struct xfs_buf		*bp;
2151 	int			ptr;
2152 
2153 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2154 
2155 	/* Exit if there aren't any parent levels to update. */
2156 	if (level + 1 >= cur->bc_nlevels)
2157 		return 0;
2158 
2159 	trace_xfs_btree_updkeys(cur, level, bp0);
2160 
2161 	lkey = &key;
2162 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2163 	xfs_btree_get_keys(cur, block, lkey);
2164 	for (level++; level < cur->bc_nlevels; level++) {
2165 #ifdef DEBUG
2166 		int		error;
2167 #endif
2168 		block = xfs_btree_get_block(cur, level, &bp);
2169 		trace_xfs_btree_updkeys(cur, level, bp);
2170 #ifdef DEBUG
2171 		error = xfs_btree_check_block(cur, block, level, bp);
2172 		if (error) {
2173 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2174 			return error;
2175 		}
2176 #endif
2177 		ptr = cur->bc_ptrs[level];
2178 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2179 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2180 		if (!force_all &&
2181 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2182 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2183 			break;
2184 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2185 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2186 		if (level + 1 >= cur->bc_nlevels)
2187 			break;
2188 		xfs_btree_get_node_keys(cur, block, lkey);
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 /* Update all the keys from some level in cursor back to the root. */
2195 STATIC int
2196 xfs_btree_updkeys_force(
2197 	struct xfs_btree_cur	*cur,
2198 	int			level)
2199 {
2200 	struct xfs_buf		*bp;
2201 	struct xfs_btree_block	*block;
2202 
2203 	block = xfs_btree_get_block(cur, level, &bp);
2204 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2205 }
2206 
2207 /*
2208  * Update the parent keys of the given level, progressing towards the root.
2209  */
2210 STATIC int
2211 xfs_btree_update_keys(
2212 	struct xfs_btree_cur	*cur,
2213 	int			level)
2214 {
2215 	struct xfs_btree_block	*block;
2216 	struct xfs_buf		*bp;
2217 	union xfs_btree_key	*kp;
2218 	union xfs_btree_key	key;
2219 	int			ptr;
2220 
2221 	ASSERT(level >= 0);
2222 
2223 	block = xfs_btree_get_block(cur, level, &bp);
2224 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2225 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2226 
2227 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228 	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2229 
2230 	/*
2231 	 * Go up the tree from this level toward the root.
2232 	 * At each level, update the key value to the value input.
2233 	 * Stop when we reach a level where the cursor isn't pointing
2234 	 * at the first entry in the block.
2235 	 */
2236 	xfs_btree_get_keys(cur, block, &key);
2237 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2238 #ifdef DEBUG
2239 		int		error;
2240 #endif
2241 		block = xfs_btree_get_block(cur, level, &bp);
2242 #ifdef DEBUG
2243 		error = xfs_btree_check_block(cur, block, level, bp);
2244 		if (error) {
2245 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2246 			return error;
2247 		}
2248 #endif
2249 		ptr = cur->bc_ptrs[level];
2250 		kp = xfs_btree_key_addr(cur, ptr, block);
2251 		xfs_btree_copy_keys(cur, kp, &key, 1);
2252 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 	}
2254 
2255 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Update the record referred to by cur to the value in the
2261  * given record. This either works (return 0) or gets an
2262  * EFSCORRUPTED error.
2263  */
2264 int
2265 xfs_btree_update(
2266 	struct xfs_btree_cur	*cur,
2267 	union xfs_btree_rec	*rec)
2268 {
2269 	struct xfs_btree_block	*block;
2270 	struct xfs_buf		*bp;
2271 	int			error;
2272 	int			ptr;
2273 	union xfs_btree_rec	*rp;
2274 
2275 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2276 	XFS_BTREE_TRACE_ARGR(cur, rec);
2277 
2278 	/* Pick up the current block. */
2279 	block = xfs_btree_get_block(cur, 0, &bp);
2280 
2281 #ifdef DEBUG
2282 	error = xfs_btree_check_block(cur, block, 0, bp);
2283 	if (error)
2284 		goto error0;
2285 #endif
2286 	/* Get the address of the rec to be updated. */
2287 	ptr = cur->bc_ptrs[0];
2288 	rp = xfs_btree_rec_addr(cur, ptr, block);
2289 
2290 	/* Fill in the new contents and log them. */
2291 	xfs_btree_copy_recs(cur, rp, rec, 1);
2292 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2293 
2294 	/*
2295 	 * If we are tracking the last record in the tree and
2296 	 * we are at the far right edge of the tree, update it.
2297 	 */
2298 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2299 		cur->bc_ops->update_lastrec(cur, block, rec,
2300 					    ptr, LASTREC_UPDATE);
2301 	}
2302 
2303 	/* Pass new key value up to our parent. */
2304 	if (xfs_btree_needs_key_update(cur, ptr)) {
2305 		error = xfs_btree_update_keys(cur, 0);
2306 		if (error)
2307 			goto error0;
2308 	}
2309 
2310 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2311 	return 0;
2312 
2313 error0:
2314 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2315 	return error;
2316 }
2317 
2318 /*
2319  * Move 1 record left from cur/level if possible.
2320  * Update cur to reflect the new path.
2321  */
2322 STATIC int					/* error */
2323 xfs_btree_lshift(
2324 	struct xfs_btree_cur	*cur,
2325 	int			level,
2326 	int			*stat)		/* success/failure */
2327 {
2328 	struct xfs_buf		*lbp;		/* left buffer pointer */
2329 	struct xfs_btree_block	*left;		/* left btree block */
2330 	int			lrecs;		/* left record count */
2331 	struct xfs_buf		*rbp;		/* right buffer pointer */
2332 	struct xfs_btree_block	*right;		/* right btree block */
2333 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2334 	int			rrecs;		/* right record count */
2335 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2336 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2337 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2338 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2339 	int			error;		/* error return value */
2340 	int			i;
2341 
2342 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2343 	XFS_BTREE_TRACE_ARGI(cur, level);
2344 
2345 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2346 	    level == cur->bc_nlevels - 1)
2347 		goto out0;
2348 
2349 	/* Set up variables for this block as "right". */
2350 	right = xfs_btree_get_block(cur, level, &rbp);
2351 
2352 #ifdef DEBUG
2353 	error = xfs_btree_check_block(cur, right, level, rbp);
2354 	if (error)
2355 		goto error0;
2356 #endif
2357 
2358 	/* If we've got no left sibling then we can't shift an entry left. */
2359 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2360 	if (xfs_btree_ptr_is_null(cur, &lptr))
2361 		goto out0;
2362 
2363 	/*
2364 	 * If the cursor entry is the one that would be moved, don't
2365 	 * do it... it's too complicated.
2366 	 */
2367 	if (cur->bc_ptrs[level] <= 1)
2368 		goto out0;
2369 
2370 	/* Set up the left neighbor as "left". */
2371 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2372 	if (error)
2373 		goto error0;
2374 
2375 	/* If it's full, it can't take another entry. */
2376 	lrecs = xfs_btree_get_numrecs(left);
2377 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2378 		goto out0;
2379 
2380 	rrecs = xfs_btree_get_numrecs(right);
2381 
2382 	/*
2383 	 * We add one entry to the left side and remove one for the right side.
2384 	 * Account for it here, the changes will be updated on disk and logged
2385 	 * later.
2386 	 */
2387 	lrecs++;
2388 	rrecs--;
2389 
2390 	XFS_BTREE_STATS_INC(cur, lshift);
2391 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2392 
2393 	/*
2394 	 * If non-leaf, copy a key and a ptr to the left block.
2395 	 * Log the changes to the left block.
2396 	 */
2397 	if (level > 0) {
2398 		/* It's a non-leaf.  Move keys and pointers. */
2399 		union xfs_btree_key	*lkp;	/* left btree key */
2400 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2401 
2402 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2403 		rkp = xfs_btree_key_addr(cur, 1, right);
2404 
2405 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2406 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2407 #ifdef DEBUG
2408 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2409 		if (error)
2410 			goto error0;
2411 #endif
2412 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2413 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2414 
2415 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2416 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2417 
2418 		ASSERT(cur->bc_ops->keys_inorder(cur,
2419 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2420 	} else {
2421 		/* It's a leaf.  Move records.  */
2422 		union xfs_btree_rec	*lrp;	/* left record pointer */
2423 
2424 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2425 		rrp = xfs_btree_rec_addr(cur, 1, right);
2426 
2427 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2428 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2429 
2430 		ASSERT(cur->bc_ops->recs_inorder(cur,
2431 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2432 	}
2433 
2434 	xfs_btree_set_numrecs(left, lrecs);
2435 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2436 
2437 	xfs_btree_set_numrecs(right, rrecs);
2438 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2439 
2440 	/*
2441 	 * Slide the contents of right down one entry.
2442 	 */
2443 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2444 	if (level > 0) {
2445 		/* It's a nonleaf. operate on keys and ptrs */
2446 #ifdef DEBUG
2447 		int			i;		/* loop index */
2448 
2449 		for (i = 0; i < rrecs; i++) {
2450 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2451 			if (error)
2452 				goto error0;
2453 		}
2454 #endif
2455 		xfs_btree_shift_keys(cur,
2456 				xfs_btree_key_addr(cur, 2, right),
2457 				-1, rrecs);
2458 		xfs_btree_shift_ptrs(cur,
2459 				xfs_btree_ptr_addr(cur, 2, right),
2460 				-1, rrecs);
2461 
2462 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2463 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2464 	} else {
2465 		/* It's a leaf. operate on records */
2466 		xfs_btree_shift_recs(cur,
2467 			xfs_btree_rec_addr(cur, 2, right),
2468 			-1, rrecs);
2469 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2470 	}
2471 
2472 	/*
2473 	 * Using a temporary cursor, update the parent key values of the
2474 	 * block on the left.
2475 	 */
2476 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2477 		error = xfs_btree_dup_cursor(cur, &tcur);
2478 		if (error)
2479 			goto error0;
2480 		i = xfs_btree_firstrec(tcur, level);
2481 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2482 
2483 		error = xfs_btree_decrement(tcur, level, &i);
2484 		if (error)
2485 			goto error1;
2486 
2487 		/* Update the parent high keys of the left block, if needed. */
2488 		error = xfs_btree_update_keys(tcur, level);
2489 		if (error)
2490 			goto error1;
2491 
2492 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2493 	}
2494 
2495 	/* Update the parent keys of the right block. */
2496 	error = xfs_btree_update_keys(cur, level);
2497 	if (error)
2498 		goto error0;
2499 
2500 	/* Slide the cursor value left one. */
2501 	cur->bc_ptrs[level]--;
2502 
2503 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2504 	*stat = 1;
2505 	return 0;
2506 
2507 out0:
2508 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2509 	*stat = 0;
2510 	return 0;
2511 
2512 error0:
2513 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2514 	return error;
2515 
2516 error1:
2517 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2518 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2519 	return error;
2520 }
2521 
2522 /*
2523  * Move 1 record right from cur/level if possible.
