xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 545094d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
66 xfs_btree_check_lblock_siblings(
67 	struct xfs_mount	*mp,
68 	struct xfs_btree_cur	*cur,
69 	int			level,
70 	xfs_fsblock_t		fsb,
71 	__be64			dsibling)
72 {
73 	xfs_fsblock_t		sibling;
74 
75 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 		return NULL;
77 
78 	sibling = be64_to_cpu(dsibling);
79 	if (sibling == fsb)
80 		return __this_address;
81 	if (level >= 0) {
82 		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 			return __this_address;
84 	} else {
85 		if (!xfs_verify_fsbno(mp, sibling))
86 			return __this_address;
87 	}
88 
89 	return NULL;
90 }
91 
92 static inline xfs_failaddr_t
93 xfs_btree_check_sblock_siblings(
94 	struct xfs_perag	*pag,
95 	struct xfs_btree_cur	*cur,
96 	int			level,
97 	xfs_agblock_t		agbno,
98 	__be32			dsibling)
99 {
100 	xfs_agblock_t		sibling;
101 
102 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
103 		return NULL;
104 
105 	sibling = be32_to_cpu(dsibling);
106 	if (sibling == agbno)
107 		return __this_address;
108 	if (level >= 0) {
109 		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110 			return __this_address;
111 	} else {
112 		if (!xfs_verify_agbno(pag, sibling))
113 			return __this_address;
114 	}
115 	return NULL;
116 }
117 
118 /*
119  * Check a long btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
123 __xfs_btree_check_lblock(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_btree_block	*block,
126 	int			level,
127 	struct xfs_buf		*bp)
128 {
129 	struct xfs_mount	*mp = cur->bc_mp;
130 	xfs_btnum_t		btnum = cur->bc_btnum;
131 	int			crc = xfs_has_crc(mp);
132 	xfs_failaddr_t		fa;
133 	xfs_fsblock_t		fsb = NULLFSBLOCK;
134 
135 	if (crc) {
136 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137 			return __this_address;
138 		if (block->bb_u.l.bb_blkno !=
139 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140 			return __this_address;
141 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142 			return __this_address;
143 	}
144 
145 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146 		return __this_address;
147 	if (be16_to_cpu(block->bb_level) != level)
148 		return __this_address;
149 	if (be16_to_cpu(block->bb_numrecs) >
150 	    cur->bc_ops->get_maxrecs(cur, level))
151 		return __this_address;
152 
153 	if (bp)
154 		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155 
156 	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157 			block->bb_u.l.bb_leftsib);
158 	if (!fa)
159 		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160 				block->bb_u.l.bb_rightsib);
161 	return fa;
162 }
163 
164 /* Check a long btree block header. */
165 static int
166 xfs_btree_check_lblock(
167 	struct xfs_btree_cur	*cur,
168 	struct xfs_btree_block	*block,
169 	int			level,
170 	struct xfs_buf		*bp)
171 {
172 	struct xfs_mount	*mp = cur->bc_mp;
173 	xfs_failaddr_t		fa;
174 
175 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
176 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178 		if (bp)
179 			trace_xfs_btree_corrupt(bp, _RET_IP_);
180 		return -EFSCORRUPTED;
181 	}
182 	return 0;
183 }
184 
185 /*
186  * Check a short btree block header.  Return the address of the failing check,
187  * or NULL if everything is ok.
188  */
189 xfs_failaddr_t
190 __xfs_btree_check_sblock(
191 	struct xfs_btree_cur	*cur,
192 	struct xfs_btree_block	*block,
193 	int			level,
194 	struct xfs_buf		*bp)
195 {
196 	struct xfs_mount	*mp = cur->bc_mp;
197 	struct xfs_perag	*pag = cur->bc_ag.pag;
198 	xfs_btnum_t		btnum = cur->bc_btnum;
199 	int			crc = xfs_has_crc(mp);
200 	xfs_failaddr_t		fa;
201 	xfs_agblock_t		agbno = NULLAGBLOCK;
202 
203 	if (crc) {
204 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205 			return __this_address;
206 		if (block->bb_u.s.bb_blkno !=
207 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208 			return __this_address;
209 	}
210 
211 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212 		return __this_address;
213 	if (be16_to_cpu(block->bb_level) != level)
214 		return __this_address;
215 	if (be16_to_cpu(block->bb_numrecs) >
216 	    cur->bc_ops->get_maxrecs(cur, level))
217 		return __this_address;
218 
219 	if (bp)
220 		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221 
222 	fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223 			block->bb_u.s.bb_leftsib);
224 	if (!fa)
225 		fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226 				block->bb_u.s.bb_rightsib);
227 	return fa;
228 }
229 
230 /* Check a short btree block header. */
231 STATIC int
232 xfs_btree_check_sblock(
233 	struct xfs_btree_cur	*cur,
234 	struct xfs_btree_block	*block,
235 	int			level,
236 	struct xfs_buf		*bp)
237 {
238 	struct xfs_mount	*mp = cur->bc_mp;
239 	xfs_failaddr_t		fa;
240 
241 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
242 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244 		if (bp)
245 			trace_xfs_btree_corrupt(bp, _RET_IP_);
246 		return -EFSCORRUPTED;
247 	}
248 	return 0;
249 }
250 
251 /*
252  * Debug routine: check that block header is ok.
253  */
254 int
255 xfs_btree_check_block(
256 	struct xfs_btree_cur	*cur,	/* btree cursor */
257 	struct xfs_btree_block	*block,	/* generic btree block pointer */
258 	int			level,	/* level of the btree block */
259 	struct xfs_buf		*bp)	/* buffer containing block, if any */
260 {
261 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262 		return xfs_btree_check_lblock(cur, block, level, bp);
263 	else
264 		return xfs_btree_check_sblock(cur, block, level, bp);
265 }
266 
267 /* Check that this long pointer is valid and points within the fs. */
268 bool
269 xfs_btree_check_lptr(
270 	struct xfs_btree_cur	*cur,
271 	xfs_fsblock_t		fsbno,
272 	int			level)
273 {
274 	if (level <= 0)
275 		return false;
276 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
277 }
278 
279 /* Check that this short pointer is valid and points within the AG. */
280 bool
281 xfs_btree_check_sptr(
282 	struct xfs_btree_cur	*cur,
283 	xfs_agblock_t		agbno,
284 	int			level)
285 {
286 	if (level <= 0)
287 		return false;
288 	return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289 }
290 
291 /*
292  * Check that a given (indexed) btree pointer at a certain level of a
293  * btree is valid and doesn't point past where it should.
294  */
295 static int
296 xfs_btree_check_ptr(
297 	struct xfs_btree_cur		*cur,
298 	const union xfs_btree_ptr	*ptr,
299 	int				index,
300 	int				level)
301 {
302 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304 				level))
305 			return 0;
306 		xfs_err(cur->bc_mp,
307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308 				cur->bc_ino.ip->i_ino,
309 				cur->bc_ino.whichfork, cur->bc_btnum,
310 				level, index);
311 	} else {
312 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313 				level))
314 			return 0;
315 		xfs_err(cur->bc_mp,
316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
317 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318 				level, index);
319 	}
320 
321 	return -EFSCORRUPTED;
322 }
323 
324 #ifdef DEBUG
325 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
326 #else
327 # define xfs_btree_debug_check_ptr(...)	(0)
328 #endif
329 
330 /*
331  * Calculate CRC on the whole btree block and stuff it into the
332  * long-form btree header.
333  *
334  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335  * it into the buffer so recovery knows what the last modification was that made
336  * it to disk.
337  */
338 void
339 xfs_btree_lblock_calc_crc(
340 	struct xfs_buf		*bp)
341 {
342 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
343 	struct xfs_buf_log_item	*bip = bp->b_log_item;
344 
345 	if (!xfs_has_crc(bp->b_mount))
346 		return;
347 	if (bip)
348 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350 }
351 
352 bool
353 xfs_btree_lblock_verify_crc(
354 	struct xfs_buf		*bp)
355 {
356 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
357 	struct xfs_mount	*mp = bp->b_mount;
358 
359 	if (xfs_has_crc(mp)) {
360 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361 			return false;
362 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363 	}
364 
365 	return true;
366 }
367 
368 /*
369  * Calculate CRC on the whole btree block and stuff it into the
370  * short-form btree header.
371  *
372  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373  * it into the buffer so recovery knows what the last modification was that made
374  * it to disk.
375  */
376 void
377 xfs_btree_sblock_calc_crc(
378 	struct xfs_buf		*bp)
379 {
380 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
381 	struct xfs_buf_log_item	*bip = bp->b_log_item;
382 
383 	if (!xfs_has_crc(bp->b_mount))
384 		return;
385 	if (bip)
386 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388 }
389 
390 bool
391 xfs_btree_sblock_verify_crc(
392 	struct xfs_buf		*bp)
393 {
394 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
395 	struct xfs_mount	*mp = bp->b_mount;
396 
397 	if (xfs_has_crc(mp)) {
398 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399 			return false;
400 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401 	}
402 
403 	return true;
404 }
405 
406 static int
407 xfs_btree_free_block(
408 	struct xfs_btree_cur	*cur,
409 	struct xfs_buf		*bp)
410 {
411 	int			error;
412 
413 	error = cur->bc_ops->free_block(cur, bp);
414 	if (!error) {
415 		xfs_trans_binval(cur->bc_tp, bp);
416 		XFS_BTREE_STATS_INC(cur, free);
417 	}
418 	return error;
419 }
420 
421 /*
422  * Delete the btree cursor.
423  */
424 void
425 xfs_btree_del_cursor(
426 	struct xfs_btree_cur	*cur,		/* btree cursor */
427 	int			error)		/* del because of error */
428 {
429 	int			i;		/* btree level */
430 
431 	/*
432 	 * Clear the buffer pointers and release the buffers. If we're doing
433 	 * this because of an error, inspect all of the entries in the bc_bufs
434 	 * array for buffers to be unlocked. This is because some of the btree
435 	 * code works from level n down to 0, and if we get an error along the
436 	 * way we won't have initialized all the entries down to 0.
437 	 */
438 	for (i = 0; i < cur->bc_nlevels; i++) {
439 		if (cur->bc_levels[i].bp)
440 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441 		else if (!error)
442 			break;
443 	}
444 
445 	/*
446 	 * If we are doing a BMBT update, the number of unaccounted blocks
447 	 * allocated during this cursor life time should be zero. If it's not
448 	 * zero, then we should be shut down or on our way to shutdown due to
449 	 * cancelling a dirty transaction on error.
450 	 */
451 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
453 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454 		kmem_free(cur->bc_ops);
455 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456 		xfs_perag_put(cur->bc_ag.pag);
457 	kmem_cache_free(cur->bc_cache, cur);
458 }
459 
460 /*
461  * Duplicate the btree cursor.
462  * Allocate a new one, copy the record, re-get the buffers.
463  */
464 int					/* error */
465 xfs_btree_dup_cursor(
466 	struct xfs_btree_cur *cur,		/* input cursor */
467 	struct xfs_btree_cur **ncur)		/* output cursor */
468 {
469 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
470 	int		error;		/* error return value */
471 	int		i;		/* level number of btree block */
472 	xfs_mount_t	*mp;		/* mount structure for filesystem */
473 	struct xfs_btree_cur *new;		/* new cursor value */
474 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
475 
476 	tp = cur->bc_tp;
477 	mp = cur->bc_mp;
478 
479 	/*
480 	 * Allocate a new cursor like the old one.
481 	 */
482 	new = cur->bc_ops->dup_cursor(cur);
483 
484 	/*
485 	 * Copy the record currently in the cursor.
486 	 */
487 	new->bc_rec = cur->bc_rec;
488 
489 	/*
490 	 * For each level current, re-get the buffer and copy the ptr value.
491 	 */
492 	for (i = 0; i < new->bc_nlevels; i++) {
493 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
495 		bp = cur->bc_levels[i].bp;
496 		if (bp) {
497 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498 						   xfs_buf_daddr(bp), mp->m_bsize,
499 						   0, &bp,
500 						   cur->bc_ops->buf_ops);
501 			if (error) {
502 				xfs_btree_del_cursor(new, error);
503 				*ncur = NULL;
504 				return error;
505 			}
506 		}
507 		new->bc_levels[i].bp = bp;
508 	}
509 	*ncur = new;
510 	return 0;
511 }
512 
513 /*
514  * XFS btree block layout and addressing:
515  *
516  * There are two types of blocks in the btree: leaf and non-leaf blocks.
517  *
518  * The leaf record start with a header then followed by records containing
519  * the values.  A non-leaf block also starts with the same header, and
520  * then first contains lookup keys followed by an equal number of pointers
521  * to the btree blocks at the previous level.
522  *
523  *		+--------+-------+-------+-------+-------+-------+-------+
524  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525  *		+--------+-------+-------+-------+-------+-------+-------+
526  *
527  *		+--------+-------+-------+-------+-------+-------+-------+
528  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529  *		+--------+-------+-------+-------+-------+-------+-------+
530  *
531  * The header is called struct xfs_btree_block for reasons better left unknown
532  * and comes in different versions for short (32bit) and long (64bit) block
533  * pointers.  The record and key structures are defined by the btree instances
534  * and opaque to the btree core.  The block pointers are simple disk endian
535  * integers, available in a short (32bit) and long (64bit) variant.
536  *
537  * The helpers below calculate the offset of a given record, key or pointer
538  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
540  * inside the btree block is done using indices starting at one, not zero!
541  *
542  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543  * overlapping intervals.  In such a tree, records are still sorted lowest to
544  * highest and indexed by the smallest key value that refers to the record.
545  * However, nodes are different: each pointer has two associated keys -- one
546  * indexing the lowest key available in the block(s) below (the same behavior
547  * as the key in a regular btree) and another indexing the highest key
548  * available in the block(s) below.  Because records are /not/ sorted by the
549  * highest key, all leaf block updates require us to compute the highest key
550  * that matches any record in the leaf and to recursively update the high keys
551  * in the nodes going further up in the tree, if necessary.  Nodes look like
552  * this:
553  *
554  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
555  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
557  *
558  * To perform an interval query on an overlapped tree, perform the usual
559  * depth-first search and use the low and high keys to decide if we can skip
560  * that particular node.  If a leaf node is reached, return the records that
561  * intersect the interval.  Note that an interval query may return numerous
562  * entries.  For a non-overlapped tree, simply search for the record associated
563  * with the lowest key and iterate forward until a non-matching record is
564  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566  * more detail.
567  *
568  * Why do we care about overlapping intervals?  Let's say you have a bunch of
569  * reverse mapping records on a reflink filesystem:
570  *
571  * 1: +- file A startblock B offset C length D -----------+
572  * 2:      +- file E startblock F offset G length H --------------+
573  * 3:      +- file I startblock F offset J length K --+
574  * 4:                                                        +- file L... --+
575  *
576  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
577  * we'd simply increment the length of record 1.  But how do we find the record
578  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
579  * record 3 because the keys are ordered first by startblock.  An interval
580  * query would return records 1 and 2 because they both overlap (B+D-1), and
581  * from that we can pick out record 1 as the appropriate left neighbor.
582  *
583  * In the non-overlapped case you can do a LE lookup and decrement the cursor
584  * because a record's interval must end before the next record.
585  */
586 
587 /*
588  * Return size of the btree block header for this btree instance.
589  */
590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591 {
592 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594 			return XFS_BTREE_LBLOCK_CRC_LEN;
595 		return XFS_BTREE_LBLOCK_LEN;
596 	}
597 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598 		return XFS_BTREE_SBLOCK_CRC_LEN;
599 	return XFS_BTREE_SBLOCK_LEN;
600 }
601 
602 /*
603  * Return size of btree block pointers for this btree instance.
604  */
605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606 {
607 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608 		sizeof(__be64) : sizeof(__be32);
609 }
610 
611 /*
612  * Calculate offset of the n-th record in a btree block.
613  */
614 STATIC size_t
615 xfs_btree_rec_offset(
616 	struct xfs_btree_cur	*cur,
617 	int			n)
618 {
619 	return xfs_btree_block_len(cur) +
620 		(n - 1) * cur->bc_ops->rec_len;
621 }
622 
623 /*
624  * Calculate offset of the n-th key in a btree block.
625  */
626 STATIC size_t
627 xfs_btree_key_offset(
628 	struct xfs_btree_cur	*cur,
629 	int			n)
630 {
631 	return xfs_btree_block_len(cur) +
632 		(n - 1) * cur->bc_ops->key_len;
633 }
634 
635 /*
636  * Calculate offset of the n-th high key in a btree block.
637  */
638 STATIC size_t
639 xfs_btree_high_key_offset(
640 	struct xfs_btree_cur	*cur,
641 	int			n)
642 {
643 	return xfs_btree_block_len(cur) +
644 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645 }
646 
647 /*
648  * Calculate offset of the n-th block pointer in a btree block.
649  */
650 STATIC size_t
651 xfs_btree_ptr_offset(
652 	struct xfs_btree_cur	*cur,
653 	int			n,
654 	int			level)
655 {
656 	return xfs_btree_block_len(cur) +
657 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658 		(n - 1) * xfs_btree_ptr_len(cur);
659 }
660 
661 /*
662  * Return a pointer to the n-th record in the btree block.
663  */
664 union xfs_btree_rec *
665 xfs_btree_rec_addr(
666 	struct xfs_btree_cur	*cur,
667 	int			n,
668 	struct xfs_btree_block	*block)
669 {
670 	return (union xfs_btree_rec *)
671 		((char *)block + xfs_btree_rec_offset(cur, n));
672 }
673 
674 /*
675  * Return a pointer to the n-th key in the btree block.
676  */
677 union xfs_btree_key *
678 xfs_btree_key_addr(
679 	struct xfs_btree_cur	*cur,
680 	int			n,
681 	struct xfs_btree_block	*block)
682 {
683 	return (union xfs_btree_key *)
684 		((char *)block + xfs_btree_key_offset(cur, n));
685 }
686 
687 /*
688  * Return a pointer to the n-th high key in the btree block.
689  */
690 union xfs_btree_key *
691 xfs_btree_high_key_addr(
692 	struct xfs_btree_cur	*cur,
693 	int			n,
694 	struct xfs_btree_block	*block)
695 {
696 	return (union xfs_btree_key *)
697 		((char *)block + xfs_btree_high_key_offset(cur, n));
698 }
699 
700 /*
701  * Return a pointer to the n-th block pointer in the btree block.
702  */
703 union xfs_btree_ptr *
704 xfs_btree_ptr_addr(
705 	struct xfs_btree_cur	*cur,
706 	int			n,
707 	struct xfs_btree_block	*block)
708 {
709 	int			level = xfs_btree_get_level(block);
710 
711 	ASSERT(block->bb_level != 0);
712 
713 	return (union xfs_btree_ptr *)
714 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
715 }
716 
717 struct xfs_ifork *
718 xfs_btree_ifork_ptr(
719 	struct xfs_btree_cur	*cur)
720 {
721 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722 
723 	if (cur->bc_flags & XFS_BTREE_STAGING)
724 		return cur->bc_ino.ifake->if_fork;
725 	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726 }
727 
728 /*
729  * Get the root block which is stored in the inode.
