1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_errortag.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_alloc.h" 22 #include "xfs_log.h" 23 #include "xfs_btree_staging.h" 24 #include "xfs_ag.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_ialloc_btree.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_rmap_btree.h" 29 #include "xfs_refcount_btree.h" 30 31 /* 32 * Btree magic numbers. 33 */ 34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 36 XFS_FIBT_MAGIC, 0 }, 37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 39 XFS_REFC_CRC_MAGIC } 40 }; 41 42 uint32_t 43 xfs_btree_magic( 44 int crc, 45 xfs_btnum_t btnum) 46 { 47 uint32_t magic = xfs_magics[crc][btnum]; 48 49 /* Ensure we asked for crc for crc-only magics. */ 50 ASSERT(magic != 0); 51 return magic; 52 } 53 54 /* 55 * Check a long btree block header. Return the address of the failing check, 56 * or NULL if everything is ok. 57 */ 58 xfs_failaddr_t 59 __xfs_btree_check_lblock( 60 struct xfs_btree_cur *cur, 61 struct xfs_btree_block *block, 62 int level, 63 struct xfs_buf *bp) 64 { 65 struct xfs_mount *mp = cur->bc_mp; 66 xfs_btnum_t btnum = cur->bc_btnum; 67 int crc = xfs_has_crc(mp); 68 69 if (crc) { 70 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 71 return __this_address; 72 if (block->bb_u.l.bb_blkno != 73 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) 74 return __this_address; 75 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 76 return __this_address; 77 } 78 79 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 80 return __this_address; 81 if (be16_to_cpu(block->bb_level) != level) 82 return __this_address; 83 if (be16_to_cpu(block->bb_numrecs) > 84 cur->bc_ops->get_maxrecs(cur, level)) 85 return __this_address; 86 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 87 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib), 88 level + 1)) 89 return __this_address; 90 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 91 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib), 92 level + 1)) 93 return __this_address; 94 95 return NULL; 96 } 97 98 /* Check a long btree block header. */ 99 static int 100 xfs_btree_check_lblock( 101 struct xfs_btree_cur *cur, 102 struct xfs_btree_block *block, 103 int level, 104 struct xfs_buf *bp) 105 { 106 struct xfs_mount *mp = cur->bc_mp; 107 xfs_failaddr_t fa; 108 109 fa = __xfs_btree_check_lblock(cur, block, level, bp); 110 if (XFS_IS_CORRUPT(mp, fa != NULL) || 111 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 112 if (bp) 113 trace_xfs_btree_corrupt(bp, _RET_IP_); 114 return -EFSCORRUPTED; 115 } 116 return 0; 117 } 118 119 /* 120 * Check a short btree block header. Return the address of the failing check, 121 * or NULL if everything is ok. 122 */ 123 xfs_failaddr_t 124 __xfs_btree_check_sblock( 125 struct xfs_btree_cur *cur, 126 struct xfs_btree_block *block, 127 int level, 128 struct xfs_buf *bp) 129 { 130 struct xfs_mount *mp = cur->bc_mp; 131 xfs_btnum_t btnum = cur->bc_btnum; 132 int crc = xfs_has_crc(mp); 133 134 if (crc) { 135 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 136 return __this_address; 137 if (block->bb_u.s.bb_blkno != 138 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) 139 return __this_address; 140 } 141 142 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 143 return __this_address; 144 if (be16_to_cpu(block->bb_level) != level) 145 return __this_address; 146 if (be16_to_cpu(block->bb_numrecs) > 147 cur->bc_ops->get_maxrecs(cur, level)) 148 return __this_address; 149 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 150 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib), 151 level + 1)) 152 return __this_address; 153 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 154 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib), 155 level + 1)) 156 return __this_address; 157 158 return NULL; 159 } 160 161 /* Check a short btree block header. */ 162 STATIC int 163 xfs_btree_check_sblock( 164 struct xfs_btree_cur *cur, 165 struct xfs_btree_block *block, 166 int level, 167 struct xfs_buf *bp) 168 { 169 struct xfs_mount *mp = cur->bc_mp; 170 xfs_failaddr_t fa; 171 172 fa = __xfs_btree_check_sblock(cur, block, level, bp); 173 if (XFS_IS_CORRUPT(mp, fa != NULL) || 174 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 175 if (bp) 176 trace_xfs_btree_corrupt(bp, _RET_IP_); 177 return -EFSCORRUPTED; 178 } 179 return 0; 180 } 181 182 /* 183 * Debug routine: check that block header is ok. 184 */ 185 int 186 xfs_btree_check_block( 187 struct xfs_btree_cur *cur, /* btree cursor */ 188 struct xfs_btree_block *block, /* generic btree block pointer */ 189 int level, /* level of the btree block */ 190 struct xfs_buf *bp) /* buffer containing block, if any */ 191 { 192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 193 return xfs_btree_check_lblock(cur, block, level, bp); 194 else 195 return xfs_btree_check_sblock(cur, block, level, bp); 196 } 197 198 /* Check that this long pointer is valid and points within the fs. */ 199 bool 200 xfs_btree_check_lptr( 201 struct xfs_btree_cur *cur, 202 xfs_fsblock_t fsbno, 203 int level) 204 { 205 if (level <= 0) 206 return false; 207 return xfs_verify_fsbno(cur->bc_mp, fsbno); 208 } 209 210 /* Check that this short pointer is valid and points within the AG. */ 211 bool 212 xfs_btree_check_sptr( 213 struct xfs_btree_cur *cur, 214 xfs_agblock_t agbno, 215 int level) 216 { 217 if (level <= 0) 218 return false; 219 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno); 220 } 221 222 /* 223 * Check that a given (indexed) btree pointer at a certain level of a 224 * btree is valid and doesn't point past where it should. 225 */ 226 static int 227 xfs_btree_check_ptr( 228 struct xfs_btree_cur *cur, 229 const union xfs_btree_ptr *ptr, 230 int index, 231 int level) 232 { 233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 235 level)) 236 return 0; 237 xfs_err(cur->bc_mp, 238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 239 cur->bc_ino.ip->i_ino, 240 cur->bc_ino.whichfork, cur->bc_btnum, 241 level, index); 242 } else { 243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 244 level)) 245 return 0; 246 xfs_err(cur->bc_mp, 247 "AG %u: Corrupt btree %d pointer at level %d index %d.", 248 cur->bc_ag.pag->pag_agno, cur->bc_btnum, 249 level, index); 250 } 251 252 return -EFSCORRUPTED; 253 } 254 255 #ifdef DEBUG 256 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr 257 #else 258 # define xfs_btree_debug_check_ptr(...) (0) 259 #endif 260 261 /* 262 * Calculate CRC on the whole btree block and stuff it into the 263 * long-form btree header. 264 * 265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 266 * it into the buffer so recovery knows what the last modification was that made 267 * it to disk. 268 */ 269 void 270 xfs_btree_lblock_calc_crc( 271 struct xfs_buf *bp) 272 { 273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 274 struct xfs_buf_log_item *bip = bp->b_log_item; 275 276 if (!xfs_has_crc(bp->b_mount)) 277 return; 278 if (bip) 279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 281 } 282 283 bool 284 xfs_btree_lblock_verify_crc( 285 struct xfs_buf *bp) 286 { 287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 288 struct xfs_mount *mp = bp->b_mount; 289 290 if (xfs_has_crc(mp)) { 291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 292 return false; 293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 294 } 295 296 return true; 297 } 298 299 /* 300 * Calculate CRC on the whole btree block and stuff it into the 301 * short-form btree header. 302 * 303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 304 * it into the buffer so recovery knows what the last modification was that made 305 * it to disk. 306 */ 307 void 308 xfs_btree_sblock_calc_crc( 309 struct xfs_buf *bp) 310 { 311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 312 struct xfs_buf_log_item *bip = bp->b_log_item; 313 314 if (!xfs_has_crc(bp->b_mount)) 315 return; 316 if (bip) 317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 319 } 320 321 bool 322 xfs_btree_sblock_verify_crc( 323 struct xfs_buf *bp) 324 { 325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 326 struct xfs_mount *mp = bp->b_mount; 327 328 if (xfs_has_crc(mp)) { 329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 330 return false; 331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 332 } 333 334 return true; 335 } 336 337 static int 338 xfs_btree_free_block( 339 struct xfs_btree_cur *cur, 340 struct xfs_buf *bp) 341 { 342 int error; 343 344 error = cur->bc_ops->free_block(cur, bp); 345 if (!error) { 346 xfs_trans_binval(cur->bc_tp, bp); 347 XFS_BTREE_STATS_INC(cur, free); 348 } 349 return error; 350 } 351 352 /* 353 * Delete the btree cursor. 354 */ 355 void 356 xfs_btree_del_cursor( 357 struct xfs_btree_cur *cur, /* btree cursor */ 358 int error) /* del because of error */ 359 { 360 int i; /* btree level */ 361 362 /* 363 * Clear the buffer pointers and release the buffers. If we're doing 364 * this because of an error, inspect all of the entries in the bc_bufs 365 * array for buffers to be unlocked. This is because some of the btree 366 * code works from level n down to 0, and if we get an error along the 367 * way we won't have initialized all the entries down to 0. 368 */ 369 for (i = 0; i < cur->bc_nlevels; i++) { 370 if (cur->bc_levels[i].bp) 371 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp); 372 else if (!error) 373 break; 374 } 375 376 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || 377 xfs_is_shutdown(cur->bc_mp)); 378 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) 379 kmem_free(cur->bc_ops); 380 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag) 381 xfs_perag_put(cur->bc_ag.pag); 382 kmem_cache_free(cur->bc_cache, cur); 383 } 384 385 /* 386 * Duplicate the btree cursor. 387 * Allocate a new one, copy the record, re-get the buffers. 388 */ 389 int /* error */ 390 xfs_btree_dup_cursor( 391 struct xfs_btree_cur *cur, /* input cursor */ 392 struct xfs_btree_cur **ncur) /* output cursor */ 393 { 394 struct xfs_buf *bp; /* btree block's buffer pointer */ 395 int error; /* error return value */ 396 int i; /* level number of btree block */ 397 xfs_mount_t *mp; /* mount structure for filesystem */ 398 struct xfs_btree_cur *new; /* new cursor value */ 399 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 400 401 tp = cur->bc_tp; 402 mp = cur->bc_mp; 403 404 /* 405 * Allocate a new cursor like the old one. 406 */ 407 new = cur->bc_ops->dup_cursor(cur); 408 409 /* 410 * Copy the record currently in the cursor. 411 */ 412 new->bc_rec = cur->bc_rec; 413 414 /* 415 * For each level current, re-get the buffer and copy the ptr value. 416 */ 417 for (i = 0; i < new->bc_nlevels; i++) { 418 new->bc_levels[i].ptr = cur->bc_levels[i].ptr; 419 new->bc_levels[i].ra = cur->bc_levels[i].ra; 420 bp = cur->bc_levels[i].bp; 421 if (bp) { 422 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 423 xfs_buf_daddr(bp), mp->m_bsize, 424 0, &bp, 425 cur->bc_ops->buf_ops); 426 if (error) { 427 xfs_btree_del_cursor(new, error); 428 *ncur = NULL; 429 return error; 430 } 431 } 432 new->bc_levels[i].bp = bp; 433 } 434 *ncur = new; 435 return 0; 436 } 437 438 /* 439 * XFS btree block layout and addressing: 440 * 441 * There are two types of blocks in the btree: leaf and non-leaf blocks. 442 * 443 * The leaf record start with a header then followed by records containing 444 * the values. A non-leaf block also starts with the same header, and 445 * then first contains lookup keys followed by an equal number of pointers 446 * to the btree blocks at the previous level. 447 * 448 * +--------+-------+-------+-------+-------+-------+-------+ 449 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 450 * +--------+-------+-------+-------+-------+-------+-------+ 451 * 452 * +--------+-------+-------+-------+-------+-------+-------+ 453 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 454 * +--------+-------+-------+-------+-------+-------+-------+ 455 * 456 * The header is called struct xfs_btree_block for reasons better left unknown 457 * and comes in different versions for short (32bit) and long (64bit) block 458 * pointers. The record and key structures are defined by the btree instances 459 * and opaque to the btree core. The block pointers are simple disk endian 460 * integers, available in a short (32bit) and long (64bit) variant. 461 * 462 * The helpers below calculate the offset of a given record, key or pointer 463 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 464 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 465 * inside the btree block is done using indices starting at one, not zero! 466 * 467 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 468 * overlapping intervals. In such a tree, records are still sorted lowest to 469 * highest and indexed by the smallest key value that refers to the record. 470 * However, nodes are different: each pointer has two associated keys -- one 471 * indexing the lowest key available in the block(s) below (the same behavior 472 * as the key in a regular btree) and another indexing the highest key 473 * available in the block(s) below. Because records are /not/ sorted by the 474 * highest key, all leaf block updates require us to compute the highest key 475 * that matches any record in the leaf and to recursively update the high keys 476 * in the nodes going further up in the tree, if necessary. Nodes look like 477 * this: 478 * 479 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 480 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 481 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 482 * 483 * To perform an interval query on an overlapped tree, perform the usual 484 * depth-first search and use the low and high keys to decide if we can skip 485 * that particular node. If a leaf node is reached, return the records that 486 * intersect the interval. Note that an interval query may return numerous 487 * entries. For a non-overlapped tree, simply search for the record associated 488 * with the lowest key and iterate forward until a non-matching record is 489 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 490 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 491 * more detail. 492 * 493 * Why do we care about overlapping intervals? Let's say you have a bunch of 494 * reverse mapping records on a reflink filesystem: 495 * 496 * 1: +- file A startblock B offset C length D -----------+ 497 * 2: +- file E startblock F offset G length H --------------+ 498 * 3: +- file I startblock F offset J length K --+ 499 * 4: +- file L... --+ 500 * 501 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 502 * we'd simply increment the length of record 1. But how do we find the record 503 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 504 * record 3 because the keys are ordered first by startblock. An interval 505 * query would return records 1 and 2 because they both overlap (B+D-1), and 506 * from that we can pick out record 1 as the appropriate left neighbor. 507 * 508 * In the non-overlapped case you can do a LE lookup and decrement the cursor 509 * because a record's interval must end before the next record. 510 */ 511 512 /* 513 * Return size of the btree block header for this btree instance. 514 */ 515 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 516 { 517 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 518 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 519 return XFS_BTREE_LBLOCK_CRC_LEN; 520 return XFS_BTREE_LBLOCK_LEN; 521 } 522 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 523 return XFS_BTREE_SBLOCK_CRC_LEN; 524 return XFS_BTREE_SBLOCK_LEN; 525 } 526 527 /* 528 * Return size of btree block pointers for this btree instance. 529 */ 530 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 531 { 532 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 533 sizeof(__be64) : sizeof(__be32); 534 } 535 536 /* 537 * Calculate offset of the n-th record in a btree block. 538 */ 539 STATIC size_t 540 xfs_btree_rec_offset( 541 struct xfs_btree_cur *cur, 542 int n) 543 { 544 return xfs_btree_block_len(cur) + 545 (n - 1) * cur->bc_ops->rec_len; 546 } 547 548 /* 549 * Calculate offset of the n-th key in a btree block. 550 */ 551 STATIC size_t 552 xfs_btree_key_offset( 553 struct xfs_btree_cur *cur, 554 int n) 555 { 556 return xfs_btree_block_len(cur) + 557 (n - 1) * cur->bc_ops->key_len; 558 } 559 560 /* 561 * Calculate offset of the n-th high key in a btree block. 562 */ 563 STATIC size_t 564 xfs_btree_high_key_offset( 565 struct xfs_btree_cur *cur, 566 int n) 567 { 568 return xfs_btree_block_len(cur) + 569 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 570 } 571 572 /* 573 * Calculate offset of the n-th block pointer in a btree block. 574 */ 575 STATIC size_t 576 xfs_btree_ptr_offset( 577 struct xfs_btree_cur *cur, 578 int n, 579 int level) 580 { 581 return xfs_btree_block_len(cur) + 582 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 583 (n - 1) * xfs_btree_ptr_len(cur); 584 } 585 586 /* 587 * Return a pointer to the n-th record in the btree block. 588 */ 589 union xfs_btree_rec * 590 xfs_btree_rec_addr( 591 struct xfs_btree_cur *cur, 592 int n, 593 struct xfs_btree_block *block) 594 { 595 return (union xfs_btree_rec *) 596 ((char *)block + xfs_btree_rec_offset(cur, n)); 597 } 598 599 /* 600 * Return a pointer to the n-th key in the btree block. 601 */ 602 union xfs_btree_key * 603 xfs_btree_key_addr( 604 struct xfs_btree_cur *cur, 605 int n, 606 struct xfs_btree_block *block) 607 { 608 return (union xfs_btree_key *) 609 ((char *)block + xfs_btree_key_offset(cur, n)); 610 } 611 612 /* 613 * Return a pointer to the n-th high key in the btree block. 614 */ 615 union xfs_btree_key * 616 xfs_btree_high_key_addr( 617 struct xfs_btree_cur *cur, 618 int n, 619 struct xfs_btree_block *block) 620 { 621 return (union xfs_btree_key *) 622 ((char *)block + xfs_btree_high_key_offset(cur, n)); 623 } 624 625 /* 626 * Return a pointer to the n-th block pointer in the btree block. 627 */ 628 union xfs_btree_ptr * 629 xfs_btree_ptr_addr( 630 struct xfs_btree_cur *cur, 631 int n, 632 struct xfs_btree_block *block) 633 { 634 int level = xfs_btree_get_level(block); 635 636 ASSERT(block->bb_level != 0); 637 638 return (union xfs_btree_ptr *) 639 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 640 } 641 642 struct xfs_ifork * 643 xfs_btree_ifork_ptr( 644 struct xfs_btree_cur *cur) 645 { 646 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 647 648 if (cur->bc_flags & XFS_BTREE_STAGING) 649 return cur->bc_ino.ifake->if_fork; 650 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork); 651 } 652 653 /* 654 * Get the root block which is stored in the inode. 