2524  * Update cur to reflect the new path.
2525  */
2526 STATIC int					/* error */
2527 xfs_btree_rshift(
2528 	struct xfs_btree_cur	*cur,
2529 	int			level,
2530 	int			*stat)		/* success/failure */
2531 {
2532 	struct xfs_buf		*lbp;		/* left buffer pointer */
2533 	struct xfs_btree_block	*left;		/* left btree block */
2534 	struct xfs_buf		*rbp;		/* right buffer pointer */
2535 	struct xfs_btree_block	*right;		/* right btree block */
2536 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2537 	union xfs_btree_ptr	rptr;		/* right block pointer */
2538 	union xfs_btree_key	*rkp;		/* right btree key */
2539 	int			rrecs;		/* right record count */
2540 	int			lrecs;		/* left record count */
2541 	int			error;		/* error return value */
2542 	int			i;		/* loop counter */
2543 
2544 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2545 	XFS_BTREE_TRACE_ARGI(cur, level);
2546 
2547 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2548 	    (level == cur->bc_nlevels - 1))
2549 		goto out0;
2550 
2551 	/* Set up variables for this block as "left". */
2552 	left = xfs_btree_get_block(cur, level, &lbp);
2553 
2554 #ifdef DEBUG
2555 	error = xfs_btree_check_block(cur, left, level, lbp);
2556 	if (error)
2557 		goto error0;
2558 #endif
2559 
2560 	/* If we've got no right sibling then we can't shift an entry right. */
2561 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2562 	if (xfs_btree_ptr_is_null(cur, &rptr))
2563 		goto out0;
2564 
2565 	/*
2566 	 * If the cursor entry is the one that would be moved, don't
2567 	 * do it... it's too complicated.
2568 	 */
2569 	lrecs = xfs_btree_get_numrecs(left);
2570 	if (cur->bc_ptrs[level] >= lrecs)
2571 		goto out0;
2572 
2573 	/* Set up the right neighbor as "right". */
2574 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2575 	if (error)
2576 		goto error0;
2577 
2578 	/* If it's full, it can't take another entry. */
2579 	rrecs = xfs_btree_get_numrecs(right);
2580 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2581 		goto out0;
2582 
2583 	XFS_BTREE_STATS_INC(cur, rshift);
2584 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2585 
2586 	/*
2587 	 * Make a hole at the start of the right neighbor block, then
2588 	 * copy the last left block entry to the hole.
2589 	 */
2590 	if (level > 0) {
2591 		/* It's a nonleaf. make a hole in the keys and ptrs */
2592 		union xfs_btree_key	*lkp;
2593 		union xfs_btree_ptr	*lpp;
2594 		union xfs_btree_ptr	*rpp;
2595 
2596 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2597 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2598 		rkp = xfs_btree_key_addr(cur, 1, right);
2599 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2600 
2601 #ifdef DEBUG
2602 		for (i = rrecs - 1; i >= 0; i--) {
2603 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2604 			if (error)
2605 				goto error0;
2606 		}
2607 #endif
2608 
2609 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2610 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2611 
2612 #ifdef DEBUG
2613 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2614 		if (error)
2615 			goto error0;
2616 #endif
2617 
2618 		/* Now put the new data in, and log it. */
2619 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2620 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2621 
2622 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2623 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2624 
2625 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2626 			xfs_btree_key_addr(cur, 2, right)));
2627 	} else {
2628 		/* It's a leaf. make a hole in the records */
2629 		union xfs_btree_rec	*lrp;
2630 		union xfs_btree_rec	*rrp;
2631 
2632 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2633 		rrp = xfs_btree_rec_addr(cur, 1, right);
2634 
2635 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2636 
2637 		/* Now put the new data in, and log it. */
2638 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2639 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2640 	}
2641 
2642 	/*
2643 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2644 	 */
2645 	xfs_btree_set_numrecs(left, --lrecs);
2646 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2647 
2648 	xfs_btree_set_numrecs(right, ++rrecs);
2649 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2650 
2651 	/*
2652 	 * Using a temporary cursor, update the parent key values of the
2653 	 * block on the right.
2654 	 */
2655 	error = xfs_btree_dup_cursor(cur, &tcur);
2656 	if (error)
2657 		goto error0;
2658 	i = xfs_btree_lastrec(tcur, level);
2659 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2660 
2661 	error = xfs_btree_increment(tcur, level, &i);
2662 	if (error)
2663 		goto error1;
2664 
2665 	/* Update the parent high keys of the left block, if needed. */
2666 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2667 		error = xfs_btree_update_keys(cur, level);
2668 		if (error)
2669 			goto error1;
2670 	}
2671 
2672 	/* Update the parent keys of the right block. */
2673 	error = xfs_btree_update_keys(tcur, level);
2674 	if (error)
2675 		goto error1;
2676 
2677 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2678 
2679 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2680 	*stat = 1;
2681 	return 0;
2682 
2683 out0:
2684 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2685 	*stat = 0;
2686 	return 0;
2687 
2688 error0:
2689 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2690 	return error;
2691 
2692 error1:
2693 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2694 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2695 	return error;
2696 }
2697 
2698 /*
2699  * Split cur/level block in half.
2700  * Return new block number and the key to its first
2701  * record (to be inserted into parent).
2702  */
2703 STATIC int					/* error */
2704 __xfs_btree_split(
2705 	struct xfs_btree_cur	*cur,
2706 	int			level,
2707 	union xfs_btree_ptr	*ptrp,
2708 	union xfs_btree_key	*key,
2709 	struct xfs_btree_cur	**curp,
2710 	int			*stat)		/* success/failure */
2711 {
2712 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2713 	struct xfs_buf		*lbp;		/* left buffer pointer */
2714 	struct xfs_btree_block	*left;		/* left btree block */
2715 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2716 	struct xfs_buf		*rbp;		/* right buffer pointer */
2717 	struct xfs_btree_block	*right;		/* right btree block */
2718 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2719 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2720 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2721 	int			lrecs;
2722 	int			rrecs;
2723 	int			src_index;
2724 	int			error;		/* error return value */
2725 #ifdef DEBUG
2726 	int			i;
2727 #endif
2728 
2729 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2730 	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2731 
2732 	XFS_BTREE_STATS_INC(cur, split);
2733 
2734 	/* Set up left block (current one). */
2735 	left = xfs_btree_get_block(cur, level, &lbp);
2736 
2737 #ifdef DEBUG
2738 	error = xfs_btree_check_block(cur, left, level, lbp);
2739 	if (error)
2740 		goto error0;
2741 #endif
2742 
2743 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2744 
2745 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2746 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2747 	if (error)
2748 		goto error0;
2749 	if (*stat == 0)
2750 		goto out0;
2751 	XFS_BTREE_STATS_INC(cur, alloc);
2752 
2753 	/* Set up the new block as "right". */
2754 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2755 	if (error)
2756 		goto error0;
2757 
2758 	/* Fill in the btree header for the new right block. */
2759 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2760 
2761 	/*
2762 	 * Split the entries between the old and the new block evenly.
2763 	 * Make sure that if there's an odd number of entries now, that
2764 	 * each new block will have the same number of entries.
2765 	 */
2766 	lrecs = xfs_btree_get_numrecs(left);
2767 	rrecs = lrecs / 2;
2768 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2769 		rrecs++;
2770 	src_index = (lrecs - rrecs + 1);
2771 
2772 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2773 
2774 	/* Adjust numrecs for the later get_*_keys() calls. */
2775 	lrecs -= rrecs;
2776 	xfs_btree_set_numrecs(left, lrecs);
2777 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2778 
2779 	/*
2780 	 * Copy btree block entries from the left block over to the
2781 	 * new block, the right. Update the right block and log the
2782 	 * changes.
2783 	 */
2784 	if (level > 0) {
2785 		/* It's a non-leaf.  Move keys and pointers. */
2786 		union xfs_btree_key	*lkp;	/* left btree key */
2787 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2788 		union xfs_btree_key	*rkp;	/* right btree key */
2789 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2790 
2791 		lkp = xfs_btree_key_addr(cur, src_index, left);
2792 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2793 		rkp = xfs_btree_key_addr(cur, 1, right);
2794 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2795 
2796 #ifdef DEBUG
2797 		for (i = src_index; i < rrecs; i++) {
2798 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2799 			if (error)
2800 				goto error0;
2801 		}
2802 #endif
2803 
2804 		/* Copy the keys & pointers to the new block. */
2805 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2806 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2807 
2808 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2809 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2810 
2811 		/* Stash the keys of the new block for later insertion. */
2812 		xfs_btree_get_node_keys(cur, right, key);
2813 	} else {
2814 		/* It's a leaf.  Move records.  */
2815 		union xfs_btree_rec	*lrp;	/* left record pointer */
2816 		union xfs_btree_rec	*rrp;	/* right record pointer */
2817 
2818 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2819 		rrp = xfs_btree_rec_addr(cur, 1, right);
2820 
2821 		/* Copy records to the new block. */
2822 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2823 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2824 
2825 		/* Stash the keys of the new block for later insertion. */
2826 		xfs_btree_get_leaf_keys(cur, right, key);
2827 	}
2828 
2829 	/*
2830 	 * Find the left block number by looking in the buffer.
2831 	 * Adjust sibling pointers.
2832 	 */
2833 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2834 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2835 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2836 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2837 
2838 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2839 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2840 
2841 	/*
2842 	 * If there's a block to the new block's right, make that block
2843 	 * point back to right instead of to left.
2844 	 */
2845 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2846 		error = xfs_btree_read_buf_block(cur, &rrptr,
2847 							0, &rrblock, &rrbp);
2848 		if (error)
2849 			goto error0;
2850 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2851 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2852 	}
2853 
2854 	/* Update the parent high keys of the left block, if needed. */
2855 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2856 		error = xfs_btree_update_keys(cur, level);
2857 		if (error)
2858 			goto error0;
2859 	}
2860 
2861 	/*
2862 	 * If the cursor is really in the right block, move it there.
2863 	 * If it's just pointing past the last entry in left, then we'll
2864 	 * insert there, so don't change anything in that case.
2865 	 */
2866 	if (cur->bc_ptrs[level] > lrecs + 1) {
2867 		xfs_btree_setbuf(cur, level, rbp);
2868 		cur->bc_ptrs[level] -= lrecs;
2869 	}
2870 	/*
2871 	 * If there are more levels, we'll need another cursor which refers
2872 	 * the right block, no matter where this cursor was.