730  *
731  * For now this btree implementation assumes the btree root is always
732  * stored in the if_broot field of an inode fork.
733  */
734 STATIC struct xfs_btree_block *
735 xfs_btree_get_iroot(
736 	struct xfs_btree_cur	*cur)
737 {
738 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
739 
740 	return (struct xfs_btree_block *)ifp->if_broot;
741 }
742 
743 /*
744  * Retrieve the block pointer from the cursor at the given level.
745  * This may be an inode btree root or from a buffer.
746  */
747 struct xfs_btree_block *		/* generic btree block pointer */
748 xfs_btree_get_block(
749 	struct xfs_btree_cur	*cur,	/* btree cursor */
750 	int			level,	/* level in btree */
751 	struct xfs_buf		**bpp)	/* buffer containing the block */
752 {
753 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754 	    (level == cur->bc_nlevels - 1)) {
755 		*bpp = NULL;
756 		return xfs_btree_get_iroot(cur);
757 	}
758 
759 	*bpp = cur->bc_levels[level].bp;
760 	return XFS_BUF_TO_BLOCK(*bpp);
761 }
762 
763 /*
764  * Change the cursor to point to the first record at the given level.
765  * Other levels are unaffected.
766  */
767 STATIC int				/* success=1, failure=0 */
768 xfs_btree_firstrec(
769 	struct xfs_btree_cur	*cur,	/* btree cursor */
770 	int			level)	/* level to change */
771 {
772 	struct xfs_btree_block	*block;	/* generic btree block pointer */
773 	struct xfs_buf		*bp;	/* buffer containing block */
774 
775 	/*
776 	 * Get the block pointer for this level.
777 	 */
778 	block = xfs_btree_get_block(cur, level, &bp);
779 	if (xfs_btree_check_block(cur, block, level, bp))
780 		return 0;
781 	/*
782 	 * It's empty, there is no such record.
783 	 */
784 	if (!block->bb_numrecs)
785 		return 0;
786 	/*
787 	 * Set the ptr value to 1, that's the first record/key.
788 	 */
789 	cur->bc_levels[level].ptr = 1;
790 	return 1;
791 }
792 
793 /*
794  * Change the cursor to point to the last record in the current block
795  * at the given level.  Other levels are unaffected.
796  */
797 STATIC int				/* success=1, failure=0 */
798 xfs_btree_lastrec(
799 	struct xfs_btree_cur	*cur,	/* btree cursor */
800 	int			level)	/* level to change */
801 {
802 	struct xfs_btree_block	*block;	/* generic btree block pointer */
803 	struct xfs_buf		*bp;	/* buffer containing block */
804 
805 	/*
806 	 * Get the block pointer for this level.
807 	 */
808 	block = xfs_btree_get_block(cur, level, &bp);
809 	if (xfs_btree_check_block(cur, block, level, bp))
810 		return 0;
811 	/*
812 	 * It's empty, there is no such record.
813 	 */
814 	if (!block->bb_numrecs)
815 		return 0;
816 	/*
817 	 * Set the ptr value to numrecs, that's the last record/key.
818 	 */
819 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820 	return 1;
821 }
822 
823 /*
824  * Compute first and last byte offsets for the fields given.
825  * Interprets the offsets table, which contains struct field offsets.
826  */
827 void
828 xfs_btree_offsets(
829 	uint32_t	fields,		/* bitmask of fields */
830 	const short	*offsets,	/* table of field offsets */
831 	int		nbits,		/* number of bits to inspect */
832 	int		*first,		/* output: first byte offset */
833 	int		*last)		/* output: last byte offset */
834 {
835 	int		i;		/* current bit number */
836 	uint32_t	imask;		/* mask for current bit number */
837 
838 	ASSERT(fields != 0);
839 	/*
840 	 * Find the lowest bit, so the first byte offset.
841 	 */
842 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843 		if (imask & fields) {
844 			*first = offsets[i];
845 			break;
846 		}
847 	}
848 	/*
849 	 * Find the highest bit, so the last byte offset.
850 	 */
851 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852 		if (imask & fields) {
853 			*last = offsets[i + 1] - 1;
854 			break;
855 		}
856 	}
857 }
858 
859 /*
860  * Get a buffer for the block, return it read in.
861  * Long-form addressing.
862  */
863 int
864 xfs_btree_read_bufl(
865 	struct xfs_mount	*mp,		/* file system mount point */
866 	struct xfs_trans	*tp,		/* transaction pointer */
867 	xfs_fsblock_t		fsbno,		/* file system block number */
868 	struct xfs_buf		**bpp,		/* buffer for fsbno */
869 	int			refval,		/* ref count value for buffer */
870 	const struct xfs_buf_ops *ops)
871 {
872 	struct xfs_buf		*bp;		/* return value */
873 	xfs_daddr_t		d;		/* real disk block address */
874 	int			error;
875 
876 	if (!xfs_verify_fsbno(mp, fsbno))
877 		return -EFSCORRUPTED;
878 	d = XFS_FSB_TO_DADDR(mp, fsbno);
879 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880 				   mp->m_bsize, 0, &bp, ops);
881 	if (error)
882 		return error;
883 	if (bp)
884 		xfs_buf_set_ref(bp, refval);
885 	*bpp = bp;
886 	return 0;
887 }
888 
889 /*
890  * Read-ahead the block, don't wait for it, don't return a buffer.
891  * Long-form addressing.
892  */
893 /* ARGSUSED */
894 void
895 xfs_btree_reada_bufl(
896 	struct xfs_mount	*mp,		/* file system mount point */
897 	xfs_fsblock_t		fsbno,		/* file system block number */
898 	xfs_extlen_t		count,		/* count of filesystem blocks */
899 	const struct xfs_buf_ops *ops)
900 {
901 	xfs_daddr_t		d;
902 
903 	ASSERT(fsbno != NULLFSBLOCK);
904 	d = XFS_FSB_TO_DADDR(mp, fsbno);
905 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906 }
907 
908 /*
909  * Read-ahead the block, don't wait for it, don't return a buffer.
910  * Short-form addressing.
911  */
912 /* ARGSUSED */
913 void
914 xfs_btree_reada_bufs(
915 	struct xfs_mount	*mp,		/* file system mount point */
916 	xfs_agnumber_t		agno,		/* allocation group number */
917 	xfs_agblock_t		agbno,		/* allocation group block number */
918 	xfs_extlen_t		count,		/* count of filesystem blocks */
919 	const struct xfs_buf_ops *ops)
920 {
921 	xfs_daddr_t		d;
922 
923 	ASSERT(agno != NULLAGNUMBER);
924 	ASSERT(agbno != NULLAGBLOCK);
925 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927 }
928 
929 STATIC int
930 xfs_btree_readahead_lblock(
931 	struct xfs_btree_cur	*cur,
932 	int			lr,
933 	struct xfs_btree_block	*block)
934 {
935 	int			rval = 0;
936 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938 
939 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941 				     cur->bc_ops->buf_ops);
942 		rval++;
943 	}
944 
945 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947 				     cur->bc_ops->buf_ops);
948 		rval++;
949 	}
950 
951 	return rval;
952 }
953 
954 STATIC int
955 xfs_btree_readahead_sblock(
956 	struct xfs_btree_cur	*cur,
957 	int			lr,
958 	struct xfs_btree_block *block)
959 {
960 	int			rval = 0;
961 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963 
964 
965 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967 				     left, 1, cur->bc_ops->buf_ops);
968 		rval++;
969 	}
970 
971 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973 				     right, 1, cur->bc_ops->buf_ops);
974 		rval++;
975 	}
976 
977 	return rval;
978 }
979 
980 /*
981  * Read-ahead btree blocks, at the given level.
982  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983  */
984 STATIC int
985 xfs_btree_readahead(
986 	struct xfs_btree_cur	*cur,		/* btree cursor */
987 	int			lev,		/* level in btree */
988 	int			lr)		/* left/right bits */
989 {
990 	struct xfs_btree_block	*block;
991 
992 	/*
993 	 * No readahead needed if we are at the root level and the
994 	 * btree root is stored in the inode.
995 	 */
996 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997 	    (lev == cur->bc_nlevels - 1))
998 		return 0;
999 
1000 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001 		return 0;
1002 
1003 	cur->bc_levels[lev].ra |= lr;
1004 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005 
1006 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007 		return xfs_btree_readahead_lblock(cur, lr, block);
1008 	return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010 
1011 STATIC int
1012 xfs_btree_ptr_to_daddr(
1013 	struct xfs_btree_cur		*cur,
1014 	const union xfs_btree_ptr	*ptr,
1015 	xfs_daddr_t			*daddr)
1016 {
1017 	xfs_fsblock_t		fsbno;
1018 	xfs_agblock_t		agbno;
1019 	int			error;
1020 
1021 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022 	if (error)
1023 		return error;
1024 
1025 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026 		fsbno = be64_to_cpu(ptr->l);
1027 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028 	} else {
1029 		agbno = be32_to_cpu(ptr->s);
1030 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031 				agbno);
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * Readahead @count btree blocks at the given @ptr location.
1039  *
1040  * We don't need to care about long or short form btrees here as we have a
1041  * method of converting the ptr directly to a daddr available to us.
1042  */
1043 STATIC void
1044 xfs_btree_readahead_ptr(
1045 	struct xfs_btree_cur	*cur,
1046 	union xfs_btree_ptr	*ptr,
1047 	xfs_extlen_t		count)
1048 {
1049 	xfs_daddr_t		daddr;
1050 
1051 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052 		return;
1053 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056 
1057 /*
1058  * Set the buffer for level "lev" in the cursor to bp, releasing
1059  * any previous buffer.
1060  */
1061 STATIC void
1062 xfs_btree_setbuf(
1063 	struct xfs_btree_cur	*cur,	/* btree cursor */
1064 	int			lev,	/* level in btree */
1065 	struct xfs_buf		*bp)	/* new buffer to set */
1066 {
1067 	struct xfs_btree_block	*b;	/* btree block */
1068 
1069 	if (cur->bc_levels[lev].bp)
1070 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071 	cur->bc_levels[lev].bp = bp;
1072 	cur->bc_levels[lev].ra = 0;
1073 
1074 	b = XFS_BUF_TO_BLOCK(bp);
1075 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080 	} else {
1081 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085 	}
1086 }
1087 
1088 bool
1089 xfs_btree_ptr_is_null(
1090 	struct xfs_btree_cur		*cur,
1091 	const union xfs_btree_ptr	*ptr)
1092 {
1093 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095 	else
1096 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098 
1099 void
1100 xfs_btree_set_ptr_null(
1101 	struct xfs_btree_cur	*cur,
1102 	union xfs_btree_ptr	*ptr)
1103 {
1104 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1106 	else
1107 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109 
1110 /*
1111  * Get/set/init sibling pointers
1112  */
1113 void
1114 xfs_btree_get_sibling(
1115 	struct xfs_btree_cur	*cur,
1116 	struct xfs_btree_block	*block,
1117 	union xfs_btree_ptr	*ptr,
1118 	int			lr)
1119 {
1120 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121 
1122 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123 		if (lr == XFS_BB_RIGHTSIB)
1124 			ptr->l = block->bb_u.l.bb_rightsib;
1125 		else
1126 			ptr->l = block->bb_u.l.bb_leftsib;
1127 	} else {
1128 		if (lr == XFS_BB_RIGHTSIB)
1129 			ptr->s = block->bb_u.s.bb_rightsib;
1130 		else
1131 			ptr->s = block->bb_u.s.bb_leftsib;
1132 	}
1133 }
1134 
1135 void
1136 xfs_btree_set_sibling(
1137 	struct xfs_btree_cur		*cur,
1138 	struct xfs_btree_block		*block,
1139 	const union xfs_btree_ptr	*ptr,
1140 	int				lr)
1141 {
1142 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143 
1144 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145 		if (lr == XFS_BB_RIGHTSIB)
1146 			block->bb_u.l.bb_rightsib = ptr->l;
1147 		else
1148 			block->bb_u.l.bb_leftsib = ptr->l;
1149 	} else {
1150 		if (lr == XFS_BB_RIGHTSIB)
1151 			block->bb_u.s.bb_rightsib = ptr->s;
1152 		else
1153 			block->bb_u.s.bb_leftsib = ptr->s;
1154 	}
1155 }
1156 
1157 void
1158 xfs_btree_init_block_int(
1159 	struct xfs_mount	*mp,
1160 	struct xfs_btree_block	*buf,
1161 	xfs_daddr_t		blkno,
1162 	xfs_btnum_t		btnum,
1163 	__u16			level,
1164 	__u16			numrecs,
1165 	__u64			owner,
1166 	unsigned int		flags)
1167 {
1168 	int			crc = xfs_has_crc(mp);
1169 	__u32			magic = xfs_btree_magic(crc, btnum);
1170 
1171 	buf->bb_magic = cpu_to_be32(magic);
1172 	buf->bb_level = cpu_to_be16(level);
1173 	buf->bb_numrecs = cpu_to_be16(numrecs);
1174 
1175 	if (flags & XFS_BTREE_LONG_PTRS) {
1176 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178 		if (crc) {
1179 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182 			buf->bb_u.l.bb_pad = 0;
1183 			buf->bb_u.l.bb_lsn = 0;
1184 		}
1185 	} else {
1186 		/* owner is a 32 bit value on short blocks */
1187 		__u32 __owner = (__u32)owner;
1188 
1189 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 		if (crc) {
1192 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195 			buf->bb_u.s.bb_lsn = 0;
1196 		}
1197 	}
1198 }
1199 
1200 void
1201 xfs_btree_init_block(
1202 	struct xfs_mount *mp,
1203 	struct xfs_buf	*bp,
1204 	xfs_btnum_t	btnum,
1205 	__u16		level,
1206 	__u16		numrecs,
1207 	__u64		owner)
1208 {
1209 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210 				 btnum, level, numrecs, owner, 0);
1211 }
1212 
1213 void
1214 xfs_btree_init_block_cur(
1215 	struct xfs_btree_cur	*cur,
1216 	struct xfs_buf		*bp,
1217 	int			level,
1218 	int			numrecs)
1219 {
1220 	__u64			owner;
1221 
1222 	/*
1223 	 * we can pull the owner from the cursor right now as the different
1224 	 * owners align directly with the pointer size of the btree. This may
1225 	 * change in future, but is safe for current users of the generic btree
1226 	 * code.
1227 	 */
1228 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229 		owner = cur->bc_ino.ip->i_ino;
1230 	else
1231 		owner = cur->bc_ag.pag->pag_agno;
1232 
1233 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1235 				numrecs, owner, cur->bc_flags);
1236 }
1237 
1238 /*
1239  * Return true if ptr is the last record in the btree and
1240  * we need to track updates to this record.  The decision
1241  * will be further refined in the update_lastrec method.
1242  */
1243 STATIC int
1244 xfs_btree_is_lastrec(
1245 	struct xfs_btree_cur	*cur,
1246 	struct xfs_btree_block	*block,
1247 	int			level)
1248 {
1249 	union xfs_btree_ptr	ptr;
1250 
1251 	if (level > 0)
1252 		return 0;
1253 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254 		return 0;
1255 
1256 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1258 		return 0;
1259 	return 1;
1260 }
1261 
1262 STATIC void
1263 xfs_btree_buf_to_ptr(
1264 	struct xfs_btree_cur	*cur,
1265 	struct xfs_buf		*bp,
1266 	union xfs_btree_ptr	*ptr)
1267 {
1268 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270 					xfs_buf_daddr(bp)));
1271 	else {
1272 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273 					xfs_buf_daddr(bp)));
1274 	}
1275 }
1276 
1277 STATIC void
1278 xfs_btree_set_refs(
1279 	struct xfs_btree_cur	*cur,
1280 	struct xfs_buf		*bp)
1281 {
1282 	switch (cur->bc_btnum) {
1283 	case XFS_BTNUM_BNO:
1284 	case XFS_BTNUM_CNT:
1285 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286 		break;
1287 	case XFS_BTNUM_INO:
1288 	case XFS_BTNUM_FINO:
1289 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290 		break;
1291 	case XFS_BTNUM_BMAP:
1292 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293 		break;
1294 	case XFS_BTNUM_RMAP:
1295 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296 		break;
1297 	case XFS_BTNUM_REFC:
1298 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299 		break;
1300 	default:
1301 		ASSERT(0);
1302 	}
1303 }
1304 
1305 int
1306 xfs_btree_get_buf_block(
1307 	struct xfs_btree_cur		*cur,
1308 	const union xfs_btree_ptr	*ptr,
1309 	struct xfs_btree_block		**block,
1310 	struct xfs_buf			**bpp)
1311 {
1312 	struct xfs_mount	*mp = cur->bc_mp;
1313 	xfs_daddr_t		d;
1314 	int			error;
1315 
1316 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 	if (error)
1318 		return error;
1319 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320 			0, bpp);
1321 	if (error)
1322 		return error;
1323 
1324 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1325 	*block = XFS_BUF_TO_BLOCK(*bpp);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Read in the buffer at the given ptr and return the buffer and
1331  * the block pointer within the buffer.
1332  */
1333 STATIC int
1334 xfs_btree_read_buf_block(
1335 	struct xfs_btree_cur		*cur,
1336 	const union xfs_btree_ptr	*ptr,
1337 	int				flags,
1338 	struct xfs_btree_block		**block,
1339 	struct xfs_buf			**bpp)
1340 {
1341 	struct xfs_mount	*mp = cur->bc_mp;
1342 	xfs_daddr_t		d;
1343 	int			error;
1344 
1345 	/* need to sort out how callers deal with failures first */
1346 	ASSERT(!(flags & XBF_TRYLOCK));
1347 
1348 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349 	if (error)
1350 		return error;
1351 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352 				   mp->m_bsize, flags, bpp,
1353 				   cur->bc_ops->buf_ops);
1354 	if (error)
1355 		return error;
1356 
1357 	xfs_btree_set_refs(cur, *bpp);
1358 	*block = XFS_BUF_TO_BLOCK(*bpp);
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Copy keys from one btree block to another.
1364  */
1365 void
1366 xfs_btree_copy_keys(
1367 	struct xfs_btree_cur		*cur,
1368 	union xfs_btree_key		*dst_key,
1369 	const union xfs_btree_key	*src_key,
1370 	int				numkeys)
1371 {
1372 	ASSERT(numkeys >= 0);
1373 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375 
1376 /*
1377  * Copy records from one btree block to another.
