xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 4da722ca)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37 
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t	*xfs_btree_cur_zone;
42 
43 /*
44  * Btree magic numbers.
45  */
46 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 	  XFS_FIBT_MAGIC, 0 },
49 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51 	  XFS_REFC_CRC_MAGIC }
52 };
53 
54 uint32_t
55 xfs_btree_magic(
56 	int			crc,
57 	xfs_btnum_t		btnum)
58 {
59 	uint32_t		magic = xfs_magics[crc][btnum];
60 
61 	/* Ensure we asked for crc for crc-only magics. */
62 	ASSERT(magic != 0);
63 	return magic;
64 }
65 
66 STATIC int				/* error (0 or EFSCORRUPTED) */
67 xfs_btree_check_lblock(
68 	struct xfs_btree_cur	*cur,	/* btree cursor */
69 	struct xfs_btree_block	*block,	/* btree long form block pointer */
70 	int			level,	/* level of the btree block */
71 	struct xfs_buf		*bp)	/* buffer for block, if any */
72 {
73 	int			lblock_ok = 1; /* block passes checks */
74 	struct xfs_mount	*mp;	/* file system mount point */
75 	xfs_btnum_t		btnum = cur->bc_btnum;
76 	int			crc;
77 
78 	mp = cur->bc_mp;
79 	crc = xfs_sb_version_hascrc(&mp->m_sb);
80 
81 	if (crc) {
82 		lblock_ok = lblock_ok &&
83 			uuid_equal(&block->bb_u.l.bb_uuid,
84 				   &mp->m_sb.sb_meta_uuid) &&
85 			block->bb_u.l.bb_blkno == cpu_to_be64(
86 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
87 	}
88 
89 	lblock_ok = lblock_ok &&
90 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) &&
91 		be16_to_cpu(block->bb_level) == level &&
92 		be16_to_cpu(block->bb_numrecs) <=
93 			cur->bc_ops->get_maxrecs(cur, level) &&
94 		block->bb_u.l.bb_leftsib &&
95 		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
96 		 XFS_FSB_SANITY_CHECK(mp,
97 			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
98 		block->bb_u.l.bb_rightsib &&
99 		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
100 		 XFS_FSB_SANITY_CHECK(mp,
101 			be64_to_cpu(block->bb_u.l.bb_rightsib)));
102 
103 	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
104 			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
105 		if (bp)
106 			trace_xfs_btree_corrupt(bp, _RET_IP_);
107 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
108 		return -EFSCORRUPTED;
109 	}
110 	return 0;
111 }
112 
113 STATIC int				/* error (0 or EFSCORRUPTED) */
114 xfs_btree_check_sblock(
115 	struct xfs_btree_cur	*cur,	/* btree cursor */
116 	struct xfs_btree_block	*block,	/* btree short form block pointer */
117 	int			level,	/* level of the btree block */
118 	struct xfs_buf		*bp)	/* buffer containing block */
119 {
120 	struct xfs_mount	*mp;	/* file system mount point */
121 	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
122 	struct xfs_agf		*agf;	/* ag. freespace structure */
123 	xfs_agblock_t		agflen;	/* native ag. freespace length */
124 	int			sblock_ok = 1; /* block passes checks */
125 	xfs_btnum_t		btnum = cur->bc_btnum;
126 	int			crc;
127 
128 	mp = cur->bc_mp;
129 	crc = xfs_sb_version_hascrc(&mp->m_sb);
130 	agbp = cur->bc_private.a.agbp;
131 	agf = XFS_BUF_TO_AGF(agbp);
132 	agflen = be32_to_cpu(agf->agf_length);
133 
134 	if (crc) {
135 		sblock_ok = sblock_ok &&
136 			uuid_equal(&block->bb_u.s.bb_uuid,
137 				   &mp->m_sb.sb_meta_uuid) &&
138 			block->bb_u.s.bb_blkno == cpu_to_be64(
139 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
140 	}
141 
142 	sblock_ok = sblock_ok &&
143 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) &&
144 		be16_to_cpu(block->bb_level) == level &&
145 		be16_to_cpu(block->bb_numrecs) <=
146 			cur->bc_ops->get_maxrecs(cur, level) &&
147 		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
148 		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
149 		block->bb_u.s.bb_leftsib &&
150 		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
151 		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
152 		block->bb_u.s.bb_rightsib;
153 
154 	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
155 			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
156 		if (bp)
157 			trace_xfs_btree_corrupt(bp, _RET_IP_);
158 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
159 		return -EFSCORRUPTED;
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Debug routine: check that block header is ok.