2873 	 */
2874 	if (level + 1 < cur->bc_nlevels) {
2875 		error = xfs_btree_dup_cursor(cur, curp);
2876 		if (error)
2877 			goto error0;
2878 		(*curp)->bc_ptrs[level + 1]++;
2879 	}
2880 	*ptrp = rptr;
2881 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2882 	*stat = 1;
2883 	return 0;
2884 out0:
2885 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2886 	*stat = 0;
2887 	return 0;
2888 
2889 error0:
2890 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2891 	return error;
2892 }
2893 
2894 struct xfs_btree_split_args {
2895 	struct xfs_btree_cur	*cur;
2896 	int			level;
2897 	union xfs_btree_ptr	*ptrp;
2898 	union xfs_btree_key	*key;
2899 	struct xfs_btree_cur	**curp;
2900 	int			*stat;		/* success/failure */
2901 	int			result;
2902 	bool			kswapd;	/* allocation in kswapd context */
2903 	struct completion	*done;
2904 	struct work_struct	work;
2905 };
2906 
2907 /*
2908  * Stack switching interfaces for allocation
2909  */
2910 static void
2911 xfs_btree_split_worker(
2912 	struct work_struct	*work)
2913 {
2914 	struct xfs_btree_split_args	*args = container_of(work,
2915 						struct xfs_btree_split_args, work);
2916 	unsigned long		pflags;
2917 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2918 
2919 	/*
2920 	 * we are in a transaction context here, but may also be doing work
2921 	 * in kswapd context, and hence we may need to inherit that state
2922 	 * temporarily to ensure that we don't block waiting for memory reclaim
2923 	 * in any way.
2924 	 */
2925 	if (args->kswapd)
2926 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2927 
2928 	current_set_flags_nested(&pflags, new_pflags);
2929 
2930 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2931 					 args->key, args->curp, args->stat);
2932 	complete(args->done);
2933 
2934 	current_restore_flags_nested(&pflags, new_pflags);
2935 }
2936 
2937 /*
2938  * BMBT split requests often come in with little stack to work on. Push
2939  * them off to a worker thread so there is lots of stack to use. For the other
2940  * btree types, just call directly to avoid the context switch overhead here.
2941  */
2942 STATIC int					/* error */
2943 xfs_btree_split(
2944 	struct xfs_btree_cur	*cur,
2945 	int			level,
2946 	union xfs_btree_ptr	*ptrp,
2947 	union xfs_btree_key	*key,
2948 	struct xfs_btree_cur	**curp,
2949 	int			*stat)		/* success/failure */
2950 {
2951 	struct xfs_btree_split_args	args;
2952 	DECLARE_COMPLETION_ONSTACK(done);
2953 
2954 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2955 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2956 
2957 	args.cur = cur;
2958 	args.level = level;
2959 	args.ptrp = ptrp;
2960 	args.key = key;
2961 	args.curp = curp;
2962 	args.stat = stat;
2963 	args.done = &done;
2964 	args.kswapd = current_is_kswapd();
2965 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2966 	queue_work(xfs_alloc_wq, &args.work);
2967 	wait_for_completion(&done);
2968 	destroy_work_on_stack(&args.work);
2969 	return args.result;
2970 }
2971 
2972 
2973 /*
2974  * Copy the old inode root contents into a real block and make the
2975  * broot point to it.
2976  */
2977 int						/* error */
2978 xfs_btree_new_iroot(
2979 	struct xfs_btree_cur	*cur,		/* btree cursor */
2980 	int			*logflags,	/* logging flags for inode */
2981 	int			*stat)		/* return status - 0 fail */
2982 {
2983 	struct xfs_buf		*cbp;		/* buffer for cblock */
2984 	struct xfs_btree_block	*block;		/* btree block */
2985 	struct xfs_btree_block	*cblock;	/* child btree block */
2986 	union xfs_btree_key	*ckp;		/* child key pointer */
2987 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2988 	union xfs_btree_key	*kp;		/* pointer to btree key */
2989 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2990 	union xfs_btree_ptr	nptr;		/* new block addr */
2991 	int			level;		/* btree level */
2992 	int			error;		/* error return code */
2993 #ifdef DEBUG
2994 	int			i;		/* loop counter */
2995 #endif
2996 
2997 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2998 	XFS_BTREE_STATS_INC(cur, newroot);
2999 
3000 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3001 
3002 	level = cur->bc_nlevels - 1;
3003 
3004 	block = xfs_btree_get_iroot(cur);
3005 	pp = xfs_btree_ptr_addr(cur, 1, block);
3006 
3007 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3008 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3009 	if (error)
3010 		goto error0;
3011 	if (*stat == 0) {
3012 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3013 		return 0;
3014 	}
3015 	XFS_BTREE_STATS_INC(cur, alloc);
3016 
3017 	/* Copy the root into a real block. */
3018 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
3019 	if (error)
3020 		goto error0;
3021 
3022 	/*
3023 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3024 	 * In that case have to also ensure the blkno remains correct
3025 	 */
3026 	memcpy(cblock, block, xfs_btree_block_len(cur));
3027 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3028 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3029 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3030 		else
3031 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3032 	}
3033 
3034 	be16_add_cpu(&block->bb_level, 1);
3035 	xfs_btree_set_numrecs(block, 1);
3036 	cur->bc_nlevels++;
3037 	cur->bc_ptrs[level + 1] = 1;
3038 
3039 	kp = xfs_btree_key_addr(cur, 1, block);
3040 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3041 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3042 
3043 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3044 #ifdef DEBUG
3045 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3046 		error = xfs_btree_check_ptr(cur, pp, i, level);
3047 		if (error)
3048 			goto error0;
3049 	}
3050 #endif
3051 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3052 
3053 #ifdef DEBUG
3054 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3055 	if (error)
3056 		goto error0;
3057 #endif
3058 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3059 
3060 	xfs_iroot_realloc(cur->bc_private.b.ip,
3061 			  1 - xfs_btree_get_numrecs(cblock),
3062 			  cur->bc_private.b.whichfork);
3063 
3064 	xfs_btree_setbuf(cur, level, cbp);
3065 
3066 	/*
3067 	 * Do all this logging at the end so that
3068 	 * the root is at the right level.
3069 	 */
3070 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3071 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3072 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3073 
3074 	*logflags |=
3075 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3076 	*stat = 1;
3077 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3078 	return 0;
3079 error0:
3080 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3081 	return error;
3082 }
3083 
3084 /*
3085  * Allocate a new root block, fill it in.
3086  */
3087 STATIC int				/* error */
3088 xfs_btree_new_root(
3089 	struct xfs_btree_cur	*cur,	/* btree cursor */
3090 	int			*stat)	/* success/failure */
3091 {
3092 	struct xfs_btree_block	*block;	/* one half of the old root block */
3093 	struct xfs_buf		*bp;	/* buffer containing block */
3094 	int			error;	/* error return value */
3095 	struct xfs_buf		*lbp;	/* left buffer pointer */
3096 	struct xfs_btree_block	*left;	/* left btree block */
3097 	struct xfs_buf		*nbp;	/* new (root) buffer */
3098 	struct xfs_btree_block	*new;	/* new (root) btree block */
3099 	int			nptr;	/* new value for key index, 1 or 2 */
3100 	struct xfs_buf		*rbp;	/* right buffer pointer */
3101 	struct xfs_btree_block	*right;	/* right btree block */
3102 	union xfs_btree_ptr	rptr;
3103 	union xfs_btree_ptr	lptr;
3104 
3105 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3106 	XFS_BTREE_STATS_INC(cur, newroot);
3107 
3108 	/* initialise our start point from the cursor */
3109 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3110 
3111 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3112 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3113 	if (error)
3114 		goto error0;
3115 	if (*stat == 0)
3116 		goto out0;
3117 	XFS_BTREE_STATS_INC(cur, alloc);
3118 
3119 	/* Set up the new block. */
3120 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3121 	if (error)
3122 		goto error0;
3123 
3124 	/* Set the root in the holding structure  increasing the level by 1. */
3125 	cur->bc_ops->set_root(cur, &lptr, 1);
3126 
3127 	/*
3128 	 * At the previous root level there are now two blocks: the old root,
3129 	 * and the new block generated when it was split.  We don't know which
3130 	 * one the cursor is pointing at, so we set up variables "left" and
3131 	 * "right" for each case.
3132 	 */
3133 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3134 
3135 #ifdef DEBUG
3136 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3137 	if (error)
3138 		goto error0;
3139 #endif
3140 
3141 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3142 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3143 		/* Our block is left, pick up the right block. */
3144 		lbp = bp;
3145 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3146 		left = block;
3147 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3148 		if (error)
3149 			goto error0;
3150 		bp = rbp;
3151 		nptr = 1;
3152 	} else {
3153 		/* Our block is right, pick up the left block. */
3154 		rbp = bp;
3155 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3156 		right = block;
3157 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3158 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3159 		if (error)
3160 			goto error0;
3161 		bp = lbp;
3162 		nptr = 2;
3163 	}
3164 
3165 	/* Fill in the new block's btree header and log it. */
3166 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3167 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3168 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3169 			!xfs_btree_ptr_is_null(cur, &rptr));
3170 
3171 	/* Fill in the key data in the new root. */
3172 	if (xfs_btree_get_level(left) > 0) {
3173 		/*
3174 		 * Get the keys for the left block's keys and put them directly
3175 		 * in the parent block.  Do the same for the right block.
3176 		 */
3177 		xfs_btree_get_node_keys(cur, left,
3178 				xfs_btree_key_addr(cur, 1, new));
3179 		xfs_btree_get_node_keys(cur, right,
3180 				xfs_btree_key_addr(cur, 2, new));
3181 	} else {
3182 		/*
3183 		 * Get the keys for the left block's records and put them
3184 		 * directly in the parent block.  Do the same for the right
3185 		 * block.