1378  */
1379 STATIC void
1380 xfs_btree_copy_recs(
1381 	struct xfs_btree_cur	*cur,
1382 	union xfs_btree_rec	*dst_rec,
1383 	union xfs_btree_rec	*src_rec,
1384 	int			numrecs)
1385 {
1386 	ASSERT(numrecs >= 0);
1387 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389 
1390 /*
1391  * Copy block pointers from one btree block to another.
1392  */
1393 void
1394 xfs_btree_copy_ptrs(
1395 	struct xfs_btree_cur	*cur,
1396 	union xfs_btree_ptr	*dst_ptr,
1397 	const union xfs_btree_ptr *src_ptr,
1398 	int			numptrs)
1399 {
1400 	ASSERT(numptrs >= 0);
1401 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403 
1404 /*
1405  * Shift keys one index left/right inside a single btree block.
1406  */
1407 STATIC void
1408 xfs_btree_shift_keys(
1409 	struct xfs_btree_cur	*cur,
1410 	union xfs_btree_key	*key,
1411 	int			dir,
1412 	int			numkeys)
1413 {
1414 	char			*dst_key;
1415 
1416 	ASSERT(numkeys >= 0);
1417 	ASSERT(dir == 1 || dir == -1);
1418 
1419 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422 
1423 /*
1424  * Shift records one index left/right inside a single btree block.
1425  */
1426 STATIC void
1427 xfs_btree_shift_recs(
1428 	struct xfs_btree_cur	*cur,
1429 	union xfs_btree_rec	*rec,
1430 	int			dir,
1431 	int			numrecs)
1432 {
1433 	char			*dst_rec;
1434 
1435 	ASSERT(numrecs >= 0);
1436 	ASSERT(dir == 1 || dir == -1);
1437 
1438 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441 
1442 /*
1443  * Shift block pointers one index left/right inside a single btree block.
1444  */
1445 STATIC void
1446 xfs_btree_shift_ptrs(
1447 	struct xfs_btree_cur	*cur,
1448 	union xfs_btree_ptr	*ptr,
1449 	int			dir,
1450 	int			numptrs)
1451 {
1452 	char			*dst_ptr;
1453 
1454 	ASSERT(numptrs >= 0);
1455 	ASSERT(dir == 1 || dir == -1);
1456 
1457 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460 
1461 /*
1462  * Log key values from the btree block.
1463  */
1464 STATIC void
1465 xfs_btree_log_keys(
1466 	struct xfs_btree_cur	*cur,
1467 	struct xfs_buf		*bp,
1468 	int			first,
1469 	int			last)
1470 {
1471 
1472 	if (bp) {
1473 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474 		xfs_trans_log_buf(cur->bc_tp, bp,
1475 				  xfs_btree_key_offset(cur, first),
1476 				  xfs_btree_key_offset(cur, last + 1) - 1);
1477 	} else {
1478 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480 	}
1481 }
1482 
1483 /*
1484  * Log record values from the btree block.
1485  */
1486 void
1487 xfs_btree_log_recs(
1488 	struct xfs_btree_cur	*cur,
1489 	struct xfs_buf		*bp,
1490 	int			first,
1491 	int			last)
1492 {
1493 
1494 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495 	xfs_trans_log_buf(cur->bc_tp, bp,
1496 			  xfs_btree_rec_offset(cur, first),
1497 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1498 
1499 }
1500 
1501 /*
1502  * Log block pointer fields from a btree block (nonleaf).
1503  */
1504 STATIC void
1505 xfs_btree_log_ptrs(
1506 	struct xfs_btree_cur	*cur,	/* btree cursor */
1507 	struct xfs_buf		*bp,	/* buffer containing btree block */
1508 	int			first,	/* index of first pointer to log */
1509 	int			last)	/* index of last pointer to log */
1510 {
1511 
1512 	if (bp) {
1513 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1514 		int			level = xfs_btree_get_level(block);
1515 
1516 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517 		xfs_trans_log_buf(cur->bc_tp, bp,
1518 				xfs_btree_ptr_offset(cur, first, level),
1519 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520 	} else {
1521 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 	}
1524 
1525 }
1526 
1527 /*
1528  * Log fields from a btree block header.
1529  */
1530 void
1531 xfs_btree_log_block(
1532 	struct xfs_btree_cur	*cur,	/* btree cursor */
1533 	struct xfs_buf		*bp,	/* buffer containing btree block */
1534 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1535 {
1536 	int			first;	/* first byte offset logged */
1537 	int			last;	/* last byte offset logged */
1538 	static const short	soffsets[] = {	/* table of offsets (short) */
1539 		offsetof(struct xfs_btree_block, bb_magic),
1540 		offsetof(struct xfs_btree_block, bb_level),
1541 		offsetof(struct xfs_btree_block, bb_numrecs),
1542 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549 		XFS_BTREE_SBLOCK_CRC_LEN
1550 	};
1551 	static const short	loffsets[] = {	/* table of offsets (long) */
1552 		offsetof(struct xfs_btree_block, bb_magic),
1553 		offsetof(struct xfs_btree_block, bb_level),
1554 		offsetof(struct xfs_btree_block, bb_numrecs),
1555 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563 		XFS_BTREE_LBLOCK_CRC_LEN
1564 	};
1565 
1566 	if (bp) {
1567 		int nbits;
1568 
1569 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570 			/*
1571 			 * We don't log the CRC when updating a btree
1572 			 * block but instead recreate it during log
1573 			 * recovery.  As the log buffers have checksums
1574 			 * of their own this is safe and avoids logging a crc
1575 			 * update in a lot of places.
1576 			 */
1577 			if (fields == XFS_BB_ALL_BITS)
1578 				fields = XFS_BB_ALL_BITS_CRC;
1579 			nbits = XFS_BB_NUM_BITS_CRC;
1580 		} else {
1581 			nbits = XFS_BB_NUM_BITS;
1582 		}
1583 		xfs_btree_offsets(fields,
1584 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585 					loffsets : soffsets,
1586 				  nbits, &first, &last);
1587 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589 	} else {
1590 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592 	}
1593 }
1594 
1595 /*
1596  * Increment cursor by one record at the level.
1597  * For nonzero levels the leaf-ward information is untouched.
1598  */
1599 int						/* error */
1600 xfs_btree_increment(
1601 	struct xfs_btree_cur	*cur,
1602 	int			level,
1603 	int			*stat)		/* success/failure */
1604 {
1605 	struct xfs_btree_block	*block;
1606 	union xfs_btree_ptr	ptr;
1607 	struct xfs_buf		*bp;
1608 	int			error;		/* error return value */
1609 	int			lev;
1610 
1611 	ASSERT(level < cur->bc_nlevels);
1612 
1613 	/* Read-ahead to the right at this level. */
1614 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615 
1616 	/* Get a pointer to the btree block. */
1617 	block = xfs_btree_get_block(cur, level, &bp);
1618 
1619 #ifdef DEBUG
1620 	error = xfs_btree_check_block(cur, block, level, bp);
1621 	if (error)
1622 		goto error0;
1623 #endif
1624 
1625 	/* We're done if we remain in the block after the increment. */
1626 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627 		goto out1;
1628 
1629 	/* Fail if we just went off the right edge of the tree. */
1630 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631 	if (xfs_btree_ptr_is_null(cur, &ptr))
1632 		goto out0;
1633 
1634 	XFS_BTREE_STATS_INC(cur, increment);
1635 
1636 	/*
1637 	 * March up the tree incrementing pointers.
1638 	 * Stop when we don't go off the right edge of a block.
1639 	 */
1640 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641 		block = xfs_btree_get_block(cur, lev, &bp);
1642 
1643 #ifdef DEBUG
1644 		error = xfs_btree_check_block(cur, block, lev, bp);
1645 		if (error)
1646 			goto error0;
1647 #endif
1648 
1649 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650 			break;
1651 
1652 		/* Read-ahead the right block for the next loop. */
1653 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654 	}
1655 
1656 	/*
1657 	 * If we went off the root then we are either seriously
1658 	 * confused or have the tree root in an inode.
1659 	 */
1660 	if (lev == cur->bc_nlevels) {
1661 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662 			goto out0;
1663 		ASSERT(0);
1664 		error = -EFSCORRUPTED;
1665 		goto error0;
1666 	}
1667 	ASSERT(lev < cur->bc_nlevels);
1668 
1669 	/*
1670 	 * Now walk back down the tree, fixing up the cursor's buffer
1671 	 * pointers and key numbers.
1672 	 */
1673 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674 		union xfs_btree_ptr	*ptrp;
1675 
1676 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677 		--lev;
1678 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679 		if (error)
1680 			goto error0;
1681 
1682 		xfs_btree_setbuf(cur, lev, bp);
1683 		cur->bc_levels[lev].ptr = 1;
1684 	}
1685 out1:
1686 	*stat = 1;
1687 	return 0;
1688 
1689 out0:
1690 	*stat = 0;
1691 	return 0;
1692 
1693 error0:
1694 	return error;
1695 }
1696 
1697 /*
1698  * Decrement cursor by one record at the level.
1699  * For nonzero levels the leaf-ward information is untouched.
1700  */
1701 int						/* error */
1702 xfs_btree_decrement(
1703 	struct xfs_btree_cur	*cur,
1704 	int			level,
1705 	int			*stat)		/* success/failure */
1706 {
1707 	struct xfs_btree_block	*block;
1708 	struct xfs_buf		*bp;
1709 	int			error;		/* error return value */
1710 	int			lev;
1711 	union xfs_btree_ptr	ptr;
1712 
1713 	ASSERT(level < cur->bc_nlevels);
1714 
1715 	/* Read-ahead to the left at this level. */
1716 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717 
1718 	/* We're done if we remain in the block after the decrement. */
1719 	if (--cur->bc_levels[level].ptr > 0)
1720 		goto out1;
1721 
1722 	/* Get a pointer to the btree block. */
1723 	block = xfs_btree_get_block(cur, level, &bp);
1724 
1725 #ifdef DEBUG
1726 	error = xfs_btree_check_block(cur, block, level, bp);
1727 	if (error)
1728 		goto error0;
1729 #endif
1730 
1731 	/* Fail if we just went off the left edge of the tree. */
1732 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733 	if (xfs_btree_ptr_is_null(cur, &ptr))
1734 		goto out0;
1735 
1736 	XFS_BTREE_STATS_INC(cur, decrement);
1737 
1738 	/*
1739 	 * March up the tree decrementing pointers.
1740 	 * Stop when we don't go off the left edge of a block.
1741 	 */
1742 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743 		if (--cur->bc_levels[lev].ptr > 0)
1744 			break;
1745 		/* Read-ahead the left block for the next loop. */
1746 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747 	}
1748 
1749 	/*
1750 	 * If we went off the root then we are seriously confused.
1751 	 * or the root of the tree is in an inode.
1752 	 */
1753 	if (lev == cur->bc_nlevels) {
1754 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755 			goto out0;
1756 		ASSERT(0);
1757 		error = -EFSCORRUPTED;
1758 		goto error0;
1759 	}
1760 	ASSERT(lev < cur->bc_nlevels);
1761 
1762 	/*
1763 	 * Now walk back down the tree, fixing up the cursor's buffer
1764 	 * pointers and key numbers.
1765 	 */
1766 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767 		union xfs_btree_ptr	*ptrp;
1768 
1769 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770 		--lev;
1771 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772 		if (error)
1773 			goto error0;
1774 		xfs_btree_setbuf(cur, lev, bp);
1775 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776 	}
1777 out1:
1778 	*stat = 1;
1779 	return 0;
1780 
1781 out0:
1782 	*stat = 0;
1783 	return 0;
1784 
1785 error0:
1786 	return error;
1787 }
1788 
1789 int
1790 xfs_btree_lookup_get_block(
1791 	struct xfs_btree_cur		*cur,	/* btree cursor */
1792 	int				level,	/* level in the btree */
1793 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1794 	struct xfs_btree_block		**blkp) /* return btree block */
1795 {
1796 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1797 	xfs_daddr_t		daddr;
1798 	int			error = 0;
1799 
1800 	/* special case the root block if in an inode */
1801 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802 	    (level == cur->bc_nlevels - 1)) {
1803 		*blkp = xfs_btree_get_iroot(cur);
1804 		return 0;
1805 	}
1806 
1807 	/*
1808 	 * If the old buffer at this level for the disk address we are
1809 	 * looking for re-use it.
1810 	 *
1811 	 * Otherwise throw it away and get a new one.
1812 	 */
1813 	bp = cur->bc_levels[level].bp;
1814 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815 	if (error)
1816 		return error;
1817 	if (bp && xfs_buf_daddr(bp) == daddr) {
1818 		*blkp = XFS_BUF_TO_BLOCK(bp);
1819 		return 0;
1820 	}
1821 
1822 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823 	if (error)
1824 		return error;
1825 
1826 	/* Check the inode owner since the verifiers don't. */
1827 	if (xfs_has_crc(cur->bc_mp) &&
1828 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831 			cur->bc_ino.ip->i_ino)
1832 		goto out_bad;
1833 
1834 	/* Did we get the level we were looking for? */
1835 	if (be16_to_cpu((*blkp)->bb_level) != level)
1836 		goto out_bad;
1837 
1838 	/* Check that internal nodes have at least one record. */
1839 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840 		goto out_bad;
1841 
1842 	xfs_btree_setbuf(cur, level, bp);
1843 	return 0;
1844 
1845 out_bad:
1846 	*blkp = NULL;
1847 	xfs_buf_mark_corrupt(bp);
1848 	xfs_trans_brelse(cur->bc_tp, bp);
1849 	return -EFSCORRUPTED;
1850 }
1851 
1852 /*
1853  * Get current search key.  For level 0 we don't actually have a key
1854  * structure so we make one up from the record.  For all other levels
1855  * we just return the right key.
1856  */
1857 STATIC union xfs_btree_key *
1858 xfs_lookup_get_search_key(
1859 	struct xfs_btree_cur	*cur,
1860 	int			level,
1861 	int			keyno,
1862 	struct xfs_btree_block	*block,
1863 	union xfs_btree_key	*kp)
1864 {
1865 	if (level == 0) {
1866 		cur->bc_ops->init_key_from_rec(kp,
1867 				xfs_btree_rec_addr(cur, keyno, block));
1868 		return kp;
1869 	}
1870 
1871 	return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873 
1874 /*
1875  * Lookup the record.  The cursor is made to point to it, based on dir.
1876  * stat is set to 0 if can't find any such record, 1 for success.
1877  */
1878 int					/* error */
1879 xfs_btree_lookup(
1880 	struct xfs_btree_cur	*cur,	/* btree cursor */
1881 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1882 	int			*stat)	/* success/failure */
1883 {
1884 	struct xfs_btree_block	*block;	/* current btree block */
1885 	int64_t			diff;	/* difference for the current key */
1886 	int			error;	/* error return value */
1887 	int			keyno;	/* current key number */
1888 	int			level;	/* level in the btree */
1889 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1890 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1891 
1892 	XFS_BTREE_STATS_INC(cur, lookup);
1893 
1894 	/* No such thing as a zero-level tree. */
1895 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896 		return -EFSCORRUPTED;
1897 
1898 	block = NULL;
1899 	keyno = 0;
1900 
1901 	/* initialise start pointer from cursor */
1902 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903 	pp = &ptr;
1904 
1905 	/*
1906 	 * Iterate over each level in the btree, starting at the root.
1907 	 * For each level above the leaves, find the key we need, based
1908 	 * on the lookup record, then follow the corresponding block
1909 	 * pointer down to the next level.
1910 	 */
1911 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912 		/* Get the block we need to do the lookup on. */
1913 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914 		if (error)
1915 			goto error0;
1916 
1917 		if (diff == 0) {
1918 			/*
1919 			 * If we already had a key match at a higher level, we
1920 			 * know we need to use the first entry in this block.
1921 			 */
1922 			keyno = 1;
1923 		} else {
1924 			/* Otherwise search this block. Do a binary search. */
1925 
1926 			int	high;	/* high entry number */
1927 			int	low;	/* low entry number */
1928 
1929 			/* Set low and high entry numbers, 1-based. */
1930 			low = 1;
1931 			high = xfs_btree_get_numrecs(block);
1932 			if (!high) {
1933 				/* Block is empty, must be an empty leaf. */
1934 				if (level != 0 || cur->bc_nlevels != 1) {
1935 					XFS_CORRUPTION_ERROR(__func__,
1936 							XFS_ERRLEVEL_LOW,
1937 							cur->bc_mp, block,
1938 							sizeof(*block));
1939 					return -EFSCORRUPTED;
1940 				}
1941 
1942 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943 				*stat = 0;
1944 				return 0;
1945 			}
1946 
1947 			/* Binary search the block. */
1948 			while (low <= high) {
1949 				union xfs_btree_key	key;
1950 				union xfs_btree_key	*kp;
1951 
1952 				XFS_BTREE_STATS_INC(cur, compare);
1953 
1954 				/* keyno is average of low and high. */
1955 				keyno = (low + high) >> 1;
1956 
1957 				/* Get current search key */
1958 				kp = xfs_lookup_get_search_key(cur, level,
1959 						keyno, block, &key);
1960 
1961 				/*
1962 				 * Compute difference to get next direction:
1963 				 *  - less than, move right
1964 				 *  - greater than, move left
1965 				 *  - equal, we're done
1966 				 */
1967 				diff = cur->bc_ops->key_diff(cur, kp);
1968 				if (diff < 0)
1969 					low = keyno + 1;
1970 				else if (diff > 0)
1971 					high = keyno - 1;
1972 				else
1973 					break;
1974 			}
1975 		}
1976 
1977 		/*
1978 		 * If there are more levels, set up for the next level
1979 		 * by getting the block number and filling in the cursor.
1980 		 */
1981 		if (level > 0) {
1982 			/*
1983 			 * If we moved left, need the previous key number,
1984 			 * unless there isn't one.
1985 			 */
1986 			if (diff > 0 && --keyno < 1)
1987 				keyno = 1;
1988 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1989 
1990 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991 			if (error)
1992 				goto error0;
1993 
1994 			cur->bc_levels[level].ptr = keyno;
1995 		}
1996 	}
1997 
1998 	/* Done with the search. See if we need to adjust the results. */
1999 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2000 		keyno++;
2001 		/*
2002 		 * If ge search and we went off the end of the block, but it's
2003 		 * not the last block, we're in the wrong block.