655 * 656 * For now this btree implementation assumes the btree root is always 657 * stored in the if_broot field of an inode fork. 658 */ 659 STATIC struct xfs_btree_block * 660 xfs_btree_get_iroot( 661 struct xfs_btree_cur *cur) 662 { 663 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 664 665 return (struct xfs_btree_block *)ifp->if_broot; 666 } 667 668 /* 669 * Retrieve the block pointer from the cursor at the given level. 670 * This may be an inode btree root or from a buffer. 671 */ 672 struct xfs_btree_block * /* generic btree block pointer */ 673 xfs_btree_get_block( 674 struct xfs_btree_cur *cur, /* btree cursor */ 675 int level, /* level in btree */ 676 struct xfs_buf **bpp) /* buffer containing the block */ 677 { 678 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 679 (level == cur->bc_nlevels - 1)) { 680 *bpp = NULL; 681 return xfs_btree_get_iroot(cur); 682 } 683 684 *bpp = cur->bc_levels[level].bp; 685 return XFS_BUF_TO_BLOCK(*bpp); 686 } 687 688 /* 689 * Change the cursor to point to the first record at the given level. 690 * Other levels are unaffected. 691 */ 692 STATIC int /* success=1, failure=0 */ 693 xfs_btree_firstrec( 694 struct xfs_btree_cur *cur, /* btree cursor */ 695 int level) /* level to change */ 696 { 697 struct xfs_btree_block *block; /* generic btree block pointer */ 698 struct xfs_buf *bp; /* buffer containing block */ 699 700 /* 701 * Get the block pointer for this level. 702 */ 703 block = xfs_btree_get_block(cur, level, &bp); 704 if (xfs_btree_check_block(cur, block, level, bp)) 705 return 0; 706 /* 707 * It's empty, there is no such record. 708 */ 709 if (!block->bb_numrecs) 710 return 0; 711 /* 712 * Set the ptr value to 1, that's the first record/key. 713 */ 714 cur->bc_levels[level].ptr = 1; 715 return 1; 716 } 717 718 /* 719 * Change the cursor to point to the last record in the current block 720 * at the given level. Other levels are unaffected. 721 */ 722 STATIC int /* success=1, failure=0 */ 723 xfs_btree_lastrec( 724 struct xfs_btree_cur *cur, /* btree cursor */ 725 int level) /* level to change */ 726 { 727 struct xfs_btree_block *block; /* generic btree block pointer */ 728 struct xfs_buf *bp; /* buffer containing block */ 729 730 /* 731 * Get the block pointer for this level. 732 */ 733 block = xfs_btree_get_block(cur, level, &bp); 734 if (xfs_btree_check_block(cur, block, level, bp)) 735 return 0; 736 /* 737 * It's empty, there is no such record. 738 */ 739 if (!block->bb_numrecs) 740 return 0; 741 /* 742 * Set the ptr value to numrecs, that's the last record/key. 743 */ 744 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs); 745 return 1; 746 } 747 748 /* 749 * Compute first and last byte offsets for the fields given. 750 * Interprets the offsets table, which contains struct field offsets. 751 */ 752 void 753 xfs_btree_offsets( 754 int64_t fields, /* bitmask of fields */ 755 const short *offsets, /* table of field offsets */ 756 int nbits, /* number of bits to inspect */ 757 int *first, /* output: first byte offset */ 758 int *last) /* output: last byte offset */ 759 { 760 int i; /* current bit number */ 761 int64_t imask; /* mask for current bit number */ 762 763 ASSERT(fields != 0); 764 /* 765 * Find the lowest bit, so the first byte offset. 766 */ 767 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 768 if (imask & fields) { 769 *first = offsets[i]; 770 break; 771 } 772 } 773 /* 774 * Find the highest bit, so the last byte offset. 775 */ 776 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 777 if (imask & fields) { 778 *last = offsets[i + 1] - 1; 779 break; 780 } 781 } 782 } 783 784 /* 785 * Get a buffer for the block, return it read in. 786 * Long-form addressing. 787 */ 788 int 789 xfs_btree_read_bufl( 790 struct xfs_mount *mp, /* file system mount point */ 791 struct xfs_trans *tp, /* transaction pointer */ 792 xfs_fsblock_t fsbno, /* file system block number */ 793 struct xfs_buf **bpp, /* buffer for fsbno */ 794 int refval, /* ref count value for buffer */ 795 const struct xfs_buf_ops *ops) 796 { 797 struct xfs_buf *bp; /* return value */ 798 xfs_daddr_t d; /* real disk block address */ 799 int error; 800 801 if (!xfs_verify_fsbno(mp, fsbno)) 802 return -EFSCORRUPTED; 803 d = XFS_FSB_TO_DADDR(mp, fsbno); 804 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 805 mp->m_bsize, 0, &bp, ops); 806 if (error) 807 return error; 808 if (bp) 809 xfs_buf_set_ref(bp, refval); 810 *bpp = bp; 811 return 0; 812 } 813 814 /* 815 * Read-ahead the block, don't wait for it, don't return a buffer. 816 * Long-form addressing. 817 */ 818 /* ARGSUSED */ 819 void 820 xfs_btree_reada_bufl( 821 struct xfs_mount *mp, /* file system mount point */ 822 xfs_fsblock_t fsbno, /* file system block number */ 823 xfs_extlen_t count, /* count of filesystem blocks */ 824 const struct xfs_buf_ops *ops) 825 { 826 xfs_daddr_t d; 827 828 ASSERT(fsbno != NULLFSBLOCK); 829 d = XFS_FSB_TO_DADDR(mp, fsbno); 830 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 831 } 832 833 /* 834 * Read-ahead the block, don't wait for it, don't return a buffer. 835 * Short-form addressing. 836 */ 837 /* ARGSUSED */ 838 void 839 xfs_btree_reada_bufs( 840 struct xfs_mount *mp, /* file system mount point */ 841 xfs_agnumber_t agno, /* allocation group number */ 842 xfs_agblock_t agbno, /* allocation group block number */ 843 xfs_extlen_t count, /* count of filesystem blocks */ 844 const struct xfs_buf_ops *ops) 845 { 846 xfs_daddr_t d; 847 848 ASSERT(agno != NULLAGNUMBER); 849 ASSERT(agbno != NULLAGBLOCK); 850 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 851 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 852 } 853 854 STATIC int 855 xfs_btree_readahead_lblock( 856 struct xfs_btree_cur *cur, 857 int lr, 858 struct xfs_btree_block *block) 859 { 860 int rval = 0; 861 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 862 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 863 864 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 865 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 866 cur->bc_ops->buf_ops); 867 rval++; 868 } 869 870 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 871 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 872 cur->bc_ops->buf_ops); 873 rval++; 874 } 875 876 return rval; 877 } 878 879 STATIC int 880 xfs_btree_readahead_sblock( 881 struct xfs_btree_cur *cur, 882 int lr, 883 struct xfs_btree_block *block) 884 { 885 int rval = 0; 886 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 887 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 888 889 890 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 891 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 892 left, 1, cur->bc_ops->buf_ops); 893 rval++; 894 } 895 896 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 898 right, 1, cur->bc_ops->buf_ops); 899 rval++; 900 } 901 902 return rval; 903 } 904 905 /* 906 * Read-ahead btree blocks, at the given level. 907 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 908 */ 909 STATIC int 910 xfs_btree_readahead( 911 struct xfs_btree_cur *cur, /* btree cursor */ 912 int lev, /* level in btree */ 913 int lr) /* left/right bits */ 914 { 915 struct xfs_btree_block *block; 916 917 /* 918 * No readahead needed if we are at the root level and the 919 * btree root is stored in the inode. 920 */ 921 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 922 (lev == cur->bc_nlevels - 1)) 923 return 0; 924 925 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra) 926 return 0; 927 928 cur->bc_levels[lev].ra |= lr; 929 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp); 930 931 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 932 return xfs_btree_readahead_lblock(cur, lr, block); 933 return xfs_btree_readahead_sblock(cur, lr, block); 934 } 935 936 STATIC int 937 xfs_btree_ptr_to_daddr( 938 struct xfs_btree_cur *cur, 939 const union xfs_btree_ptr *ptr, 940 xfs_daddr_t *daddr) 941 { 942 xfs_fsblock_t fsbno; 943 xfs_agblock_t agbno; 944 int error; 945 946 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 947 if (error) 948 return error; 949 950 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 951 fsbno = be64_to_cpu(ptr->l); 952 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 953 } else { 954 agbno = be32_to_cpu(ptr->s); 955 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno, 956 agbno); 957 } 958 959 return 0; 960 } 961 962 /* 963 * Readahead @count btree blocks at the given @ptr location. 964 * 965 * We don't need to care about long or short form btrees here as we have a 966 * method of converting the ptr directly to a daddr available to us. 967 */ 968 STATIC void 969 xfs_btree_readahead_ptr( 970 struct xfs_btree_cur *cur, 971 union xfs_btree_ptr *ptr, 972 xfs_extlen_t count) 973 { 974 xfs_daddr_t daddr; 975 976 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 977 return; 978 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 979 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 980 } 981 982 /* 983 * Set the buffer for level "lev" in the cursor to bp, releasing 984 * any previous buffer. 985 */ 986 STATIC void 987 xfs_btree_setbuf( 988 struct xfs_btree_cur *cur, /* btree cursor */ 989 int lev, /* level in btree */ 990 struct xfs_buf *bp) /* new buffer to set */ 991 { 992 struct xfs_btree_block *b; /* btree block */ 993 994 if (cur->bc_levels[lev].bp) 995 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp); 996 cur->bc_levels[lev].bp = bp; 997 cur->bc_levels[lev].ra = 0; 998 999 b = XFS_BUF_TO_BLOCK(bp); 1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1001 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1002 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1003 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1004 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1005 } else { 1006 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1007 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1008 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1009 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1010 } 1011 } 1012 1013 bool 1014 xfs_btree_ptr_is_null( 1015 struct xfs_btree_cur *cur, 1016 const union xfs_btree_ptr *ptr) 1017 { 1018 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1019 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1020 else 1021 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1022 } 1023 1024 void 1025 xfs_btree_set_ptr_null( 1026 struct xfs_btree_cur *cur, 1027 union xfs_btree_ptr *ptr) 1028 { 1029 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1030 ptr->l = cpu_to_be64(NULLFSBLOCK); 1031 else 1032 ptr->s = cpu_to_be32(NULLAGBLOCK); 1033 } 1034 1035 /* 1036 * Get/set/init sibling pointers 1037 */ 1038 void 1039 xfs_btree_get_sibling( 1040 struct xfs_btree_cur *cur, 1041 struct xfs_btree_block *block, 1042 union xfs_btree_ptr *ptr, 1043 int lr) 1044 { 1045 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1046 1047 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1048 if (lr == XFS_BB_RIGHTSIB) 1049 ptr->l = block->bb_u.l.bb_rightsib; 1050 else 1051 ptr->l = block->bb_u.l.bb_leftsib; 1052 } else { 1053 if (lr == XFS_BB_RIGHTSIB) 1054 ptr->s = block->bb_u.s.bb_rightsib; 1055 else 1056 ptr->s = block->bb_u.s.bb_leftsib; 1057 } 1058 } 1059 1060 void 1061 xfs_btree_set_sibling( 1062 struct xfs_btree_cur *cur, 1063 struct xfs_btree_block *block, 1064 const union xfs_btree_ptr *ptr, 1065 int lr) 1066 { 1067 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1068 1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1070 if (lr == XFS_BB_RIGHTSIB) 1071 block->bb_u.l.bb_rightsib = ptr->l; 1072 else 1073 block->bb_u.l.bb_leftsib = ptr->l; 1074 } else { 1075 if (lr == XFS_BB_RIGHTSIB) 1076 block->bb_u.s.bb_rightsib = ptr->s; 1077 else 1078 block->bb_u.s.bb_leftsib = ptr->s; 1079 } 1080 } 1081 1082 void 1083 xfs_btree_init_block_int( 1084 struct xfs_mount *mp, 1085 struct xfs_btree_block *buf, 1086 xfs_daddr_t blkno, 1087 xfs_btnum_t btnum, 1088 __u16 level, 1089 __u16 numrecs, 1090 __u64 owner, 1091 unsigned int flags) 1092 { 1093 int crc = xfs_has_crc(mp); 1094 __u32 magic = xfs_btree_magic(crc, btnum); 1095 1096 buf->bb_magic = cpu_to_be32(magic); 1097 buf->bb_level = cpu_to_be16(level); 1098 buf->bb_numrecs = cpu_to_be16(numrecs); 1099 1100 if (flags & XFS_BTREE_LONG_PTRS) { 1101 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1102 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1103 if (crc) { 1104 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1105 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1106 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1107 buf->bb_u.l.bb_pad = 0; 1108 buf->bb_u.l.bb_lsn = 0; 1109 } 1110 } else { 1111 /* owner is a 32 bit value on short blocks */ 1112 __u32 __owner = (__u32)owner; 1113 1114 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1115 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1116 if (crc) { 1117 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1118 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1119 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1120 buf->bb_u.s.bb_lsn = 0; 1121 } 1122 } 1123 } 1124 1125 void 1126 xfs_btree_init_block( 1127 struct xfs_mount *mp, 1128 struct xfs_buf *bp, 1129 xfs_btnum_t btnum, 1130 __u16 level, 1131 __u16 numrecs, 1132 __u64 owner) 1133 { 1134 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp), 1135 btnum, level, numrecs, owner, 0); 1136 } 1137 1138 void 1139 xfs_btree_init_block_cur( 1140 struct xfs_btree_cur *cur, 1141 struct xfs_buf *bp, 1142 int level, 1143 int numrecs) 1144 { 1145 __u64 owner; 1146 1147 /* 1148 * we can pull the owner from the cursor right now as the different 1149 * owners align directly with the pointer size of the btree. This may 1150 * change in future, but is safe for current users of the generic btree 1151 * code. 1152 */ 1153 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1154 owner = cur->bc_ino.ip->i_ino; 1155 else 1156 owner = cur->bc_ag.pag->pag_agno; 1157 1158 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), 1159 xfs_buf_daddr(bp), cur->bc_btnum, level, 1160 numrecs, owner, cur->bc_flags); 1161 } 1162 1163 /* 1164 * Return true if ptr is the last record in the btree and 1165 * we need to track updates to this record. The decision 1166 * will be further refined in the update_lastrec method. 1167 */ 1168 STATIC int 1169 xfs_btree_is_lastrec( 1170 struct xfs_btree_cur *cur, 1171 struct xfs_btree_block *block, 1172 int level) 1173 { 1174 union xfs_btree_ptr ptr; 1175 1176 if (level > 0) 1177 return 0; 1178 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1179 return 0; 1180 1181 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1182 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1183 return 0; 1184 return 1; 1185 } 1186 1187 STATIC void 1188 xfs_btree_buf_to_ptr( 1189 struct xfs_btree_cur *cur, 1190 struct xfs_buf *bp, 1191 union xfs_btree_ptr *ptr) 1192 { 1193 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1194 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1195 xfs_buf_daddr(bp))); 1196 else { 1197 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1198 xfs_buf_daddr(bp))); 1199 } 1200 } 1201 1202 STATIC void 1203 xfs_btree_set_refs( 1204 struct xfs_btree_cur *cur, 1205 struct xfs_buf *bp) 1206 { 1207 switch (cur->bc_btnum) { 1208 case XFS_BTNUM_BNO: 1209 case XFS_BTNUM_CNT: 1210 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1211 break; 1212 case XFS_BTNUM_INO: 1213 case XFS_BTNUM_FINO: 1214 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1215 break; 1216 case XFS_BTNUM_BMAP: 1217 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1218 break; 1219 case XFS_BTNUM_RMAP: 1220 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1221 break; 1222 case XFS_BTNUM_REFC: 1223 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1224 break; 1225 default: 1226 ASSERT(0); 1227 } 1228 } 1229 1230 int 1231 xfs_btree_get_buf_block( 1232 struct xfs_btree_cur *cur, 1233 const union xfs_btree_ptr *ptr, 1234 struct xfs_btree_block **block, 1235 struct xfs_buf **bpp) 1236 { 1237 struct xfs_mount *mp = cur->bc_mp; 1238 xfs_daddr_t d; 1239 int error; 1240 1241 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1242 if (error) 1243 return error; 1244 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1245 0, bpp); 1246 if (error) 1247 return error; 1248 1249 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1250 *block = XFS_BUF_TO_BLOCK(*bpp); 1251 return 0; 1252 } 1253 1254 /* 1255 * Read in the buffer at the given ptr and return the buffer and 1256 * the block pointer within the buffer. 1257 */ 1258 STATIC int 1259 xfs_btree_read_buf_block( 1260 struct xfs_btree_cur *cur, 1261 const union xfs_btree_ptr *ptr, 1262 int flags, 1263 struct xfs_btree_block **block, 1264 struct xfs_buf **bpp) 1265 { 1266 struct xfs_mount *mp = cur->bc_mp; 1267 xfs_daddr_t d; 1268 int error; 1269 1270 /* need to sort out how callers deal with failures first */ 1271 ASSERT(!(flags & XBF_TRYLOCK)); 1272 1273 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1274 if (error) 1275 return error; 1276 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1277 mp->m_bsize, flags, bpp, 1278 cur->bc_ops->buf_ops); 1279 if (error) 1280 return error; 1281 1282 xfs_btree_set_refs(cur, *bpp); 1283 *block = XFS_BUF_TO_BLOCK(*bpp); 1284 return 0; 1285 } 1286 1287 /* 1288 * Copy keys from one btree block to another. 1289 */ 1290 void 1291 xfs_btree_copy_keys( 1292 struct xfs_btree_cur *cur, 1293 union xfs_btree_key *dst_key, 1294 const union xfs_btree_key *src_key, 1295 int numkeys) 1296 { 1297 ASSERT(numkeys >= 0); 1298 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1299 } 1300 1301 /* 1302 * Copy records from one btree block to another. 1303 */ 1304 STATIC void 1305 xfs_btree_copy_recs( 1306 struct xfs_btree_cur *cur, 1307 union xfs_btree_rec *dst_rec, 1308 union xfs_btree_rec *src_rec, 1309 int numrecs) 1310 { 1311 ASSERT(numrecs >= 0); 1312 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1313 } 1314 1315 /* 1316 * Copy block pointers from one btree block to another. 