3186 		 */
3187 		xfs_btree_get_leaf_keys(cur, left,
3188 			xfs_btree_key_addr(cur, 1, new));
3189 		xfs_btree_get_leaf_keys(cur, right,
3190 			xfs_btree_key_addr(cur, 2, new));
3191 	}
3192 	xfs_btree_log_keys(cur, nbp, 1, 2);
3193 
3194 	/* Fill in the pointer data in the new root. */
3195 	xfs_btree_copy_ptrs(cur,
3196 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3197 	xfs_btree_copy_ptrs(cur,
3198 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3199 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3200 
3201 	/* Fix up the cursor. */
3202 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3203 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3204 	cur->bc_nlevels++;
3205 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3206 	*stat = 1;
3207 	return 0;
3208 error0:
3209 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3210 	return error;
3211 out0:
3212 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3213 	*stat = 0;
3214 	return 0;
3215 }
3216 
3217 STATIC int
3218 xfs_btree_make_block_unfull(
3219 	struct xfs_btree_cur	*cur,	/* btree cursor */
3220 	int			level,	/* btree level */
3221 	int			numrecs,/* # of recs in block */
3222 	int			*oindex,/* old tree index */
3223 	int			*index,	/* new tree index */
3224 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3225 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3226 	union xfs_btree_key	*key,	/* key of new block */
3227 	int			*stat)
3228 {
3229 	int			error = 0;
3230 
3231 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3232 	    level == cur->bc_nlevels - 1) {
3233 	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3234 
3235 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3236 			/* A root block that can be made bigger. */
3237 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3238 			*stat = 1;
3239 		} else {
3240 			/* A root block that needs replacing */
3241 			int	logflags = 0;
3242 
3243 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3244 			if (error || *stat == 0)
3245 				return error;
3246 
3247 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3248 		}
3249 
3250 		return 0;
3251 	}
3252 
3253 	/* First, try shifting an entry to the right neighbor. */
3254 	error = xfs_btree_rshift(cur, level, stat);
3255 	if (error || *stat)
3256 		return error;
3257 
3258 	/* Next, try shifting an entry to the left neighbor. */
3259 	error = xfs_btree_lshift(cur, level, stat);
3260 	if (error)
3261 		return error;
3262 
3263 	if (*stat) {
3264 		*oindex = *index = cur->bc_ptrs[level];
3265 		return 0;
3266 	}
3267 
3268 	/*
3269 	 * Next, try splitting the current block in half.
3270 	 *
3271 	 * If this works we have to re-set our variables because we
3272 	 * could be in a different block now.
3273 	 */
3274 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3275 	if (error || *stat == 0)
3276 		return error;
3277 
3278 
3279 	*index = cur->bc_ptrs[level];
3280 	return 0;
3281 }
3282 
3283 /*
3284  * Insert one record/level.  Return information to the caller
3285  * allowing the next level up to proceed if necessary.
3286  */
3287 STATIC int
3288 xfs_btree_insrec(
3289 	struct xfs_btree_cur	*cur,	/* btree cursor */
3290 	int			level,	/* level to insert record at */
3291 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3292 	union xfs_btree_rec	*rec,	/* record to insert */
3293 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3294 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3295 	int			*stat)	/* success/failure */
3296 {
3297 	struct xfs_btree_block	*block;	/* btree block */
3298 	struct xfs_buf		*bp;	/* buffer for block */
3299 	union xfs_btree_ptr	nptr;	/* new block ptr */
3300 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3301 	union xfs_btree_key	nkey;	/* new block key */
3302 	union xfs_btree_key	*lkey;
3303 	int			optr;	/* old key/record index */
3304 	int			ptr;	/* key/record index */
3305 	int			numrecs;/* number of records */
3306 	int			error;	/* error return value */
3307 #ifdef DEBUG
3308 	int			i;
3309 #endif
3310 	xfs_daddr_t		old_bn;
3311 
3312 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3313 	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3314 
3315 	ncur = NULL;
3316 	lkey = &nkey;
3317 
3318 	/*
3319 	 * If we have an external root pointer, and we've made it to the
3320 	 * root level, allocate a new root block and we're done.
3321 	 */
3322 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3323 	    (level >= cur->bc_nlevels)) {
3324 		error = xfs_btree_new_root(cur, stat);
3325 		xfs_btree_set_ptr_null(cur, ptrp);
3326 
3327 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3328 		return error;
3329 	}
3330 
3331 	/* If we're off the left edge, return failure. */
3332 	ptr = cur->bc_ptrs[level];
3333 	if (ptr == 0) {
3334 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3335 		*stat = 0;
3336 		return 0;
3337 	}
3338 
3339 	optr = ptr;
3340 
3341 	XFS_BTREE_STATS_INC(cur, insrec);
3342 
3343 	/* Get pointers to the btree buffer and block. */
3344 	block = xfs_btree_get_block(cur, level, &bp);
3345 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3346 	numrecs = xfs_btree_get_numrecs(block);
3347 
3348 #ifdef DEBUG
3349 	error = xfs_btree_check_block(cur, block, level, bp);
3350 	if (error)
3351 		goto error0;
3352 
3353 	/* Check that the new entry is being inserted in the right place. */
3354 	if (ptr <= numrecs) {
3355 		if (level == 0) {
3356 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3357 				xfs_btree_rec_addr(cur, ptr, block)));
3358 		} else {
3359 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3360 				xfs_btree_key_addr(cur, ptr, block)));
3361 		}
3362 	}
3363 #endif
3364 
3365 	/*
3366 	 * If the block is full, we can't insert the new entry until we
3367 	 * make the block un-full.
3368 	 */
3369 	xfs_btree_set_ptr_null(cur, &nptr);
3370 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3371 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3372 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3373 		if (error || *stat == 0)
3374 			goto error0;
3375 	}
3376 
3377 	/*
3378 	 * The current block may have changed if the block was
3379 	 * previously full and we have just made space in it.
3380 	 */
3381 	block = xfs_btree_get_block(cur, level, &bp);
3382 	numrecs = xfs_btree_get_numrecs(block);
3383 
3384 #ifdef DEBUG
3385 	error = xfs_btree_check_block(cur, block, level, bp);
3386 	if (error)
3387 		return error;
3388 #endif
3389 
3390 	/*
3391 	 * At this point we know there's room for our new entry in the block
3392 	 * we're pointing at.
3393 	 */
3394 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3395 
3396 	if (level > 0) {
3397 		/* It's a nonleaf. make a hole in the keys and ptrs */
3398 		union xfs_btree_key	*kp;
3399 		union xfs_btree_ptr	*pp;
3400 
3401 		kp = xfs_btree_key_addr(cur, ptr, block);
3402 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3403 
3404 #ifdef DEBUG
3405 		for (i = numrecs - ptr; i >= 0; i--) {
3406 			error = xfs_btree_check_ptr(cur, pp, i, level);
3407 			if (error)
3408 				return error;
3409 		}
3410 #endif
3411 
3412 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3413 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3414 
3415 #ifdef DEBUG
3416 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3417 		if (error)
3418 			goto error0;
3419 #endif
3420 
3421 		/* Now put the new data in, bump numrecs and log it. */
3422 		xfs_btree_copy_keys(cur, kp, key, 1);
3423 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3424 		numrecs++;
3425 		xfs_btree_set_numrecs(block, numrecs);
3426 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3427 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3428 #ifdef DEBUG
3429 		if (ptr < numrecs) {
3430 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3431 				xfs_btree_key_addr(cur, ptr + 1, block)));
3432 		}
3433 #endif
3434 	} else {
3435 		/* It's a leaf. make a hole in the records */
3436 		union xfs_btree_rec             *rp;
3437 
3438 		rp = xfs_btree_rec_addr(cur, ptr, block);
3439 
3440 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3441 
3442 		/* Now put the new data in, bump numrecs and log it. */
3443 		xfs_btree_copy_recs(cur, rp, rec, 1);
3444 		xfs_btree_set_numrecs(block, ++numrecs);
3445 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3446 #ifdef DEBUG
3447 		if (ptr < numrecs) {
3448 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3449 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3450 		}
3451 #endif
3452 	}
3453 
3454 	/* Log the new number of records in the btree header. */
3455 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3456 
3457 	/*
3458 	 * If we just inserted into a new tree block, we have to
3459 	 * recalculate nkey here because nkey is out of date.
3460 	 *
3461 	 * Otherwise we're just updating an existing block (having shoved
3462 	 * some records into the new tree block), so use the regular key
3463 	 * update mechanism.
3464 	 */
3465 	if (bp && bp->b_bn != old_bn) {
3466 		xfs_btree_get_keys(cur, block, lkey);
3467 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3468 		error = xfs_btree_update_keys(cur, level);
3469 		if (error)
3470 			goto error0;
3471 	}
3472 
3473 	/*
3474 	 * If we are tracking the last record in the tree and
3475 	 * we are at the far right edge of the tree, update it.
3476 	 */
3477 	if (xfs_btree_is_lastrec(cur, block, level)) {
3478 		cur->bc_ops->update_lastrec(cur, block, rec,
3479 					    ptr, LASTREC_INSREC);
3480 	}
3481 
3482 	/*
3483 	 * Return the new block number, if any.
3484 	 * If there is one, give back a record value and a cursor too.
3485 	 */
3486 	*ptrp = nptr;
3487 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3488 		xfs_btree_copy_keys(cur, key, lkey, 1);
3489 		*curp = ncur;
3490 	}
3491 
3492 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3493 	*stat = 1;
3494 	return 0;
3495 
3496 error0:
3497 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3498 	return error;
3499 }
3500 
3501 /*
3502  * Insert the record at the point referenced by cur.
3503  *
3504  * A multi-level split of the tree on insert will invalidate the original
3505  * cursor.  All callers of this function should assume that the cursor is
3506  * no longer valid and revalidate it.
3507  */
3508 int
3509 xfs_btree_insert(
3510 	struct xfs_btree_cur	*cur,
3511 	int			*stat)
3512 {
3513 	int			error;	/* error return value */
3514 	int			i;	/* result value, 0 for failure */
3515 	int			level;	/* current level number in btree */
3516 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3517 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3518 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3519 	union xfs_btree_key	bkey;	/* key of block to insert */
3520 	union xfs_btree_key	*key;
3521 	union xfs_btree_rec	rec;	/* record to insert */
3522 
3523 	level = 0;
3524 	ncur = NULL;
3525 	pcur = cur;
3526 	key = &bkey;
3527 
3528 	xfs_btree_set_ptr_null(cur, &nptr);
3529 
3530 	/* Make a key out of the record data to be inserted, and save it. */
3531 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3532 	cur->bc_ops->init_key_from_rec(key, &rec);
3533 
3534 	/*
3535 	 * Loop going up the tree, starting at the leaf level.
3536 	 * Stop when we don't get a split block, that must mean that
3537 	 * the insert is finished with this level.
3538 	 */
3539 	do {
3540 		/*
3541 		 * Insert nrec/nptr into this level of the tree.
3542 		 * Note if we fail, nptr will be null.
3543 		 */
3544 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3545 				&ncur, &i);
3546 		if (error) {
3547 			if (pcur != cur)
3548 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3549 			goto error0;
3550 		}
3551 
3552 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3553 		level++;
3554 
3555 		/*
3556 		 * See if the cursor we just used is trash.