2004 		 */
2005 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006 		if (dir == XFS_LOOKUP_GE &&
2007 		    keyno > xfs_btree_get_numrecs(block) &&
2008 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2009 			int	i;
2010 
2011 			cur->bc_levels[0].ptr = keyno;
2012 			error = xfs_btree_increment(cur, 0, &i);
2013 			if (error)
2014 				goto error0;
2015 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016 				return -EFSCORRUPTED;
2017 			*stat = 1;
2018 			return 0;
2019 		}
2020 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2021 		keyno--;
2022 	cur->bc_levels[0].ptr = keyno;
2023 
2024 	/* Return if we succeeded or not. */
2025 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026 		*stat = 0;
2027 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028 		*stat = 1;
2029 	else
2030 		*stat = 0;
2031 	return 0;
2032 
2033 error0:
2034 	return error;
2035 }
2036 
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
2039 xfs_btree_high_key_from_key(
2040 	struct xfs_btree_cur	*cur,
2041 	union xfs_btree_key	*key)
2042 {
2043 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044 	return (union xfs_btree_key *)((char *)key +
2045 			(cur->bc_ops->key_len / 2));
2046 }
2047 
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
2050 xfs_btree_get_leaf_keys(
2051 	struct xfs_btree_cur	*cur,
2052 	struct xfs_btree_block	*block,
2053 	union xfs_btree_key	*key)
2054 {
2055 	union xfs_btree_key	max_hkey;
2056 	union xfs_btree_key	hkey;
2057 	union xfs_btree_rec	*rec;
2058 	union xfs_btree_key	*high;
2059 	int			n;
2060 
2061 	rec = xfs_btree_rec_addr(cur, 1, block);
2062 	cur->bc_ops->init_key_from_rec(key, rec);
2063 
2064 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065 
2066 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068 			rec = xfs_btree_rec_addr(cur, n, block);
2069 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071 					> 0)
2072 				max_hkey = hkey;
2073 		}
2074 
2075 		high = xfs_btree_high_key_from_key(cur, key);
2076 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077 	}
2078 }
2079 
2080 /* Determine the low (and high if overlapped) keys of a node block */
2081 STATIC void
2082 xfs_btree_get_node_keys(
2083 	struct xfs_btree_cur	*cur,
2084 	struct xfs_btree_block	*block,
2085 	union xfs_btree_key	*key)
2086 {
2087 	union xfs_btree_key	*hkey;
2088 	union xfs_btree_key	*max_hkey;
2089 	union xfs_btree_key	*high;
2090 	int			n;
2091 
2092 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094 				cur->bc_ops->key_len / 2);
2095 
2096 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098 			hkey = xfs_btree_high_key_addr(cur, n, block);
2099 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100 				max_hkey = hkey;
2101 		}
2102 
2103 		high = xfs_btree_high_key_from_key(cur, key);
2104 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105 	} else {
2106 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107 				cur->bc_ops->key_len);
2108 	}
2109 }
2110 
2111 /* Derive the keys for any btree block. */
2112 void
2113 xfs_btree_get_keys(
2114 	struct xfs_btree_cur	*cur,
2115 	struct xfs_btree_block	*block,
2116 	union xfs_btree_key	*key)
2117 {
2118 	if (be16_to_cpu(block->bb_level) == 0)
2119 		xfs_btree_get_leaf_keys(cur, block, key);
2120 	else
2121 		xfs_btree_get_node_keys(cur, block, key);
2122 }
2123 
2124 /*
2125  * Decide if we need to update the parent keys of a btree block.  For
2126  * a standard btree this is only necessary if we're updating the first
2127  * record/key.  For an overlapping btree, we must always update the
2128  * keys because the highest key can be in any of the records or keys
2129  * in the block.
2130  */
2131 static inline bool
2132 xfs_btree_needs_key_update(
2133 	struct xfs_btree_cur	*cur,
2134 	int			ptr)
2135 {
2136 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137 }
2138 
2139 /*
2140  * Update the low and high parent keys of the given level, progressing
2141  * towards the root.  If force_all is false, stop if the keys for a given
2142  * level do not need updating.
2143  */
2144 STATIC int
2145 __xfs_btree_updkeys(
2146 	struct xfs_btree_cur	*cur,
2147 	int			level,
2148 	struct xfs_btree_block	*block,
2149 	struct xfs_buf		*bp0,
2150 	bool			force_all)
2151 {
2152 	union xfs_btree_key	key;	/* keys from current level */
2153 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2154 	union xfs_btree_key	*hkey;
2155 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2156 	union xfs_btree_key	*nhkey;
2157 	struct xfs_buf		*bp;
2158 	int			ptr;
2159 
2160 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161 
2162 	/* Exit if there aren't any parent levels to update. */
2163 	if (level + 1 >= cur->bc_nlevels)
2164 		return 0;
2165 
2166 	trace_xfs_btree_updkeys(cur, level, bp0);
2167 
2168 	lkey = &key;
2169 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2170 	xfs_btree_get_keys(cur, block, lkey);
2171 	for (level++; level < cur->bc_nlevels; level++) {
2172 #ifdef DEBUG
2173 		int		error;
2174 #endif
2175 		block = xfs_btree_get_block(cur, level, &bp);
2176 		trace_xfs_btree_updkeys(cur, level, bp);
2177 #ifdef DEBUG
2178 		error = xfs_btree_check_block(cur, block, level, bp);
2179 		if (error)
2180 			return error;
2181 #endif
2182 		ptr = cur->bc_levels[level].ptr;
2183 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2184 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185 		if (!force_all &&
2186 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188 			break;
2189 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2191 		if (level + 1 >= cur->bc_nlevels)
2192 			break;
2193 		xfs_btree_get_node_keys(cur, block, lkey);
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 /* Update all the keys from some level in cursor back to the root. */
2200 STATIC int
2201 xfs_btree_updkeys_force(
2202 	struct xfs_btree_cur	*cur,
2203 	int			level)
2204 {
2205 	struct xfs_buf		*bp;
2206 	struct xfs_btree_block	*block;
2207 
2208 	block = xfs_btree_get_block(cur, level, &bp);
2209 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2210 }
2211 
2212 /*
2213  * Update the parent keys of the given level, progressing towards the root.
2214  */
2215 STATIC int
2216 xfs_btree_update_keys(
2217 	struct xfs_btree_cur	*cur,
2218 	int			level)
2219 {
2220 	struct xfs_btree_block	*block;
2221 	struct xfs_buf		*bp;
2222 	union xfs_btree_key	*kp;
2223 	union xfs_btree_key	key;
2224 	int			ptr;
2225 
2226 	ASSERT(level >= 0);
2227 
2228 	block = xfs_btree_get_block(cur, level, &bp);
2229 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2231 
2232 	/*
2233 	 * Go up the tree from this level toward the root.
2234 	 * At each level, update the key value to the value input.
2235 	 * Stop when we reach a level where the cursor isn't pointing
2236 	 * at the first entry in the block.
2237 	 */
2238 	xfs_btree_get_keys(cur, block, &key);
2239 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240 #ifdef DEBUG
2241 		int		error;
2242 #endif
2243 		block = xfs_btree_get_block(cur, level, &bp);
2244 #ifdef DEBUG
2245 		error = xfs_btree_check_block(cur, block, level, bp);
2246 		if (error)
2247 			return error;
2248 #endif
2249 		ptr = cur->bc_levels[level].ptr;
2250 		kp = xfs_btree_key_addr(cur, ptr, block);
2251 		xfs_btree_copy_keys(cur, kp, &key, 1);
2252 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Update the record referred to by cur to the value in the
2260  * given record. This either works (return 0) or gets an
2261  * EFSCORRUPTED error.
2262  */
2263 int
2264 xfs_btree_update(
2265 	struct xfs_btree_cur	*cur,
2266 	union xfs_btree_rec	*rec)
2267 {
2268 	struct xfs_btree_block	*block;
2269 	struct xfs_buf		*bp;
2270 	int			error;
2271 	int			ptr;
2272 	union xfs_btree_rec	*rp;
2273 
2274 	/* Pick up the current block. */
2275 	block = xfs_btree_get_block(cur, 0, &bp);
2276 
2277 #ifdef DEBUG
2278 	error = xfs_btree_check_block(cur, block, 0, bp);
2279 	if (error)
2280 		goto error0;
2281 #endif
2282 	/* Get the address of the rec to be updated. */
2283 	ptr = cur->bc_levels[0].ptr;
2284 	rp = xfs_btree_rec_addr(cur, ptr, block);
2285 
2286 	/* Fill in the new contents and log them. */
2287 	xfs_btree_copy_recs(cur, rp, rec, 1);
2288 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2289 
2290 	/*
2291 	 * If we are tracking the last record in the tree and
2292 	 * we are at the far right edge of the tree, update it.
2293 	 */
2294 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2295 		cur->bc_ops->update_lastrec(cur, block, rec,
2296 					    ptr, LASTREC_UPDATE);
2297 	}
2298 
2299 	/* Pass new key value up to our parent. */
2300 	if (xfs_btree_needs_key_update(cur, ptr)) {
2301 		error = xfs_btree_update_keys(cur, 0);
2302 		if (error)
2303 			goto error0;
2304 	}
2305 
2306 	return 0;
2307 
2308 error0:
2309 	return error;
2310 }
2311 
2312 /*
2313  * Move 1 record left from cur/level if possible.
2314  * Update cur to reflect the new path.
2315  */
2316 STATIC int					/* error */
2317 xfs_btree_lshift(
2318 	struct xfs_btree_cur	*cur,
2319 	int			level,
2320 	int			*stat)		/* success/failure */
2321 {
2322 	struct xfs_buf		*lbp;		/* left buffer pointer */
2323 	struct xfs_btree_block	*left;		/* left btree block */
2324 	int			lrecs;		/* left record count */
2325 	struct xfs_buf		*rbp;		/* right buffer pointer */
2326 	struct xfs_btree_block	*right;		/* right btree block */
2327 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2328 	int			rrecs;		/* right record count */
2329 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2330 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2331 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2332 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2333 	int			error;		/* error return value */
2334 	int			i;
2335 
2336 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337 	    level == cur->bc_nlevels - 1)
2338 		goto out0;
2339 
2340 	/* Set up variables for this block as "right". */
2341 	right = xfs_btree_get_block(cur, level, &rbp);
2342 
2343 #ifdef DEBUG
2344 	error = xfs_btree_check_block(cur, right, level, rbp);
2345 	if (error)
2346 		goto error0;
2347 #endif
2348 
2349 	/* If we've got no left sibling then we can't shift an entry left. */
2350 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351 	if (xfs_btree_ptr_is_null(cur, &lptr))
2352 		goto out0;
2353 
2354 	/*
2355 	 * If the cursor entry is the one that would be moved, don't
2356 	 * do it... it's too complicated.
2357 	 */
2358 	if (cur->bc_levels[level].ptr <= 1)
2359 		goto out0;
2360 
2361 	/* Set up the left neighbor as "left". */
2362 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363 	if (error)
2364 		goto error0;
2365 
2366 	/* If it's full, it can't take another entry. */
2367 	lrecs = xfs_btree_get_numrecs(left);
2368 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369 		goto out0;
2370 
2371 	rrecs = xfs_btree_get_numrecs(right);
2372 
2373 	/*
2374 	 * We add one entry to the left side and remove one for the right side.
2375 	 * Account for it here, the changes will be updated on disk and logged
2376 	 * later.
2377 	 */
2378 	lrecs++;
2379 	rrecs--;
2380 
2381 	XFS_BTREE_STATS_INC(cur, lshift);
2382 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2383 
2384 	/*
2385 	 * If non-leaf, copy a key and a ptr to the left block.
2386 	 * Log the changes to the left block.
2387 	 */
2388 	if (level > 0) {
2389 		/* It's a non-leaf.  Move keys and pointers. */
2390 		union xfs_btree_key	*lkp;	/* left btree key */
2391 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2392 
2393 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2394 		rkp = xfs_btree_key_addr(cur, 1, right);
2395 
2396 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2398 
2399 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400 		if (error)
2401 			goto error0;
2402 
2403 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405 
2406 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408 
2409 		ASSERT(cur->bc_ops->keys_inorder(cur,
2410 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411 	} else {
2412 		/* It's a leaf.  Move records.  */
2413 		union xfs_btree_rec	*lrp;	/* left record pointer */
2414 
2415 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416 		rrp = xfs_btree_rec_addr(cur, 1, right);
2417 
2418 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420 
2421 		ASSERT(cur->bc_ops->recs_inorder(cur,
2422 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423 	}
2424 
2425 	xfs_btree_set_numrecs(left, lrecs);
2426 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427 
2428 	xfs_btree_set_numrecs(right, rrecs);
2429 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430 
2431 	/*
2432 	 * Slide the contents of right down one entry.
2433 	 */
2434 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435 	if (level > 0) {
2436 		/* It's a nonleaf. operate on keys and ptrs */
2437 		for (i = 0; i < rrecs; i++) {
2438 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439 			if (error)
2440 				goto error0;
2441 		}
2442 
2443 		xfs_btree_shift_keys(cur,
2444 				xfs_btree_key_addr(cur, 2, right),
2445 				-1, rrecs);
2446 		xfs_btree_shift_ptrs(cur,
2447 				xfs_btree_ptr_addr(cur, 2, right),
2448 				-1, rrecs);
2449 
2450 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452 	} else {
2453 		/* It's a leaf. operate on records */
2454 		xfs_btree_shift_recs(cur,
2455 			xfs_btree_rec_addr(cur, 2, right),
2456 			-1, rrecs);
2457 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458 	}
2459 
2460 	/*
2461 	 * Using a temporary cursor, update the parent key values of the
2462 	 * block on the left.
2463 	 */
2464 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465 		error = xfs_btree_dup_cursor(cur, &tcur);
2466 		if (error)
2467 			goto error0;
2468 		i = xfs_btree_firstrec(tcur, level);
2469 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470 			error = -EFSCORRUPTED;
2471 			goto error0;
2472 		}
2473 
2474 		error = xfs_btree_decrement(tcur, level, &i);
2475 		if (error)
2476 			goto error1;
2477 
2478 		/* Update the parent high keys of the left block, if needed. */
2479 		error = xfs_btree_update_keys(tcur, level);
2480 		if (error)
2481 			goto error1;
2482 
2483 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484 	}
2485 
2486 	/* Update the parent keys of the right block. */
2487 	error = xfs_btree_update_keys(cur, level);
2488 	if (error)
2489 		goto error0;
2490 
2491 	/* Slide the cursor value left one. */
2492 	cur->bc_levels[level].ptr--;
2493 
2494 	*stat = 1;
2495 	return 0;
2496 
2497 out0:
2498 	*stat = 0;
2499 	return 0;
2500 
2501 error0:
2502 	return error;
2503 
2504 error1:
2505 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506 	return error;
2507 }
2508 
2509 /*
2510  * Move 1 record right from cur/level if possible.
2511  * Update cur to reflect the new path.
2512  */
2513 STATIC int					/* error */
2514 xfs_btree_rshift(
2515 	struct xfs_btree_cur	*cur,
2516 	int			level,
2517 	int			*stat)		/* success/failure */
2518 {
2519 	struct xfs_buf		*lbp;		/* left buffer pointer */
2520 	struct xfs_btree_block	*left;		/* left btree block */
2521 	struct xfs_buf		*rbp;		/* right buffer pointer */
2522 	struct xfs_btree_block	*right;		/* right btree block */
2523 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2524 	union xfs_btree_ptr	rptr;		/* right block pointer */
2525 	union xfs_btree_key	*rkp;		/* right btree key */
2526 	int			rrecs;		/* right record count */
2527 	int			lrecs;		/* left record count */
2528 	int			error;		/* error return value */
2529 	int			i;		/* loop counter */
2530 
2531 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532 	    (level == cur->bc_nlevels - 1))
2533 		goto out0;
2534 
2535 	/* Set up variables for this block as "left". */
2536 	left = xfs_btree_get_block(cur, level, &lbp);
2537 
2538 #ifdef DEBUG
2539 	error = xfs_btree_check_block(cur, left, level, lbp);
2540 	if (error)
2541 		goto error0;
2542 #endif
2543 
2544 	/* If we've got no right sibling then we can't shift an entry right. */
2545 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546 	if (xfs_btree_ptr_is_null(cur, &rptr))
2547 		goto out0;
2548 
2549 	/*
2550 	 * If the cursor entry is the one that would be moved, don't
2551 	 * do it... it's too complicated.
2552 	 */
2553 	lrecs = xfs_btree_get_numrecs(left);
2554 	if (cur->bc_levels[level].ptr >= lrecs)
2555 		goto out0;
2556 
2557 	/* Set up the right neighbor as "right". */
2558 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559 	if (error)
2560 		goto error0;
2561 
2562 	/* If it's full, it can't take another entry. */
2563 	rrecs = xfs_btree_get_numrecs(right);
2564 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565 		goto out0;
2566 
2567 	XFS_BTREE_STATS_INC(cur, rshift);
2568 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569 
2570 	/*
2571 	 * Make a hole at the start of the right neighbor block, then
2572 	 * copy the last left block entry to the hole.
2573 	 */
2574 	if (level > 0) {
2575 		/* It's a nonleaf. make a hole in the keys and ptrs */
2576 		union xfs_btree_key	*lkp;
2577 		union xfs_btree_ptr	*lpp;
2578 		union xfs_btree_ptr	*rpp;
2579 
2580 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2581 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582 		rkp = xfs_btree_key_addr(cur, 1, right);
2583 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2584 
2585 		for (i = rrecs - 1; i >= 0; i--) {
2586 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587 			if (error)
2588 				goto error0;
2589 		}
2590 
2591 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593 
2594 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595 		if (error)
2596 			goto error0;
2597 
2598 		/* Now put the new data in, and log it. */
2599 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601 
2602 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604 
2605 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606 			xfs_btree_key_addr(cur, 2, right)));
2607 	} else {
2608 		/* It's a leaf. make a hole in the records */
2609 		union xfs_btree_rec	*lrp;
2610 		union xfs_btree_rec	*rrp;
2611 
2612 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613 		rrp = xfs_btree_rec_addr(cur, 1, right);
2614 
2615 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616 
2617 		/* Now put the new data in, and log it. */
2618 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620 	}
2621 
2622 	/*
2623 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2624 	 */
2625 	xfs_btree_set_numrecs(left, --lrecs);
2626 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627 
2628 	xfs_btree_set_numrecs(right, ++rrecs);
2629 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630 
2631 	/*
2632 	 * Using a temporary cursor, update the parent key values of the
2633 	 * block on the right.
2634 	 */
2635 	error = xfs_btree_dup_cursor(cur, &tcur);
2636 	if (error)
2637 		goto error0;
2638 	i = xfs_btree_lastrec(tcur, level);
2639 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640 		error = -EFSCORRUPTED;
2641 		goto error0;
2642 	}
2643 
2644 	error = xfs_btree_increment(tcur, level, &i);
2645 	if (error)
2646 		goto error1;
2647 
2648 	/* Update the parent high keys of the left block, if needed. */
2649 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650 		error = xfs_btree_update_keys(cur, level);
2651 		if (error)
2652 			goto error1;
2653 	}
2654 
2655 	/* Update the parent keys of the right block. */
2656 	error = xfs_btree_update_keys(tcur, level);
2657 	if (error)
2658 		goto error1;
2659 
2660 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661 
2662 	*stat = 1;
2663 	return 0;
2664 
2665 out0:
2666 	*stat = 0;
2667 	return 0;
2668 
2669 error0:
2670 	return error;
2671 
2672 error1:
2673 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674 	return error;
2675 }
2676 
2677 /*
2678  * Split cur/level block in half.