1317 */ 1318 void 1319 xfs_btree_copy_ptrs( 1320 struct xfs_btree_cur *cur, 1321 union xfs_btree_ptr *dst_ptr, 1322 const union xfs_btree_ptr *src_ptr, 1323 int numptrs) 1324 { 1325 ASSERT(numptrs >= 0); 1326 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1327 } 1328 1329 /* 1330 * Shift keys one index left/right inside a single btree block. 1331 */ 1332 STATIC void 1333 xfs_btree_shift_keys( 1334 struct xfs_btree_cur *cur, 1335 union xfs_btree_key *key, 1336 int dir, 1337 int numkeys) 1338 { 1339 char *dst_key; 1340 1341 ASSERT(numkeys >= 0); 1342 ASSERT(dir == 1 || dir == -1); 1343 1344 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1345 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1346 } 1347 1348 /* 1349 * Shift records one index left/right inside a single btree block. 1350 */ 1351 STATIC void 1352 xfs_btree_shift_recs( 1353 struct xfs_btree_cur *cur, 1354 union xfs_btree_rec *rec, 1355 int dir, 1356 int numrecs) 1357 { 1358 char *dst_rec; 1359 1360 ASSERT(numrecs >= 0); 1361 ASSERT(dir == 1 || dir == -1); 1362 1363 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1364 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1365 } 1366 1367 /* 1368 * Shift block pointers one index left/right inside a single btree block. 1369 */ 1370 STATIC void 1371 xfs_btree_shift_ptrs( 1372 struct xfs_btree_cur *cur, 1373 union xfs_btree_ptr *ptr, 1374 int dir, 1375 int numptrs) 1376 { 1377 char *dst_ptr; 1378 1379 ASSERT(numptrs >= 0); 1380 ASSERT(dir == 1 || dir == -1); 1381 1382 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1383 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1384 } 1385 1386 /* 1387 * Log key values from the btree block. 1388 */ 1389 STATIC void 1390 xfs_btree_log_keys( 1391 struct xfs_btree_cur *cur, 1392 struct xfs_buf *bp, 1393 int first, 1394 int last) 1395 { 1396 1397 if (bp) { 1398 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1399 xfs_trans_log_buf(cur->bc_tp, bp, 1400 xfs_btree_key_offset(cur, first), 1401 xfs_btree_key_offset(cur, last + 1) - 1); 1402 } else { 1403 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1404 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1405 } 1406 } 1407 1408 /* 1409 * Log record values from the btree block. 1410 */ 1411 void 1412 xfs_btree_log_recs( 1413 struct xfs_btree_cur *cur, 1414 struct xfs_buf *bp, 1415 int first, 1416 int last) 1417 { 1418 1419 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1420 xfs_trans_log_buf(cur->bc_tp, bp, 1421 xfs_btree_rec_offset(cur, first), 1422 xfs_btree_rec_offset(cur, last + 1) - 1); 1423 1424 } 1425 1426 /* 1427 * Log block pointer fields from a btree block (nonleaf). 1428 */ 1429 STATIC void 1430 xfs_btree_log_ptrs( 1431 struct xfs_btree_cur *cur, /* btree cursor */ 1432 struct xfs_buf *bp, /* buffer containing btree block */ 1433 int first, /* index of first pointer to log */ 1434 int last) /* index of last pointer to log */ 1435 { 1436 1437 if (bp) { 1438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1439 int level = xfs_btree_get_level(block); 1440 1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1442 xfs_trans_log_buf(cur->bc_tp, bp, 1443 xfs_btree_ptr_offset(cur, first, level), 1444 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1445 } else { 1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1447 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1448 } 1449 1450 } 1451 1452 /* 1453 * Log fields from a btree block header. 1454 */ 1455 void 1456 xfs_btree_log_block( 1457 struct xfs_btree_cur *cur, /* btree cursor */ 1458 struct xfs_buf *bp, /* buffer containing btree block */ 1459 int fields) /* mask of fields: XFS_BB_... */ 1460 { 1461 int first; /* first byte offset logged */ 1462 int last; /* last byte offset logged */ 1463 static const short soffsets[] = { /* table of offsets (short) */ 1464 offsetof(struct xfs_btree_block, bb_magic), 1465 offsetof(struct xfs_btree_block, bb_level), 1466 offsetof(struct xfs_btree_block, bb_numrecs), 1467 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1468 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1469 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1470 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1471 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1472 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1473 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1474 XFS_BTREE_SBLOCK_CRC_LEN 1475 }; 1476 static const short loffsets[] = { /* table of offsets (long) */ 1477 offsetof(struct xfs_btree_block, bb_magic), 1478 offsetof(struct xfs_btree_block, bb_level), 1479 offsetof(struct xfs_btree_block, bb_numrecs), 1480 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1481 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1482 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1483 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1484 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1485 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1486 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1487 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1488 XFS_BTREE_LBLOCK_CRC_LEN 1489 }; 1490 1491 if (bp) { 1492 int nbits; 1493 1494 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1495 /* 1496 * We don't log the CRC when updating a btree 1497 * block but instead recreate it during log 1498 * recovery. As the log buffers have checksums 1499 * of their own this is safe and avoids logging a crc 1500 * update in a lot of places. 1501 */ 1502 if (fields == XFS_BB_ALL_BITS) 1503 fields = XFS_BB_ALL_BITS_CRC; 1504 nbits = XFS_BB_NUM_BITS_CRC; 1505 } else { 1506 nbits = XFS_BB_NUM_BITS; 1507 } 1508 xfs_btree_offsets(fields, 1509 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1510 loffsets : soffsets, 1511 nbits, &first, &last); 1512 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1513 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1514 } else { 1515 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1516 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1517 } 1518 } 1519 1520 /* 1521 * Increment cursor by one record at the level. 1522 * For nonzero levels the leaf-ward information is untouched. 1523 */ 1524 int /* error */ 1525 xfs_btree_increment( 1526 struct xfs_btree_cur *cur, 1527 int level, 1528 int *stat) /* success/failure */ 1529 { 1530 struct xfs_btree_block *block; 1531 union xfs_btree_ptr ptr; 1532 struct xfs_buf *bp; 1533 int error; /* error return value */ 1534 int lev; 1535 1536 ASSERT(level < cur->bc_nlevels); 1537 1538 /* Read-ahead to the right at this level. */ 1539 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1540 1541 /* Get a pointer to the btree block. */ 1542 block = xfs_btree_get_block(cur, level, &bp); 1543 1544 #ifdef DEBUG 1545 error = xfs_btree_check_block(cur, block, level, bp); 1546 if (error) 1547 goto error0; 1548 #endif 1549 1550 /* We're done if we remain in the block after the increment. */ 1551 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block)) 1552 goto out1; 1553 1554 /* Fail if we just went off the right edge of the tree. */ 1555 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1556 if (xfs_btree_ptr_is_null(cur, &ptr)) 1557 goto out0; 1558 1559 XFS_BTREE_STATS_INC(cur, increment); 1560 1561 /* 1562 * March up the tree incrementing pointers. 1563 * Stop when we don't go off the right edge of a block. 1564 */ 1565 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1566 block = xfs_btree_get_block(cur, lev, &bp); 1567 1568 #ifdef DEBUG 1569 error = xfs_btree_check_block(cur, block, lev, bp); 1570 if (error) 1571 goto error0; 1572 #endif 1573 1574 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block)) 1575 break; 1576 1577 /* Read-ahead the right block for the next loop. */ 1578 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1579 } 1580 1581 /* 1582 * If we went off the root then we are either seriously 1583 * confused or have the tree root in an inode. 1584 */ 1585 if (lev == cur->bc_nlevels) { 1586 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1587 goto out0; 1588 ASSERT(0); 1589 error = -EFSCORRUPTED; 1590 goto error0; 1591 } 1592 ASSERT(lev < cur->bc_nlevels); 1593 1594 /* 1595 * Now walk back down the tree, fixing up the cursor's buffer 1596 * pointers and key numbers. 1597 */ 1598 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1599 union xfs_btree_ptr *ptrp; 1600 1601 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1602 --lev; 1603 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1604 if (error) 1605 goto error0; 1606 1607 xfs_btree_setbuf(cur, lev, bp); 1608 cur->bc_levels[lev].ptr = 1; 1609 } 1610 out1: 1611 *stat = 1; 1612 return 0; 1613 1614 out0: 1615 *stat = 0; 1616 return 0; 1617 1618 error0: 1619 return error; 1620 } 1621 1622 /* 1623 * Decrement cursor by one record at the level. 1624 * For nonzero levels the leaf-ward information is untouched. 1625 */ 1626 int /* error */ 1627 xfs_btree_decrement( 1628 struct xfs_btree_cur *cur, 1629 int level, 1630 int *stat) /* success/failure */ 1631 { 1632 struct xfs_btree_block *block; 1633 struct xfs_buf *bp; 1634 int error; /* error return value */ 1635 int lev; 1636 union xfs_btree_ptr ptr; 1637 1638 ASSERT(level < cur->bc_nlevels); 1639 1640 /* Read-ahead to the left at this level. */ 1641 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1642 1643 /* We're done if we remain in the block after the decrement. */ 1644 if (--cur->bc_levels[level].ptr > 0) 1645 goto out1; 1646 1647 /* Get a pointer to the btree block. */ 1648 block = xfs_btree_get_block(cur, level, &bp); 1649 1650 #ifdef DEBUG 1651 error = xfs_btree_check_block(cur, block, level, bp); 1652 if (error) 1653 goto error0; 1654 #endif 1655 1656 /* Fail if we just went off the left edge of the tree. */ 1657 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1658 if (xfs_btree_ptr_is_null(cur, &ptr)) 1659 goto out0; 1660 1661 XFS_BTREE_STATS_INC(cur, decrement); 1662 1663 /* 1664 * March up the tree decrementing pointers. 1665 * Stop when we don't go off the left edge of a block. 1666 */ 1667 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1668 if (--cur->bc_levels[lev].ptr > 0) 1669 break; 1670 /* Read-ahead the left block for the next loop. */ 1671 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1672 } 1673 1674 /* 1675 * If we went off the root then we are seriously confused. 1676 * or the root of the tree is in an inode. 1677 */ 1678 if (lev == cur->bc_nlevels) { 1679 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1680 goto out0; 1681 ASSERT(0); 1682 error = -EFSCORRUPTED; 1683 goto error0; 1684 } 1685 ASSERT(lev < cur->bc_nlevels); 1686 1687 /* 1688 * Now walk back down the tree, fixing up the cursor's buffer 1689 * pointers and key numbers. 1690 */ 1691 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1692 union xfs_btree_ptr *ptrp; 1693 1694 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1695 --lev; 1696 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1697 if (error) 1698 goto error0; 1699 xfs_btree_setbuf(cur, lev, bp); 1700 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block); 1701 } 1702 out1: 1703 *stat = 1; 1704 return 0; 1705 1706 out0: 1707 *stat = 0; 1708 return 0; 1709 1710 error0: 1711 return error; 1712 } 1713 1714 int 1715 xfs_btree_lookup_get_block( 1716 struct xfs_btree_cur *cur, /* btree cursor */ 1717 int level, /* level in the btree */ 1718 const union xfs_btree_ptr *pp, /* ptr to btree block */ 1719 struct xfs_btree_block **blkp) /* return btree block */ 1720 { 1721 struct xfs_buf *bp; /* buffer pointer for btree block */ 1722 xfs_daddr_t daddr; 1723 int error = 0; 1724 1725 /* special case the root block if in an inode */ 1726 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1727 (level == cur->bc_nlevels - 1)) { 1728 *blkp = xfs_btree_get_iroot(cur); 1729 return 0; 1730 } 1731 1732 /* 1733 * If the old buffer at this level for the disk address we are 1734 * looking for re-use it. 1735 * 1736 * Otherwise throw it away and get a new one. 1737 */ 1738 bp = cur->bc_levels[level].bp; 1739 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1740 if (error) 1741 return error; 1742 if (bp && xfs_buf_daddr(bp) == daddr) { 1743 *blkp = XFS_BUF_TO_BLOCK(bp); 1744 return 0; 1745 } 1746 1747 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1748 if (error) 1749 return error; 1750 1751 /* Check the inode owner since the verifiers don't. */ 1752 if (xfs_has_crc(cur->bc_mp) && 1753 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && 1754 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1755 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1756 cur->bc_ino.ip->i_ino) 1757 goto out_bad; 1758 1759 /* Did we get the level we were looking for? */ 1760 if (be16_to_cpu((*blkp)->bb_level) != level) 1761 goto out_bad; 1762 1763 /* Check that internal nodes have at least one record. */ 1764 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1765 goto out_bad; 1766 1767 xfs_btree_setbuf(cur, level, bp); 1768 return 0; 1769 1770 out_bad: 1771 *blkp = NULL; 1772 xfs_buf_mark_corrupt(bp); 1773 xfs_trans_brelse(cur->bc_tp, bp); 1774 return -EFSCORRUPTED; 1775 } 1776 1777 /* 1778 * Get current search key. For level 0 we don't actually have a key 1779 * structure so we make one up from the record. For all other levels 1780 * we just return the right key. 1781 */ 1782 STATIC union xfs_btree_key * 1783 xfs_lookup_get_search_key( 1784 struct xfs_btree_cur *cur, 1785 int level, 1786 int keyno, 1787 struct xfs_btree_block *block, 1788 union xfs_btree_key *kp) 1789 { 1790 if (level == 0) { 1791 cur->bc_ops->init_key_from_rec(kp, 1792 xfs_btree_rec_addr(cur, keyno, block)); 1793 return kp; 1794 } 1795 1796 return xfs_btree_key_addr(cur, keyno, block); 1797 } 1798 1799 /* 1800 * Lookup the record. The cursor is made to point to it, based on dir. 1801 * stat is set to 0 if can't find any such record, 1 for success. 1802 */ 1803 int /* error */ 1804 xfs_btree_lookup( 1805 struct xfs_btree_cur *cur, /* btree cursor */ 1806 xfs_lookup_t dir, /* <=, ==, or >= */ 1807 int *stat) /* success/failure */ 1808 { 1809 struct xfs_btree_block *block; /* current btree block */ 1810 int64_t diff; /* difference for the current key */ 1811 int error; /* error return value */ 1812 int keyno; /* current key number */ 1813 int level; /* level in the btree */ 1814 union xfs_btree_ptr *pp; /* ptr to btree block */ 1815 union xfs_btree_ptr ptr; /* ptr to btree block */ 1816 1817 XFS_BTREE_STATS_INC(cur, lookup); 1818 1819 /* No such thing as a zero-level tree. */ 1820 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1821 return -EFSCORRUPTED; 1822 1823 block = NULL; 1824 keyno = 0; 1825 1826 /* initialise start pointer from cursor */ 1827 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1828 pp = &ptr; 1829 1830 /* 1831 * Iterate over each level in the btree, starting at the root. 1832 * For each level above the leaves, find the key we need, based 1833 * on the lookup record, then follow the corresponding block 1834 * pointer down to the next level. 1835 */ 1836 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1837 /* Get the block we need to do the lookup on. */ 1838 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1839 if (error) 1840 goto error0; 1841 1842 if (diff == 0) { 1843 /* 1844 * If we already had a key match at a higher level, we 1845 * know we need to use the first entry in this block. 1846 */ 1847 keyno = 1; 1848 } else { 1849 /* Otherwise search this block. Do a binary search. */ 1850 1851 int high; /* high entry number */ 1852 int low; /* low entry number */ 1853 1854 /* Set low and high entry numbers, 1-based. */ 1855 low = 1; 1856 high = xfs_btree_get_numrecs(block); 1857 if (!high) { 1858 /* Block is empty, must be an empty leaf. */ 1859 if (level != 0 || cur->bc_nlevels != 1) { 1860 XFS_CORRUPTION_ERROR(__func__, 1861 XFS_ERRLEVEL_LOW, 1862 cur->bc_mp, block, 1863 sizeof(*block)); 1864 return -EFSCORRUPTED; 1865 } 1866 1867 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE; 1868 *stat = 0; 1869 return 0; 1870 } 1871 1872 /* Binary search the block. */ 1873 while (low <= high) { 1874 union xfs_btree_key key; 1875 union xfs_btree_key *kp; 1876 1877 XFS_BTREE_STATS_INC(cur, compare); 1878 1879 /* keyno is average of low and high. */ 1880 keyno = (low + high) >> 1; 1881 1882 /* Get current search key */ 1883 kp = xfs_lookup_get_search_key(cur, level, 1884 keyno, block, &key); 1885 1886 /* 1887 * Compute difference to get next direction: 1888 * - less than, move right 1889 * - greater than, move left 1890 * - equal, we're done 1891 */ 1892 diff = cur->bc_ops->key_diff(cur, kp); 1893 if (diff < 0) 1894 low = keyno + 1; 1895 else if (diff > 0) 1896 high = keyno - 1; 1897 else 1898 break; 1899 } 1900 } 1901 1902 /* 1903 * If there are more levels, set up for the next level 1904 * by getting the block number and filling in the cursor. 1905 */ 1906 if (level > 0) { 1907 /* 1908 * If we moved left, need the previous key number, 1909 * unless there isn't one. 1910 */ 1911 if (diff > 0 && --keyno < 1) 1912 keyno = 1; 1913 pp = xfs_btree_ptr_addr(cur, keyno, block); 1914 1915 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1916 if (error) 1917 goto error0; 1918 1919 cur->bc_levels[level].ptr = keyno; 1920 } 1921 } 1922 1923 /* Done with the search. See if we need to adjust the results. */ 1924 if (dir != XFS_LOOKUP_LE && diff < 0) { 1925 keyno++; 1926 /* 1927 * If ge search and we went off the end of the block, but it's 1928 * not the last block, we're in the wrong block. 