3557 		 * Can't trash the caller's cursor, but otherwise we should
3558 		 * if ncur is a new cursor or we're about to be done.
3559 		 */
3560 		if (pcur != cur &&
3561 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3562 			/* Save the state from the cursor before we trash it */
3563 			if (cur->bc_ops->update_cursor)
3564 				cur->bc_ops->update_cursor(pcur, cur);
3565 			cur->bc_nlevels = pcur->bc_nlevels;
3566 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3567 		}
3568 		/* If we got a new cursor, switch to it. */
3569 		if (ncur) {
3570 			pcur = ncur;
3571 			ncur = NULL;
3572 		}
3573 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3574 
3575 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3576 	*stat = i;
3577 	return 0;
3578 error0:
3579 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3580 	return error;
3581 }
3582 
3583 /*
3584  * Try to merge a non-leaf block back into the inode root.
3585  *
3586  * Note: the killroot names comes from the fact that we're effectively
3587  * killing the old root block.  But because we can't just delete the
3588  * inode we have to copy the single block it was pointing to into the
3589  * inode.
3590  */
3591 STATIC int
3592 xfs_btree_kill_iroot(
3593 	struct xfs_btree_cur	*cur)
3594 {
3595 	int			whichfork = cur->bc_private.b.whichfork;
3596 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3597 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3598 	struct xfs_btree_block	*block;
3599 	struct xfs_btree_block	*cblock;
3600 	union xfs_btree_key	*kp;
3601 	union xfs_btree_key	*ckp;
3602 	union xfs_btree_ptr	*pp;
3603 	union xfs_btree_ptr	*cpp;
3604 	struct xfs_buf		*cbp;
3605 	int			level;
3606 	int			index;
3607 	int			numrecs;
3608 	int			error;
3609 #ifdef DEBUG
3610 	union xfs_btree_ptr	ptr;
3611 	int			i;
3612 #endif
3613 
3614 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3615 
3616 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3617 	ASSERT(cur->bc_nlevels > 1);
3618 
3619 	/*
3620 	 * Don't deal with the root block needs to be a leaf case.
3621 	 * We're just going to turn the thing back into extents anyway.
3622 	 */
3623 	level = cur->bc_nlevels - 1;
3624 	if (level == 1)
3625 		goto out0;
3626 
3627 	/*
3628 	 * Give up if the root has multiple children.
3629 	 */
3630 	block = xfs_btree_get_iroot(cur);
3631 	if (xfs_btree_get_numrecs(block) != 1)
3632 		goto out0;
3633 
3634 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3635 	numrecs = xfs_btree_get_numrecs(cblock);
3636 
3637 	/*
3638 	 * Only do this if the next level will fit.
3639 	 * Then the data must be copied up to the inode,
3640 	 * instead of freeing the root you free the next level.
3641 	 */
3642 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3643 		goto out0;
3644 
3645 	XFS_BTREE_STATS_INC(cur, killroot);
3646 
3647 #ifdef DEBUG
3648 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3649 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3650 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3651 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3652 #endif
3653 
3654 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3655 	if (index) {
3656 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3657 				  cur->bc_private.b.whichfork);
3658 		block = ifp->if_broot;
3659 	}
3660 
3661 	be16_add_cpu(&block->bb_numrecs, index);
3662 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3663 
3664 	kp = xfs_btree_key_addr(cur, 1, block);
3665 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3666 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3667 
3668 	pp = xfs_btree_ptr_addr(cur, 1, block);
3669 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3670 #ifdef DEBUG
3671 	for (i = 0; i < numrecs; i++) {
3672 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3673 		if (error) {
3674 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3675 			return error;
3676 		}
3677 	}
3678 #endif
3679 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3680 
3681 	error = xfs_btree_free_block(cur, cbp);
3682 	if (error) {
3683 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3684 		return error;
3685 	}
3686 
3687 	cur->bc_bufs[level - 1] = NULL;
3688 	be16_add_cpu(&block->bb_level, -1);
3689 	xfs_trans_log_inode(cur->bc_tp, ip,
3690 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3691 	cur->bc_nlevels--;
3692 out0:
3693 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3694 	return 0;
3695 }
3696 
3697 /*
3698  * Kill the current root node, and replace it with it's only child node.
3699  */
3700 STATIC int
3701 xfs_btree_kill_root(
3702 	struct xfs_btree_cur	*cur,
3703 	struct xfs_buf		*bp,
3704 	int			level,
3705 	union xfs_btree_ptr	*newroot)
3706 {
3707 	int			error;
3708 
3709 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3710 	XFS_BTREE_STATS_INC(cur, killroot);
3711 
3712 	/*
3713 	 * Update the root pointer, decreasing the level by 1 and then
3714 	 * free the old root.
3715 	 */
3716 	cur->bc_ops->set_root(cur, newroot, -1);
3717 
3718 	error = xfs_btree_free_block(cur, bp);
3719 	if (error) {
3720 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3721 		return error;
3722 	}
3723 
3724 	cur->bc_bufs[level] = NULL;
3725 	cur->bc_ra[level] = 0;
3726 	cur->bc_nlevels--;
3727 
3728 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3729 	return 0;
3730 }
3731 
3732 STATIC int
3733 xfs_btree_dec_cursor(
3734 	struct xfs_btree_cur	*cur,
3735 	int			level,
3736 	int			*stat)
3737 {
3738 	int			error;
3739 	int			i;
3740 
3741 	if (level > 0) {
3742 		error = xfs_btree_decrement(cur, level, &i);
3743 		if (error)
3744 			return error;
3745 	}
3746 
3747 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3748 	*stat = 1;
3749 	return 0;
3750 }
3751 
3752 /*
3753  * Single level of the btree record deletion routine.
3754  * Delete record pointed to by cur/level.
3755  * Remove the record from its block then rebalance the tree.
3756  * Return 0 for error, 1 for done, 2 to go on to the next level.
3757  */
3758 STATIC int					/* error */
3759 xfs_btree_delrec(
3760 	struct xfs_btree_cur	*cur,		/* btree cursor */
3761 	int			level,		/* level removing record from */
3762 	int			*stat)		/* fail/done/go-on */
3763 {
3764 	struct xfs_btree_block	*block;		/* btree block */
3765 	union xfs_btree_ptr	cptr;		/* current block ptr */
3766 	struct xfs_buf		*bp;		/* buffer for block */
3767 	int			error;		/* error return value */
3768 	int			i;		/* loop counter */
3769 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3770 	struct xfs_buf		*lbp;		/* left buffer pointer */
3771 	struct xfs_btree_block	*left;		/* left btree block */
3772 	int			lrecs = 0;	/* left record count */
3773 	int			ptr;		/* key/record index */
3774 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3775 	struct xfs_buf		*rbp;		/* right buffer pointer */
3776 	struct xfs_btree_block	*right;		/* right btree block */
3777 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3778 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3779 	int			rrecs = 0;	/* right record count */
3780 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3781 	int			numrecs;	/* temporary numrec count */
3782 
3783 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3784 	XFS_BTREE_TRACE_ARGI(cur, level);
3785 
3786 	tcur = NULL;
3787 
3788 	/* Get the index of the entry being deleted, check for nothing there. */
3789 	ptr = cur->bc_ptrs[level];
3790 	if (ptr == 0) {
3791 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3792 		*stat = 0;
3793 		return 0;
3794 	}
3795 
3796 	/* Get the buffer & block containing the record or key/ptr. */
3797 	block = xfs_btree_get_block(cur, level, &bp);
3798 	numrecs = xfs_btree_get_numrecs(block);
3799 
3800 #ifdef DEBUG
3801 	error = xfs_btree_check_block(cur, block, level, bp);
3802 	if (error)
3803 		goto error0;
3804 #endif
3805 
3806 	/* Fail if we're off the end of the block. */
3807 	if (ptr > numrecs) {
3808 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3809 		*stat = 0;
3810 		return 0;
3811 	}
3812 
3813 	XFS_BTREE_STATS_INC(cur, delrec);
3814 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3815 
3816 	/* Excise the entries being deleted. */
3817 	if (level > 0) {
3818 		/* It's a nonleaf. operate on keys and ptrs */
3819 		union xfs_btree_key	*lkp;
3820 		union xfs_btree_ptr	*lpp;
3821 
3822 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3823 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3824 
3825 #ifdef DEBUG
3826 		for (i = 0; i < numrecs - ptr; i++) {
3827 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3828 			if (error)
3829 				goto error0;
3830 		}
3831 #endif
3832 
3833 		if (ptr < numrecs) {
3834 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3835 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3836 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3837 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3838 		}
3839 	} else {
3840 		/* It's a leaf. operate on records */
3841 		if (ptr < numrecs) {
3842 			xfs_btree_shift_recs(cur,
3843 				xfs_btree_rec_addr(cur, ptr + 1, block),
3844 				-1, numrecs - ptr);
3845 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3846 		}
3847 	}
3848 
3849 	/*
3850 	 * Decrement and log the number of entries in the block.
3851 	 */
3852 	xfs_btree_set_numrecs(block, --numrecs);
3853 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3854 
3855 	/*
3856 	 * If we are tracking the last record in the tree and
3857 	 * we are at the far right edge of the tree, update it.
3858 	 */
3859 	if (xfs_btree_is_lastrec(cur, block, level)) {
3860 		cur->bc_ops->update_lastrec(cur, block, NULL,
3861 					    ptr, LASTREC_DELREC);
3862 	}
3863 
3864 	/*
3865 	 * We're at the root level.  First, shrink the root block in-memory.
3866 	 * Try to get rid of the next level down.  If we can't then there's
3867 	 * nothing left to do.
3868 	 */
3869 	if (level == cur->bc_nlevels - 1) {
3870 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3872 					  cur->bc_private.b.whichfork);
3873 
3874 			error = xfs_btree_kill_iroot(cur);
3875 			if (error)
3876 				goto error0;
3877 
3878 			error = xfs_btree_dec_cursor(cur, level, stat);
3879 			if (error)
3880 				goto error0;
3881 			*stat = 1;
3882 			return 0;
3883 		}
3884 
3885 		/*
3886 		 * If this is the root level, and there's only one entry left,
3887 		 * and it's NOT the leaf level, then we can get rid of this
3888 		 * level.
3889 		 */
3890 		if (numrecs == 1 && level > 0) {
3891 			union xfs_btree_ptr	*pp;
3892 			/*
3893 			 * pp is still set to the first pointer in the block.
3894 			 * Make it the new root of the btree.