2679  * Return new block number and the key to its first
2680  * record (to be inserted into parent).
2681  */
2682 STATIC int					/* error */
2683 __xfs_btree_split(
2684 	struct xfs_btree_cur	*cur,
2685 	int			level,
2686 	union xfs_btree_ptr	*ptrp,
2687 	union xfs_btree_key	*key,
2688 	struct xfs_btree_cur	**curp,
2689 	int			*stat)		/* success/failure */
2690 {
2691 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2692 	struct xfs_buf		*lbp;		/* left buffer pointer */
2693 	struct xfs_btree_block	*left;		/* left btree block */
2694 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2695 	struct xfs_buf		*rbp;		/* right buffer pointer */
2696 	struct xfs_btree_block	*right;		/* right btree block */
2697 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2698 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2699 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2700 	int			lrecs;
2701 	int			rrecs;
2702 	int			src_index;
2703 	int			error;		/* error return value */
2704 	int			i;
2705 
2706 	XFS_BTREE_STATS_INC(cur, split);
2707 
2708 	/* Set up left block (current one). */
2709 	left = xfs_btree_get_block(cur, level, &lbp);
2710 
2711 #ifdef DEBUG
2712 	error = xfs_btree_check_block(cur, left, level, lbp);
2713 	if (error)
2714 		goto error0;
2715 #endif
2716 
2717 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718 
2719 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2720 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721 	if (error)
2722 		goto error0;
2723 	if (*stat == 0)
2724 		goto out0;
2725 	XFS_BTREE_STATS_INC(cur, alloc);
2726 
2727 	/* Set up the new block as "right". */
2728 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729 	if (error)
2730 		goto error0;
2731 
2732 	/* Fill in the btree header for the new right block. */
2733 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734 
2735 	/*
2736 	 * Split the entries between the old and the new block evenly.
2737 	 * Make sure that if there's an odd number of entries now, that
2738 	 * each new block will have the same number of entries.
2739 	 */
2740 	lrecs = xfs_btree_get_numrecs(left);
2741 	rrecs = lrecs / 2;
2742 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743 		rrecs++;
2744 	src_index = (lrecs - rrecs + 1);
2745 
2746 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747 
2748 	/* Adjust numrecs for the later get_*_keys() calls. */
2749 	lrecs -= rrecs;
2750 	xfs_btree_set_numrecs(left, lrecs);
2751 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752 
2753 	/*
2754 	 * Copy btree block entries from the left block over to the
2755 	 * new block, the right. Update the right block and log the
2756 	 * changes.
2757 	 */
2758 	if (level > 0) {
2759 		/* It's a non-leaf.  Move keys and pointers. */
2760 		union xfs_btree_key	*lkp;	/* left btree key */
2761 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2762 		union xfs_btree_key	*rkp;	/* right btree key */
2763 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2764 
2765 		lkp = xfs_btree_key_addr(cur, src_index, left);
2766 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767 		rkp = xfs_btree_key_addr(cur, 1, right);
2768 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2769 
2770 		for (i = src_index; i < rrecs; i++) {
2771 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772 			if (error)
2773 				goto error0;
2774 		}
2775 
2776 		/* Copy the keys & pointers to the new block. */
2777 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779 
2780 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782 
2783 		/* Stash the keys of the new block for later insertion. */
2784 		xfs_btree_get_node_keys(cur, right, key);
2785 	} else {
2786 		/* It's a leaf.  Move records.  */
2787 		union xfs_btree_rec	*lrp;	/* left record pointer */
2788 		union xfs_btree_rec	*rrp;	/* right record pointer */
2789 
2790 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2791 		rrp = xfs_btree_rec_addr(cur, 1, right);
2792 
2793 		/* Copy records to the new block. */
2794 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796 
2797 		/* Stash the keys of the new block for later insertion. */
2798 		xfs_btree_get_leaf_keys(cur, right, key);
2799 	}
2800 
2801 	/*
2802 	 * Find the left block number by looking in the buffer.
2803 	 * Adjust sibling pointers.
2804 	 */
2805 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809 
2810 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812 
2813 	/*
2814 	 * If there's a block to the new block's right, make that block
2815 	 * point back to right instead of to left.
2816 	 */
2817 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818 		error = xfs_btree_read_buf_block(cur, &rrptr,
2819 							0, &rrblock, &rrbp);
2820 		if (error)
2821 			goto error0;
2822 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824 	}
2825 
2826 	/* Update the parent high keys of the left block, if needed. */
2827 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828 		error = xfs_btree_update_keys(cur, level);
2829 		if (error)
2830 			goto error0;
2831 	}
2832 
2833 	/*
2834 	 * If the cursor is really in the right block, move it there.
2835 	 * If it's just pointing past the last entry in left, then we'll
2836 	 * insert there, so don't change anything in that case.
2837 	 */
2838 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2839 		xfs_btree_setbuf(cur, level, rbp);
2840 		cur->bc_levels[level].ptr -= lrecs;
2841 	}
2842 	/*
2843 	 * If there are more levels, we'll need another cursor which refers
2844 	 * the right block, no matter where this cursor was.
2845 	 */
2846 	if (level + 1 < cur->bc_nlevels) {
2847 		error = xfs_btree_dup_cursor(cur, curp);
2848 		if (error)
2849 			goto error0;
2850 		(*curp)->bc_levels[level + 1].ptr++;
2851 	}
2852 	*ptrp = rptr;
2853 	*stat = 1;
2854 	return 0;
2855 out0:
2856 	*stat = 0;
2857 	return 0;
2858 
2859 error0:
2860 	return error;
2861 }
2862 
2863 #ifdef __KERNEL__
2864 struct xfs_btree_split_args {
2865 	struct xfs_btree_cur	*cur;
2866 	int			level;
2867 	union xfs_btree_ptr	*ptrp;
2868 	union xfs_btree_key	*key;
2869 	struct xfs_btree_cur	**curp;
2870 	int			*stat;		/* success/failure */
2871 	int			result;
2872 	bool			kswapd;	/* allocation in kswapd context */
2873 	struct completion	*done;
2874 	struct work_struct	work;
2875 };
2876 
2877 /*
2878  * Stack switching interfaces for allocation
2879  */
2880 static void
2881 xfs_btree_split_worker(
2882 	struct work_struct	*work)
2883 {
2884 	struct xfs_btree_split_args	*args = container_of(work,
2885 						struct xfs_btree_split_args, work);
2886 	unsigned long		pflags;
2887 	unsigned long		new_pflags = 0;
2888 
2889 	/*
2890 	 * we are in a transaction context here, but may also be doing work
2891 	 * in kswapd context, and hence we may need to inherit that state
2892 	 * temporarily to ensure that we don't block waiting for memory reclaim
2893 	 * in any way.
2894 	 */
2895 	if (args->kswapd)
2896 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897 
2898 	current_set_flags_nested(&pflags, new_pflags);
2899 	xfs_trans_set_context(args->cur->bc_tp);
2900 
2901 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902 					 args->key, args->curp, args->stat);
2903 
2904 	xfs_trans_clear_context(args->cur->bc_tp);
2905 	current_restore_flags_nested(&pflags, new_pflags);
2906 
2907 	/*
2908 	 * Do not access args after complete() has run here. We don't own args
2909 	 * and the owner may run and free args before we return here.
2910 	 */
2911 	complete(args->done);
2912 
2913 }
2914 
2915 /*
2916  * BMBT split requests often come in with little stack to work on. Push
2917  * them off to a worker thread so there is lots of stack to use. For the other
2918  * btree types, just call directly to avoid the context switch overhead here.
2919  */
2920 STATIC int					/* error */
2921 xfs_btree_split(
2922 	struct xfs_btree_cur	*cur,
2923 	int			level,
2924 	union xfs_btree_ptr	*ptrp,
2925 	union xfs_btree_key	*key,
2926 	struct xfs_btree_cur	**curp,
2927 	int			*stat)		/* success/failure */
2928 {
2929 	struct xfs_btree_split_args	args;
2930 	DECLARE_COMPLETION_ONSTACK(done);
2931 
2932 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2933 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2934 
2935 	args.cur = cur;
2936 	args.level = level;
2937 	args.ptrp = ptrp;
2938 	args.key = key;
2939 	args.curp = curp;
2940 	args.stat = stat;
2941 	args.done = &done;
2942 	args.kswapd = current_is_kswapd();
2943 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2944 	queue_work(xfs_alloc_wq, &args.work);
2945 	wait_for_completion(&done);
2946 	destroy_work_on_stack(&args.work);
2947 	return args.result;
2948 }
2949 #else
2950 #define xfs_btree_split	__xfs_btree_split
2951 #endif /* __KERNEL__ */
2952 
2953 
2954 /*
2955  * Copy the old inode root contents into a real block and make the
2956  * broot point to it.
2957  */
2958 int						/* error */
2959 xfs_btree_new_iroot(
2960 	struct xfs_btree_cur	*cur,		/* btree cursor */
2961 	int			*logflags,	/* logging flags for inode */
2962 	int			*stat)		/* return status - 0 fail */
2963 {
2964 	struct xfs_buf		*cbp;		/* buffer for cblock */
2965 	struct xfs_btree_block	*block;		/* btree block */
2966 	struct xfs_btree_block	*cblock;	/* child btree block */
2967 	union xfs_btree_key	*ckp;		/* child key pointer */
2968 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2969 	union xfs_btree_key	*kp;		/* pointer to btree key */
2970 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2971 	union xfs_btree_ptr	nptr;		/* new block addr */
2972 	int			level;		/* btree level */
2973 	int			error;		/* error return code */
2974 	int			i;		/* loop counter */
2975 
2976 	XFS_BTREE_STATS_INC(cur, newroot);
2977 
2978 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2979 
2980 	level = cur->bc_nlevels - 1;
2981 
2982 	block = xfs_btree_get_iroot(cur);
2983 	pp = xfs_btree_ptr_addr(cur, 1, block);
2984 
2985 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2986 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2987 	if (error)
2988 		goto error0;
2989 	if (*stat == 0)
2990 		return 0;
2991 
2992 	XFS_BTREE_STATS_INC(cur, alloc);
2993 
2994 	/* Copy the root into a real block. */
2995 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2996 	if (error)
2997 		goto error0;
2998 
2999 	/*
3000 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3001 	 * In that case have to also ensure the blkno remains correct
3002 	 */
3003 	memcpy(cblock, block, xfs_btree_block_len(cur));
3004 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3005 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3006 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3007 			cblock->bb_u.l.bb_blkno = bno;
3008 		else
3009 			cblock->bb_u.s.bb_blkno = bno;
3010 	}
3011 
3012 	be16_add_cpu(&block->bb_level, 1);
3013 	xfs_btree_set_numrecs(block, 1);
3014 	cur->bc_nlevels++;
3015 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3016 	cur->bc_levels[level + 1].ptr = 1;
3017 
3018 	kp = xfs_btree_key_addr(cur, 1, block);
3019 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3020 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3021 
3022 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3023 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3024 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3025 		if (error)
3026 			goto error0;
3027 	}
3028 
3029 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3030 
3031 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3032 	if (error)
3033 		goto error0;
3034 
3035 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3036 
3037 	xfs_iroot_realloc(cur->bc_ino.ip,
3038 			  1 - xfs_btree_get_numrecs(cblock),
3039 			  cur->bc_ino.whichfork);
3040 
3041 	xfs_btree_setbuf(cur, level, cbp);
3042 
3043 	/*
3044 	 * Do all this logging at the end so that
3045 	 * the root is at the right level.
3046 	 */
3047 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3048 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3049 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3050 
3051 	*logflags |=
3052 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3053 	*stat = 1;
3054 	return 0;
3055 error0:
3056 	return error;
3057 }
3058 
3059 /*
3060  * Allocate a new root block, fill it in.
3061  */
3062 STATIC int				/* error */
3063 xfs_btree_new_root(
3064 	struct xfs_btree_cur	*cur,	/* btree cursor */
3065 	int			*stat)	/* success/failure */
3066 {
3067 	struct xfs_btree_block	*block;	/* one half of the old root block */
3068 	struct xfs_buf		*bp;	/* buffer containing block */
3069 	int			error;	/* error return value */
3070 	struct xfs_buf		*lbp;	/* left buffer pointer */
3071 	struct xfs_btree_block	*left;	/* left btree block */
3072 	struct xfs_buf		*nbp;	/* new (root) buffer */
3073 	struct xfs_btree_block	*new;	/* new (root) btree block */
3074 	int			nptr;	/* new value for key index, 1 or 2 */
3075 	struct xfs_buf		*rbp;	/* right buffer pointer */
3076 	struct xfs_btree_block	*right;	/* right btree block */
3077 	union xfs_btree_ptr	rptr;
3078 	union xfs_btree_ptr	lptr;
3079 
3080 	XFS_BTREE_STATS_INC(cur, newroot);
3081 
3082 	/* initialise our start point from the cursor */
3083 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3084 
3085 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3086 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3087 	if (error)
3088 		goto error0;
3089 	if (*stat == 0)
3090 		goto out0;
3091 	XFS_BTREE_STATS_INC(cur, alloc);
3092 
3093 	/* Set up the new block. */
3094 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3095 	if (error)
3096 		goto error0;
3097 
3098 	/* Set the root in the holding structure  increasing the level by 1. */
3099 	cur->bc_ops->set_root(cur, &lptr, 1);
3100 
3101 	/*
3102 	 * At the previous root level there are now two blocks: the old root,
3103 	 * and the new block generated when it was split.  We don't know which
3104 	 * one the cursor is pointing at, so we set up variables "left" and
3105 	 * "right" for each case.
3106 	 */
3107 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3108 
3109 #ifdef DEBUG
3110 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3111 	if (error)
3112 		goto error0;
3113 #endif
3114 
3115 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3116 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3117 		/* Our block is left, pick up the right block. */
3118 		lbp = bp;
3119 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3120 		left = block;
3121 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3122 		if (error)
3123 			goto error0;
3124 		bp = rbp;
3125 		nptr = 1;
3126 	} else {
3127 		/* Our block is right, pick up the left block. */
3128 		rbp = bp;
3129 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3130 		right = block;
3131 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3132 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3133 		if (error)
3134 			goto error0;
3135 		bp = lbp;
3136 		nptr = 2;
3137 	}
3138 
3139 	/* Fill in the new block's btree header and log it. */
3140 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3141 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3142 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3143 			!xfs_btree_ptr_is_null(cur, &rptr));
3144 
3145 	/* Fill in the key data in the new root. */
3146 	if (xfs_btree_get_level(left) > 0) {
3147 		/*
3148 		 * Get the keys for the left block's keys and put them directly
3149 		 * in the parent block.  Do the same for the right block.
3150 		 */
3151 		xfs_btree_get_node_keys(cur, left,
3152 				xfs_btree_key_addr(cur, 1, new));
3153 		xfs_btree_get_node_keys(cur, right,
3154 				xfs_btree_key_addr(cur, 2, new));
3155 	} else {
3156 		/*
3157 		 * Get the keys for the left block's records and put them
3158 		 * directly in the parent block.  Do the same for the right
3159 		 * block.
3160 		 */
3161 		xfs_btree_get_leaf_keys(cur, left,
3162 			xfs_btree_key_addr(cur, 1, new));
3163 		xfs_btree_get_leaf_keys(cur, right,
3164 			xfs_btree_key_addr(cur, 2, new));
3165 	}
3166 	xfs_btree_log_keys(cur, nbp, 1, 2);
3167 
3168 	/* Fill in the pointer data in the new root. */
3169 	xfs_btree_copy_ptrs(cur,
3170 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3171 	xfs_btree_copy_ptrs(cur,
3172 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3173 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3174 
3175 	/* Fix up the cursor. */
3176 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3177 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3178 	cur->bc_nlevels++;
3179 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3180 	*stat = 1;
3181 	return 0;
3182 error0:
3183 	return error;
3184 out0:
3185 	*stat = 0;
3186 	return 0;
3187 }
3188 
3189 STATIC int
3190 xfs_btree_make_block_unfull(
3191 	struct xfs_btree_cur	*cur,	/* btree cursor */
3192 	int			level,	/* btree level */
3193 	int			numrecs,/* # of recs in block */
3194 	int			*oindex,/* old tree index */
3195 	int			*index,	/* new tree index */
3196 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3197 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3198 	union xfs_btree_key	*key,	/* key of new block */
3199 	int			*stat)
3200 {
3201 	int			error = 0;
3202 
3203 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3204 	    level == cur->bc_nlevels - 1) {
3205 		struct xfs_inode *ip = cur->bc_ino.ip;
3206 
3207 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3208 			/* A root block that can be made bigger. */
3209 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3210 			*stat = 1;
3211 		} else {
3212 			/* A root block that needs replacing */
3213 			int	logflags = 0;
3214 
3215 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3216 			if (error || *stat == 0)
3217 				return error;
3218 
3219 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3220 		}
3221 
3222 		return 0;
3223 	}
3224 
3225 	/* First, try shifting an entry to the right neighbor. */
3226 	error = xfs_btree_rshift(cur, level, stat);
3227 	if (error || *stat)
3228 		return error;
3229 
3230 	/* Next, try shifting an entry to the left neighbor. */
3231 	error = xfs_btree_lshift(cur, level, stat);
3232 	if (error)
3233 		return error;
3234 
3235 	if (*stat) {
3236 		*oindex = *index = cur->bc_levels[level].ptr;
3237 		return 0;
3238 	}
3239 
3240 	/*
3241 	 * Next, try splitting the current block in half.
3242 	 *
3243 	 * If this works we have to re-set our variables because we
3244 	 * could be in a different block now.
3245 	 */
3246 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3247 	if (error || *stat == 0)
3248 		return error;
3249 
3250 
3251 	*index = cur->bc_levels[level].ptr;
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Insert one record/level.  Return information to the caller
3257  * allowing the next level up to proceed if necessary.
3258  */
3259 STATIC int
3260 xfs_btree_insrec(
3261 	struct xfs_btree_cur	*cur,	/* btree cursor */
3262 	int			level,	/* level to insert record at */
3263 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3264 	union xfs_btree_rec	*rec,	/* record to insert */
3265 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3266 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3267 	int			*stat)	/* success/failure */
3268 {
3269 	struct xfs_btree_block	*block;	/* btree block */
3270 	struct xfs_buf		*bp;	/* buffer for block */
3271 	union xfs_btree_ptr	nptr;	/* new block ptr */
3272 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3273 	union xfs_btree_key	nkey;	/* new block key */
3274 	union xfs_btree_key	*lkey;
3275 	int			optr;	/* old key/record index */
3276 	int			ptr;	/* key/record index */
3277 	int			numrecs;/* number of records */
3278 	int			error;	/* error return value */
3279 	int			i;
3280 	xfs_daddr_t		old_bn;
3281 
3282 	ncur = NULL;
3283 	lkey = &nkey;
3284 
3285 	/*
3286 	 * If we have an external root pointer, and we've made it to the
3287 	 * root level, allocate a new root block and we're done.