166  */
167 int
168 xfs_btree_check_block(
169 	struct xfs_btree_cur	*cur,	/* btree cursor */
170 	struct xfs_btree_block	*block,	/* generic btree block pointer */
171 	int			level,	/* level of the btree block */
172 	struct xfs_buf		*bp)	/* buffer containing block, if any */
173 {
174 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
175 		return xfs_btree_check_lblock(cur, block, level, bp);
176 	else
177 		return xfs_btree_check_sblock(cur, block, level, bp);
178 }
179 
180 /*
181  * Check that (long) pointer is ok.
182  */
183 int					/* error (0 or EFSCORRUPTED) */
184 xfs_btree_check_lptr(
185 	struct xfs_btree_cur	*cur,	/* btree cursor */
186 	xfs_fsblock_t		bno,	/* btree block disk address */
187 	int			level)	/* btree block level */
188 {
189 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
190 		level > 0 &&
191 		bno != NULLFSBLOCK &&
192 		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
193 	return 0;
194 }
195 
196 #ifdef DEBUG
197 /*
198  * Check that (short) pointer is ok.
199  */
200 STATIC int				/* error (0 or EFSCORRUPTED) */
201 xfs_btree_check_sptr(
202 	struct xfs_btree_cur	*cur,	/* btree cursor */
203 	xfs_agblock_t		bno,	/* btree block disk address */
204 	int			level)	/* btree block level */
205 {
206 	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
207 
208 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
209 		level > 0 &&
210 		bno != NULLAGBLOCK &&
211 		bno != 0 &&
212 		bno < agblocks);
213 	return 0;
214 }
215 
216 /*
217  * Check that block ptr is ok.
218  */
219 STATIC int				/* error (0 or EFSCORRUPTED) */
220 xfs_btree_check_ptr(
221 	struct xfs_btree_cur	*cur,	/* btree cursor */
222 	union xfs_btree_ptr	*ptr,	/* btree block disk address */
223 	int			index,	/* offset from ptr to check */
224 	int			level)	/* btree block level */
225 {
226 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
227 		return xfs_btree_check_lptr(cur,
228 				be64_to_cpu((&ptr->l)[index]), level);
229 	} else {
230 		return xfs_btree_check_sptr(cur,
231 				be32_to_cpu((&ptr->s)[index]), level);
232 	}
233 }
234 #endif
235 
236 /*
237  * Calculate CRC on the whole btree block and stuff it into the
238  * long-form btree header.
239  *
240  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
241  * it into the buffer so recovery knows what the last modification was that made
242  * it to disk.
243  */
244 void
245 xfs_btree_lblock_calc_crc(
246 	struct xfs_buf		*bp)
247 {
248 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
249 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
250 
251 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
252 		return;
253 	if (bip)
254 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
255 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
256 }
257 
258 bool
259 xfs_btree_lblock_verify_crc(
260 	struct xfs_buf		*bp)
261 {
262 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
263 	struct xfs_mount	*mp = bp->b_target->bt_mount;
264 
265 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
266 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
267 			return false;
268 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
269 	}
270 
271 	return true;
272 }
273 
274 /*
275  * Calculate CRC on the whole btree block and stuff it into the
276  * short-form btree header.
277  *
278  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
279  * it into the buffer so recovery knows what the last modification was that made
280  * it to disk.