3895 			 */
3896 			pp = xfs_btree_ptr_addr(cur, 1, block);
3897 			error = xfs_btree_kill_root(cur, bp, level, pp);
3898 			if (error)
3899 				goto error0;
3900 		} else if (level > 0) {
3901 			error = xfs_btree_dec_cursor(cur, level, stat);
3902 			if (error)
3903 				goto error0;
3904 		}
3905 		*stat = 1;
3906 		return 0;
3907 	}
3908 
3909 	/*
3910 	 * If we deleted the leftmost entry in the block, update the
3911 	 * key values above us in the tree.
3912 	 */
3913 	if (xfs_btree_needs_key_update(cur, ptr)) {
3914 		error = xfs_btree_update_keys(cur, level);
3915 		if (error)
3916 			goto error0;
3917 	}
3918 
3919 	/*
3920 	 * If the number of records remaining in the block is at least
3921 	 * the minimum, we're done.
3922 	 */
3923 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3924 		error = xfs_btree_dec_cursor(cur, level, stat);
3925 		if (error)
3926 			goto error0;
3927 		return 0;
3928 	}
3929 
3930 	/*
3931 	 * Otherwise, we have to move some records around to keep the
3932 	 * tree balanced.  Look at the left and right sibling blocks to
3933 	 * see if we can re-balance by moving only one record.
3934 	 */
3935 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3936 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3937 
3938 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3939 		/*
3940 		 * One child of root, need to get a chance to copy its contents
3941 		 * into the root and delete it. Can't go up to next level,
3942 		 * there's nothing to delete there.
3943 		 */
3944 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3945 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3946 		    level == cur->bc_nlevels - 2) {
3947 			error = xfs_btree_kill_iroot(cur);
3948 			if (!error)
3949 				error = xfs_btree_dec_cursor(cur, level, stat);
3950 			if (error)
3951 				goto error0;
3952 			return 0;
3953 		}
3954 	}
3955 
3956 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3957 	       !xfs_btree_ptr_is_null(cur, &lptr));
3958 
3959 	/*
3960 	 * Duplicate the cursor so our btree manipulations here won't
3961 	 * disrupt the next level up.
3962 	 */
3963 	error = xfs_btree_dup_cursor(cur, &tcur);
3964 	if (error)
3965 		goto error0;
3966 
3967 	/*
3968 	 * If there's a right sibling, see if it's ok to shift an entry
3969 	 * out of it.
3970 	 */
3971 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3972 		/*
3973 		 * Move the temp cursor to the last entry in the next block.
3974 		 * Actually any entry but the first would suffice.
3975 		 */
3976 		i = xfs_btree_lastrec(tcur, level);
3977 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3978 
3979 		error = xfs_btree_increment(tcur, level, &i);
3980 		if (error)
3981 			goto error0;
3982 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3983 
3984 		i = xfs_btree_lastrec(tcur, level);
3985 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3986 
3987 		/* Grab a pointer to the block. */
3988 		right = xfs_btree_get_block(tcur, level, &rbp);
3989 #ifdef DEBUG
3990 		error = xfs_btree_check_block(tcur, right, level, rbp);
3991 		if (error)
3992 			goto error0;
3993 #endif
3994 		/* Grab the current block number, for future use. */
3995 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3996 
3997 		/*
3998 		 * If right block is full enough so that removing one entry
3999 		 * won't make it too empty, and left-shifting an entry out
4000 		 * of right to us works, we're done.
4001 		 */
4002 		if (xfs_btree_get_numrecs(right) - 1 >=
4003 		    cur->bc_ops->get_minrecs(tcur, level)) {
4004 			error = xfs_btree_lshift(tcur, level, &i);
4005 			if (error)
4006 				goto error0;
4007 			if (i) {
4008 				ASSERT(xfs_btree_get_numrecs(block) >=
4009 				       cur->bc_ops->get_minrecs(tcur, level));
4010 
4011 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012 				tcur = NULL;
4013 
4014 				error = xfs_btree_dec_cursor(cur, level, stat);
4015 				if (error)
4016 					goto error0;
4017 				return 0;
4018 			}
4019 		}
4020 
4021 		/*
4022 		 * Otherwise, grab the number of records in right for
4023 		 * future reference, and fix up the temp cursor to point
4024 		 * to our block again (last record).
4025 		 */
4026 		rrecs = xfs_btree_get_numrecs(right);
4027 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4028 			i = xfs_btree_firstrec(tcur, level);
4029 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4030 
4031 			error = xfs_btree_decrement(tcur, level, &i);
4032 			if (error)
4033 				goto error0;
4034 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4035 		}
4036 	}
4037 
4038 	/*
4039 	 * If there's a left sibling, see if it's ok to shift an entry
4040 	 * out of it.
4041 	 */
4042 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4043 		/*
4044 		 * Move the temp cursor to the first entry in the
4045 		 * previous block.
4046 		 */
4047 		i = xfs_btree_firstrec(tcur, level);
4048 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4049 
4050 		error = xfs_btree_decrement(tcur, level, &i);
4051 		if (error)
4052 			goto error0;
4053 		i = xfs_btree_firstrec(tcur, level);
4054 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4055 
4056 		/* Grab a pointer to the block. */
4057 		left = xfs_btree_get_block(tcur, level, &lbp);
4058 #ifdef DEBUG
4059 		error = xfs_btree_check_block(cur, left, level, lbp);
4060 		if (error)
4061 			goto error0;
4062 #endif
4063 		/* Grab the current block number, for future use. */
4064 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4065 
4066 		/*
4067 		 * If left block is full enough so that removing one entry
4068 		 * won't make it too empty, and right-shifting an entry out
4069 		 * of left to us works, we're done.
4070 		 */
4071 		if (xfs_btree_get_numrecs(left) - 1 >=
4072 		    cur->bc_ops->get_minrecs(tcur, level)) {
4073 			error = xfs_btree_rshift(tcur, level, &i);
4074 			if (error)
4075 				goto error0;
4076 			if (i) {
4077 				ASSERT(xfs_btree_get_numrecs(block) >=
4078 				       cur->bc_ops->get_minrecs(tcur, level));
4079 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4080 				tcur = NULL;
4081 				if (level == 0)
4082 					cur->bc_ptrs[0]++;
4083 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4084 				*stat = 1;
4085 				return 0;
4086 			}
4087 		}
4088 
4089 		/*
4090 		 * Otherwise, grab the number of records in right for
4091 		 * future reference.
4092 		 */
4093 		lrecs = xfs_btree_get_numrecs(left);
4094 	}
4095 
4096 	/* Delete the temp cursor, we're done with it. */
4097 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4098 	tcur = NULL;
4099 
4100 	/* If here, we need to do a join to keep the tree balanced. */
4101 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4102 
4103 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4104 	    lrecs + xfs_btree_get_numrecs(block) <=
4105 			cur->bc_ops->get_maxrecs(cur, level)) {
4106 		/*
4107 		 * Set "right" to be the starting block,
4108 		 * "left" to be the left neighbor.
4109 		 */
4110 		rptr = cptr;
4111 		right = block;
4112 		rbp = bp;
4113 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4114 		if (error)
4115 			goto error0;
4116 
4117 	/*
4118 	 * If that won't work, see if we can join with the right neighbor block.
4119 	 */
4120 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4121 		   rrecs + xfs_btree_get_numrecs(block) <=
4122 			cur->bc_ops->get_maxrecs(cur, level)) {
4123 		/*
4124 		 * Set "left" to be the starting block,
4125 		 * "right" to be the right neighbor.
4126 		 */
4127 		lptr = cptr;
4128 		left = block;
4129 		lbp = bp;
4130 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4131 		if (error)
4132 			goto error0;
4133 
4134 	/*
4135 	 * Otherwise, we can't fix the imbalance.
4136 	 * Just return.  This is probably a logic error, but it's not fatal.
4137 	 */
4138 	} else {
4139 		error = xfs_btree_dec_cursor(cur, level, stat);
4140 		if (error)
4141 			goto error0;
4142 		return 0;
4143 	}
4144 
4145 	rrecs = xfs_btree_get_numrecs(right);
4146 	lrecs = xfs_btree_get_numrecs(left);
4147 
4148 	/*
4149 	 * We're now going to join "left" and "right" by moving all the stuff
4150 	 * in "right" to "left" and deleting "right".
4151 	 */
4152 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4153 	if (level > 0) {
4154 		/* It's a non-leaf.  Move keys and pointers. */
4155 		union xfs_btree_key	*lkp;	/* left btree key */
4156 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4157 		union xfs_btree_key	*rkp;	/* right btree key */
4158 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4159 
4160 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4161 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4162 		rkp = xfs_btree_key_addr(cur, 1, right);
4163 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4164 #ifdef DEBUG
4165 		for (i = 1; i < rrecs; i++) {
4166 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4167 			if (error)
4168 				goto error0;
4169 		}
4170 #endif
4171 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4172 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4173 
4174 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4175 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4176 	} else {
4177 		/* It's a leaf.  Move records.  */
4178 		union xfs_btree_rec	*lrp;	/* left record pointer */
4179 		union xfs_btree_rec	*rrp;	/* right record pointer */
4180 
4181 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4182 		rrp = xfs_btree_rec_addr(cur, 1, right);
4183 
4184 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4185 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4186 	}
4187 
4188 	XFS_BTREE_STATS_INC(cur, join);
4189 
4190 	/*
4191 	 * Fix up the number of records and right block pointer in the
4192 	 * surviving block, and log it.
4193 	 */
4194 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4195 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4196 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4197 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4198 
4199 	/* If there is a right sibling, point it to the remaining block. */
4200 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4201 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4202 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4203 		if (error)
4204 			goto error0;
4205 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4206 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4207 	}
4208 
4209 	/* Free the deleted block. */
4210 	error = xfs_btree_free_block(cur, rbp);
4211 	if (error)
4212 		goto error0;
4213 
4214 	/*
4215 	 * If we joined with the left neighbor, set the buffer in the
4216 	 * cursor to the left block, and fix up the index.
4217 	 */
4218 	if (bp != lbp) {
4219 		cur->bc_bufs[level] = lbp;
4220 		cur->bc_ptrs[level] += lrecs;
4221 		cur->bc_ra[level] = 0;
4222 	}
4223 	/*
4224 	 * If we joined with the right neighbor and there's a level above
4225 	 * us, increment the cursor at that level.
4226 	 */
4227 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4228 		   (level + 1 < cur->bc_nlevels)) {
4229 		error = xfs_btree_increment(cur, level + 1, &i);
4230 		if (error)
4231 			goto error0;
4232 	}
4233 
4234 	/*
4235 	 * Readjust the ptr at this level if it's not a leaf, since it's
4236 	 * still pointing at the deletion point, which makes the cursor
4237 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4238 	 * We can't use decrement because it would change the next level up.