3288 	 */
3289 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3290 	    (level >= cur->bc_nlevels)) {
3291 		error = xfs_btree_new_root(cur, stat);
3292 		xfs_btree_set_ptr_null(cur, ptrp);
3293 
3294 		return error;
3295 	}
3296 
3297 	/* If we're off the left edge, return failure. */
3298 	ptr = cur->bc_levels[level].ptr;
3299 	if (ptr == 0) {
3300 		*stat = 0;
3301 		return 0;
3302 	}
3303 
3304 	optr = ptr;
3305 
3306 	XFS_BTREE_STATS_INC(cur, insrec);
3307 
3308 	/* Get pointers to the btree buffer and block. */
3309 	block = xfs_btree_get_block(cur, level, &bp);
3310 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3311 	numrecs = xfs_btree_get_numrecs(block);
3312 
3313 #ifdef DEBUG
3314 	error = xfs_btree_check_block(cur, block, level, bp);
3315 	if (error)
3316 		goto error0;
3317 
3318 	/* Check that the new entry is being inserted in the right place. */
3319 	if (ptr <= numrecs) {
3320 		if (level == 0) {
3321 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3322 				xfs_btree_rec_addr(cur, ptr, block)));
3323 		} else {
3324 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3325 				xfs_btree_key_addr(cur, ptr, block)));
3326 		}
3327 	}
3328 #endif
3329 
3330 	/*
3331 	 * If the block is full, we can't insert the new entry until we
3332 	 * make the block un-full.
3333 	 */
3334 	xfs_btree_set_ptr_null(cur, &nptr);
3335 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3336 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3337 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3338 		if (error || *stat == 0)
3339 			goto error0;
3340 	}
3341 
3342 	/*
3343 	 * The current block may have changed if the block was
3344 	 * previously full and we have just made space in it.
3345 	 */
3346 	block = xfs_btree_get_block(cur, level, &bp);
3347 	numrecs = xfs_btree_get_numrecs(block);
3348 
3349 #ifdef DEBUG
3350 	error = xfs_btree_check_block(cur, block, level, bp);
3351 	if (error)
3352 		goto error0;
3353 #endif
3354 
3355 	/*
3356 	 * At this point we know there's room for our new entry in the block
3357 	 * we're pointing at.
3358 	 */
3359 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3360 
3361 	if (level > 0) {
3362 		/* It's a nonleaf. make a hole in the keys and ptrs */
3363 		union xfs_btree_key	*kp;
3364 		union xfs_btree_ptr	*pp;
3365 
3366 		kp = xfs_btree_key_addr(cur, ptr, block);
3367 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3368 
3369 		for (i = numrecs - ptr; i >= 0; i--) {
3370 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3371 			if (error)
3372 				goto error0;
3373 		}
3374 
3375 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3376 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3377 
3378 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3379 		if (error)
3380 			goto error0;
3381 
3382 		/* Now put the new data in, bump numrecs and log it. */
3383 		xfs_btree_copy_keys(cur, kp, key, 1);
3384 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3385 		numrecs++;
3386 		xfs_btree_set_numrecs(block, numrecs);
3387 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3388 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3389 #ifdef DEBUG
3390 		if (ptr < numrecs) {
3391 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3392 				xfs_btree_key_addr(cur, ptr + 1, block)));
3393 		}
3394 #endif
3395 	} else {
3396 		/* It's a leaf. make a hole in the records */
3397 		union xfs_btree_rec             *rp;
3398 
3399 		rp = xfs_btree_rec_addr(cur, ptr, block);
3400 
3401 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3402 
3403 		/* Now put the new data in, bump numrecs and log it. */
3404 		xfs_btree_copy_recs(cur, rp, rec, 1);
3405 		xfs_btree_set_numrecs(block, ++numrecs);
3406 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3407 #ifdef DEBUG
3408 		if (ptr < numrecs) {
3409 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3410 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3411 		}
3412 #endif
3413 	}
3414 
3415 	/* Log the new number of records in the btree header. */
3416 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3417 
3418 	/*
3419 	 * If we just inserted into a new tree block, we have to
3420 	 * recalculate nkey here because nkey is out of date.
3421 	 *
3422 	 * Otherwise we're just updating an existing block (having shoved
3423 	 * some records into the new tree block), so use the regular key
3424 	 * update mechanism.
3425 	 */
3426 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3427 		xfs_btree_get_keys(cur, block, lkey);
3428 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3429 		error = xfs_btree_update_keys(cur, level);
3430 		if (error)
3431 			goto error0;
3432 	}
3433 
3434 	/*
3435 	 * If we are tracking the last record in the tree and
3436 	 * we are at the far right edge of the tree, update it.
3437 	 */
3438 	if (xfs_btree_is_lastrec(cur, block, level)) {
3439 		cur->bc_ops->update_lastrec(cur, block, rec,
3440 					    ptr, LASTREC_INSREC);
3441 	}
3442 
3443 	/*
3444 	 * Return the new block number, if any.
3445 	 * If there is one, give back a record value and a cursor too.
3446 	 */
3447 	*ptrp = nptr;
3448 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3449 		xfs_btree_copy_keys(cur, key, lkey, 1);
3450 		*curp = ncur;
3451 	}
3452 
3453 	*stat = 1;
3454 	return 0;
3455 
3456 error0:
3457 	if (ncur)
3458 		xfs_btree_del_cursor(ncur, error);
3459 	return error;
3460 }
3461 
3462 /*
3463  * Insert the record at the point referenced by cur.
3464  *
3465  * A multi-level split of the tree on insert will invalidate the original
3466  * cursor.  All callers of this function should assume that the cursor is
3467  * no longer valid and revalidate it.
3468  */
3469 int
3470 xfs_btree_insert(
3471 	struct xfs_btree_cur	*cur,
3472 	int			*stat)
3473 {
3474 	int			error;	/* error return value */
3475 	int			i;	/* result value, 0 for failure */
3476 	int			level;	/* current level number in btree */
3477 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3478 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3479 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3480 	union xfs_btree_key	bkey;	/* key of block to insert */
3481 	union xfs_btree_key	*key;
3482 	union xfs_btree_rec	rec;	/* record to insert */
3483 
3484 	level = 0;
3485 	ncur = NULL;
3486 	pcur = cur;
3487 	key = &bkey;
3488 
3489 	xfs_btree_set_ptr_null(cur, &nptr);
3490 
3491 	/* Make a key out of the record data to be inserted, and save it. */
3492 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3493 	cur->bc_ops->init_key_from_rec(key, &rec);
3494 
3495 	/*
3496 	 * Loop going up the tree, starting at the leaf level.
3497 	 * Stop when we don't get a split block, that must mean that
3498 	 * the insert is finished with this level.
3499 	 */
3500 	do {
3501 		/*
3502 		 * Insert nrec/nptr into this level of the tree.
3503 		 * Note if we fail, nptr will be null.
3504 		 */
3505 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3506 				&ncur, &i);
3507 		if (error) {
3508 			if (pcur != cur)
3509 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3510 			goto error0;
3511 		}
3512 
3513 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3514 			error = -EFSCORRUPTED;
3515 			goto error0;
3516 		}
3517 		level++;
3518 
3519 		/*
3520 		 * See if the cursor we just used is trash.
3521 		 * Can't trash the caller's cursor, but otherwise we should
3522 		 * if ncur is a new cursor or we're about to be done.
3523 		 */
3524 		if (pcur != cur &&
3525 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3526 			/* Save the state from the cursor before we trash it */
3527 			if (cur->bc_ops->update_cursor)
3528 				cur->bc_ops->update_cursor(pcur, cur);
3529 			cur->bc_nlevels = pcur->bc_nlevels;
3530 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3531 		}
3532 		/* If we got a new cursor, switch to it. */
3533 		if (ncur) {
3534 			pcur = ncur;
3535 			ncur = NULL;
3536 		}
3537 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3538 
3539 	*stat = i;
3540 	return 0;
3541 error0:
3542 	return error;
3543 }
3544 
3545 /*
3546  * Try to merge a non-leaf block back into the inode root.
3547  *
3548  * Note: the killroot names comes from the fact that we're effectively
3549  * killing the old root block.  But because we can't just delete the
3550  * inode we have to copy the single block it was pointing to into the
3551  * inode.
3552  */
3553 STATIC int
3554 xfs_btree_kill_iroot(
3555 	struct xfs_btree_cur	*cur)
3556 {
3557 	int			whichfork = cur->bc_ino.whichfork;
3558 	struct xfs_inode	*ip = cur->bc_ino.ip;
3559 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3560 	struct xfs_btree_block	*block;
3561 	struct xfs_btree_block	*cblock;
3562 	union xfs_btree_key	*kp;
3563 	union xfs_btree_key	*ckp;
3564 	union xfs_btree_ptr	*pp;
3565 	union xfs_btree_ptr	*cpp;
3566 	struct xfs_buf		*cbp;
3567 	int			level;
3568 	int			index;
3569 	int			numrecs;
3570 	int			error;
3571 #ifdef DEBUG
3572 	union xfs_btree_ptr	ptr;
3573 #endif
3574 	int			i;
3575 
3576 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3577 	ASSERT(cur->bc_nlevels > 1);
3578 
3579 	/*
3580 	 * Don't deal with the root block needs to be a leaf case.
3581 	 * We're just going to turn the thing back into extents anyway.
3582 	 */
3583 	level = cur->bc_nlevels - 1;
3584 	if (level == 1)
3585 		goto out0;
3586 
3587 	/*
3588 	 * Give up if the root has multiple children.
3589 	 */
3590 	block = xfs_btree_get_iroot(cur);
3591 	if (xfs_btree_get_numrecs(block) != 1)
3592 		goto out0;
3593 
3594 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3595 	numrecs = xfs_btree_get_numrecs(cblock);
3596 
3597 	/*
3598 	 * Only do this if the next level will fit.
3599 	 * Then the data must be copied up to the inode,
3600 	 * instead of freeing the root you free the next level.
3601 	 */
3602 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3603 		goto out0;
3604 
3605 	XFS_BTREE_STATS_INC(cur, killroot);
3606 
3607 #ifdef DEBUG
3608 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3609 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3610 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3611 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3612 #endif
3613 
3614 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3615 	if (index) {
3616 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3617 				  cur->bc_ino.whichfork);
3618 		block = ifp->if_broot;
3619 	}
3620 
3621 	be16_add_cpu(&block->bb_numrecs, index);
3622 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3623 
3624 	kp = xfs_btree_key_addr(cur, 1, block);
3625 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3626 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3627 
3628 	pp = xfs_btree_ptr_addr(cur, 1, block);
3629 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3630 
3631 	for (i = 0; i < numrecs; i++) {
3632 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3633 		if (error)
3634 			return error;
3635 	}
3636 
3637 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3638 
3639 	error = xfs_btree_free_block(cur, cbp);
3640 	if (error)
3641 		return error;
3642 
3643 	cur->bc_levels[level - 1].bp = NULL;
3644 	be16_add_cpu(&block->bb_level, -1);
3645 	xfs_trans_log_inode(cur->bc_tp, ip,
3646 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3647 	cur->bc_nlevels--;
3648 out0:
3649 	return 0;
3650 }
3651 
3652 /*
3653  * Kill the current root node, and replace it with it's only child node.
3654  */
3655 STATIC int
3656 xfs_btree_kill_root(
3657 	struct xfs_btree_cur	*cur,
3658 	struct xfs_buf		*bp,
3659 	int			level,
3660 	union xfs_btree_ptr	*newroot)
3661 {
3662 	int			error;
3663 
3664 	XFS_BTREE_STATS_INC(cur, killroot);
3665 
3666 	/*
3667 	 * Update the root pointer, decreasing the level by 1 and then
3668 	 * free the old root.
3669 	 */
3670 	cur->bc_ops->set_root(cur, newroot, -1);
3671 
3672 	error = xfs_btree_free_block(cur, bp);
3673 	if (error)
3674 		return error;
3675 
3676 	cur->bc_levels[level].bp = NULL;
3677 	cur->bc_levels[level].ra = 0;
3678 	cur->bc_nlevels--;
3679 
3680 	return 0;
3681 }
3682 
3683 STATIC int
3684 xfs_btree_dec_cursor(
3685 	struct xfs_btree_cur	*cur,
3686 	int			level,
3687 	int			*stat)
3688 {
3689 	int			error;
3690 	int			i;
3691 
3692 	if (level > 0) {
3693 		error = xfs_btree_decrement(cur, level, &i);
3694 		if (error)
3695 			return error;
3696 	}
3697 
3698 	*stat = 1;
3699 	return 0;
3700 }
3701 
3702 /*
3703  * Single level of the btree record deletion routine.
3704  * Delete record pointed to by cur/level.
3705  * Remove the record from its block then rebalance the tree.
3706  * Return 0 for error, 1 for done, 2 to go on to the next level.
3707  */
3708 STATIC int					/* error */
3709 xfs_btree_delrec(
3710 	struct xfs_btree_cur	*cur,		/* btree cursor */
3711 	int			level,		/* level removing record from */
3712 	int			*stat)		/* fail/done/go-on */
3713 {
3714 	struct xfs_btree_block	*block;		/* btree block */
3715 	union xfs_btree_ptr	cptr;		/* current block ptr */
3716 	struct xfs_buf		*bp;		/* buffer for block */
3717 	int			error;		/* error return value */
3718 	int			i;		/* loop counter */
3719 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3720 	struct xfs_buf		*lbp;		/* left buffer pointer */
3721 	struct xfs_btree_block	*left;		/* left btree block */
3722 	int			lrecs = 0;	/* left record count */
3723 	int			ptr;		/* key/record index */
3724 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3725 	struct xfs_buf		*rbp;		/* right buffer pointer */
3726 	struct xfs_btree_block	*right;		/* right btree block */
3727 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3728 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3729 	int			rrecs = 0;	/* right record count */
3730 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3731 	int			numrecs;	/* temporary numrec count */
3732 
3733 	tcur = NULL;
3734 
3735 	/* Get the index of the entry being deleted, check for nothing there. */
3736 	ptr = cur->bc_levels[level].ptr;
3737 	if (ptr == 0) {
3738 		*stat = 0;
3739 		return 0;
3740 	}
3741 
3742 	/* Get the buffer & block containing the record or key/ptr. */
3743 	block = xfs_btree_get_block(cur, level, &bp);
3744 	numrecs = xfs_btree_get_numrecs(block);
3745 
3746 #ifdef DEBUG
3747 	error = xfs_btree_check_block(cur, block, level, bp);
3748 	if (error)
3749 		goto error0;
3750 #endif
3751 
3752 	/* Fail if we're off the end of the block. */
3753 	if (ptr > numrecs) {
3754 		*stat = 0;
3755 		return 0;
3756 	}
3757 
3758 	XFS_BTREE_STATS_INC(cur, delrec);
3759 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3760 
3761 	/* Excise the entries being deleted. */
3762 	if (level > 0) {
3763 		/* It's a nonleaf. operate on keys and ptrs */
3764 		union xfs_btree_key	*lkp;
3765 		union xfs_btree_ptr	*lpp;
3766 
3767 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3768 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3769 
3770 		for (i = 0; i < numrecs - ptr; i++) {
3771 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3772 			if (error)
3773 				goto error0;
3774 		}
3775 
3776 		if (ptr < numrecs) {
3777 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3778 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3779 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3780 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3781 		}
3782 	} else {
3783 		/* It's a leaf. operate on records */
3784 		if (ptr < numrecs) {
3785 			xfs_btree_shift_recs(cur,
3786 				xfs_btree_rec_addr(cur, ptr + 1, block),
3787 				-1, numrecs - ptr);
3788 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3789 		}
3790 	}
3791 
3792 	/*
3793 	 * Decrement and log the number of entries in the block.
3794 	 */
3795 	xfs_btree_set_numrecs(block, --numrecs);
3796 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3797 
3798 	/*
3799 	 * If we are tracking the last record in the tree and
3800 	 * we are at the far right edge of the tree, update it.
3801 	 */
3802 	if (xfs_btree_is_lastrec(cur, block, level)) {
3803 		cur->bc_ops->update_lastrec(cur, block, NULL,
3804 					    ptr, LASTREC_DELREC);
3805 	}
3806 
3807 	/*
3808 	 * We're at the root level.  First, shrink the root block in-memory.
3809 	 * Try to get rid of the next level down.  If we can't then there's
3810 	 * nothing left to do.
3811 	 */
3812 	if (level == cur->bc_nlevels - 1) {
3813 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3814 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3815 					  cur->bc_ino.whichfork);
3816 
3817 			error = xfs_btree_kill_iroot(cur);
3818 			if (error)
3819 				goto error0;
3820 
3821 			error = xfs_btree_dec_cursor(cur, level, stat);
3822 			if (error)
3823 				goto error0;
3824 			*stat = 1;
3825 			return 0;
3826 		}
3827 
3828 		/*
3829 		 * If this is the root level, and there's only one entry left,
3830 		 * and it's NOT the leaf level, then we can get rid of this
3831 		 * level.
3832 		 */
3833 		if (numrecs == 1 && level > 0) {
3834 			union xfs_btree_ptr	*pp;
3835 			/*
3836 			 * pp is still set to the first pointer in the block.
3837 			 * Make it the new root of the btree.
3838 			 */
3839 			pp = xfs_btree_ptr_addr(cur, 1, block);
3840 			error = xfs_btree_kill_root(cur, bp, level, pp);
3841 			if (error)
3842 				goto error0;
3843 		} else if (level > 0) {
3844 			error = xfs_btree_dec_cursor(cur, level, stat);
3845 			if (error)
3846 				goto error0;
3847 		}
3848 		*stat = 1;
3849 		return 0;
3850 	}
3851 
3852 	/*
3853 	 * If we deleted the leftmost entry in the block, update the
3854 	 * key values above us in the tree.
3855 	 */
3856 	if (xfs_btree_needs_key_update(cur, ptr)) {
3857 		error = xfs_btree_update_keys(cur, level);
3858 		if (error)
3859 			goto error0;
3860 	}
3861 
3862 	/*
3863 	 * If the number of records remaining in the block is at least
3864 	 * the minimum, we're done.
3865 	 */
3866 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3867 		error = xfs_btree_dec_cursor(cur, level, stat);
3868 		if (error)
3869 			goto error0;
3870 		return 0;
3871 	}
3872 
3873 	/*
3874 	 * Otherwise, we have to move some records around to keep the
3875 	 * tree balanced.  Look at the left and right sibling blocks to
3876 	 * see if we can re-balance by moving only one record.