281  */
282 void
283 xfs_btree_sblock_calc_crc(
284 	struct xfs_buf		*bp)
285 {
286 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
287 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
288 
289 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
290 		return;
291 	if (bip)
292 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
293 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
294 }
295 
296 bool
297 xfs_btree_sblock_verify_crc(
298 	struct xfs_buf		*bp)
299 {
300 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
301 	struct xfs_mount	*mp = bp->b_target->bt_mount;
302 
303 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
304 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
305 			return false;
306 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
307 	}
308 
309 	return true;
310 }
311 
312 static int
313 xfs_btree_free_block(
314 	struct xfs_btree_cur	*cur,
315 	struct xfs_buf		*bp)
316 {
317 	int			error;
318 
319 	error = cur->bc_ops->free_block(cur, bp);
320 	if (!error) {
321 		xfs_trans_binval(cur->bc_tp, bp);
322 		XFS_BTREE_STATS_INC(cur, free);
323 	}
324 	return error;
325 }
326 
327 /*
328  * Delete the btree cursor.
329  */
330 void
331 xfs_btree_del_cursor(
332 	xfs_btree_cur_t	*cur,		/* btree cursor */
333 	int		error)		/* del because of error */
334 {
335 	int		i;		/* btree level */
336 
337 	/*
338 	 * Clear the buffer pointers, and release the buffers.
339 	 * If we're doing this in the face of an error, we
340 	 * need to make sure to inspect all of the entries
341 	 * in the bc_bufs array for buffers to be unlocked.
342 	 * This is because some of the btree code works from
343 	 * level n down to 0, and if we get an error along
344 	 * the way we won't have initialized all the entries
345 	 * down to 0.
346 	 */
347 	for (i = 0; i < cur->bc_nlevels; i++) {
348 		if (cur->bc_bufs[i])
349 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
350 		else if (!error)
351 			break;
352 	}
353 	/*
354 	 * Can't free a bmap cursor without having dealt with the
355 	 * allocated indirect blocks' accounting.
356 	 */
357 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
358 	       cur->bc_private.b.allocated == 0);
359 	/*
360 	 * Free the cursor.
361 	 */
362 	kmem_zone_free(xfs_btree_cur_zone, cur);
363 }
364 
365 /*
366  * Duplicate the btree cursor.
367  * Allocate a new one, copy the record, re-get the buffers.
368  */
369 int					/* error */
370 xfs_btree_dup_cursor(
371 	xfs_btree_cur_t	*cur,		/* input cursor */
372 	xfs_btree_cur_t	**ncur)		/* output cursor */
373 {
374 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
375 	int		error;		/* error return value */
376 	int		i;		/* level number of btree block */
377 	xfs_mount_t	*mp;		/* mount structure for filesystem */
378 	xfs_btree_cur_t	*new;		/* new cursor value */
379 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
380 
381 	tp = cur->bc_tp;
382 	mp = cur->bc_mp;
383 
384 	/*
385 	 * Allocate a new cursor like the old one.
386 	 */
387 	new = cur->bc_ops->dup_cursor(cur);
388 
389 	/*
390 	 * Copy the record currently in the cursor.
391 	 */
392 	new->bc_rec = cur->bc_rec;
393 
394 	/*
395 	 * For each level current, re-get the buffer and copy the ptr value.
396 	 */
397 	for (i = 0; i < new->bc_nlevels; i++) {
398 		new->bc_ptrs[i] = cur->bc_ptrs[i];
399 		new->bc_ra[i] = cur->bc_ra[i];
400 		bp = cur->bc_bufs[i];
401 		if (bp) {
402 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
403 						   XFS_BUF_ADDR(bp), mp->m_bsize,
404 						   0, &bp,
405 						   cur->bc_ops->buf_ops);
406 			if (error) {
407 				xfs_btree_del_cursor(new, error);
408 				*ncur = NULL;
409 				return error;
410 			}
411 		}
412 		new->bc_bufs[i] = bp;
413 	}
414 	*ncur = new;
415 	return 0;
416 }
417 
418 /*
419  * XFS btree block layout and addressing:
420  *
421  * There are two types of blocks in the btree: leaf and non-leaf blocks.