4239 	 */
4240 	if (level > 0)
4241 		cur->bc_ptrs[level]--;
4242 
4243 	/*
4244 	 * We combined blocks, so we have to update the parent keys if the
4245 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4246 	 * points to the old block so that the caller knows which record to
4247 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4248 	 * for us if we return stat == 2.  The other exit points from this
4249 	 * function don't require deletions further up the tree, so they can
4250 	 * call updkeys directly.
4251 	 */
4252 
4253 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4254 	/* Return value means the next level up has something to do. */
4255 	*stat = 2;
4256 	return 0;
4257 
4258 error0:
4259 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4260 	if (tcur)
4261 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4262 	return error;
4263 }
4264 
4265 /*
4266  * Delete the record pointed to by cur.
4267  * The cursor refers to the place where the record was (could be inserted)
4268  * when the operation returns.
4269  */
4270 int					/* error */
4271 xfs_btree_delete(
4272 	struct xfs_btree_cur	*cur,
4273 	int			*stat)	/* success/failure */
4274 {
4275 	int			error;	/* error return value */
4276 	int			level;
4277 	int			i;
4278 	bool			joined = false;
4279 
4280 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4281 
4282 	/*
4283 	 * Go up the tree, starting at leaf level.
4284 	 *
4285 	 * If 2 is returned then a join was done; go to the next level.
4286 	 * Otherwise we are done.
4287 	 */
4288 	for (level = 0, i = 2; i == 2; level++) {
4289 		error = xfs_btree_delrec(cur, level, &i);
4290 		if (error)
4291 			goto error0;
4292 		if (i == 2)
4293 			joined = true;
4294 	}
4295 
4296 	/*
4297 	 * If we combined blocks as part of deleting the record, delrec won't
4298 	 * have updated the parent high keys so we have to do that here.
4299 	 */
4300 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4301 		error = xfs_btree_updkeys_force(cur, 0);
4302 		if (error)
4303 			goto error0;
4304 	}
4305 
4306 	if (i == 0) {
4307 		for (level = 1; level < cur->bc_nlevels; level++) {
4308 			if (cur->bc_ptrs[level] == 0) {
4309 				error = xfs_btree_decrement(cur, level, &i);
4310 				if (error)
4311 					goto error0;
4312 				break;
4313 			}
4314 		}
4315 	}
4316 
4317 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4318 	*stat = i;
4319 	return 0;
4320 error0:
4321 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4322 	return error;
4323 }
4324 
4325 /*
4326  * Get the data from the pointed-to record.
4327  */
4328 int					/* error */
4329 xfs_btree_get_rec(
4330 	struct xfs_btree_cur	*cur,	/* btree cursor */
4331 	union xfs_btree_rec	**recp,	/* output: btree record */
4332 	int			*stat)	/* output: success/failure */
4333 {
4334 	struct xfs_btree_block	*block;	/* btree block */
4335 	struct xfs_buf		*bp;	/* buffer pointer */
4336 	int			ptr;	/* record number */
4337 #ifdef DEBUG
4338 	int			error;	/* error return value */
4339 #endif
4340 
4341 	ptr = cur->bc_ptrs[0];
4342 	block = xfs_btree_get_block(cur, 0, &bp);
4343 
4344 #ifdef DEBUG
4345 	error = xfs_btree_check_block(cur, block, 0, bp);
4346 	if (error)
4347 		return error;
4348 #endif
4349 
4350 	/*
4351 	 * Off the right end or left end, return failure.
4352 	 */
4353 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4354 		*stat = 0;
4355 		return 0;
4356 	}
4357 
4358 	/*
4359 	 * Point to the record and extract its data.
4360 	 */
4361 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4362 	*stat = 1;
4363 	return 0;
4364 }
4365 
4366 /* Visit a block in a btree. */
4367 STATIC int
4368 xfs_btree_visit_block(
4369 	struct xfs_btree_cur		*cur,
4370 	int				level,
4371 	xfs_btree_visit_blocks_fn	fn,
4372 	void				*data)
4373 {
4374 	struct xfs_btree_block		*block;
4375 	struct xfs_buf			*bp;
4376 	union xfs_btree_ptr		rptr;
4377 	int				error;
4378 
4379 	/* do right sibling readahead */
4380 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4381 	block = xfs_btree_get_block(cur, level, &bp);
4382 
4383 	/* process the block */
4384 	error = fn(cur, level, data);
4385 	if (error)
4386 		return error;
4387 
4388 	/* now read rh sibling block for next iteration */
4389 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4390 	if (xfs_btree_ptr_is_null(cur, &rptr))
4391 		return -ENOENT;
4392 
4393 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4394 }
4395 
4396 
4397 /* Visit every block in a btree. */
4398 int
4399 xfs_btree_visit_blocks(
4400 	struct xfs_btree_cur		*cur,
4401 	xfs_btree_visit_blocks_fn	fn,
4402 	void				*data)
4403 {
4404 	union xfs_btree_ptr		lptr;
4405 	int				level;
4406 	struct xfs_btree_block		*block = NULL;
4407 	int				error = 0;
4408 
4409 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4410 
4411 	/* for each level */
4412 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4413 		/* grab the left hand block */
4414 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4415 		if (error)
4416 			return error;
4417 
4418 		/* readahead the left most block for the next level down */
4419 		if (level > 0) {
4420 			union xfs_btree_ptr     *ptr;
4421 
4422 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4423 			xfs_btree_readahead_ptr(cur, ptr, 1);
4424 
4425 			/* save for the next iteration of the loop */
4426 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4427 		}
4428 
4429 		/* for each buffer in the level */
4430 		do {
4431 			error = xfs_btree_visit_block(cur, level, fn, data);
4432 		} while (!error);
4433 
4434 		if (error != -ENOENT)
4435 			return error;
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 /*
4442  * Change the owner of a btree.
4443  *
4444  * The mechanism we use here is ordered buffer logging. Because we don't know
4445  * how many buffers were are going to need to modify, we don't really want to
4446  * have to make transaction reservations for the worst case of every buffer in a
4447  * full size btree as that may be more space that we can fit in the log....
4448  *
4449  * We do the btree walk in the most optimal manner possible - we have sibling
4450  * pointers so we can just walk all the blocks on each level from left to right
4451  * in a single pass, and then move to the next level and do the same. We can
4452  * also do readahead on the sibling pointers to get IO moving more quickly,
4453  * though for slow disks this is unlikely to make much difference to performance
4454  * as the amount of CPU work we have to do before moving to the next block is
4455  * relatively small.
4456  *
4457  * For each btree block that we load, modify the owner appropriately, set the
4458  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4459  * we mark the region we change dirty so that if the buffer is relogged in
4460  * a subsequent transaction the changes we make here as an ordered buffer are
4461  * correctly relogged in that transaction.  If we are in recovery context, then
4462  * just queue the modified buffer as delayed write buffer so the transaction
4463  * recovery completion writes the changes to disk.
4464  */
4465 struct xfs_btree_block_change_owner_info {
4466 	uint64_t		new_owner;
4467 	struct list_head	*buffer_list;
4468 };
4469 
4470 static int
4471 xfs_btree_block_change_owner(
4472 	struct xfs_btree_cur	*cur,
4473 	int			level,
4474 	void			*data)
4475 {
4476 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4477 	struct xfs_btree_block	*block;
4478 	struct xfs_buf		*bp;
4479 
4480 	/* modify the owner */
4481 	block = xfs_btree_get_block(cur, level, &bp);
4482 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4483 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4484 			return 0;
4485 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4486 	} else {
4487 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4488 			return 0;
4489 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4490 	}
4491 
4492 	/*
4493 	 * If the block is a root block hosted in an inode, we might not have a
4494 	 * buffer pointer here and we shouldn't attempt to log the change as the
4495 	 * information is already held in the inode and discarded when the root
4496 	 * block is formatted into the on-disk inode fork. We still change it,
4497 	 * though, so everything is consistent in memory.
4498 	 */
4499 	if (!bp) {
4500 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4501 		ASSERT(level == cur->bc_nlevels - 1);
4502 		return 0;
4503 	}
4504 
4505 	if (cur->bc_tp) {
4506 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4507 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4508 			return -EAGAIN;
4509 		}
4510 	} else {
4511 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4512 	}
4513 
4514 	return 0;
4515 }
4516 
4517 int
4518 xfs_btree_change_owner(
4519 	struct xfs_btree_cur	*cur,
4520 	uint64_t		new_owner,
4521 	struct list_head	*buffer_list)
4522 {
4523 	struct xfs_btree_block_change_owner_info	bbcoi;
4524 
4525 	bbcoi.new_owner = new_owner;
4526 	bbcoi.buffer_list = buffer_list;
4527 
4528 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4529 			&bbcoi);
4530 }
4531 
4532 /**
4533  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4534  *				      btree block
4535  *
4536  * @bp: buffer containing the btree block
4537  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4538  * @pag_max_level: pointer to the per-ag max level field
4539  */
4540 bool
4541 xfs_btree_sblock_v5hdr_verify(
4542 	struct xfs_buf		*bp)
4543 {
4544 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4545 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4546 	struct xfs_perag	*pag = bp->b_pag;
4547 
4548 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4549 		return false;
4550 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4551 		return false;
4552 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4553 		return false;
4554 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4555 		return false;
4556 	return true;
4557 }
4558 
4559 /**
4560  * xfs_btree_sblock_verify() -- verify a short-format btree block
4561  *
4562  * @bp: buffer containing the btree block
4563  * @max_recs: maximum records allowed in this btree node
4564  */
4565 bool
4566 xfs_btree_sblock_verify(
4567 	struct xfs_buf		*bp,
4568 	unsigned int		max_recs)
4569 {
4570 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4571 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4572 
4573 	/* numrecs verification */
4574 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4575 		return false;
4576 
4577 	/* sibling pointer verification */
4578 	if (!block->bb_u.s.bb_leftsib ||
4579 	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4580 	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4581 		return false;
4582 	if (!block->bb_u.s.bb_rightsib ||
4583 	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4584 	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4585 		return false;
4586 
4587 	return true;
4588 }
4589 
4590 /*
4591  * Calculate the number of btree levels needed to store a given number of
4592  * records in a short-format btree.
4593  */
4594 uint
4595 xfs_btree_compute_maxlevels(
4596 	struct xfs_mount	*mp,
4597 	uint			*limits,
4598 	unsigned long		len)
4599 {
4600 	uint			level;
4601 	unsigned long		maxblocks;
4602 
4603 	maxblocks = (len + limits[0] - 1) / limits[0];
4604 	for (level = 1; maxblocks > 1; level++)
4605 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4606 	return level;
4607 }
4608 
4609 /*
4610  * Query a regular btree for all records overlapping a given interval.