3877 	 */
3878 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3879 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3880 
3881 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3882 		/*
3883 		 * One child of root, need to get a chance to copy its contents
3884 		 * into the root and delete it. Can't go up to next level,
3885 		 * there's nothing to delete there.
3886 		 */
3887 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3888 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3889 		    level == cur->bc_nlevels - 2) {
3890 			error = xfs_btree_kill_iroot(cur);
3891 			if (!error)
3892 				error = xfs_btree_dec_cursor(cur, level, stat);
3893 			if (error)
3894 				goto error0;
3895 			return 0;
3896 		}
3897 	}
3898 
3899 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3900 	       !xfs_btree_ptr_is_null(cur, &lptr));
3901 
3902 	/*
3903 	 * Duplicate the cursor so our btree manipulations here won't
3904 	 * disrupt the next level up.
3905 	 */
3906 	error = xfs_btree_dup_cursor(cur, &tcur);
3907 	if (error)
3908 		goto error0;
3909 
3910 	/*
3911 	 * If there's a right sibling, see if it's ok to shift an entry
3912 	 * out of it.
3913 	 */
3914 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3915 		/*
3916 		 * Move the temp cursor to the last entry in the next block.
3917 		 * Actually any entry but the first would suffice.
3918 		 */
3919 		i = xfs_btree_lastrec(tcur, level);
3920 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 			error = -EFSCORRUPTED;
3922 			goto error0;
3923 		}
3924 
3925 		error = xfs_btree_increment(tcur, level, &i);
3926 		if (error)
3927 			goto error0;
3928 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3929 			error = -EFSCORRUPTED;
3930 			goto error0;
3931 		}
3932 
3933 		i = xfs_btree_lastrec(tcur, level);
3934 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935 			error = -EFSCORRUPTED;
3936 			goto error0;
3937 		}
3938 
3939 		/* Grab a pointer to the block. */
3940 		right = xfs_btree_get_block(tcur, level, &rbp);
3941 #ifdef DEBUG
3942 		error = xfs_btree_check_block(tcur, right, level, rbp);
3943 		if (error)
3944 			goto error0;
3945 #endif
3946 		/* Grab the current block number, for future use. */
3947 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948 
3949 		/*
3950 		 * If right block is full enough so that removing one entry
3951 		 * won't make it too empty, and left-shifting an entry out
3952 		 * of right to us works, we're done.
3953 		 */
3954 		if (xfs_btree_get_numrecs(right) - 1 >=
3955 		    cur->bc_ops->get_minrecs(tcur, level)) {
3956 			error = xfs_btree_lshift(tcur, level, &i);
3957 			if (error)
3958 				goto error0;
3959 			if (i) {
3960 				ASSERT(xfs_btree_get_numrecs(block) >=
3961 				       cur->bc_ops->get_minrecs(tcur, level));
3962 
3963 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964 				tcur = NULL;
3965 
3966 				error = xfs_btree_dec_cursor(cur, level, stat);
3967 				if (error)
3968 					goto error0;
3969 				return 0;
3970 			}
3971 		}
3972 
3973 		/*
3974 		 * Otherwise, grab the number of records in right for
3975 		 * future reference, and fix up the temp cursor to point
3976 		 * to our block again (last record).
3977 		 */
3978 		rrecs = xfs_btree_get_numrecs(right);
3979 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980 			i = xfs_btree_firstrec(tcur, level);
3981 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3982 				error = -EFSCORRUPTED;
3983 				goto error0;
3984 			}
3985 
3986 			error = xfs_btree_decrement(tcur, level, &i);
3987 			if (error)
3988 				goto error0;
3989 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3990 				error = -EFSCORRUPTED;
3991 				goto error0;
3992 			}
3993 		}
3994 	}
3995 
3996 	/*
3997 	 * If there's a left sibling, see if it's ok to shift an entry
3998 	 * out of it.
3999 	 */
4000 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4001 		/*
4002 		 * Move the temp cursor to the first entry in the
4003 		 * previous block.
4004 		 */
4005 		i = xfs_btree_firstrec(tcur, level);
4006 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4007 			error = -EFSCORRUPTED;
4008 			goto error0;
4009 		}
4010 
4011 		error = xfs_btree_decrement(tcur, level, &i);
4012 		if (error)
4013 			goto error0;
4014 		i = xfs_btree_firstrec(tcur, level);
4015 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4016 			error = -EFSCORRUPTED;
4017 			goto error0;
4018 		}
4019 
4020 		/* Grab a pointer to the block. */
4021 		left = xfs_btree_get_block(tcur, level, &lbp);
4022 #ifdef DEBUG
4023 		error = xfs_btree_check_block(cur, left, level, lbp);
4024 		if (error)
4025 			goto error0;
4026 #endif
4027 		/* Grab the current block number, for future use. */
4028 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4029 
4030 		/*
4031 		 * If left block is full enough so that removing one entry
4032 		 * won't make it too empty, and right-shifting an entry out
4033 		 * of left to us works, we're done.
4034 		 */
4035 		if (xfs_btree_get_numrecs(left) - 1 >=
4036 		    cur->bc_ops->get_minrecs(tcur, level)) {
4037 			error = xfs_btree_rshift(tcur, level, &i);
4038 			if (error)
4039 				goto error0;
4040 			if (i) {
4041 				ASSERT(xfs_btree_get_numrecs(block) >=
4042 				       cur->bc_ops->get_minrecs(tcur, level));
4043 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4044 				tcur = NULL;
4045 				if (level == 0)
4046 					cur->bc_levels[0].ptr++;
4047 
4048 				*stat = 1;
4049 				return 0;
4050 			}
4051 		}
4052 
4053 		/*
4054 		 * Otherwise, grab the number of records in right for
4055 		 * future reference.
4056 		 */
4057 		lrecs = xfs_btree_get_numrecs(left);
4058 	}
4059 
4060 	/* Delete the temp cursor, we're done with it. */
4061 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4062 	tcur = NULL;
4063 
4064 	/* If here, we need to do a join to keep the tree balanced. */
4065 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4066 
4067 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4068 	    lrecs + xfs_btree_get_numrecs(block) <=
4069 			cur->bc_ops->get_maxrecs(cur, level)) {
4070 		/*
4071 		 * Set "right" to be the starting block,
4072 		 * "left" to be the left neighbor.
4073 		 */
4074 		rptr = cptr;
4075 		right = block;
4076 		rbp = bp;
4077 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4078 		if (error)
4079 			goto error0;
4080 
4081 	/*
4082 	 * If that won't work, see if we can join with the right neighbor block.
4083 	 */
4084 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4085 		   rrecs + xfs_btree_get_numrecs(block) <=
4086 			cur->bc_ops->get_maxrecs(cur, level)) {
4087 		/*
4088 		 * Set "left" to be the starting block,
4089 		 * "right" to be the right neighbor.
4090 		 */
4091 		lptr = cptr;
4092 		left = block;
4093 		lbp = bp;
4094 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4095 		if (error)
4096 			goto error0;
4097 
4098 	/*
4099 	 * Otherwise, we can't fix the imbalance.
4100 	 * Just return.  This is probably a logic error, but it's not fatal.
4101 	 */
4102 	} else {
4103 		error = xfs_btree_dec_cursor(cur, level, stat);
4104 		if (error)
4105 			goto error0;
4106 		return 0;
4107 	}
4108 
4109 	rrecs = xfs_btree_get_numrecs(right);
4110 	lrecs = xfs_btree_get_numrecs(left);
4111 
4112 	/*
4113 	 * We're now going to join "left" and "right" by moving all the stuff
4114 	 * in "right" to "left" and deleting "right".
4115 	 */
4116 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4117 	if (level > 0) {
4118 		/* It's a non-leaf.  Move keys and pointers. */
4119 		union xfs_btree_key	*lkp;	/* left btree key */
4120 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4121 		union xfs_btree_key	*rkp;	/* right btree key */
4122 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4123 
4124 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4125 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4126 		rkp = xfs_btree_key_addr(cur, 1, right);
4127 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4128 
4129 		for (i = 1; i < rrecs; i++) {
4130 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4131 			if (error)
4132 				goto error0;
4133 		}
4134 
4135 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4136 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4137 
4138 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4139 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4140 	} else {
4141 		/* It's a leaf.  Move records.  */
4142 		union xfs_btree_rec	*lrp;	/* left record pointer */
4143 		union xfs_btree_rec	*rrp;	/* right record pointer */
4144 
4145 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4146 		rrp = xfs_btree_rec_addr(cur, 1, right);
4147 
4148 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4149 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4150 	}
4151 
4152 	XFS_BTREE_STATS_INC(cur, join);
4153 
4154 	/*
4155 	 * Fix up the number of records and right block pointer in the
4156 	 * surviving block, and log it.
4157 	 */
4158 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4159 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4160 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4161 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4162 
4163 	/* If there is a right sibling, point it to the remaining block. */
4164 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4165 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4166 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4167 		if (error)
4168 			goto error0;
4169 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4170 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4171 	}
4172 
4173 	/* Free the deleted block. */
4174 	error = xfs_btree_free_block(cur, rbp);
4175 	if (error)
4176 		goto error0;
4177 
4178 	/*
4179 	 * If we joined with the left neighbor, set the buffer in the
4180 	 * cursor to the left block, and fix up the index.
4181 	 */
4182 	if (bp != lbp) {
4183 		cur->bc_levels[level].bp = lbp;
4184 		cur->bc_levels[level].ptr += lrecs;
4185 		cur->bc_levels[level].ra = 0;
4186 	}
4187 	/*
4188 	 * If we joined with the right neighbor and there's a level above
4189 	 * us, increment the cursor at that level.
4190 	 */
4191 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4192 		   (level + 1 < cur->bc_nlevels)) {
4193 		error = xfs_btree_increment(cur, level + 1, &i);
4194 		if (error)
4195 			goto error0;
4196 	}
4197 
4198 	/*
4199 	 * Readjust the ptr at this level if it's not a leaf, since it's
4200 	 * still pointing at the deletion point, which makes the cursor
4201 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4202 	 * We can't use decrement because it would change the next level up.
4203 	 */
4204 	if (level > 0)
4205 		cur->bc_levels[level].ptr--;
4206 
4207 	/*
4208 	 * We combined blocks, so we have to update the parent keys if the
4209 	 * btree supports overlapped intervals.  However,
4210 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4211 	 * knows which record to delete.  Therefore, the caller must be savvy
4212 	 * enough to call updkeys for us if we return stat == 2.  The other
4213 	 * exit points from this function don't require deletions further up
4214 	 * the tree, so they can call updkeys directly.
4215 	 */
4216 
4217 	/* Return value means the next level up has something to do. */
4218 	*stat = 2;
4219 	return 0;
4220 
4221 error0:
4222 	if (tcur)
4223 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4224 	return error;
4225 }
4226 
4227 /*
4228  * Delete the record pointed to by cur.
4229  * The cursor refers to the place where the record was (could be inserted)
4230  * when the operation returns.
4231  */
4232 int					/* error */
4233 xfs_btree_delete(
4234 	struct xfs_btree_cur	*cur,
4235 	int			*stat)	/* success/failure */
4236 {
4237 	int			error;	/* error return value */
4238 	int			level;
4239 	int			i;
4240 	bool			joined = false;
4241 
4242 	/*
4243 	 * Go up the tree, starting at leaf level.
4244 	 *
4245 	 * If 2 is returned then a join was done; go to the next level.
4246 	 * Otherwise we are done.
4247 	 */
4248 	for (level = 0, i = 2; i == 2; level++) {
4249 		error = xfs_btree_delrec(cur, level, &i);
4250 		if (error)
4251 			goto error0;
4252 		if (i == 2)
4253 			joined = true;
4254 	}
4255 
4256 	/*
4257 	 * If we combined blocks as part of deleting the record, delrec won't
4258 	 * have updated the parent high keys so we have to do that here.
4259 	 */
4260 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4261 		error = xfs_btree_updkeys_force(cur, 0);
4262 		if (error)
4263 			goto error0;
4264 	}
4265 
4266 	if (i == 0) {
4267 		for (level = 1; level < cur->bc_nlevels; level++) {
4268 			if (cur->bc_levels[level].ptr == 0) {
4269 				error = xfs_btree_decrement(cur, level, &i);
4270 				if (error)
4271 					goto error0;
4272 				break;
4273 			}
4274 		}
4275 	}
4276 
4277 	*stat = i;
4278 	return 0;
4279 error0:
4280 	return error;
4281 }
4282 
4283 /*
4284  * Get the data from the pointed-to record.
4285  */
4286 int					/* error */
4287 xfs_btree_get_rec(
4288 	struct xfs_btree_cur	*cur,	/* btree cursor */
4289 	union xfs_btree_rec	**recp,	/* output: btree record */
4290 	int			*stat)	/* output: success/failure */
4291 {
4292 	struct xfs_btree_block	*block;	/* btree block */
4293 	struct xfs_buf		*bp;	/* buffer pointer */
4294 	int			ptr;	/* record number */
4295 #ifdef DEBUG
4296 	int			error;	/* error return value */
4297 #endif
4298 
4299 	ptr = cur->bc_levels[0].ptr;
4300 	block = xfs_btree_get_block(cur, 0, &bp);
4301 
4302 #ifdef DEBUG
4303 	error = xfs_btree_check_block(cur, block, 0, bp);
4304 	if (error)
4305 		return error;
4306 #endif
4307 
4308 	/*
4309 	 * Off the right end or left end, return failure.
4310 	 */
4311 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4312 		*stat = 0;
4313 		return 0;
4314 	}
4315 
4316 	/*
4317 	 * Point to the record and extract its data.
4318 	 */
4319 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4320 	*stat = 1;
4321 	return 0;
4322 }
4323 
4324 /* Visit a block in a btree. */
4325 STATIC int
4326 xfs_btree_visit_block(
4327 	struct xfs_btree_cur		*cur,
4328 	int				level,
4329 	xfs_btree_visit_blocks_fn	fn,
4330 	void				*data)
4331 {
4332 	struct xfs_btree_block		*block;
4333 	struct xfs_buf			*bp;
4334 	union xfs_btree_ptr		rptr;
4335 	int				error;
4336 
4337 	/* do right sibling readahead */
4338 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4339 	block = xfs_btree_get_block(cur, level, &bp);
4340 
4341 	/* process the block */
4342 	error = fn(cur, level, data);
4343 	if (error)
4344 		return error;
4345 
4346 	/* now read rh sibling block for next iteration */
4347 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4348 	if (xfs_btree_ptr_is_null(cur, &rptr))
4349 		return -ENOENT;
4350 
4351 	/*
4352 	 * We only visit blocks once in this walk, so we have to avoid the
4353 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4354 	 * return the same block without checking if the right sibling points
4355 	 * back to us and creates a cyclic reference in the btree.
4356 	 */
4357 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4358 		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4359 							xfs_buf_daddr(bp)))
4360 			return -EFSCORRUPTED;
4361 	} else {
4362 		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4363 							xfs_buf_daddr(bp)))
4364 			return -EFSCORRUPTED;
4365 	}
4366 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4367 }
4368 
4369 
4370 /* Visit every block in a btree. */
4371 int
4372 xfs_btree_visit_blocks(
4373 	struct xfs_btree_cur		*cur,
4374 	xfs_btree_visit_blocks_fn	fn,
4375 	unsigned int			flags,
4376 	void				*data)
4377 {
4378 	union xfs_btree_ptr		lptr;
4379 	int				level;
4380 	struct xfs_btree_block		*block = NULL;
4381 	int				error = 0;
4382 
4383 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4384 
4385 	/* for each level */
4386 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4387 		/* grab the left hand block */
4388 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4389 		if (error)
4390 			return error;
4391 
4392 		/* readahead the left most block for the next level down */
4393 		if (level > 0) {
4394 			union xfs_btree_ptr     *ptr;
4395 
4396 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4397 			xfs_btree_readahead_ptr(cur, ptr, 1);
4398 
4399 			/* save for the next iteration of the loop */
4400 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4401 
4402 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4403 				continue;
4404 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4405 			continue;
4406 		}
4407 
4408 		/* for each buffer in the level */
4409 		do {
4410 			error = xfs_btree_visit_block(cur, level, fn, data);
4411 		} while (!error);
4412 
4413 		if (error != -ENOENT)
4414 			return error;
4415 	}
4416 
4417 	return 0;
4418 }
4419 
4420 /*
4421  * Change the owner of a btree.
4422  *
4423  * The mechanism we use here is ordered buffer logging. Because we don't know
4424  * how many buffers were are going to need to modify, we don't really want to
4425  * have to make transaction reservations for the worst case of every buffer in a
4426  * full size btree as that may be more space that we can fit in the log....
4427  *
4428  * We do the btree walk in the most optimal manner possible - we have sibling
4429  * pointers so we can just walk all the blocks on each level from left to right
4430  * in a single pass, and then move to the next level and do the same. We can
4431  * also do readahead on the sibling pointers to get IO moving more quickly,
4432  * though for slow disks this is unlikely to make much difference to performance
4433  * as the amount of CPU work we have to do before moving to the next block is
4434  * relatively small.
4435  *
4436  * For each btree block that we load, modify the owner appropriately, set the
4437  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4438  * we mark the region we change dirty so that if the buffer is relogged in
4439  * a subsequent transaction the changes we make here as an ordered buffer are
4440  * correctly relogged in that transaction.  If we are in recovery context, then
4441  * just queue the modified buffer as delayed write buffer so the transaction
4442  * recovery completion writes the changes to disk.
4443  */
4444 struct xfs_btree_block_change_owner_info {
4445 	uint64_t		new_owner;
4446 	struct list_head	*buffer_list;
4447 };
4448 
4449 static int
4450 xfs_btree_block_change_owner(
4451 	struct xfs_btree_cur	*cur,
4452 	int			level,
4453 	void			*data)
4454 {
4455 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4456 	struct xfs_btree_block	*block;
4457 	struct xfs_buf		*bp;
4458 
4459 	/* modify the owner */
4460 	block = xfs_btree_get_block(cur, level, &bp);
4461 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4462 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4463 			return 0;
4464 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4465 	} else {
4466 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4467 			return 0;
4468 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4469 	}
4470 
4471 	/*
4472 	 * If the block is a root block hosted in an inode, we might not have a
4473 	 * buffer pointer here and we shouldn't attempt to log the change as the
4474 	 * information is already held in the inode and discarded when the root
4475 	 * block is formatted into the on-disk inode fork. We still change it,
4476 	 * though, so everything is consistent in memory.