1929 */ 1930 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1931 if (dir == XFS_LOOKUP_GE && 1932 keyno > xfs_btree_get_numrecs(block) && 1933 !xfs_btree_ptr_is_null(cur, &ptr)) { 1934 int i; 1935 1936 cur->bc_levels[0].ptr = keyno; 1937 error = xfs_btree_increment(cur, 0, &i); 1938 if (error) 1939 goto error0; 1940 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1941 return -EFSCORRUPTED; 1942 *stat = 1; 1943 return 0; 1944 } 1945 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1946 keyno--; 1947 cur->bc_levels[0].ptr = keyno; 1948 1949 /* Return if we succeeded or not. */ 1950 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1951 *stat = 0; 1952 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1953 *stat = 1; 1954 else 1955 *stat = 0; 1956 return 0; 1957 1958 error0: 1959 return error; 1960 } 1961 1962 /* Find the high key storage area from a regular key. */ 1963 union xfs_btree_key * 1964 xfs_btree_high_key_from_key( 1965 struct xfs_btree_cur *cur, 1966 union xfs_btree_key *key) 1967 { 1968 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 1969 return (union xfs_btree_key *)((char *)key + 1970 (cur->bc_ops->key_len / 2)); 1971 } 1972 1973 /* Determine the low (and high if overlapped) keys of a leaf block */ 1974 STATIC void 1975 xfs_btree_get_leaf_keys( 1976 struct xfs_btree_cur *cur, 1977 struct xfs_btree_block *block, 1978 union xfs_btree_key *key) 1979 { 1980 union xfs_btree_key max_hkey; 1981 union xfs_btree_key hkey; 1982 union xfs_btree_rec *rec; 1983 union xfs_btree_key *high; 1984 int n; 1985 1986 rec = xfs_btree_rec_addr(cur, 1, block); 1987 cur->bc_ops->init_key_from_rec(key, rec); 1988 1989 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 1990 1991 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 1992 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 1993 rec = xfs_btree_rec_addr(cur, n, block); 1994 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 1995 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 1996 > 0) 1997 max_hkey = hkey; 1998 } 1999 2000 high = xfs_btree_high_key_from_key(cur, key); 2001 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2002 } 2003 } 2004 2005 /* Determine the low (and high if overlapped) keys of a node block */ 2006 STATIC void 2007 xfs_btree_get_node_keys( 2008 struct xfs_btree_cur *cur, 2009 struct xfs_btree_block *block, 2010 union xfs_btree_key *key) 2011 { 2012 union xfs_btree_key *hkey; 2013 union xfs_btree_key *max_hkey; 2014 union xfs_btree_key *high; 2015 int n; 2016 2017 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2018 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2019 cur->bc_ops->key_len / 2); 2020 2021 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2023 hkey = xfs_btree_high_key_addr(cur, n, block); 2024 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2025 max_hkey = hkey; 2026 } 2027 2028 high = xfs_btree_high_key_from_key(cur, key); 2029 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2030 } else { 2031 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2032 cur->bc_ops->key_len); 2033 } 2034 } 2035 2036 /* Derive the keys for any btree block. */ 2037 void 2038 xfs_btree_get_keys( 2039 struct xfs_btree_cur *cur, 2040 struct xfs_btree_block *block, 2041 union xfs_btree_key *key) 2042 { 2043 if (be16_to_cpu(block->bb_level) == 0) 2044 xfs_btree_get_leaf_keys(cur, block, key); 2045 else 2046 xfs_btree_get_node_keys(cur, block, key); 2047 } 2048 2049 /* 2050 * Decide if we need to update the parent keys of a btree block. For 2051 * a standard btree this is only necessary if we're updating the first 2052 * record/key. For an overlapping btree, we must always update the 2053 * keys because the highest key can be in any of the records or keys 2054 * in the block. 2055 */ 2056 static inline bool 2057 xfs_btree_needs_key_update( 2058 struct xfs_btree_cur *cur, 2059 int ptr) 2060 { 2061 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2062 } 2063 2064 /* 2065 * Update the low and high parent keys of the given level, progressing 2066 * towards the root. If force_all is false, stop if the keys for a given 2067 * level do not need updating. 2068 */ 2069 STATIC int 2070 __xfs_btree_updkeys( 2071 struct xfs_btree_cur *cur, 2072 int level, 2073 struct xfs_btree_block *block, 2074 struct xfs_buf *bp0, 2075 bool force_all) 2076 { 2077 union xfs_btree_key key; /* keys from current level */ 2078 union xfs_btree_key *lkey; /* keys from the next level up */ 2079 union xfs_btree_key *hkey; 2080 union xfs_btree_key *nlkey; /* keys from the next level up */ 2081 union xfs_btree_key *nhkey; 2082 struct xfs_buf *bp; 2083 int ptr; 2084 2085 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2086 2087 /* Exit if there aren't any parent levels to update. */ 2088 if (level + 1 >= cur->bc_nlevels) 2089 return 0; 2090 2091 trace_xfs_btree_updkeys(cur, level, bp0); 2092 2093 lkey = &key; 2094 hkey = xfs_btree_high_key_from_key(cur, lkey); 2095 xfs_btree_get_keys(cur, block, lkey); 2096 for (level++; level < cur->bc_nlevels; level++) { 2097 #ifdef DEBUG 2098 int error; 2099 #endif 2100 block = xfs_btree_get_block(cur, level, &bp); 2101 trace_xfs_btree_updkeys(cur, level, bp); 2102 #ifdef DEBUG 2103 error = xfs_btree_check_block(cur, block, level, bp); 2104 if (error) 2105 return error; 2106 #endif 2107 ptr = cur->bc_levels[level].ptr; 2108 nlkey = xfs_btree_key_addr(cur, ptr, block); 2109 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2110 if (!force_all && 2111 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2112 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2113 break; 2114 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2115 xfs_btree_log_keys(cur, bp, ptr, ptr); 2116 if (level + 1 >= cur->bc_nlevels) 2117 break; 2118 xfs_btree_get_node_keys(cur, block, lkey); 2119 } 2120 2121 return 0; 2122 } 2123 2124 /* Update all the keys from some level in cursor back to the root. */ 2125 STATIC int 2126 xfs_btree_updkeys_force( 2127 struct xfs_btree_cur *cur, 2128 int level) 2129 { 2130 struct xfs_buf *bp; 2131 struct xfs_btree_block *block; 2132 2133 block = xfs_btree_get_block(cur, level, &bp); 2134 return __xfs_btree_updkeys(cur, level, block, bp, true); 2135 } 2136 2137 /* 2138 * Update the parent keys of the given level, progressing towards the root. 2139 */ 2140 STATIC int 2141 xfs_btree_update_keys( 2142 struct xfs_btree_cur *cur, 2143 int level) 2144 { 2145 struct xfs_btree_block *block; 2146 struct xfs_buf *bp; 2147 union xfs_btree_key *kp; 2148 union xfs_btree_key key; 2149 int ptr; 2150 2151 ASSERT(level >= 0); 2152 2153 block = xfs_btree_get_block(cur, level, &bp); 2154 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2155 return __xfs_btree_updkeys(cur, level, block, bp, false); 2156 2157 /* 2158 * Go up the tree from this level toward the root. 2159 * At each level, update the key value to the value input. 2160 * Stop when we reach a level where the cursor isn't pointing 2161 * at the first entry in the block. 2162 */ 2163 xfs_btree_get_keys(cur, block, &key); 2164 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2165 #ifdef DEBUG 2166 int error; 2167 #endif 2168 block = xfs_btree_get_block(cur, level, &bp); 2169 #ifdef DEBUG 2170 error = xfs_btree_check_block(cur, block, level, bp); 2171 if (error) 2172 return error; 2173 #endif 2174 ptr = cur->bc_levels[level].ptr; 2175 kp = xfs_btree_key_addr(cur, ptr, block); 2176 xfs_btree_copy_keys(cur, kp, &key, 1); 2177 xfs_btree_log_keys(cur, bp, ptr, ptr); 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 2184 * Update the record referred to by cur to the value in the 2185 * given record. This either works (return 0) or gets an 2186 * EFSCORRUPTED error. 2187 */ 2188 int 2189 xfs_btree_update( 2190 struct xfs_btree_cur *cur, 2191 union xfs_btree_rec *rec) 2192 { 2193 struct xfs_btree_block *block; 2194 struct xfs_buf *bp; 2195 int error; 2196 int ptr; 2197 union xfs_btree_rec *rp; 2198 2199 /* Pick up the current block. */ 2200 block = xfs_btree_get_block(cur, 0, &bp); 2201 2202 #ifdef DEBUG 2203 error = xfs_btree_check_block(cur, block, 0, bp); 2204 if (error) 2205 goto error0; 2206 #endif 2207 /* Get the address of the rec to be updated. */ 2208 ptr = cur->bc_levels[0].ptr; 2209 rp = xfs_btree_rec_addr(cur, ptr, block); 2210 2211 /* Fill in the new contents and log them. */ 2212 xfs_btree_copy_recs(cur, rp, rec, 1); 2213 xfs_btree_log_recs(cur, bp, ptr, ptr); 2214 2215 /* 2216 * If we are tracking the last record in the tree and 2217 * we are at the far right edge of the tree, update it. 2218 */ 2219 if (xfs_btree_is_lastrec(cur, block, 0)) { 2220 cur->bc_ops->update_lastrec(cur, block, rec, 2221 ptr, LASTREC_UPDATE); 2222 } 2223 2224 /* Pass new key value up to our parent. */ 2225 if (xfs_btree_needs_key_update(cur, ptr)) { 2226 error = xfs_btree_update_keys(cur, 0); 2227 if (error) 2228 goto error0; 2229 } 2230 2231 return 0; 2232 2233 error0: 2234 return error; 2235 } 2236 2237 /* 2238 * Move 1 record left from cur/level if possible. 2239 * Update cur to reflect the new path. 2240 */ 2241 STATIC int /* error */ 2242 xfs_btree_lshift( 2243 struct xfs_btree_cur *cur, 2244 int level, 2245 int *stat) /* success/failure */ 2246 { 2247 struct xfs_buf *lbp; /* left buffer pointer */ 2248 struct xfs_btree_block *left; /* left btree block */ 2249 int lrecs; /* left record count */ 2250 struct xfs_buf *rbp; /* right buffer pointer */ 2251 struct xfs_btree_block *right; /* right btree block */ 2252 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2253 int rrecs; /* right record count */ 2254 union xfs_btree_ptr lptr; /* left btree pointer */ 2255 union xfs_btree_key *rkp = NULL; /* right btree key */ 2256 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2257 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2258 int error; /* error return value */ 2259 int i; 2260 2261 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2262 level == cur->bc_nlevels - 1) 2263 goto out0; 2264 2265 /* Set up variables for this block as "right". */ 2266 right = xfs_btree_get_block(cur, level, &rbp); 2267 2268 #ifdef DEBUG 2269 error = xfs_btree_check_block(cur, right, level, rbp); 2270 if (error) 2271 goto error0; 2272 #endif 2273 2274 /* If we've got no left sibling then we can't shift an entry left. */ 2275 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2276 if (xfs_btree_ptr_is_null(cur, &lptr)) 2277 goto out0; 2278 2279 /* 2280 * If the cursor entry is the one that would be moved, don't 2281 * do it... it's too complicated. 2282 */ 2283 if (cur->bc_levels[level].ptr <= 1) 2284 goto out0; 2285 2286 /* Set up the left neighbor as "left". */ 2287 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2288 if (error) 2289 goto error0; 2290 2291 /* If it's full, it can't take another entry. */ 2292 lrecs = xfs_btree_get_numrecs(left); 2293 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2294 goto out0; 2295 2296 rrecs = xfs_btree_get_numrecs(right); 2297 2298 /* 2299 * We add one entry to the left side and remove one for the right side. 2300 * Account for it here, the changes will be updated on disk and logged 2301 * later. 2302 */ 2303 lrecs++; 2304 rrecs--; 2305 2306 XFS_BTREE_STATS_INC(cur, lshift); 2307 XFS_BTREE_STATS_ADD(cur, moves, 1); 2308 2309 /* 2310 * If non-leaf, copy a key and a ptr to the left block. 2311 * Log the changes to the left block. 2312 */ 2313 if (level > 0) { 2314 /* It's a non-leaf. Move keys and pointers. */ 2315 union xfs_btree_key *lkp; /* left btree key */ 2316 union xfs_btree_ptr *lpp; /* left address pointer */ 2317 2318 lkp = xfs_btree_key_addr(cur, lrecs, left); 2319 rkp = xfs_btree_key_addr(cur, 1, right); 2320 2321 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2322 rpp = xfs_btree_ptr_addr(cur, 1, right); 2323 2324 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2325 if (error) 2326 goto error0; 2327 2328 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2329 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2330 2331 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2332 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2333 2334 ASSERT(cur->bc_ops->keys_inorder(cur, 2335 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2336 } else { 2337 /* It's a leaf. Move records. */ 2338 union xfs_btree_rec *lrp; /* left record pointer */ 2339 2340 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2341 rrp = xfs_btree_rec_addr(cur, 1, right); 2342 2343 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2344 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2345 2346 ASSERT(cur->bc_ops->recs_inorder(cur, 2347 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2348 } 2349 2350 xfs_btree_set_numrecs(left, lrecs); 2351 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2352 2353 xfs_btree_set_numrecs(right, rrecs); 2354 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2355 2356 /* 2357 * Slide the contents of right down one entry. 2358 */ 2359 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2360 if (level > 0) { 2361 /* It's a nonleaf. operate on keys and ptrs */ 2362 for (i = 0; i < rrecs; i++) { 2363 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2364 if (error) 2365 goto error0; 2366 } 2367 2368 xfs_btree_shift_keys(cur, 2369 xfs_btree_key_addr(cur, 2, right), 2370 -1, rrecs); 2371 xfs_btree_shift_ptrs(cur, 2372 xfs_btree_ptr_addr(cur, 2, right), 2373 -1, rrecs); 2374 2375 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2376 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2377 } else { 2378 /* It's a leaf. operate on records */ 2379 xfs_btree_shift_recs(cur, 2380 xfs_btree_rec_addr(cur, 2, right), 2381 -1, rrecs); 2382 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2383 } 2384 2385 /* 2386 * Using a temporary cursor, update the parent key values of the 2387 * block on the left. 2388 */ 2389 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2390 error = xfs_btree_dup_cursor(cur, &tcur); 2391 if (error) 2392 goto error0; 2393 i = xfs_btree_firstrec(tcur, level); 2394 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2395 error = -EFSCORRUPTED; 2396 goto error0; 2397 } 2398 2399 error = xfs_btree_decrement(tcur, level, &i); 2400 if (error) 2401 goto error1; 2402 2403 /* Update the parent high keys of the left block, if needed. */ 2404 error = xfs_btree_update_keys(tcur, level); 2405 if (error) 2406 goto error1; 2407 2408 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2409 } 2410 2411 /* Update the parent keys of the right block. */ 2412 error = xfs_btree_update_keys(cur, level); 2413 if (error) 2414 goto error0; 2415 2416 /* Slide the cursor value left one. */ 2417 cur->bc_levels[level].ptr--; 2418 2419 *stat = 1; 2420 return 0; 2421 2422 out0: 2423 *stat = 0; 2424 return 0; 2425 2426 error0: 2427 return error; 2428 2429 error1: 2430 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2431 return error; 2432 } 2433 2434 /* 2435 * Move 1 record right from cur/level if possible. 2436 * Update cur to reflect the new path. 2437 */ 2438 STATIC int /* error */ 2439 xfs_btree_rshift( 2440 struct xfs_btree_cur *cur, 2441 int level, 2442 int *stat) /* success/failure */ 2443 { 2444 struct xfs_buf *lbp; /* left buffer pointer */ 2445 struct xfs_btree_block *left; /* left btree block */ 2446 struct xfs_buf *rbp; /* right buffer pointer */ 2447 struct xfs_btree_block *right; /* right btree block */ 2448 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2449 union xfs_btree_ptr rptr; /* right block pointer */ 2450 union xfs_btree_key *rkp; /* right btree key */ 2451 int rrecs; /* right record count */ 2452 int lrecs; /* left record count */ 2453 int error; /* error return value */ 2454 int i; /* loop counter */ 2455 2456 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2457 (level == cur->bc_nlevels - 1)) 2458 goto out0; 2459 2460 /* Set up variables for this block as "left". */ 2461 left = xfs_btree_get_block(cur, level, &lbp); 2462 2463 #ifdef DEBUG 2464 error = xfs_btree_check_block(cur, left, level, lbp); 2465 if (error) 2466 goto error0; 2467 #endif 2468 2469 /* If we've got no right sibling then we can't shift an entry right. */ 2470 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2471 if (xfs_btree_ptr_is_null(cur, &rptr)) 2472 goto out0; 2473 2474 /* 2475 * If the cursor entry is the one that would be moved, don't 2476 * do it... it's too complicated. 2477 */ 2478 lrecs = xfs_btree_get_numrecs(left); 2479 if (cur->bc_levels[level].ptr >= lrecs) 2480 goto out0; 2481 2482 /* Set up the right neighbor as "right". */ 2483 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2484 if (error) 2485 goto error0; 2486 2487 /* If it's full, it can't take another entry. */ 2488 rrecs = xfs_btree_get_numrecs(right); 2489 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2490 goto out0; 2491 2492 XFS_BTREE_STATS_INC(cur, rshift); 2493 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2494 2495 /* 2496 * Make a hole at the start of the right neighbor block, then 2497 * copy the last left block entry to the hole. 2498 */ 2499 if (level > 0) { 2500 /* It's a nonleaf. make a hole in the keys and ptrs */ 2501 union xfs_btree_key *lkp; 2502 union xfs_btree_ptr *lpp; 2503 union xfs_btree_ptr *rpp; 2504 2505 lkp = xfs_btree_key_addr(cur, lrecs, left); 2506 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2507 rkp = xfs_btree_key_addr(cur, 1, right); 2508 rpp = xfs_btree_ptr_addr(cur, 1, right); 2509 2510 for (i = rrecs - 1; i >= 0; i--) { 2511 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2512 if (error) 2513 goto error0; 2514 } 2515 2516 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2517 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2518 2519 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2520 if (error) 2521 goto error0; 2522 2523 /* Now put the new data in, and log it. */ 2524 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2525 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2526 2527 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2528 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2529 2530 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2531 xfs_btree_key_addr(cur, 2, right))); 2532 } else { 2533 /* It's a leaf. make a hole in the records */ 2534 union xfs_btree_rec *lrp; 2535 union xfs_btree_rec *rrp; 2536 2537 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2538 rrp = xfs_btree_rec_addr(cur, 1, right); 2539 2540 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2541 2542 /* Now put the new data in, and log it. */ 2543 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2544 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2545 } 2546 2547 /* 2548 * Decrement and log left's numrecs, bump and log right's numrecs. 2549 */ 2550 xfs_btree_set_numrecs(left, --lrecs); 2551 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2552 2553 xfs_btree_set_numrecs(right, ++rrecs); 2554 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2555 2556 /* 2557 * Using a temporary cursor, update the parent key values of the 2558 * block on the right. 