422  *
423  * The leaf record start with a header then followed by records containing
424  * the values.  A non-leaf block also starts with the same header, and
425  * then first contains lookup keys followed by an equal number of pointers
426  * to the btree blocks at the previous level.
427  *
428  *		+--------+-------+-------+-------+-------+-------+-------+
429  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
430  *		+--------+-------+-------+-------+-------+-------+-------+
431  *
432  *		+--------+-------+-------+-------+-------+-------+-------+
433  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
434  *		+--------+-------+-------+-------+-------+-------+-------+
435  *
436  * The header is called struct xfs_btree_block for reasons better left unknown
437  * and comes in different versions for short (32bit) and long (64bit) block
438  * pointers.  The record and key structures are defined by the btree instances
439  * and opaque to the btree core.  The block pointers are simple disk endian
440  * integers, available in a short (32bit) and long (64bit) variant.
441  *
442  * The helpers below calculate the offset of a given record, key or pointer
443  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
444  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
445  * inside the btree block is done using indices starting at one, not zero!
446  *
447  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
448  * overlapping intervals.  In such a tree, records are still sorted lowest to
449  * highest and indexed by the smallest key value that refers to the record.
450  * However, nodes are different: each pointer has two associated keys -- one
451  * indexing the lowest key available in the block(s) below (the same behavior
452  * as the key in a regular btree) and another indexing the highest key
453  * available in the block(s) below.  Because records are /not/ sorted by the
454  * highest key, all leaf block updates require us to compute the highest key
455  * that matches any record in the leaf and to recursively update the high keys
456  * in the nodes going further up in the tree, if necessary.  Nodes look like
457  * this:
458  *
459  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
460  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
461  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
462  *
463  * To perform an interval query on an overlapped tree, perform the usual
464  * depth-first search and use the low and high keys to decide if we can skip
465  * that particular node.  If a leaf node is reached, return the records that
466  * intersect the interval.  Note that an interval query may return numerous
467  * entries.  For a non-overlapped tree, simply search for the record associated
468  * with the lowest key and iterate forward until a non-matching record is
469  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
470  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
471  * more detail.
472  *
473  * Why do we care about overlapping intervals?  Let's say you have a bunch of
474  * reverse mapping records on a reflink filesystem:
475  *
476  * 1: +- file A startblock B offset C length D -----------+
477  * 2:      +- file E startblock F offset G length H --------------+
478  * 3:      +- file I startblock F offset J length K --+
479  * 4:                                                        +- file L... --+
480  *
481  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
482  * we'd simply increment the length of record 1.  But how do we find the record
483  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
484  * record 3 because the keys are ordered first by startblock.  An interval
485  * query would return records 1 and 2 because they both overlap (B+D-1), and
486  * from that we can pick out record 1 as the appropriate left neighbor.
487  *
488  * In the non-overlapped case you can do a LE lookup and decrement the cursor
489  * because a record's interval must end before the next record.
490  */
491 
492 /*
493  * Return size of the btree block header for this btree instance.
494  */
495 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
496 {
497 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
498 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
499 			return XFS_BTREE_LBLOCK_CRC_LEN;
500 		return XFS_BTREE_LBLOCK_LEN;
501 	}
502 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
503 		return XFS_BTREE_SBLOCK_CRC_LEN;
504 	return XFS_BTREE_SBLOCK_LEN;
505 }
506 
507 /*
508  * Return size of btree block pointers for this btree instance.
509  */
510 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
511 {
512 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
513 		sizeof(__be64) : sizeof(__be32);
514 }
515 
516 /*
517  * Calculate offset of the n-th record in a btree block.
518  */
519 STATIC size_t
520 xfs_btree_rec_offset(
521 	struct xfs_btree_cur	*cur,
522 	int			n)
523 {
524 	return xfs_btree_block_len(cur) +
525 		(n - 1) * cur->bc_ops->rec_len;
526 }
527 
528 /*
529  * Calculate offset of the n-th key in a btree block.