4477 	 */
4478 	if (!bp) {
4479 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4480 		ASSERT(level == cur->bc_nlevels - 1);
4481 		return 0;
4482 	}
4483 
4484 	if (cur->bc_tp) {
4485 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4486 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4487 			return -EAGAIN;
4488 		}
4489 	} else {
4490 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 int
4497 xfs_btree_change_owner(
4498 	struct xfs_btree_cur	*cur,
4499 	uint64_t		new_owner,
4500 	struct list_head	*buffer_list)
4501 {
4502 	struct xfs_btree_block_change_owner_info	bbcoi;
4503 
4504 	bbcoi.new_owner = new_owner;
4505 	bbcoi.buffer_list = buffer_list;
4506 
4507 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4508 			XFS_BTREE_VISIT_ALL, &bbcoi);
4509 }
4510 
4511 /* Verify the v5 fields of a long-format btree block. */
4512 xfs_failaddr_t
4513 xfs_btree_lblock_v5hdr_verify(
4514 	struct xfs_buf		*bp,
4515 	uint64_t		owner)
4516 {
4517 	struct xfs_mount	*mp = bp->b_mount;
4518 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4519 
4520 	if (!xfs_has_crc(mp))
4521 		return __this_address;
4522 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4523 		return __this_address;
4524 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4525 		return __this_address;
4526 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4527 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4528 		return __this_address;
4529 	return NULL;
4530 }
4531 
4532 /* Verify a long-format btree block. */
4533 xfs_failaddr_t
4534 xfs_btree_lblock_verify(
4535 	struct xfs_buf		*bp,
4536 	unsigned int		max_recs)
4537 {
4538 	struct xfs_mount	*mp = bp->b_mount;
4539 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4540 	xfs_fsblock_t		fsb;
4541 	xfs_failaddr_t		fa;
4542 
4543 	/* numrecs verification */
4544 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4545 		return __this_address;
4546 
4547 	/* sibling pointer verification */
4548 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4549 	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4550 			block->bb_u.l.bb_leftsib);
4551 	if (!fa)
4552 		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4553 				block->bb_u.l.bb_rightsib);
4554 	return fa;
4555 }
4556 
4557 /**
4558  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4559  *				      btree block
4560  *
4561  * @bp: buffer containing the btree block
4562  */
4563 xfs_failaddr_t
4564 xfs_btree_sblock_v5hdr_verify(
4565 	struct xfs_buf		*bp)
4566 {
4567 	struct xfs_mount	*mp = bp->b_mount;
4568 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4569 	struct xfs_perag	*pag = bp->b_pag;
4570 
4571 	if (!xfs_has_crc(mp))
4572 		return __this_address;
4573 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4574 		return __this_address;
4575 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4576 		return __this_address;
4577 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4578 		return __this_address;
4579 	return NULL;
4580 }
4581 
4582 /**
4583  * xfs_btree_sblock_verify() -- verify a short-format btree block
4584  *
4585  * @bp: buffer containing the btree block
4586  * @max_recs: maximum records allowed in this btree node
4587  */
4588 xfs_failaddr_t
4589 xfs_btree_sblock_verify(
4590 	struct xfs_buf		*bp,
4591 	unsigned int		max_recs)
4592 {
4593 	struct xfs_mount	*mp = bp->b_mount;
4594 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4595 	xfs_agblock_t		agbno;
4596 	xfs_failaddr_t		fa;
4597 
4598 	/* numrecs verification */
4599 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4600 		return __this_address;
4601 
4602 	/* sibling pointer verification */
4603 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4604 	fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4605 			block->bb_u.s.bb_leftsib);
4606 	if (!fa)
4607 		fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4608 				block->bb_u.s.bb_rightsib);
4609 	return fa;
4610 }
4611 
4612 /*
4613  * For the given limits on leaf and keyptr records per block, calculate the
4614  * height of the tree needed to index the number of leaf records.
4615  */
4616 unsigned int
4617 xfs_btree_compute_maxlevels(
4618 	const unsigned int	*limits,
4619 	unsigned long long	records)
4620 {
4621 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4622 	unsigned int		height = 1;
4623 
4624 	while (level_blocks > 1) {
4625 		level_blocks = howmany_64(level_blocks, limits[1]);
4626 		height++;
4627 	}
4628 
4629 	return height;
4630 }
4631 
4632 /*
4633  * For the given limits on leaf and keyptr records per block, calculate the
4634  * number of blocks needed to index the given number of leaf records.
4635  */
4636 unsigned long long
4637 xfs_btree_calc_size(
4638 	const unsigned int	*limits,
4639 	unsigned long long	records)
4640 {
4641 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4642 	unsigned long long	blocks = level_blocks;
4643 
4644 	while (level_blocks > 1) {
4645 		level_blocks = howmany_64(level_blocks, limits[1]);
4646 		blocks += level_blocks;
4647 	}
4648 
4649 	return blocks;
4650 }
4651 
4652 /*
4653  * Given a number of available blocks for the btree to consume with records and
4654  * pointers, calculate the height of the tree needed to index all the records
4655  * that space can hold based on the number of pointers each interior node
4656  * holds.
4657  *
4658  * We start by assuming a single level tree consumes a single block, then track
4659  * the number of blocks each node level consumes until we no longer have space
4660  * to store the next node level. At this point, we are indexing all the leaf
4661  * blocks in the space, and there's no more free space to split the tree any
4662  * further. That's our maximum btree height.
4663  */
4664 unsigned int
4665 xfs_btree_space_to_height(
4666 	const unsigned int	*limits,
4667 	unsigned long long	leaf_blocks)
4668 {
4669 	unsigned long long	node_blocks = limits[1];
4670 	unsigned long long	blocks_left = leaf_blocks - 1;
4671 	unsigned int		height = 1;
4672 
4673 	if (leaf_blocks < 1)
4674 		return 0;
4675 
4676 	while (node_blocks < blocks_left) {
4677 		blocks_left -= node_blocks;
4678 		node_blocks *= limits[1];
4679 		height++;
4680 	}
4681 
4682 	return height;
4683 }
4684 
4685 /*
4686  * Query a regular btree for all records overlapping a given interval.
4687  * Start with a LE lookup of the key of low_rec and return all records
4688  * until we find a record with a key greater than the key of high_rec.
4689  */
4690 STATIC int
4691 xfs_btree_simple_query_range(
4692 	struct xfs_btree_cur		*cur,
4693 	const union xfs_btree_key	*low_key,
4694 	const union xfs_btree_key	*high_key,
4695 	xfs_btree_query_range_fn	fn,
4696 	void				*priv)
4697 {
4698 	union xfs_btree_rec		*recp;
4699 	union xfs_btree_key		rec_key;
4700 	int64_t				diff;
4701 	int				stat;
4702 	bool				firstrec = true;
4703 	int				error;
4704 
4705 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4706 	ASSERT(cur->bc_ops->diff_two_keys);
4707 
4708 	/*
4709 	 * Find the leftmost record.  The btree cursor must be set
4710 	 * to the low record used to generate low_key.
4711 	 */
4712 	stat = 0;
4713 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4714 	if (error)
4715 		goto out;
4716 
4717 	/* Nothing?  See if there's anything to the right. */
4718 	if (!stat) {
4719 		error = xfs_btree_increment(cur, 0, &stat);
4720 		if (error)
4721 			goto out;
4722 	}
4723 
4724 	while (stat) {
4725 		/* Find the record. */
4726 		error = xfs_btree_get_rec(cur, &recp, &stat);
4727 		if (error || !stat)
4728 			break;
4729 
4730 		/* Skip if high_key(rec) < low_key. */
4731 		if (firstrec) {
4732 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4733 			firstrec = false;
4734 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4735 					&rec_key);
4736 			if (diff > 0)
4737 				goto advloop;
4738 		}
4739 
4740 		/* Stop if high_key < low_key(rec). */
4741 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4742 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4743 		if (diff > 0)
4744 			break;
4745 
4746 		/* Callback */
4747 		error = fn(cur, recp, priv);
4748 		if (error)
4749 			break;
4750 
4751 advloop:
4752 		/* Move on to the next record. */
4753 		error = xfs_btree_increment(cur, 0, &stat);
4754 		if (error)
4755 			break;
4756 	}
4757 
4758 out:
4759 	return error;
4760 }
4761 
4762 /*
4763  * Query an overlapped interval btree for all records overlapping a given
4764  * interval.  This function roughly follows the algorithm given in
4765  * "Interval Trees" of _Introduction to Algorithms_, which is section
4766  * 14.3 in the 2nd and 3rd editions.
4767  *
4768  * First, generate keys for the low and high records passed in.
4769  *
4770  * For any leaf node, generate the high and low keys for the record.
4771  * If the record keys overlap with the query low/high keys, pass the
4772  * record to the function iterator.
4773  *
4774  * For any internal node, compare the low and high keys of each
4775  * pointer against the query low/high keys.  If there's an overlap,
4776  * follow the pointer.
4777  *
4778  * As an optimization, we stop scanning a block when we find a low key
4779  * that is greater than the query's high key.
4780  */
4781 STATIC int
4782 xfs_btree_overlapped_query_range(
4783 	struct xfs_btree_cur		*cur,
4784 	const union xfs_btree_key	*low_key,
4785 	const union xfs_btree_key	*high_key,
4786 	xfs_btree_query_range_fn	fn,
4787 	void				*priv)
4788 {
4789 	union xfs_btree_ptr		ptr;
4790 	union xfs_btree_ptr		*pp;
4791 	union xfs_btree_key		rec_key;
4792 	union xfs_btree_key		rec_hkey;
4793 	union xfs_btree_key		*lkp;
4794 	union xfs_btree_key		*hkp;
4795 	union xfs_btree_rec		*recp;
4796 	struct xfs_btree_block		*block;
4797 	int64_t				ldiff;
4798 	int64_t				hdiff;
4799 	int				level;
4800 	struct xfs_buf			*bp;
4801 	int				i;
4802 	int				error;
4803 
4804 	/* Load the root of the btree. */
4805 	level = cur->bc_nlevels - 1;
4806 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4807 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4808 	if (error)
4809 		return error;
4810 	xfs_btree_get_block(cur, level, &bp);
4811 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4812 #ifdef DEBUG
4813 	error = xfs_btree_check_block(cur, block, level, bp);
4814 	if (error)
4815 		goto out;
4816 #endif
4817 	cur->bc_levels[level].ptr = 1;
4818 
4819 	while (level < cur->bc_nlevels) {
4820 		block = xfs_btree_get_block(cur, level, &bp);
4821 
4822 		/* End of node, pop back towards the root. */
4823 		if (cur->bc_levels[level].ptr >
4824 					be16_to_cpu(block->bb_numrecs)) {
4825 pop_up:
4826 			if (level < cur->bc_nlevels - 1)
4827 				cur->bc_levels[level + 1].ptr++;
4828 			level++;
4829 			continue;
4830 		}
4831 
4832 		if (level == 0) {
4833 			/* Handle a leaf node. */
4834 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4835 					block);
4836 
4837 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4838 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4839 					low_key);
4840 
4841 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4842 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4843 					&rec_key);
4844 
4845 			/*
4846 			 * If (record's high key >= query's low key) and
4847 			 *    (query's high key >= record's low key), then
4848 			 * this record overlaps the query range; callback.
4849 			 */
4850 			if (ldiff >= 0 && hdiff >= 0) {
4851 				error = fn(cur, recp, priv);
4852 				if (error)
4853 					break;
4854 			} else if (hdiff < 0) {
4855 				/* Record is larger than high key; pop. */
4856 				goto pop_up;
4857 			}
4858 			cur->bc_levels[level].ptr++;
4859 			continue;
4860 		}
4861 
4862 		/* Handle an internal node. */
4863 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4864 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4865 				block);
4866 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4867 
4868 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4869 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4870 
4871 		/*
4872 		 * If (pointer's high key >= query's low key) and
4873 		 *    (query's high key >= pointer's low key), then
4874 		 * this record overlaps the query range; follow pointer.
4875 		 */
4876 		if (ldiff >= 0 && hdiff >= 0) {
4877 			level--;
4878 			error = xfs_btree_lookup_get_block(cur, level, pp,
4879 					&block);
4880 			if (error)
4881 				goto out;
4882 			xfs_btree_get_block(cur, level, &bp);
4883 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4884 #ifdef DEBUG
4885 			error = xfs_btree_check_block(cur, block, level, bp);
4886 			if (error)
4887 				goto out;
4888 #endif
4889 			cur->bc_levels[level].ptr = 1;
4890 			continue;
4891 		} else if (hdiff < 0) {
4892 			/* The low key is larger than the upper range; pop. */
4893 			goto pop_up;
4894 		}
4895 		cur->bc_levels[level].ptr++;
4896 	}
4897 
4898 out:
4899 	/*
4900 	 * If we don't end this function with the cursor pointing at a record
4901 	 * block, a subsequent non-error cursor deletion will not release
4902 	 * node-level buffers, causing a buffer leak.  This is quite possible
4903 	 * with a zero-results range query, so release the buffers if we
4904 	 * failed to return any results.
4905 	 */
4906 	if (cur->bc_levels[0].bp == NULL) {
4907 		for (i = 0; i < cur->bc_nlevels; i++) {
4908 			if (cur->bc_levels[i].bp) {
4909 				xfs_trans_brelse(cur->bc_tp,
4910 						cur->bc_levels[i].bp);
4911 				cur->bc_levels[i].bp = NULL;
4912 				cur->bc_levels[i].ptr = 0;
4913 				cur->bc_levels[i].ra = 0;
4914 			}
4915 		}
4916 	}
4917 
4918 	return error;
4919 }
4920 
4921 /*
4922  * Query a btree for all records overlapping a given interval of keys.  The
4923  * supplied function will be called with each record found; return one of the
4924  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4925  * code.  This function returns -ECANCELED, zero, or a negative error code.
4926  */
4927 int
4928 xfs_btree_query_range(
4929 	struct xfs_btree_cur		*cur,
4930 	const union xfs_btree_irec	*low_rec,
4931 	const union xfs_btree_irec	*high_rec,
4932 	xfs_btree_query_range_fn	fn,
4933 	void				*priv)
4934 {
4935 	union xfs_btree_rec		rec;
4936 	union xfs_btree_key		low_key;
4937 	union xfs_btree_key		high_key;
4938 
4939 	/* Find the keys of both ends of the interval. */
4940 	cur->bc_rec = *high_rec;
4941 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4942 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4943 
4944 	cur->bc_rec = *low_rec;
4945 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4946 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4947 
4948 	/* Enforce low key < high key. */
4949 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4950 		return -EINVAL;
4951 
4952 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4953 		return xfs_btree_simple_query_range(cur, &low_key,
4954 				&high_key, fn, priv);
4955 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4956 			fn, priv);
4957 }
4958 
4959 /* Query a btree for all records. */
4960 int
4961 xfs_btree_query_all(
4962 	struct xfs_btree_cur		*cur,
4963 	xfs_btree_query_range_fn	fn,
4964 	void				*priv)
4965 {
4966 	union xfs_btree_key		low_key;
4967 	union xfs_btree_key		high_key;
4968 
4969 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4970 	memset(&low_key, 0, sizeof(low_key));
4971 	memset(&high_key, 0xFF, sizeof(high_key));
4972 
4973 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4974 }
4975 
4976 static int
4977 xfs_btree_count_blocks_helper(
4978 	struct xfs_btree_cur	*cur,
4979 	int			level,
4980 	void			*data)
4981 {
4982 	xfs_extlen_t		*blocks = data;
4983 	(*blocks)++;
4984 
4985 	return 0;
4986 }
4987 
4988 /* Count the blocks in a btree and return the result in *blocks. */
4989 int
4990 xfs_btree_count_blocks(
4991 	struct xfs_btree_cur	*cur,
4992 	xfs_extlen_t		*blocks)
4993 {
4994 	*blocks = 0;
4995 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4996 			XFS_BTREE_VISIT_ALL, blocks);
4997 }
4998 
4999 /* Compare two btree pointers. */
5000 int64_t
5001 xfs_btree_diff_two_ptrs(
5002 	struct xfs_btree_cur		*cur,
5003 	const union xfs_btree_ptr	*a,
5004 	const union xfs_btree_ptr	*b)
5005 {
5006 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5007 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5008 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5009 }
5010 
5011 /* If there's an extent, we're done. */
5012 STATIC int
5013 xfs_btree_has_record_helper(
5014 	struct xfs_btree_cur		*cur,
5015 	const union xfs_btree_rec	*rec,
5016 	void				*priv)
5017 {
5018 	return -ECANCELED;
5019 }
5020 
5021 /* Is there a record covering a given range of keys? */
5022 int
5023 xfs_btree_has_record(
5024 	struct xfs_btree_cur		*cur,
5025 	const union xfs_btree_irec	*low,
5026 	const union xfs_btree_irec	*high,
5027 	bool				*exists)
5028 {
5029 	int				error;
5030 
5031 	error = xfs_btree_query_range(cur, low, high,
5032 			&xfs_btree_has_record_helper, NULL);
5033 	if (error == -ECANCELED) {
5034 		*exists = true;
5035 		return 0;
5036 	}
5037 	*exists = false;
5038 	return error;
5039 }
5040 
5041 /* Are there more records in this btree? */
5042 bool
5043 xfs_btree_has_more_records(
5044 	struct xfs_btree_cur	*cur)
5045 {
5046 	struct xfs_btree_block	*block;
5047 	struct xfs_buf		*bp;
5048 
5049 	block = xfs_btree_get_block(cur, 0, &bp);
5050 
5051 	/* There are still records in this block. */
5052 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5053 		return true;
5054 
5055 	/* There are more record blocks. */
5056 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5057 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5058 	else
5059 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5060 }
5061 
5062 /* Set up all the btree cursor caches. */
5063 int __init
5064 xfs_btree_init_cur_caches(void)
5065 {
5066 	int		error;
5067 
5068 	error = xfs_allocbt_init_cur_cache();
5069 	if (error)
5070 		return error;
5071 	error = xfs_inobt_init_cur_cache();
5072 	if (error)
5073 		goto err;
5074 	error = xfs_bmbt_init_cur_cache();
5075 	if (error)
5076 		goto err;
5077 	error = xfs_rmapbt_init_cur_cache();
5078 	if (error)
5079 		goto err;
5080 	error = xfs_refcountbt_init_cur_cache();
5081 	if (error)
5082 		goto err;
5083 
5084 	return 0;
5085 err:
5086 	xfs_btree_destroy_cur_caches();
5087 	return error;
5088 }
5089 
5090 /* Destroy all the btree cursor caches, if they've been allocated. */
5091 void
5092 xfs_btree_destroy_cur_caches(void)
5093 {
5094 	xfs_allocbt_destroy_cur_cache();
5095 	xfs_inobt_destroy_cur_cache();
5096 	xfs_bmbt_destroy_cur_cache();
5097 	xfs_rmapbt_destroy_cur_cache();
5098 	xfs_refcountbt_destroy_cur_cache();
5099 }
5100