2559 */ 2560 error = xfs_btree_dup_cursor(cur, &tcur); 2561 if (error) 2562 goto error0; 2563 i = xfs_btree_lastrec(tcur, level); 2564 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2565 error = -EFSCORRUPTED; 2566 goto error0; 2567 } 2568 2569 error = xfs_btree_increment(tcur, level, &i); 2570 if (error) 2571 goto error1; 2572 2573 /* Update the parent high keys of the left block, if needed. */ 2574 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2575 error = xfs_btree_update_keys(cur, level); 2576 if (error) 2577 goto error1; 2578 } 2579 2580 /* Update the parent keys of the right block. */ 2581 error = xfs_btree_update_keys(tcur, level); 2582 if (error) 2583 goto error1; 2584 2585 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2586 2587 *stat = 1; 2588 return 0; 2589 2590 out0: 2591 *stat = 0; 2592 return 0; 2593 2594 error0: 2595 return error; 2596 2597 error1: 2598 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2599 return error; 2600 } 2601 2602 /* 2603 * Split cur/level block in half. 2604 * Return new block number and the key to its first 2605 * record (to be inserted into parent). 2606 */ 2607 STATIC int /* error */ 2608 __xfs_btree_split( 2609 struct xfs_btree_cur *cur, 2610 int level, 2611 union xfs_btree_ptr *ptrp, 2612 union xfs_btree_key *key, 2613 struct xfs_btree_cur **curp, 2614 int *stat) /* success/failure */ 2615 { 2616 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2617 struct xfs_buf *lbp; /* left buffer pointer */ 2618 struct xfs_btree_block *left; /* left btree block */ 2619 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2620 struct xfs_buf *rbp; /* right buffer pointer */ 2621 struct xfs_btree_block *right; /* right btree block */ 2622 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2623 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2624 struct xfs_btree_block *rrblock; /* right-right btree block */ 2625 int lrecs; 2626 int rrecs; 2627 int src_index; 2628 int error; /* error return value */ 2629 int i; 2630 2631 XFS_BTREE_STATS_INC(cur, split); 2632 2633 /* Set up left block (current one). */ 2634 left = xfs_btree_get_block(cur, level, &lbp); 2635 2636 #ifdef DEBUG 2637 error = xfs_btree_check_block(cur, left, level, lbp); 2638 if (error) 2639 goto error0; 2640 #endif 2641 2642 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2643 2644 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2645 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2646 if (error) 2647 goto error0; 2648 if (*stat == 0) 2649 goto out0; 2650 XFS_BTREE_STATS_INC(cur, alloc); 2651 2652 /* Set up the new block as "right". */ 2653 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2654 if (error) 2655 goto error0; 2656 2657 /* Fill in the btree header for the new right block. */ 2658 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2659 2660 /* 2661 * Split the entries between the old and the new block evenly. 2662 * Make sure that if there's an odd number of entries now, that 2663 * each new block will have the same number of entries. 2664 */ 2665 lrecs = xfs_btree_get_numrecs(left); 2666 rrecs = lrecs / 2; 2667 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1) 2668 rrecs++; 2669 src_index = (lrecs - rrecs + 1); 2670 2671 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2672 2673 /* Adjust numrecs for the later get_*_keys() calls. */ 2674 lrecs -= rrecs; 2675 xfs_btree_set_numrecs(left, lrecs); 2676 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2677 2678 /* 2679 * Copy btree block entries from the left block over to the 2680 * new block, the right. Update the right block and log the 2681 * changes. 2682 */ 2683 if (level > 0) { 2684 /* It's a non-leaf. Move keys and pointers. */ 2685 union xfs_btree_key *lkp; /* left btree key */ 2686 union xfs_btree_ptr *lpp; /* left address pointer */ 2687 union xfs_btree_key *rkp; /* right btree key */ 2688 union xfs_btree_ptr *rpp; /* right address pointer */ 2689 2690 lkp = xfs_btree_key_addr(cur, src_index, left); 2691 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2692 rkp = xfs_btree_key_addr(cur, 1, right); 2693 rpp = xfs_btree_ptr_addr(cur, 1, right); 2694 2695 for (i = src_index; i < rrecs; i++) { 2696 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2697 if (error) 2698 goto error0; 2699 } 2700 2701 /* Copy the keys & pointers to the new block. */ 2702 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2703 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2704 2705 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2706 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2707 2708 /* Stash the keys of the new block for later insertion. */ 2709 xfs_btree_get_node_keys(cur, right, key); 2710 } else { 2711 /* It's a leaf. Move records. */ 2712 union xfs_btree_rec *lrp; /* left record pointer */ 2713 union xfs_btree_rec *rrp; /* right record pointer */ 2714 2715 lrp = xfs_btree_rec_addr(cur, src_index, left); 2716 rrp = xfs_btree_rec_addr(cur, 1, right); 2717 2718 /* Copy records to the new block. */ 2719 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2720 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2721 2722 /* Stash the keys of the new block for later insertion. */ 2723 xfs_btree_get_leaf_keys(cur, right, key); 2724 } 2725 2726 /* 2727 * Find the left block number by looking in the buffer. 2728 * Adjust sibling pointers. 2729 */ 2730 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2731 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2732 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2733 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2734 2735 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2736 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2737 2738 /* 2739 * If there's a block to the new block's right, make that block 2740 * point back to right instead of to left. 2741 */ 2742 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2743 error = xfs_btree_read_buf_block(cur, &rrptr, 2744 0, &rrblock, &rrbp); 2745 if (error) 2746 goto error0; 2747 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2748 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2749 } 2750 2751 /* Update the parent high keys of the left block, if needed. */ 2752 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2753 error = xfs_btree_update_keys(cur, level); 2754 if (error) 2755 goto error0; 2756 } 2757 2758 /* 2759 * If the cursor is really in the right block, move it there. 2760 * If it's just pointing past the last entry in left, then we'll 2761 * insert there, so don't change anything in that case. 2762 */ 2763 if (cur->bc_levels[level].ptr > lrecs + 1) { 2764 xfs_btree_setbuf(cur, level, rbp); 2765 cur->bc_levels[level].ptr -= lrecs; 2766 } 2767 /* 2768 * If there are more levels, we'll need another cursor which refers 2769 * the right block, no matter where this cursor was. 2770 */ 2771 if (level + 1 < cur->bc_nlevels) { 2772 error = xfs_btree_dup_cursor(cur, curp); 2773 if (error) 2774 goto error0; 2775 (*curp)->bc_levels[level + 1].ptr++; 2776 } 2777 *ptrp = rptr; 2778 *stat = 1; 2779 return 0; 2780 out0: 2781 *stat = 0; 2782 return 0; 2783 2784 error0: 2785 return error; 2786 } 2787 2788 #ifdef __KERNEL__ 2789 struct xfs_btree_split_args { 2790 struct xfs_btree_cur *cur; 2791 int level; 2792 union xfs_btree_ptr *ptrp; 2793 union xfs_btree_key *key; 2794 struct xfs_btree_cur **curp; 2795 int *stat; /* success/failure */ 2796 int result; 2797 bool kswapd; /* allocation in kswapd context */ 2798 struct completion *done; 2799 struct work_struct work; 2800 }; 2801 2802 /* 2803 * Stack switching interfaces for allocation 2804 */ 2805 static void 2806 xfs_btree_split_worker( 2807 struct work_struct *work) 2808 { 2809 struct xfs_btree_split_args *args = container_of(work, 2810 struct xfs_btree_split_args, work); 2811 unsigned long pflags; 2812 unsigned long new_pflags = 0; 2813 2814 /* 2815 * we are in a transaction context here, but may also be doing work 2816 * in kswapd context, and hence we may need to inherit that state 2817 * temporarily to ensure that we don't block waiting for memory reclaim 2818 * in any way. 2819 */ 2820 if (args->kswapd) 2821 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2822 2823 current_set_flags_nested(&pflags, new_pflags); 2824 xfs_trans_set_context(args->cur->bc_tp); 2825 2826 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2827 args->key, args->curp, args->stat); 2828 2829 xfs_trans_clear_context(args->cur->bc_tp); 2830 current_restore_flags_nested(&pflags, new_pflags); 2831 2832 /* 2833 * Do not access args after complete() has run here. We don't own args 2834 * and the owner may run and free args before we return here. 2835 */ 2836 complete(args->done); 2837 2838 } 2839 2840 /* 2841 * BMBT split requests often come in with little stack to work on. Push 2842 * them off to a worker thread so there is lots of stack to use. For the other 2843 * btree types, just call directly to avoid the context switch overhead here. 2844 */ 2845 STATIC int /* error */ 2846 xfs_btree_split( 2847 struct xfs_btree_cur *cur, 2848 int level, 2849 union xfs_btree_ptr *ptrp, 2850 union xfs_btree_key *key, 2851 struct xfs_btree_cur **curp, 2852 int *stat) /* success/failure */ 2853 { 2854 struct xfs_btree_split_args args; 2855 DECLARE_COMPLETION_ONSTACK(done); 2856 2857 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2858 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2859 2860 args.cur = cur; 2861 args.level = level; 2862 args.ptrp = ptrp; 2863 args.key = key; 2864 args.curp = curp; 2865 args.stat = stat; 2866 args.done = &done; 2867 args.kswapd = current_is_kswapd(); 2868 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2869 queue_work(xfs_alloc_wq, &args.work); 2870 wait_for_completion(&done); 2871 destroy_work_on_stack(&args.work); 2872 return args.result; 2873 } 2874 #else 2875 #define xfs_btree_split __xfs_btree_split 2876 #endif /* __KERNEL__ */ 2877 2878 2879 /* 2880 * Copy the old inode root contents into a real block and make the 2881 * broot point to it. 2882 */ 2883 int /* error */ 2884 xfs_btree_new_iroot( 2885 struct xfs_btree_cur *cur, /* btree cursor */ 2886 int *logflags, /* logging flags for inode */ 2887 int *stat) /* return status - 0 fail */ 2888 { 2889 struct xfs_buf *cbp; /* buffer for cblock */ 2890 struct xfs_btree_block *block; /* btree block */ 2891 struct xfs_btree_block *cblock; /* child btree block */ 2892 union xfs_btree_key *ckp; /* child key pointer */ 2893 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2894 union xfs_btree_key *kp; /* pointer to btree key */ 2895 union xfs_btree_ptr *pp; /* pointer to block addr */ 2896 union xfs_btree_ptr nptr; /* new block addr */ 2897 int level; /* btree level */ 2898 int error; /* error return code */ 2899 int i; /* loop counter */ 2900 2901 XFS_BTREE_STATS_INC(cur, newroot); 2902 2903 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2904 2905 level = cur->bc_nlevels - 1; 2906 2907 block = xfs_btree_get_iroot(cur); 2908 pp = xfs_btree_ptr_addr(cur, 1, block); 2909 2910 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2911 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2912 if (error) 2913 goto error0; 2914 if (*stat == 0) 2915 return 0; 2916 2917 XFS_BTREE_STATS_INC(cur, alloc); 2918 2919 /* Copy the root into a real block. */ 2920 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2921 if (error) 2922 goto error0; 2923 2924 /* 2925 * we can't just memcpy() the root in for CRC enabled btree blocks. 2926 * In that case have to also ensure the blkno remains correct 2927 */ 2928 memcpy(cblock, block, xfs_btree_block_len(cur)); 2929 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 2930 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp)); 2931 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 2932 cblock->bb_u.l.bb_blkno = bno; 2933 else 2934 cblock->bb_u.s.bb_blkno = bno; 2935 } 2936 2937 be16_add_cpu(&block->bb_level, 1); 2938 xfs_btree_set_numrecs(block, 1); 2939 cur->bc_nlevels++; 2940 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 2941 cur->bc_levels[level + 1].ptr = 1; 2942 2943 kp = xfs_btree_key_addr(cur, 1, block); 2944 ckp = xfs_btree_key_addr(cur, 1, cblock); 2945 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 2946 2947 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 2948 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 2949 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 2950 if (error) 2951 goto error0; 2952 } 2953 2954 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 2955 2956 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 2957 if (error) 2958 goto error0; 2959 2960 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 2961 2962 xfs_iroot_realloc(cur->bc_ino.ip, 2963 1 - xfs_btree_get_numrecs(cblock), 2964 cur->bc_ino.whichfork); 2965 2966 xfs_btree_setbuf(cur, level, cbp); 2967 2968 /* 2969 * Do all this logging at the end so that 2970 * the root is at the right level. 2971 */ 2972 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 2973 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2974 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2975 2976 *logflags |= 2977 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 2978 *stat = 1; 2979 return 0; 2980 error0: 2981 return error; 2982 } 2983 2984 /* 2985 * Allocate a new root block, fill it in. 2986 */ 2987 STATIC int /* error */ 2988 xfs_btree_new_root( 2989 struct xfs_btree_cur *cur, /* btree cursor */ 2990 int *stat) /* success/failure */ 2991 { 2992 struct xfs_btree_block *block; /* one half of the old root block */ 2993 struct xfs_buf *bp; /* buffer containing block */ 2994 int error; /* error return value */ 2995 struct xfs_buf *lbp; /* left buffer pointer */ 2996 struct xfs_btree_block *left; /* left btree block */ 2997 struct xfs_buf *nbp; /* new (root) buffer */ 2998 struct xfs_btree_block *new; /* new (root) btree block */ 2999 int nptr; /* new value for key index, 1 or 2 */ 3000 struct xfs_buf *rbp; /* right buffer pointer */ 3001 struct xfs_btree_block *right; /* right btree block */ 3002 union xfs_btree_ptr rptr; 3003 union xfs_btree_ptr lptr; 3004 3005 XFS_BTREE_STATS_INC(cur, newroot); 3006 3007 /* initialise our start point from the cursor */ 3008 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3009 3010 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3011 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3012 if (error) 3013 goto error0; 3014 if (*stat == 0) 3015 goto out0; 3016 XFS_BTREE_STATS_INC(cur, alloc); 3017 3018 /* Set up the new block. */ 3019 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3020 if (error) 3021 goto error0; 3022 3023 /* Set the root in the holding structure increasing the level by 1. */ 3024 cur->bc_ops->set_root(cur, &lptr, 1); 3025 3026 /* 3027 * At the previous root level there are now two blocks: the old root, 3028 * and the new block generated when it was split. We don't know which 3029 * one the cursor is pointing at, so we set up variables "left" and 3030 * "right" for each case. 3031 */ 3032 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3033 3034 #ifdef DEBUG 3035 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3036 if (error) 3037 goto error0; 3038 #endif 3039 3040 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3041 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3042 /* Our block is left, pick up the right block. */ 3043 lbp = bp; 3044 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3045 left = block; 3046 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3047 if (error) 3048 goto error0; 3049 bp = rbp; 3050 nptr = 1; 3051 } else { 3052 /* Our block is right, pick up the left block. */ 3053 rbp = bp; 3054 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3055 right = block; 3056 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3057 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3058 if (error) 3059 goto error0; 3060 bp = lbp; 3061 nptr = 2; 3062 } 3063 3064 /* Fill in the new block's btree header and log it. */ 3065 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3066 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3067 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3068 !xfs_btree_ptr_is_null(cur, &rptr)); 3069 3070 /* Fill in the key data in the new root. */ 3071 if (xfs_btree_get_level(left) > 0) { 3072 /* 3073 * Get the keys for the left block's keys and put them directly 3074 * in the parent block. Do the same for the right block. 3075 */ 3076 xfs_btree_get_node_keys(cur, left, 3077 xfs_btree_key_addr(cur, 1, new)); 3078 xfs_btree_get_node_keys(cur, right, 3079 xfs_btree_key_addr(cur, 2, new)); 3080 } else { 3081 /* 3082 * Get the keys for the left block's records and put them 3083 * directly in the parent block. Do the same for the right 3084 * block. 3085 */ 3086 xfs_btree_get_leaf_keys(cur, left, 3087 xfs_btree_key_addr(cur, 1, new)); 3088 xfs_btree_get_leaf_keys(cur, right, 3089 xfs_btree_key_addr(cur, 2, new)); 3090 } 3091 xfs_btree_log_keys(cur, nbp, 1, 2); 3092 3093 /* Fill in the pointer data in the new root. */ 3094 xfs_btree_copy_ptrs(cur, 3095 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3096 xfs_btree_copy_ptrs(cur, 3097 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3098 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3099 3100 /* Fix up the cursor. */ 3101 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3102 cur->bc_levels[cur->bc_nlevels].ptr = nptr; 3103 cur->bc_nlevels++; 3104 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 3105 *stat = 1; 3106 return 0; 3107 error0: 3108 return error; 3109 out0: 3110 *stat = 0; 3111 return 0; 3112 } 3113 3114 STATIC int 3115 xfs_btree_make_block_unfull( 3116 struct xfs_btree_cur *cur, /* btree cursor */ 3117 int level, /* btree level */ 3118 int numrecs,/* # of recs in block */ 3119 int *oindex,/* old tree index */ 3120 int *index, /* new tree index */ 3121 union xfs_btree_ptr *nptr, /* new btree ptr */ 3122 struct xfs_btree_cur **ncur, /* new btree cursor */ 3123 union xfs_btree_key *key, /* key of new block */ 3124 int *stat) 3125 { 3126 int error = 0; 3127 3128 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3129 level == cur->bc_nlevels - 1) { 3130 struct xfs_inode *ip = cur->bc_ino.ip; 3131 3132 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3133 /* A root block that can be made bigger. */ 3134 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3135 *stat = 1; 3136 } else { 3137 /* A root block that needs replacing */ 3138 int logflags = 0; 3139 3140 error = xfs_btree_new_iroot(cur, &logflags, stat); 3141 if (error || *stat == 0) 3142 return error; 3143 3144 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3145 } 3146 3147 return 0; 3148 } 3149 3150 /* First, try shifting an entry to the right neighbor. */ 3151 error = xfs_btree_rshift(cur, level, stat); 3152 if (error || *stat) 3153 return error; 3154 3155 /* Next, try shifting an entry to the left neighbor. */ 3156 error = xfs_btree_lshift(cur, level, stat); 3157 if (error) 3158 return error; 3159 3160 if (*stat) { 3161 *oindex = *index = cur->bc_levels[level].ptr; 3162 return 0; 3163 } 3164 3165 /* 3166 * Next, try splitting the current block in half. 3167 * 3168 * If this works we have to re-set our variables because we 3169 * could be in a different block now. 3170 */ 3171 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3172 if (error || *stat == 0) 3173 return error; 3174 3175 3176 *index = cur->bc_levels[level].ptr; 3177 return 0; 3178 } 3179 3180 /* 3181 * Insert one record/level. Return information to the caller 3182 * allowing the next level up to proceed if necessary. 