4611  * Start with a LE lookup of the key of low_rec and return all records
4612  * until we find a record with a key greater than the key of high_rec.
4613  */
4614 STATIC int
4615 xfs_btree_simple_query_range(
4616 	struct xfs_btree_cur		*cur,
4617 	union xfs_btree_key		*low_key,
4618 	union xfs_btree_key		*high_key,
4619 	xfs_btree_query_range_fn	fn,
4620 	void				*priv)
4621 {
4622 	union xfs_btree_rec		*recp;
4623 	union xfs_btree_key		rec_key;
4624 	int64_t				diff;
4625 	int				stat;
4626 	bool				firstrec = true;
4627 	int				error;
4628 
4629 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4630 	ASSERT(cur->bc_ops->diff_two_keys);
4631 
4632 	/*
4633 	 * Find the leftmost record.  The btree cursor must be set
4634 	 * to the low record used to generate low_key.
4635 	 */
4636 	stat = 0;
4637 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4638 	if (error)
4639 		goto out;
4640 
4641 	/* Nothing?  See if there's anything to the right. */
4642 	if (!stat) {
4643 		error = xfs_btree_increment(cur, 0, &stat);
4644 		if (error)
4645 			goto out;
4646 	}
4647 
4648 	while (stat) {
4649 		/* Find the record. */
4650 		error = xfs_btree_get_rec(cur, &recp, &stat);
4651 		if (error || !stat)
4652 			break;
4653 
4654 		/* Skip if high_key(rec) < low_key. */
4655 		if (firstrec) {
4656 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4657 			firstrec = false;
4658 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4659 					&rec_key);
4660 			if (diff > 0)
4661 				goto advloop;
4662 		}
4663 
4664 		/* Stop if high_key < low_key(rec). */
4665 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4666 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4667 		if (diff > 0)
4668 			break;
4669 
4670 		/* Callback */
4671 		error = fn(cur, recp, priv);
4672 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4673 			break;
4674 
4675 advloop:
4676 		/* Move on to the next record. */
4677 		error = xfs_btree_increment(cur, 0, &stat);
4678 		if (error)
4679 			break;
4680 	}
4681 
4682 out:
4683 	return error;
4684 }
4685 
4686 /*
4687  * Query an overlapped interval btree for all records overlapping a given
4688  * interval.  This function roughly follows the algorithm given in
4689  * "Interval Trees" of _Introduction to Algorithms_, which is section
4690  * 14.3 in the 2nd and 3rd editions.
4691  *
4692  * First, generate keys for the low and high records passed in.
4693  *
4694  * For any leaf node, generate the high and low keys for the record.
4695  * If the record keys overlap with the query low/high keys, pass the
4696  * record to the function iterator.
4697  *
4698  * For any internal node, compare the low and high keys of each
4699  * pointer against the query low/high keys.  If there's an overlap,
4700  * follow the pointer.
4701  *
4702  * As an optimization, we stop scanning a block when we find a low key
4703  * that is greater than the query's high key.
4704  */
4705 STATIC int
4706 xfs_btree_overlapped_query_range(
4707 	struct xfs_btree_cur		*cur,
4708 	union xfs_btree_key		*low_key,
4709 	union xfs_btree_key		*high_key,
4710 	xfs_btree_query_range_fn	fn,
4711 	void				*priv)
4712 {
4713 	union xfs_btree_ptr		ptr;
4714 	union xfs_btree_ptr		*pp;
4715 	union xfs_btree_key		rec_key;
4716 	union xfs_btree_key		rec_hkey;
4717 	union xfs_btree_key		*lkp;
4718 	union xfs_btree_key		*hkp;
4719 	union xfs_btree_rec		*recp;
4720 	struct xfs_btree_block		*block;
4721 	int64_t				ldiff;
4722 	int64_t				hdiff;
4723 	int				level;
4724 	struct xfs_buf			*bp;
4725 	int				i;
4726 	int				error;
4727 
4728 	/* Load the root of the btree. */
4729 	level = cur->bc_nlevels - 1;
4730 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4731 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4732 	if (error)
4733 		return error;
4734 	xfs_btree_get_block(cur, level, &bp);
4735 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4736 #ifdef DEBUG
4737 	error = xfs_btree_check_block(cur, block, level, bp);
4738 	if (error)
4739 		goto out;
4740 #endif
4741 	cur->bc_ptrs[level] = 1;
4742 
4743 	while (level < cur->bc_nlevels) {
4744 		block = xfs_btree_get_block(cur, level, &bp);
4745 
4746 		/* End of node, pop back towards the root. */
4747 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4748 pop_up:
4749 			if (level < cur->bc_nlevels - 1)
4750 				cur->bc_ptrs[level + 1]++;
4751 			level++;
4752 			continue;
4753 		}
4754 
4755 		if (level == 0) {
4756 			/* Handle a leaf node. */
4757 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4758 
4759 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4760 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4761 					low_key);
4762 
4763 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4764 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4765 					&rec_key);
4766 
4767 			/*
4768 			 * If (record's high key >= query's low key) and
4769 			 *    (query's high key >= record's low key), then
4770 			 * this record overlaps the query range; callback.
4771 			 */
4772 			if (ldiff >= 0 && hdiff >= 0) {
4773 				error = fn(cur, recp, priv);
4774 				if (error < 0 ||
4775 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4776 					break;
4777 			} else if (hdiff < 0) {
4778 				/* Record is larger than high key; pop. */
4779 				goto pop_up;
4780 			}
4781 			cur->bc_ptrs[level]++;
4782 			continue;
4783 		}
4784 
4785 		/* Handle an internal node. */
4786 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4787 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4788 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4789 
4790 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4791 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4792 
4793 		/*
4794 		 * If (pointer's high key >= query's low key) and
4795 		 *    (query's high key >= pointer's low key), then
4796 		 * this record overlaps the query range; follow pointer.
4797 		 */
4798 		if (ldiff >= 0 && hdiff >= 0) {
4799 			level--;
4800 			error = xfs_btree_lookup_get_block(cur, level, pp,
4801 					&block);
4802 			if (error)
4803 				goto out;
4804 			xfs_btree_get_block(cur, level, &bp);
4805 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4806 #ifdef DEBUG
4807 			error = xfs_btree_check_block(cur, block, level, bp);
4808 			if (error)
4809 				goto out;
4810 #endif
4811 			cur->bc_ptrs[level] = 1;
4812 			continue;
4813 		} else if (hdiff < 0) {
4814 			/* The low key is larger than the upper range; pop. */
4815 			goto pop_up;
4816 		}
4817 		cur->bc_ptrs[level]++;
4818 	}
4819 
4820 out:
4821 	/*
4822 	 * If we don't end this function with the cursor pointing at a record
4823 	 * block, a subsequent non-error cursor deletion will not release
4824 	 * node-level buffers, causing a buffer leak.  This is quite possible
4825 	 * with a zero-results range query, so release the buffers if we
4826 	 * failed to return any results.
4827 	 */
4828 	if (cur->bc_bufs[0] == NULL) {
4829 		for (i = 0; i < cur->bc_nlevels; i++) {
4830 			if (cur->bc_bufs[i]) {
4831 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4832 				cur->bc_bufs[i] = NULL;
4833 				cur->bc_ptrs[i] = 0;
4834 				cur->bc_ra[i] = 0;
4835 			}
4836 		}
4837 	}
4838 
4839 	return error;
4840 }
4841 
4842 /*
4843  * Query a btree for all records overlapping a given interval of keys.  The
4844  * supplied function will be called with each record found; return one of the
4845  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4846  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4847  * negative error code.
4848  */
4849 int
4850 xfs_btree_query_range(
4851 	struct xfs_btree_cur		*cur,
4852 	union xfs_btree_irec		*low_rec,
4853 	union xfs_btree_irec		*high_rec,
4854 	xfs_btree_query_range_fn	fn,
4855 	void				*priv)
4856 {
4857 	union xfs_btree_rec		rec;
4858 	union xfs_btree_key		low_key;
4859 	union xfs_btree_key		high_key;
4860 
4861 	/* Find the keys of both ends of the interval. */
4862 	cur->bc_rec = *high_rec;
4863 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4864 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4865 
4866 	cur->bc_rec = *low_rec;
4867 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4868 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4869 
4870 	/* Enforce low key < high key. */
4871 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4872 		return -EINVAL;
4873 
4874 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4875 		return xfs_btree_simple_query_range(cur, &low_key,
4876 				&high_key, fn, priv);
4877 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4878 			fn, priv);
4879 }
4880 
4881 /* Query a btree for all records. */
4882 int
4883 xfs_btree_query_all(
4884 	struct xfs_btree_cur		*cur,
4885 	xfs_btree_query_range_fn	fn,
4886 	void				*priv)
4887 {
4888 	union xfs_btree_key		low_key;
4889 	union xfs_btree_key		high_key;
4890 
4891 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4892 	memset(&low_key, 0, sizeof(low_key));
4893 	memset(&high_key, 0xFF, sizeof(high_key));
4894 
4895 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4896 }
4897 
4898 /*
4899  * Calculate the number of blocks needed to store a given number of records
4900  * in a short-format (per-AG metadata) btree.
4901  */
4902 xfs_extlen_t
4903 xfs_btree_calc_size(
4904 	struct xfs_mount	*mp,
4905 	uint			*limits,
4906 	unsigned long long	len)
4907 {
4908 	int			level;
4909 	int			maxrecs;
4910 	xfs_extlen_t		rval;
4911 
4912 	maxrecs = limits[0];
4913 	for (level = 0, rval = 0; len > 1; level++) {
4914 		len += maxrecs - 1;
4915 		do_div(len, maxrecs);
4916 		maxrecs = limits[1];
4917 		rval += len;
4918 	}
4919 	return rval;
4920 }
4921 
4922 static int
4923 xfs_btree_count_blocks_helper(
4924 	struct xfs_btree_cur	*cur,
4925 	int			level,
4926 	void			*data)
4927 {
4928 	xfs_extlen_t		*blocks = data;
4929 	(*blocks)++;
4930 
4931 	return 0;
4932 }
4933 
4934 /* Count the blocks in a btree and return the result in *blocks. */
4935 int
4936 xfs_btree_count_blocks(
4937 	struct xfs_btree_cur	*cur,
4938 	xfs_extlen_t		*blocks)
4939 {
4940 	*blocks = 0;
4941 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4942 			blocks);
4943 }
4944 
4945 /* Compare two btree pointers. */
4946 int64_t
4947 xfs_btree_diff_two_ptrs(
4948 	struct xfs_btree_cur		*cur,
4949 	const union xfs_btree_ptr	*a,
4950 	const union xfs_btree_ptr	*b)
4951 {
4952 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4953 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4954 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4955 }
4956