530  */
531 STATIC size_t
532 xfs_btree_key_offset(
533 	struct xfs_btree_cur	*cur,
534 	int			n)
535 {
536 	return xfs_btree_block_len(cur) +
537 		(n - 1) * cur->bc_ops->key_len;
538 }
539 
540 /*
541  * Calculate offset of the n-th high key in a btree block.
542  */
543 STATIC size_t
544 xfs_btree_high_key_offset(
545 	struct xfs_btree_cur	*cur,
546 	int			n)
547 {
548 	return xfs_btree_block_len(cur) +
549 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
550 }
551 
552 /*
553  * Calculate offset of the n-th block pointer in a btree block.
554  */
555 STATIC size_t
556 xfs_btree_ptr_offset(
557 	struct xfs_btree_cur	*cur,
558 	int			n,
559 	int			level)
560 {
561 	return xfs_btree_block_len(cur) +
562 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
563 		(n - 1) * xfs_btree_ptr_len(cur);
564 }
565 
566 /*
567  * Return a pointer to the n-th record in the btree block.
568  */
569 union xfs_btree_rec *
570 xfs_btree_rec_addr(
571 	struct xfs_btree_cur	*cur,
572 	int			n,
573 	struct xfs_btree_block	*block)
574 {
575 	return (union xfs_btree_rec *)
576 		((char *)block + xfs_btree_rec_offset(cur, n));
577 }
578 
579 /*
580  * Return a pointer to the n-th key in the btree block.
581  */
582 union xfs_btree_key *
583 xfs_btree_key_addr(
584 	struct xfs_btree_cur	*cur,
585 	int			n,
586 	struct xfs_btree_block	*block)
587 {
588 	return (union xfs_btree_key *)
589 		((char *)block + xfs_btree_key_offset(cur, n));
590 }
591 
592 /*
593  * Return a pointer to the n-th high key in the btree block.
594  */
595 union xfs_btree_key *
596 xfs_btree_high_key_addr(
597 	struct xfs_btree_cur	*cur,
598 	int			n,
599 	struct xfs_btree_block	*block)
600 {
601 	return (union xfs_btree_key *)
602 		((char *)block + xfs_btree_high_key_offset(cur, n));
603 }
604 
605 /*
606  * Return a pointer to the n-th block pointer in the btree block.
607  */
608 union xfs_btree_ptr *
609 xfs_btree_ptr_addr(
610 	struct xfs_btree_cur	*cur,
611 	int			n,
612 	struct xfs_btree_block	*block)
613 {
614 	int			level = xfs_btree_get_level(block);
615 
616 	ASSERT(block->bb_level != 0);
617 
618 	return (union xfs_btree_ptr *)
619 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
620 }
621 
622 /*
623  * Get the root block which is stored in the inode.
624  *
625  * For now this btree implementation assumes the btree root is always
626  * stored in the if_broot field of an inode fork.
627  */
628 STATIC struct xfs_btree_block *
629 xfs_btree_get_iroot(
630 	struct xfs_btree_cur	*cur)
631 {
632 	struct xfs_ifork	*ifp;
633 
634 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
635 	return (struct xfs_btree_block *)ifp->if_broot;
636 }
637 
638 /*
639  * Retrieve the block pointer from the cursor at the given level.
640  * This may be an inode btree root or from a buffer.
641  */
642 struct xfs_btree_block *		/* generic btree block pointer */
643 xfs_btree_get_block(
644 	struct xfs_btree_cur	*cur,	/* btree cursor */
645 	int			level,	/* level in btree */
646 	struct xfs_buf		**bpp)	/* buffer containing the block */
647 {
648 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
649 	    (level == cur->bc_nlevels - 1)) {
650 		*bpp = NULL;
651 		return xfs_btree_get_iroot(cur);
652 	}
653 
654 	*bpp = cur->bc_bufs[level];
655 	return XFS_BUF_TO_BLOCK(*bpp);
656 }
657 
658 /*
659  * Get a buffer for the block, return it with no data read.