3183 */ 3184 STATIC int 3185 xfs_btree_insrec( 3186 struct xfs_btree_cur *cur, /* btree cursor */ 3187 int level, /* level to insert record at */ 3188 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3189 union xfs_btree_rec *rec, /* record to insert */ 3190 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3191 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3192 int *stat) /* success/failure */ 3193 { 3194 struct xfs_btree_block *block; /* btree block */ 3195 struct xfs_buf *bp; /* buffer for block */ 3196 union xfs_btree_ptr nptr; /* new block ptr */ 3197 struct xfs_btree_cur *ncur; /* new btree cursor */ 3198 union xfs_btree_key nkey; /* new block key */ 3199 union xfs_btree_key *lkey; 3200 int optr; /* old key/record index */ 3201 int ptr; /* key/record index */ 3202 int numrecs;/* number of records */ 3203 int error; /* error return value */ 3204 int i; 3205 xfs_daddr_t old_bn; 3206 3207 ncur = NULL; 3208 lkey = &nkey; 3209 3210 /* 3211 * If we have an external root pointer, and we've made it to the 3212 * root level, allocate a new root block and we're done. 3213 */ 3214 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3215 (level >= cur->bc_nlevels)) { 3216 error = xfs_btree_new_root(cur, stat); 3217 xfs_btree_set_ptr_null(cur, ptrp); 3218 3219 return error; 3220 } 3221 3222 /* If we're off the left edge, return failure. */ 3223 ptr = cur->bc_levels[level].ptr; 3224 if (ptr == 0) { 3225 *stat = 0; 3226 return 0; 3227 } 3228 3229 optr = ptr; 3230 3231 XFS_BTREE_STATS_INC(cur, insrec); 3232 3233 /* Get pointers to the btree buffer and block. */ 3234 block = xfs_btree_get_block(cur, level, &bp); 3235 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL; 3236 numrecs = xfs_btree_get_numrecs(block); 3237 3238 #ifdef DEBUG 3239 error = xfs_btree_check_block(cur, block, level, bp); 3240 if (error) 3241 goto error0; 3242 3243 /* Check that the new entry is being inserted in the right place. */ 3244 if (ptr <= numrecs) { 3245 if (level == 0) { 3246 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3247 xfs_btree_rec_addr(cur, ptr, block))); 3248 } else { 3249 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3250 xfs_btree_key_addr(cur, ptr, block))); 3251 } 3252 } 3253 #endif 3254 3255 /* 3256 * If the block is full, we can't insert the new entry until we 3257 * make the block un-full. 3258 */ 3259 xfs_btree_set_ptr_null(cur, &nptr); 3260 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3261 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3262 &optr, &ptr, &nptr, &ncur, lkey, stat); 3263 if (error || *stat == 0) 3264 goto error0; 3265 } 3266 3267 /* 3268 * The current block may have changed if the block was 3269 * previously full and we have just made space in it. 3270 */ 3271 block = xfs_btree_get_block(cur, level, &bp); 3272 numrecs = xfs_btree_get_numrecs(block); 3273 3274 #ifdef DEBUG 3275 error = xfs_btree_check_block(cur, block, level, bp); 3276 if (error) 3277 return error; 3278 #endif 3279 3280 /* 3281 * At this point we know there's room for our new entry in the block 3282 * we're pointing at. 3283 */ 3284 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3285 3286 if (level > 0) { 3287 /* It's a nonleaf. make a hole in the keys and ptrs */ 3288 union xfs_btree_key *kp; 3289 union xfs_btree_ptr *pp; 3290 3291 kp = xfs_btree_key_addr(cur, ptr, block); 3292 pp = xfs_btree_ptr_addr(cur, ptr, block); 3293 3294 for (i = numrecs - ptr; i >= 0; i--) { 3295 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3296 if (error) 3297 return error; 3298 } 3299 3300 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3301 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3302 3303 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3304 if (error) 3305 goto error0; 3306 3307 /* Now put the new data in, bump numrecs and log it. */ 3308 xfs_btree_copy_keys(cur, kp, key, 1); 3309 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3310 numrecs++; 3311 xfs_btree_set_numrecs(block, numrecs); 3312 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3313 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3314 #ifdef DEBUG 3315 if (ptr < numrecs) { 3316 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3317 xfs_btree_key_addr(cur, ptr + 1, block))); 3318 } 3319 #endif 3320 } else { 3321 /* It's a leaf. make a hole in the records */ 3322 union xfs_btree_rec *rp; 3323 3324 rp = xfs_btree_rec_addr(cur, ptr, block); 3325 3326 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3327 3328 /* Now put the new data in, bump numrecs and log it. */ 3329 xfs_btree_copy_recs(cur, rp, rec, 1); 3330 xfs_btree_set_numrecs(block, ++numrecs); 3331 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3332 #ifdef DEBUG 3333 if (ptr < numrecs) { 3334 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3335 xfs_btree_rec_addr(cur, ptr + 1, block))); 3336 } 3337 #endif 3338 } 3339 3340 /* Log the new number of records in the btree header. */ 3341 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3342 3343 /* 3344 * If we just inserted into a new tree block, we have to 3345 * recalculate nkey here because nkey is out of date. 3346 * 3347 * Otherwise we're just updating an existing block (having shoved 3348 * some records into the new tree block), so use the regular key 3349 * update mechanism. 3350 */ 3351 if (bp && xfs_buf_daddr(bp) != old_bn) { 3352 xfs_btree_get_keys(cur, block, lkey); 3353 } else if (xfs_btree_needs_key_update(cur, optr)) { 3354 error = xfs_btree_update_keys(cur, level); 3355 if (error) 3356 goto error0; 3357 } 3358 3359 /* 3360 * If we are tracking the last record in the tree and 3361 * we are at the far right edge of the tree, update it. 3362 */ 3363 if (xfs_btree_is_lastrec(cur, block, level)) { 3364 cur->bc_ops->update_lastrec(cur, block, rec, 3365 ptr, LASTREC_INSREC); 3366 } 3367 3368 /* 3369 * Return the new block number, if any. 3370 * If there is one, give back a record value and a cursor too. 3371 */ 3372 *ptrp = nptr; 3373 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3374 xfs_btree_copy_keys(cur, key, lkey, 1); 3375 *curp = ncur; 3376 } 3377 3378 *stat = 1; 3379 return 0; 3380 3381 error0: 3382 return error; 3383 } 3384 3385 /* 3386 * Insert the record at the point referenced by cur. 3387 * 3388 * A multi-level split of the tree on insert will invalidate the original 3389 * cursor. All callers of this function should assume that the cursor is 3390 * no longer valid and revalidate it. 3391 */ 3392 int 3393 xfs_btree_insert( 3394 struct xfs_btree_cur *cur, 3395 int *stat) 3396 { 3397 int error; /* error return value */ 3398 int i; /* result value, 0 for failure */ 3399 int level; /* current level number in btree */ 3400 union xfs_btree_ptr nptr; /* new block number (split result) */ 3401 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3402 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3403 union xfs_btree_key bkey; /* key of block to insert */ 3404 union xfs_btree_key *key; 3405 union xfs_btree_rec rec; /* record to insert */ 3406 3407 level = 0; 3408 ncur = NULL; 3409 pcur = cur; 3410 key = &bkey; 3411 3412 xfs_btree_set_ptr_null(cur, &nptr); 3413 3414 /* Make a key out of the record data to be inserted, and save it. */ 3415 cur->bc_ops->init_rec_from_cur(cur, &rec); 3416 cur->bc_ops->init_key_from_rec(key, &rec); 3417 3418 /* 3419 * Loop going up the tree, starting at the leaf level. 3420 * Stop when we don't get a split block, that must mean that 3421 * the insert is finished with this level. 3422 */ 3423 do { 3424 /* 3425 * Insert nrec/nptr into this level of the tree. 3426 * Note if we fail, nptr will be null. 3427 */ 3428 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3429 &ncur, &i); 3430 if (error) { 3431 if (pcur != cur) 3432 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3433 goto error0; 3434 } 3435 3436 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3437 error = -EFSCORRUPTED; 3438 goto error0; 3439 } 3440 level++; 3441 3442 /* 3443 * See if the cursor we just used is trash. 3444 * Can't trash the caller's cursor, but otherwise we should 3445 * if ncur is a new cursor or we're about to be done. 3446 */ 3447 if (pcur != cur && 3448 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3449 /* Save the state from the cursor before we trash it */ 3450 if (cur->bc_ops->update_cursor) 3451 cur->bc_ops->update_cursor(pcur, cur); 3452 cur->bc_nlevels = pcur->bc_nlevels; 3453 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3454 } 3455 /* If we got a new cursor, switch to it. */ 3456 if (ncur) { 3457 pcur = ncur; 3458 ncur = NULL; 3459 } 3460 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3461 3462 *stat = i; 3463 return 0; 3464 error0: 3465 return error; 3466 } 3467 3468 /* 3469 * Try to merge a non-leaf block back into the inode root. 3470 * 3471 * Note: the killroot names comes from the fact that we're effectively 3472 * killing the old root block. But because we can't just delete the 3473 * inode we have to copy the single block it was pointing to into the 3474 * inode. 3475 */ 3476 STATIC int 3477 xfs_btree_kill_iroot( 3478 struct xfs_btree_cur *cur) 3479 { 3480 int whichfork = cur->bc_ino.whichfork; 3481 struct xfs_inode *ip = cur->bc_ino.ip; 3482 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3483 struct xfs_btree_block *block; 3484 struct xfs_btree_block *cblock; 3485 union xfs_btree_key *kp; 3486 union xfs_btree_key *ckp; 3487 union xfs_btree_ptr *pp; 3488 union xfs_btree_ptr *cpp; 3489 struct xfs_buf *cbp; 3490 int level; 3491 int index; 3492 int numrecs; 3493 int error; 3494 #ifdef DEBUG 3495 union xfs_btree_ptr ptr; 3496 #endif 3497 int i; 3498 3499 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3500 ASSERT(cur->bc_nlevels > 1); 3501 3502 /* 3503 * Don't deal with the root block needs to be a leaf case. 3504 * We're just going to turn the thing back into extents anyway. 3505 */ 3506 level = cur->bc_nlevels - 1; 3507 if (level == 1) 3508 goto out0; 3509 3510 /* 3511 * Give up if the root has multiple children. 3512 */ 3513 block = xfs_btree_get_iroot(cur); 3514 if (xfs_btree_get_numrecs(block) != 1) 3515 goto out0; 3516 3517 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3518 numrecs = xfs_btree_get_numrecs(cblock); 3519 3520 /* 3521 * Only do this if the next level will fit. 3522 * Then the data must be copied up to the inode, 3523 * instead of freeing the root you free the next level. 3524 */ 3525 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3526 goto out0; 3527 3528 XFS_BTREE_STATS_INC(cur, killroot); 3529 3530 #ifdef DEBUG 3531 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3532 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3533 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3534 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3535 #endif 3536 3537 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3538 if (index) { 3539 xfs_iroot_realloc(cur->bc_ino.ip, index, 3540 cur->bc_ino.whichfork); 3541 block = ifp->if_broot; 3542 } 3543 3544 be16_add_cpu(&block->bb_numrecs, index); 3545 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3546 3547 kp = xfs_btree_key_addr(cur, 1, block); 3548 ckp = xfs_btree_key_addr(cur, 1, cblock); 3549 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3550 3551 pp = xfs_btree_ptr_addr(cur, 1, block); 3552 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3553 3554 for (i = 0; i < numrecs; i++) { 3555 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3556 if (error) 3557 return error; 3558 } 3559 3560 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3561 3562 error = xfs_btree_free_block(cur, cbp); 3563 if (error) 3564 return error; 3565 3566 cur->bc_levels[level - 1].bp = NULL; 3567 be16_add_cpu(&block->bb_level, -1); 3568 xfs_trans_log_inode(cur->bc_tp, ip, 3569 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3570 cur->bc_nlevels--; 3571 out0: 3572 return 0; 3573 } 3574 3575 /* 3576 * Kill the current root node, and replace it with it's only child node. 3577 */ 3578 STATIC int 3579 xfs_btree_kill_root( 3580 struct xfs_btree_cur *cur, 3581 struct xfs_buf *bp, 3582 int level, 3583 union xfs_btree_ptr *newroot) 3584 { 3585 int error; 3586 3587 XFS_BTREE_STATS_INC(cur, killroot); 3588 3589 /* 3590 * Update the root pointer, decreasing the level by 1 and then 3591 * free the old root. 3592 */ 3593 cur->bc_ops->set_root(cur, newroot, -1); 3594 3595 error = xfs_btree_free_block(cur, bp); 3596 if (error) 3597 return error; 3598 3599 cur->bc_levels[level].bp = NULL; 3600 cur->bc_levels[level].ra = 0; 3601 cur->bc_nlevels--; 3602 3603 return 0; 3604 } 3605 3606 STATIC int 3607 xfs_btree_dec_cursor( 3608 struct xfs_btree_cur *cur, 3609 int level, 3610 int *stat) 3611 { 3612 int error; 3613 int i; 3614 3615 if (level > 0) { 3616 error = xfs_btree_decrement(cur, level, &i); 3617 if (error) 3618 return error; 3619 } 3620 3621 *stat = 1; 3622 return 0; 3623 } 3624 3625 /* 3626 * Single level of the btree record deletion routine. 3627 * Delete record pointed to by cur/level. 3628 * Remove the record from its block then rebalance the tree. 3629 * Return 0 for error, 1 for done, 2 to go on to the next level. 3630 */ 3631 STATIC int /* error */ 3632 xfs_btree_delrec( 3633 struct xfs_btree_cur *cur, /* btree cursor */ 3634 int level, /* level removing record from */ 3635 int *stat) /* fail/done/go-on */ 3636 { 3637 struct xfs_btree_block *block; /* btree block */ 3638 union xfs_btree_ptr cptr; /* current block ptr */ 3639 struct xfs_buf *bp; /* buffer for block */ 3640 int error; /* error return value */ 3641 int i; /* loop counter */ 3642 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3643 struct xfs_buf *lbp; /* left buffer pointer */ 3644 struct xfs_btree_block *left; /* left btree block */ 3645 int lrecs = 0; /* left record count */ 3646 int ptr; /* key/record index */ 3647 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3648 struct xfs_buf *rbp; /* right buffer pointer */ 3649 struct xfs_btree_block *right; /* right btree block */ 3650 struct xfs_btree_block *rrblock; /* right-right btree block */ 3651 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3652 int rrecs = 0; /* right record count */ 3653 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3654 int numrecs; /* temporary numrec count */ 3655 3656 tcur = NULL; 3657 3658 /* Get the index of the entry being deleted, check for nothing there. */ 3659 ptr = cur->bc_levels[level].ptr; 3660 if (ptr == 0) { 3661 *stat = 0; 3662 return 0; 3663 } 3664 3665 /* Get the buffer & block containing the record or key/ptr. */ 3666 block = xfs_btree_get_block(cur, level, &bp); 3667 numrecs = xfs_btree_get_numrecs(block); 3668 3669 #ifdef DEBUG 3670 error = xfs_btree_check_block(cur, block, level, bp); 3671 if (error) 3672 goto error0; 3673 #endif 3674 3675 /* Fail if we're off the end of the block. */ 3676 if (ptr > numrecs) { 3677 *stat = 0; 3678 return 0; 3679 } 3680 3681 XFS_BTREE_STATS_INC(cur, delrec); 3682 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3683 3684 /* Excise the entries being deleted. */ 3685 if (level > 0) { 3686 /* It's a nonleaf. operate on keys and ptrs */ 3687 union xfs_btree_key *lkp; 3688 union xfs_btree_ptr *lpp; 3689 3690 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3691 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3692 3693 for (i = 0; i < numrecs - ptr; i++) { 3694 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3695 if (error) 3696 goto error0; 3697 } 3698 3699 if (ptr < numrecs) { 3700 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3701 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3702 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3703 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3704 } 3705 } else { 3706 /* It's a leaf. operate on records */ 3707 if (ptr < numrecs) { 3708 xfs_btree_shift_recs(cur, 3709 xfs_btree_rec_addr(cur, ptr + 1, block), 3710 -1, numrecs - ptr); 3711 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3712 } 3713 } 3714 3715 /* 3716 * Decrement and log the number of entries in the block. 3717 */ 3718 xfs_btree_set_numrecs(block, --numrecs); 3719 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3720 3721 /* 3722 * If we are tracking the last record in the tree and 3723 * we are at the far right edge of the tree, update it. 3724 */ 3725 if (xfs_btree_is_lastrec(cur, block, level)) { 3726 cur->bc_ops->update_lastrec(cur, block, NULL, 3727 ptr, LASTREC_DELREC); 3728 } 3729 3730 /* 3731 * We're at the root level. First, shrink the root block in-memory. 3732 * Try to get rid of the next level down. If we can't then there's 3733 * nothing left to do. 3734 */ 3735 if (level == cur->bc_nlevels - 1) { 3736 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3737 xfs_iroot_realloc(cur->bc_ino.ip, -1, 3738 cur->bc_ino.whichfork); 3739 3740 error = xfs_btree_kill_iroot(cur); 3741 if (error) 3742 goto error0; 3743 3744 error = xfs_btree_dec_cursor(cur, level, stat); 3745 if (error) 3746 goto error0; 3747 *stat = 1; 3748 return 0; 3749 } 3750 3751 /* 3752 * If this is the root level, and there's only one entry left, 3753 * and it's NOT the leaf level, then we can get rid of this 3754 * level. 3755 */ 3756 if (numrecs == 1 && level > 0) { 3757 union xfs_btree_ptr *pp; 3758 /* 3759 * pp is still set to the first pointer in the block. 3760 * Make it the new root of the btree. 