660  * Long-form addressing.
661  */
662 xfs_buf_t *				/* buffer for fsbno */
663 xfs_btree_get_bufl(
664 	xfs_mount_t	*mp,		/* file system mount point */
665 	xfs_trans_t	*tp,		/* transaction pointer */
666 	xfs_fsblock_t	fsbno,		/* file system block number */
667 	uint		lock)		/* lock flags for get_buf */
668 {
669 	xfs_daddr_t		d;		/* real disk block address */
670 
671 	ASSERT(fsbno != NULLFSBLOCK);
672 	d = XFS_FSB_TO_DADDR(mp, fsbno);
673 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
674 }
675 
676 /*
677  * Get a buffer for the block, return it with no data read.
678  * Short-form addressing.
679  */
680 xfs_buf_t *				/* buffer for agno/agbno */
681 xfs_btree_get_bufs(
682 	xfs_mount_t	*mp,		/* file system mount point */
683 	xfs_trans_t	*tp,		/* transaction pointer */
684 	xfs_agnumber_t	agno,		/* allocation group number */
685 	xfs_agblock_t	agbno,		/* allocation group block number */
686 	uint		lock)		/* lock flags for get_buf */
687 {
688 	xfs_daddr_t		d;		/* real disk block address */
689 
690 	ASSERT(agno != NULLAGNUMBER);
691 	ASSERT(agbno != NULLAGBLOCK);
692 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
693 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
694 }
695 
696 /*
697  * Check for the cursor referring to the last block at the given level.
698  */
699 int					/* 1=is last block, 0=not last block */
700 xfs_btree_islastblock(
701 	xfs_btree_cur_t		*cur,	/* btree cursor */
702 	int			level)	/* level to check */
703 {
704 	struct xfs_btree_block	*block;	/* generic btree block pointer */
705 	xfs_buf_t		*bp;	/* buffer containing block */
706 
707 	block = xfs_btree_get_block(cur, level, &bp);
708 	xfs_btree_check_block(cur, block, level, bp);
709 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
710 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
711 	else
712 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
713 }
714 
715 /*
716  * Change the cursor to point to the first record at the given level.
717  * Other levels are unaffected.
718  */
719 STATIC int				/* success=1, failure=0 */
720 xfs_btree_firstrec(
721 	xfs_btree_cur_t		*cur,	/* btree cursor */
722 	int			level)	/* level to change */
723 {
724 	struct xfs_btree_block	*block;	/* generic btree block pointer */
725 	xfs_buf_t		*bp;	/* buffer containing block */
726 
727 	/*
728 	 * Get the block pointer for this level.
729 	 */
730 	block = xfs_btree_get_block(cur, level, &bp);
731 	xfs_btree_check_block(cur, block, level, bp);
732 	/*
733 	 * It's empty, there is no such record.
734 	 */
735 	if (!block->bb_numrecs)
736 		return 0;
737 	/*
738 	 * Set the ptr value to 1, that's the first record/key.
739 	 */
740 	cur->bc_ptrs[level] = 1;
741 	return 1;
742 }
743 
744 /*
745  * Change the cursor to point to the last record in the current block
746  * at the given level.  Other levels are unaffected.
747  */
748 STATIC int				/* success=1, failure=0 */
749 xfs_btree_lastrec(
750 	xfs_btree_cur_t		*cur,	/* btree cursor */
751 	int			level)	/* level to change */
752 {
753 	struct xfs_btree_block	*block;	/* generic btree block pointer */
754 	xfs_buf_t		*bp;	/* buffer containing block */
755 
756 	/*
757 	 * Get the block pointer for this level.
758 	 */
759 	block = xfs_btree_get_block(cur, level, &bp);
760 	xfs_btree_check_block(cur, block, level, bp);
761 	/*
762 	 * It's empty, there is no such record.