3761 */ 3762 pp = xfs_btree_ptr_addr(cur, 1, block); 3763 error = xfs_btree_kill_root(cur, bp, level, pp); 3764 if (error) 3765 goto error0; 3766 } else if (level > 0) { 3767 error = xfs_btree_dec_cursor(cur, level, stat); 3768 if (error) 3769 goto error0; 3770 } 3771 *stat = 1; 3772 return 0; 3773 } 3774 3775 /* 3776 * If we deleted the leftmost entry in the block, update the 3777 * key values above us in the tree. 3778 */ 3779 if (xfs_btree_needs_key_update(cur, ptr)) { 3780 error = xfs_btree_update_keys(cur, level); 3781 if (error) 3782 goto error0; 3783 } 3784 3785 /* 3786 * If the number of records remaining in the block is at least 3787 * the minimum, we're done. 3788 */ 3789 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3790 error = xfs_btree_dec_cursor(cur, level, stat); 3791 if (error) 3792 goto error0; 3793 return 0; 3794 } 3795 3796 /* 3797 * Otherwise, we have to move some records around to keep the 3798 * tree balanced. Look at the left and right sibling blocks to 3799 * see if we can re-balance by moving only one record. 3800 */ 3801 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3802 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3803 3804 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3805 /* 3806 * One child of root, need to get a chance to copy its contents 3807 * into the root and delete it. Can't go up to next level, 3808 * there's nothing to delete there. 3809 */ 3810 if (xfs_btree_ptr_is_null(cur, &rptr) && 3811 xfs_btree_ptr_is_null(cur, &lptr) && 3812 level == cur->bc_nlevels - 2) { 3813 error = xfs_btree_kill_iroot(cur); 3814 if (!error) 3815 error = xfs_btree_dec_cursor(cur, level, stat); 3816 if (error) 3817 goto error0; 3818 return 0; 3819 } 3820 } 3821 3822 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3823 !xfs_btree_ptr_is_null(cur, &lptr)); 3824 3825 /* 3826 * Duplicate the cursor so our btree manipulations here won't 3827 * disrupt the next level up. 3828 */ 3829 error = xfs_btree_dup_cursor(cur, &tcur); 3830 if (error) 3831 goto error0; 3832 3833 /* 3834 * If there's a right sibling, see if it's ok to shift an entry 3835 * out of it. 3836 */ 3837 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3838 /* 3839 * Move the temp cursor to the last entry in the next block. 3840 * Actually any entry but the first would suffice. 3841 */ 3842 i = xfs_btree_lastrec(tcur, level); 3843 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3844 error = -EFSCORRUPTED; 3845 goto error0; 3846 } 3847 3848 error = xfs_btree_increment(tcur, level, &i); 3849 if (error) 3850 goto error0; 3851 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3852 error = -EFSCORRUPTED; 3853 goto error0; 3854 } 3855 3856 i = xfs_btree_lastrec(tcur, level); 3857 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3858 error = -EFSCORRUPTED; 3859 goto error0; 3860 } 3861 3862 /* Grab a pointer to the block. */ 3863 right = xfs_btree_get_block(tcur, level, &rbp); 3864 #ifdef DEBUG 3865 error = xfs_btree_check_block(tcur, right, level, rbp); 3866 if (error) 3867 goto error0; 3868 #endif 3869 /* Grab the current block number, for future use. */ 3870 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3871 3872 /* 3873 * If right block is full enough so that removing one entry 3874 * won't make it too empty, and left-shifting an entry out 3875 * of right to us works, we're done. 3876 */ 3877 if (xfs_btree_get_numrecs(right) - 1 >= 3878 cur->bc_ops->get_minrecs(tcur, level)) { 3879 error = xfs_btree_lshift(tcur, level, &i); 3880 if (error) 3881 goto error0; 3882 if (i) { 3883 ASSERT(xfs_btree_get_numrecs(block) >= 3884 cur->bc_ops->get_minrecs(tcur, level)); 3885 3886 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3887 tcur = NULL; 3888 3889 error = xfs_btree_dec_cursor(cur, level, stat); 3890 if (error) 3891 goto error0; 3892 return 0; 3893 } 3894 } 3895 3896 /* 3897 * Otherwise, grab the number of records in right for 3898 * future reference, and fix up the temp cursor to point 3899 * to our block again (last record). 3900 */ 3901 rrecs = xfs_btree_get_numrecs(right); 3902 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3903 i = xfs_btree_firstrec(tcur, level); 3904 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3905 error = -EFSCORRUPTED; 3906 goto error0; 3907 } 3908 3909 error = xfs_btree_decrement(tcur, level, &i); 3910 if (error) 3911 goto error0; 3912 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3913 error = -EFSCORRUPTED; 3914 goto error0; 3915 } 3916 } 3917 } 3918 3919 /* 3920 * If there's a left sibling, see if it's ok to shift an entry 3921 * out of it. 3922 */ 3923 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3924 /* 3925 * Move the temp cursor to the first entry in the 3926 * previous block. 3927 */ 3928 i = xfs_btree_firstrec(tcur, level); 3929 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3930 error = -EFSCORRUPTED; 3931 goto error0; 3932 } 3933 3934 error = xfs_btree_decrement(tcur, level, &i); 3935 if (error) 3936 goto error0; 3937 i = xfs_btree_firstrec(tcur, level); 3938 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3939 error = -EFSCORRUPTED; 3940 goto error0; 3941 } 3942 3943 /* Grab a pointer to the block. */ 3944 left = xfs_btree_get_block(tcur, level, &lbp); 3945 #ifdef DEBUG 3946 error = xfs_btree_check_block(cur, left, level, lbp); 3947 if (error) 3948 goto error0; 3949 #endif 3950 /* Grab the current block number, for future use. */ 3951 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 3952 3953 /* 3954 * If left block is full enough so that removing one entry 3955 * won't make it too empty, and right-shifting an entry out 3956 * of left to us works, we're done. 3957 */ 3958 if (xfs_btree_get_numrecs(left) - 1 >= 3959 cur->bc_ops->get_minrecs(tcur, level)) { 3960 error = xfs_btree_rshift(tcur, level, &i); 3961 if (error) 3962 goto error0; 3963 if (i) { 3964 ASSERT(xfs_btree_get_numrecs(block) >= 3965 cur->bc_ops->get_minrecs(tcur, level)); 3966 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3967 tcur = NULL; 3968 if (level == 0) 3969 cur->bc_levels[0].ptr++; 3970 3971 *stat = 1; 3972 return 0; 3973 } 3974 } 3975 3976 /* 3977 * Otherwise, grab the number of records in right for 3978 * future reference. 3979 */ 3980 lrecs = xfs_btree_get_numrecs(left); 3981 } 3982 3983 /* Delete the temp cursor, we're done with it. */ 3984 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3985 tcur = NULL; 3986 3987 /* If here, we need to do a join to keep the tree balanced. */ 3988 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 3989 3990 if (!xfs_btree_ptr_is_null(cur, &lptr) && 3991 lrecs + xfs_btree_get_numrecs(block) <= 3992 cur->bc_ops->get_maxrecs(cur, level)) { 3993 /* 3994 * Set "right" to be the starting block, 3995 * "left" to be the left neighbor. 3996 */ 3997 rptr = cptr; 3998 right = block; 3999 rbp = bp; 4000 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 4001 if (error) 4002 goto error0; 4003 4004 /* 4005 * If that won't work, see if we can join with the right neighbor block. 4006 */ 4007 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4008 rrecs + xfs_btree_get_numrecs(block) <= 4009 cur->bc_ops->get_maxrecs(cur, level)) { 4010 /* 4011 * Set "left" to be the starting block, 4012 * "right" to be the right neighbor. 4013 */ 4014 lptr = cptr; 4015 left = block; 4016 lbp = bp; 4017 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4018 if (error) 4019 goto error0; 4020 4021 /* 4022 * Otherwise, we can't fix the imbalance. 4023 * Just return. This is probably a logic error, but it's not fatal. 4024 */ 4025 } else { 4026 error = xfs_btree_dec_cursor(cur, level, stat); 4027 if (error) 4028 goto error0; 4029 return 0; 4030 } 4031 4032 rrecs = xfs_btree_get_numrecs(right); 4033 lrecs = xfs_btree_get_numrecs(left); 4034 4035 /* 4036 * We're now going to join "left" and "right" by moving all the stuff 4037 * in "right" to "left" and deleting "right". 4038 */ 4039 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4040 if (level > 0) { 4041 /* It's a non-leaf. Move keys and pointers. */ 4042 union xfs_btree_key *lkp; /* left btree key */ 4043 union xfs_btree_ptr *lpp; /* left address pointer */ 4044 union xfs_btree_key *rkp; /* right btree key */ 4045 union xfs_btree_ptr *rpp; /* right address pointer */ 4046 4047 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4048 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4049 rkp = xfs_btree_key_addr(cur, 1, right); 4050 rpp = xfs_btree_ptr_addr(cur, 1, right); 4051 4052 for (i = 1; i < rrecs; i++) { 4053 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4054 if (error) 4055 goto error0; 4056 } 4057 4058 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4059 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4060 4061 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4062 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4063 } else { 4064 /* It's a leaf. Move records. */ 4065 union xfs_btree_rec *lrp; /* left record pointer */ 4066 union xfs_btree_rec *rrp; /* right record pointer */ 4067 4068 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4069 rrp = xfs_btree_rec_addr(cur, 1, right); 4070 4071 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4072 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4073 } 4074 4075 XFS_BTREE_STATS_INC(cur, join); 4076 4077 /* 4078 * Fix up the number of records and right block pointer in the 4079 * surviving block, and log it. 4080 */ 4081 xfs_btree_set_numrecs(left, lrecs + rrecs); 4082 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); 4083 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4084 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4085 4086 /* If there is a right sibling, point it to the remaining block. */ 4087 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4088 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4089 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4090 if (error) 4091 goto error0; 4092 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4093 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4094 } 4095 4096 /* Free the deleted block. */ 4097 error = xfs_btree_free_block(cur, rbp); 4098 if (error) 4099 goto error0; 4100 4101 /* 4102 * If we joined with the left neighbor, set the buffer in the 4103 * cursor to the left block, and fix up the index. 4104 */ 4105 if (bp != lbp) { 4106 cur->bc_levels[level].bp = lbp; 4107 cur->bc_levels[level].ptr += lrecs; 4108 cur->bc_levels[level].ra = 0; 4109 } 4110 /* 4111 * If we joined with the right neighbor and there's a level above 4112 * us, increment the cursor at that level. 4113 */ 4114 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4115 (level + 1 < cur->bc_nlevels)) { 4116 error = xfs_btree_increment(cur, level + 1, &i); 4117 if (error) 4118 goto error0; 4119 } 4120 4121 /* 4122 * Readjust the ptr at this level if it's not a leaf, since it's 4123 * still pointing at the deletion point, which makes the cursor 4124 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4125 * We can't use decrement because it would change the next level up. 4126 */ 4127 if (level > 0) 4128 cur->bc_levels[level].ptr--; 4129 4130 /* 4131 * We combined blocks, so we have to update the parent keys if the 4132 * btree supports overlapped intervals. However, 4133 * bc_levels[level + 1].ptr points to the old block so that the caller 4134 * knows which record to delete. Therefore, the caller must be savvy 4135 * enough to call updkeys for us if we return stat == 2. The other 4136 * exit points from this function don't require deletions further up 4137 * the tree, so they can call updkeys directly. 4138 */ 4139 4140 /* Return value means the next level up has something to do. */ 4141 *stat = 2; 4142 return 0; 4143 4144 error0: 4145 if (tcur) 4146 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4147 return error; 4148 } 4149 4150 /* 4151 * Delete the record pointed to by cur. 4152 * The cursor refers to the place where the record was (could be inserted) 4153 * when the operation returns. 4154 */ 4155 int /* error */ 4156 xfs_btree_delete( 4157 struct xfs_btree_cur *cur, 4158 int *stat) /* success/failure */ 4159 { 4160 int error; /* error return value */ 4161 int level; 4162 int i; 4163 bool joined = false; 4164 4165 /* 4166 * Go up the tree, starting at leaf level. 4167 * 4168 * If 2 is returned then a join was done; go to the next level. 4169 * Otherwise we are done. 4170 */ 4171 for (level = 0, i = 2; i == 2; level++) { 4172 error = xfs_btree_delrec(cur, level, &i); 4173 if (error) 4174 goto error0; 4175 if (i == 2) 4176 joined = true; 4177 } 4178 4179 /* 4180 * If we combined blocks as part of deleting the record, delrec won't 4181 * have updated the parent high keys so we have to do that here. 4182 */ 4183 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4184 error = xfs_btree_updkeys_force(cur, 0); 4185 if (error) 4186 goto error0; 4187 } 4188 4189 if (i == 0) { 4190 for (level = 1; level < cur->bc_nlevels; level++) { 4191 if (cur->bc_levels[level].ptr == 0) { 4192 error = xfs_btree_decrement(cur, level, &i); 4193 if (error) 4194 goto error0; 4195 break; 4196 } 4197 } 4198 } 4199 4200 *stat = i; 4201 return 0; 4202 error0: 4203 return error; 4204 } 4205 4206 /* 4207 * Get the data from the pointed-to record. 4208 */ 4209 int /* error */ 4210 xfs_btree_get_rec( 4211 struct xfs_btree_cur *cur, /* btree cursor */ 4212 union xfs_btree_rec **recp, /* output: btree record */ 4213 int *stat) /* output: success/failure */ 4214 { 4215 struct xfs_btree_block *block; /* btree block */ 4216 struct xfs_buf *bp; /* buffer pointer */ 4217 int ptr; /* record number */ 4218 #ifdef DEBUG 4219 int error; /* error return value */ 4220 #endif 4221 4222 ptr = cur->bc_levels[0].ptr; 4223 block = xfs_btree_get_block(cur, 0, &bp); 4224 4225 #ifdef DEBUG 4226 error = xfs_btree_check_block(cur, block, 0, bp); 4227 if (error) 4228 return error; 4229 #endif 4230 4231 /* 4232 * Off the right end or left end, return failure. 4233 */ 4234 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4235 *stat = 0; 4236 return 0; 4237 } 4238 4239 /* 4240 * Point to the record and extract its data. 4241 */ 4242 *recp = xfs_btree_rec_addr(cur, ptr, block); 4243 *stat = 1; 4244 return 0; 4245 } 4246 4247 /* Visit a block in a btree. */ 4248 STATIC int 4249 xfs_btree_visit_block( 4250 struct xfs_btree_cur *cur, 4251 int level, 4252 xfs_btree_visit_blocks_fn fn, 4253 void *data) 4254 { 4255 struct xfs_btree_block *block; 4256 struct xfs_buf *bp; 4257 union xfs_btree_ptr rptr; 4258 int error; 4259 4260 /* do right sibling readahead */ 4261 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4262 block = xfs_btree_get_block(cur, level, &bp); 4263 4264 /* process the block */ 4265 error = fn(cur, level, data); 4266 if (error) 4267 return error; 4268 4269 /* now read rh sibling block for next iteration */ 4270 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4271 if (xfs_btree_ptr_is_null(cur, &rptr)) 4272 return -ENOENT; 4273 4274 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4275 } 4276 4277 4278 /* Visit every block in a btree. */ 4279 int 4280 xfs_btree_visit_blocks( 4281 struct xfs_btree_cur *cur, 4282 xfs_btree_visit_blocks_fn fn, 4283 unsigned int flags, 4284 void *data) 4285 { 4286 union xfs_btree_ptr lptr; 4287 int level; 4288 struct xfs_btree_block *block = NULL; 4289 int error = 0; 4290 4291 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4292 4293 /* for each level */ 4294 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4295 /* grab the left hand block */ 4296 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4297 if (error) 4298 return error; 4299 4300 /* readahead the left most block for the next level down */ 4301 if (level > 0) { 4302 union xfs_btree_ptr *ptr; 4303 4304 ptr = xfs_btree_ptr_addr(cur, 1, block); 4305 xfs_btree_readahead_ptr(cur, ptr, 1); 4306 4307 /* save for the next iteration of the loop */ 4308 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4309 4310 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4311 continue; 4312 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4313 continue; 4314 } 4315 4316 /* for each buffer in the level */ 4317 do { 4318 error = xfs_btree_visit_block(cur, level, fn, data); 4319 } while (!error); 4320 4321 if (error != -ENOENT) 4322 return error; 4323 } 4324 4325 return 0; 4326 } 4327 4328 /* 4329 * Change the owner of a btree. 4330 * 4331 * The mechanism we use here is ordered buffer logging. Because we don't know 4332 * how many buffers were are going to need to modify, we don't really want to 4333 * have to make transaction reservations for the worst case of every buffer in a 4334 * full size btree as that may be more space that we can fit in the log.... 4335 * 4336 * We do the btree walk in the most optimal manner possible - we have sibling 4337 * pointers so we can just walk all the blocks on each level from left to right 4338 * in a single pass, and then move to the next level and do the same. We can 4339 * also do readahead on the sibling pointers to get IO moving more quickly, 4340 * though for slow disks this is unlikely to make much difference to performance 4341 * as the amount of CPU work we have to do before moving to the next block is 4342 * relatively small. 4343 * 4344 * For each btree block that we load, modify the owner appropriately, set the 4345 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4346 * we mark the region we change dirty so that if the buffer is relogged in 4347 * a subsequent transaction the changes we make here as an ordered buffer are 4348 * correctly relogged in that transaction. If we are in recovery context, then 4349 * just queue the modified buffer as delayed write buffer so the transaction 4350 * recovery completion writes the changes to disk. 4351 */ 4352 struct xfs_btree_block_change_owner_info { 4353 uint64_t new_owner; 4354 struct list_head *buffer_list; 4355 }; 4356 4357 static int 4358 xfs_btree_block_change_owner( 4359 struct xfs_btree_cur *cur, 4360 int level, 4361 void *data) 4362 { 4363 struct xfs_btree_block_change_owner_info *bbcoi = data; 4364 struct xfs_btree_block *block; 4365 struct xfs_buf *bp; 4366 4367 /* modify the owner */ 4368 block = xfs_btree_get_block(cur, level, &bp); 4369 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4370 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4371 return 0; 4372 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4373 } else { 4374 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4375 return 0; 4376 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4377 } 4378 4379 /* 4380 * If the block is a root block hosted in an inode, we might not have a 4381 * buffer pointer here and we shouldn't attempt to log the change as the 4382 * information is already held in the inode and discarded when the root 4383 * block is formatted into the on-disk inode fork. We still change it, 4384 * though, so everything is consistent in memory. 4385 */ 4386 if (!bp) { 4387 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4388 ASSERT(level == cur->bc_nlevels - 1); 4389 return 0; 4390 } 4391 4392 if (cur->bc_tp) { 4393 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4394 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4395 return -EAGAIN; 4396 } 4397 } else { 4398 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4399 } 4400 4401 return 0; 4402 } 4403 4404 int 4405 xfs_btree_change_owner( 4406 struct xfs_btree_cur *cur, 4407 uint64_t new_owner, 4408 struct list_head *buffer_list) 4409 { 4410 struct xfs_btree_block_change_owner_info bbcoi; 4411 4412 bbcoi.new_owner = new_owner; 4413 bbcoi.buffer_list = buffer_list; 4414 4415 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4416 XFS_BTREE_VISIT_ALL, &bbcoi); 4417 } 4418 4419 /* Verify the v5 fields of a long-format btree block. */ 4420 xfs_failaddr_t 4421 xfs_btree_lblock_v5hdr_verify( 4422 struct xfs_buf *bp, 4423 uint64_t owner) 4424 { 4425 struct xfs_mount *mp = bp->b_mount; 4426 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4427 4428 if (!xfs_has_crc(mp)) 4429 return __this_address; 4430 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4431 return __this_address; 4432 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4433 return __this_address; 4434 if (owner != XFS_RMAP_OWN_UNKNOWN && 4435 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4436 return __this_address; 4437 return NULL; 4438 } 4439 4440 /* Verify a long-format btree block. */ 4441 xfs_failaddr_t 4442 xfs_btree_lblock_verify( 4443 struct xfs_buf *bp, 4444 unsigned int max_recs) 4445 { 4446 struct xfs_mount *mp = bp->b_mount; 4447 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4448 4449 /* numrecs verification */ 4450 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4451 return __this_address; 4452 4453 /* sibling pointer verification */ 4454 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 4455 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))) 4456 return __this_address; 4457 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 4458 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))) 4459 return __this_address; 4460 4461 return NULL; 4462 } 4463 4464 /** 4465 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4466 * btree block 4467 * 4468 * @bp: buffer containing the btree block 4469 */ 4470 xfs_failaddr_t 4471 xfs_btree_sblock_v5hdr_verify( 4472 struct xfs_buf *bp) 4473 { 4474 struct xfs_mount *mp = bp->b_mount; 4475 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4476 struct xfs_perag *pag = bp->b_pag; 4477 4478 if (!xfs_has_crc(mp)) 4479 return __this_address; 4480 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4481 return __this_address; 4482 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4483 return __this_address; 4484 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4485 return __this_address; 4486 return NULL; 4487 } 4488 4489 /** 4490 * xfs_btree_sblock_verify() -- verify a short-format btree block 4491 * 4492 * @bp: buffer containing the btree block 4493 * @max_recs: maximum records allowed in this btree node 4494 */ 4495 xfs_failaddr_t 4496 xfs_btree_sblock_verify( 4497 struct xfs_buf *bp, 4498 unsigned int max_recs) 4499 { 4500 struct xfs_mount *mp = bp->b_mount; 4501 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4502 xfs_agblock_t agno; 4503 4504 /* numrecs verification */ 4505 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4506 return __this_address; 4507 4508 /* sibling pointer verification */ 4509 agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp)); 4510 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 4511 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib))) 4512 return __this_address; 4513 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 4514 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib))) 4515 return __this_address; 4516 4517 return NULL; 4518 } 4519 4520 /* 4521 * For the given limits on leaf and keyptr records per block, calculate the 4522 * height of the tree needed to index the number of leaf records. 4523 */ 4524 unsigned int 4525 xfs_btree_compute_maxlevels( 4526 const unsigned int *limits, 4527 unsigned long long records) 4528 { 4529 unsigned long long level_blocks = howmany_64(records, limits[0]); 4530 unsigned int height = 1; 4531 4532 while (level_blocks > 1) { 4533 level_blocks = howmany_64(level_blocks, limits[1]); 4534 height++; 4535 } 4536 4537 return height; 4538 } 4539 4540 /* 4541 * For the given limits on leaf and keyptr records per block, calculate the 4542 * number of blocks needed to index the given number of leaf records. 4543 */ 4544 unsigned long long 4545 xfs_btree_calc_size( 4546 const unsigned int *limits, 4547 unsigned long long records) 4548 { 4549 unsigned long long level_blocks = howmany_64(records, limits[0]); 4550 unsigned long long blocks = level_blocks; 4551 4552 while (level_blocks > 1) { 4553 level_blocks = howmany_64(level_blocks, limits[1]); 4554 blocks += level_blocks; 4555 } 4556 4557 return blocks; 4558 } 4559 4560 /* 4561 * Given a number of available blocks for the btree to consume with records and 4562 * pointers, calculate the height of the tree needed to index all the records 4563 * that space can hold based on the number of pointers each interior node 4564 * holds. 4565 * 4566 * We start by assuming a single level tree consumes a single block, then track 4567 * the number of blocks each node level consumes until we no longer have space 4568 * to store the next node level. At this point, we are indexing all the leaf 4569 * blocks in the space, and there's no more free space to split the tree any 4570 * further. That's our maximum btree height. 4571 */ 4572 unsigned int 4573 xfs_btree_space_to_height( 4574 const unsigned int *limits, 4575 unsigned long long leaf_blocks) 4576 { 4577 unsigned long long node_blocks = limits[1]; 4578 unsigned long long blocks_left = leaf_blocks - 1; 4579 unsigned int height = 1; 4580 4581 if (leaf_blocks < 1) 4582 return 0; 4583 4584 while (node_blocks < blocks_left) { 4585 blocks_left -= node_blocks; 4586 node_blocks *= limits[1]; 4587 height++; 4588 } 4589 4590 return height; 4591 } 4592 4593 /* 4594 * Query a regular btree for all records overlapping a given interval. 4595 * Start with a LE lookup of the key of low_rec and return all records 4596 * until we find a record with a key greater than the key of high_rec. 4597 */ 4598 STATIC int 4599 xfs_btree_simple_query_range( 4600 struct xfs_btree_cur *cur, 4601 const union xfs_btree_key *low_key, 4602 const union xfs_btree_key *high_key, 4603 xfs_btree_query_range_fn fn, 4604 void *priv) 4605 { 4606 union xfs_btree_rec *recp; 4607 union xfs_btree_key rec_key; 4608 int64_t diff; 4609 int stat; 4610 bool firstrec = true; 4611 int error; 4612 4613 ASSERT(cur->bc_ops->init_high_key_from_rec); 4614 ASSERT(cur->bc_ops->diff_two_keys); 4615 4616 /* 4617 * Find the leftmost record. The btree cursor must be set 4618 * to the low record used to generate low_key. 4619 */ 4620 stat = 0; 4621 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4622 if (error) 4623 goto out; 4624 4625 /* Nothing? See if there's anything to the right. */ 4626 if (!stat) { 4627 error = xfs_btree_increment(cur, 0, &stat); 4628 if (error) 4629 goto out; 4630 } 4631 4632 while (stat) { 4633 /* Find the record. */ 4634 error = xfs_btree_get_rec(cur, &recp, &stat); 4635 if (error || !stat) 4636 break; 4637 4638 /* Skip if high_key(rec) < low_key. */ 4639 if (firstrec) { 4640 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4641 firstrec = false; 4642 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4643 &rec_key); 4644 if (diff > 0) 4645 goto advloop; 4646 } 4647 4648 /* Stop if high_key < low_key(rec). */ 4649 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4650 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4651 if (diff > 0) 4652 break; 4653 4654 /* Callback */ 4655 error = fn(cur, recp, priv); 4656 if (error) 4657 break; 4658 4659 advloop: 4660 /* Move on to the next record. */ 4661 error = xfs_btree_increment(cur, 0, &stat); 4662 if (error) 4663 break; 4664 } 4665 4666 out: 4667 return error; 4668 } 4669 4670 /* 4671 * Query an overlapped interval btree for all records overlapping a given 4672 * interval. This function roughly follows the algorithm given in 4673 * "Interval Trees" of _Introduction to Algorithms_, which is section 4674 * 14.3 in the 2nd and 3rd editions. 4675 * 4676 * First, generate keys for the low and high records passed in. 4677 * 4678 * For any leaf node, generate the high and low keys for the record. 4679 * If the record keys overlap with the query low/high keys, pass the 4680 * record to the function iterator. 4681 * 4682 * For any internal node, compare the low and high keys of each 4683 * pointer against the query low/high keys. If there's an overlap, 4684 * follow the pointer. 4685 * 4686 * As an optimization, we stop scanning a block when we find a low key 4687 * that is greater than the query's high key. 4688 */ 4689 STATIC int 4690 xfs_btree_overlapped_query_range( 4691 struct xfs_btree_cur *cur, 4692 const union xfs_btree_key *low_key, 4693 const union xfs_btree_key *high_key, 4694 xfs_btree_query_range_fn fn, 4695 void *priv) 4696 { 4697 union xfs_btree_ptr ptr; 4698 union xfs_btree_ptr *pp; 4699 union xfs_btree_key rec_key; 4700 union xfs_btree_key rec_hkey; 4701 union xfs_btree_key *lkp; 4702 union xfs_btree_key *hkp; 4703 union xfs_btree_rec *recp; 4704 struct xfs_btree_block *block; 4705 int64_t ldiff; 4706 int64_t hdiff; 4707 int level; 4708 struct xfs_buf *bp; 4709 int i; 4710 int error; 4711 4712 /* Load the root of the btree. */ 4713 level = cur->bc_nlevels - 1; 4714 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4715 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4716 if (error) 4717 return error; 4718 xfs_btree_get_block(cur, level, &bp); 4719 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4720 #ifdef DEBUG 4721 error = xfs_btree_check_block(cur, block, level, bp); 4722 if (error) 4723 goto out; 4724 #endif 4725 cur->bc_levels[level].ptr = 1; 4726 4727 while (level < cur->bc_nlevels) { 4728 block = xfs_btree_get_block(cur, level, &bp); 4729 4730 /* End of node, pop back towards the root. */ 4731 if (cur->bc_levels[level].ptr > 4732 be16_to_cpu(block->bb_numrecs)) { 4733 pop_up: 4734 if (level < cur->bc_nlevels - 1) 4735 cur->bc_levels[level + 1].ptr++; 4736 level++; 4737 continue; 4738 } 4739 4740 if (level == 0) { 4741 /* Handle a leaf node. */ 4742 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr, 4743 block); 4744 4745 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4746 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4747 low_key); 4748 4749 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4750 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4751 &rec_key); 4752 4753 /* 4754 * If (record's high key >= query's low key) and 4755 * (query's high key >= record's low key), then 4756 * this record overlaps the query range; callback. 4757 */ 4758 if (ldiff >= 0 && hdiff >= 0) { 4759 error = fn(cur, recp, priv); 4760 if (error) 4761 break; 4762 } else if (hdiff < 0) { 4763 /* Record is larger than high key; pop. */ 4764 goto pop_up; 4765 } 4766 cur->bc_levels[level].ptr++; 4767 continue; 4768 } 4769 4770 /* Handle an internal node. */ 4771 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block); 4772 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr, 4773 block); 4774 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block); 4775 4776 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4777 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4778 4779 /* 4780 * If (pointer's high key >= query's low key) and 4781 * (query's high key >= pointer's low key), then 4782 * this record overlaps the query range; follow pointer. 4783 */ 4784 if (ldiff >= 0 && hdiff >= 0) { 4785 level--; 4786 error = xfs_btree_lookup_get_block(cur, level, pp, 4787 &block); 4788 if (error) 4789 goto out; 4790 xfs_btree_get_block(cur, level, &bp); 4791 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4792 #ifdef DEBUG 4793 error = xfs_btree_check_block(cur, block, level, bp); 4794 if (error) 4795 goto out; 4796 #endif 4797 cur->bc_levels[level].ptr = 1; 4798 continue; 4799 } else if (hdiff < 0) { 4800 /* The low key is larger than the upper range; pop. */ 4801 goto pop_up; 4802 } 4803 cur->bc_levels[level].ptr++; 4804 } 4805 4806 out: 4807 /* 4808 * If we don't end this function with the cursor pointing at a record 4809 * block, a subsequent non-error cursor deletion will not release 4810 * node-level buffers, causing a buffer leak. This is quite possible 4811 * with a zero-results range query, so release the buffers if we 4812 * failed to return any results. 4813 */ 4814 if (cur->bc_levels[0].bp == NULL) { 4815 for (i = 0; i < cur->bc_nlevels; i++) { 4816 if (cur->bc_levels[i].bp) { 4817 xfs_trans_brelse(cur->bc_tp, 4818 cur->bc_levels[i].bp); 4819 cur->bc_levels[i].bp = NULL; 4820 cur->bc_levels[i].ptr = 0; 4821 cur->bc_levels[i].ra = 0; 4822 } 4823 } 4824 } 4825 4826 return error; 4827 } 4828 4829 /* 4830 * Query a btree for all records overlapping a given interval of keys. The 4831 * supplied function will be called with each record found; return one of the 4832 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4833 * code. This function returns -ECANCELED, zero, or a negative error code. 4834 */ 4835 int 4836 xfs_btree_query_range( 4837 struct xfs_btree_cur *cur, 4838 const union xfs_btree_irec *low_rec, 4839 const union xfs_btree_irec *high_rec, 4840 xfs_btree_query_range_fn fn, 4841 void *priv) 4842 { 4843 union xfs_btree_rec rec; 4844 union xfs_btree_key low_key; 4845 union xfs_btree_key high_key; 4846 4847 /* Find the keys of both ends of the interval. */ 4848 cur->bc_rec = *high_rec; 4849 cur->bc_ops->init_rec_from_cur(cur, &rec); 4850 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4851 4852 cur->bc_rec = *low_rec; 4853 cur->bc_ops->init_rec_from_cur(cur, &rec); 4854 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4855 4856 /* Enforce low key < high key. */ 4857 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4858 return -EINVAL; 4859 4860 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4861 return xfs_btree_simple_query_range(cur, &low_key, 4862 &high_key, fn, priv); 4863 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4864 fn, priv); 4865 } 4866 4867 /* Query a btree for all records. */ 4868 int 4869 xfs_btree_query_all( 4870 struct xfs_btree_cur *cur, 4871 xfs_btree_query_range_fn fn, 4872 void *priv) 4873 { 4874 union xfs_btree_key low_key; 4875 union xfs_btree_key high_key; 4876 4877 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4878 memset(&low_key, 0, sizeof(low_key)); 4879 memset(&high_key, 0xFF, sizeof(high_key)); 4880 4881 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4882 } 4883 4884 static int 4885 xfs_btree_count_blocks_helper( 4886 struct xfs_btree_cur *cur, 4887 int level, 4888 void *data) 4889 { 4890 xfs_extlen_t *blocks = data; 4891 (*blocks)++; 4892 4893 return 0; 4894 } 4895 4896 /* Count the blocks in a btree and return the result in *blocks. */ 4897 int 4898 xfs_btree_count_blocks( 4899 struct xfs_btree_cur *cur, 4900 xfs_extlen_t *blocks) 4901 { 4902 *blocks = 0; 4903 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4904 XFS_BTREE_VISIT_ALL, blocks); 4905 } 4906 4907 /* Compare two btree pointers. */ 4908 int64_t 4909 xfs_btree_diff_two_ptrs( 4910 struct xfs_btree_cur *cur, 4911 const union xfs_btree_ptr *a, 4912 const union xfs_btree_ptr *b) 4913 { 4914 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4915 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 4916 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 4917 } 4918 4919 /* If there's an extent, we're done. */ 4920 STATIC int 4921 xfs_btree_has_record_helper( 4922 struct xfs_btree_cur *cur, 4923 const union xfs_btree_rec *rec, 4924 void *priv) 4925 { 4926 return -ECANCELED; 4927 } 4928 4929 /* Is there a record covering a given range of keys? */ 4930 int 4931 xfs_btree_has_record( 4932 struct xfs_btree_cur *cur, 4933 const union xfs_btree_irec *low, 4934 const union xfs_btree_irec *high, 4935 bool *exists) 4936 { 4937 int error; 4938 4939 error = xfs_btree_query_range(cur, low, high, 4940 &xfs_btree_has_record_helper, NULL); 4941 if (error == -ECANCELED) { 4942 *exists = true; 4943 return 0; 4944 } 4945 *exists = false; 4946 return error; 4947 } 4948 4949 /* Are there more records in this btree? */ 4950 bool 4951 xfs_btree_has_more_records( 4952 struct xfs_btree_cur *cur) 4953 { 4954 struct xfs_btree_block *block; 4955 struct xfs_buf *bp; 4956 4957 block = xfs_btree_get_block(cur, 0, &bp); 4958 4959 /* There are still records in this block. */ 4960 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block)) 4961 return true; 4962 4963 /* There are more record blocks. */ 4964 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4965 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 4966 else 4967 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 4968 } 4969 4970 /* Set up all the btree cursor caches. */ 4971 int __init 4972 xfs_btree_init_cur_caches(void) 4973 { 4974 int error; 4975 4976 error = xfs_allocbt_init_cur_cache(); 4977 if (error) 4978 return error; 4979 error = xfs_inobt_init_cur_cache(); 4980 if (error) 4981 goto err; 4982 error = xfs_bmbt_init_cur_cache(); 4983 if (error) 4984 goto err; 4985 error = xfs_rmapbt_init_cur_cache(); 4986 if (error) 4987 goto err; 4988 error = xfs_refcountbt_init_cur_cache(); 4989 if (error) 4990 goto err; 4991 4992 return 0; 4993 err: 4994 xfs_btree_destroy_cur_caches(); 4995 return error; 4996 } 4997 4998 /* Destroy all the btree cursor caches, if they've been allocated. */ 4999 void 5000 xfs_btree_destroy_cur_caches(void) 5001 { 5002 xfs_allocbt_destroy_cur_cache(); 5003 xfs_inobt_destroy_cur_cache(); 5004 xfs_bmbt_destroy_cur_cache(); 5005 xfs_rmapbt_destroy_cur_cache(); 5006 xfs_refcountbt_destroy_cur_cache(); 5007 } 5008