763 	 */
764 	if (!block->bb_numrecs)
765 		return 0;
766 	/*
767 	 * Set the ptr value to numrecs, that's the last record/key.
768 	 */
769 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
770 	return 1;
771 }
772 
773 /*
774  * Compute first and last byte offsets for the fields given.
775  * Interprets the offsets table, which contains struct field offsets.
776  */
777 void
778 xfs_btree_offsets(
779 	int64_t		fields,		/* bitmask of fields */
780 	const short	*offsets,	/* table of field offsets */
781 	int		nbits,		/* number of bits to inspect */
782 	int		*first,		/* output: first byte offset */
783 	int		*last)		/* output: last byte offset */
784 {
785 	int		i;		/* current bit number */
786 	int64_t		imask;		/* mask for current bit number */
787 
788 	ASSERT(fields != 0);
789 	/*
790 	 * Find the lowest bit, so the first byte offset.
791 	 */
792 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
793 		if (imask & fields) {
794 			*first = offsets[i];
795 			break;
796 		}
797 	}
798 	/*
799 	 * Find the highest bit, so the last byte offset.
800 	 */
801 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
802 		if (imask & fields) {
803 			*last = offsets[i + 1] - 1;
804 			break;
805 		}
806 	}
807 }
808 
809 /*
810  * Get a buffer for the block, return it read in.
811  * Long-form addressing.
812  */
813 int
814 xfs_btree_read_bufl(
815 	struct xfs_mount	*mp,		/* file system mount point */
816 	struct xfs_trans	*tp,		/* transaction pointer */
817 	xfs_fsblock_t		fsbno,		/* file system block number */
818 	uint			lock,		/* lock flags for read_buf */
819 	struct xfs_buf		**bpp,		/* buffer for fsbno */
820 	int			refval,		/* ref count value for buffer */
821 	const struct xfs_buf_ops *ops)
822 {
823 	struct xfs_buf		*bp;		/* return value */
824 	xfs_daddr_t		d;		/* real disk block address */
825 	int			error;
826 
827 	if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
828 		return -EFSCORRUPTED;
829 	d = XFS_FSB_TO_DADDR(mp, fsbno);
830 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
831 				   mp->m_bsize, lock, &bp, ops);
832 	if (error)
833 		return error;
834 	if (bp)
835 		xfs_buf_set_ref(bp, refval);
836 	*bpp = bp;
837 	return 0;
838 }
839 
840 /*
841  * Read-ahead the block, don't wait for it, don't return a buffer.
842  * Long-form addressing.
843  */
844 /* ARGSUSED */
845 void
846 xfs_btree_reada_bufl(
847 	struct xfs_mount	*mp,		/* file system mount point */
848 	xfs_fsblock_t		fsbno,		/* file system block number */
849 	xfs_extlen_t		count,		/* count of filesystem blocks */
850 	const struct xfs_buf_ops *ops)
851 {
852 	xfs_daddr_t		d;
853 
854 	ASSERT(fsbno != NULLFSBLOCK);
855 	d = XFS_FSB_TO_DADDR(mp, fsbno);
856 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
857 }
858 
859 /*
860  * Read-ahead the block, don't wait for it, don't return a buffer.
861  * Short-form addressing.
862  */
863 /* ARGSUSED */
864 void
865 xfs_btree_reada_bufs(
866 	struct xfs_mount	*mp,		/* file system mount point */
867 	xfs_agnumber_t		agno,		/* allocation group number */
868 	xfs_agblock_t		agbno,		/* allocation group block number */
869 	xfs_extlen_t		count,		/* count of filesystem blocks */
870 	const struct xfs_buf_ops *ops)
871 {
872 	xfs_daddr_t		d;
873 
874 	ASSERT(agno != NULLAGNUMBER);
875 	ASSERT(agbno != NULLAGBLOCK);
876 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
877 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
878 }
879 
880 STATIC int
881 xfs_btree_readahead_lblock(
882 	struct xfs_btree_cur	*cur,
883 	int			lr,
884 	struct xfs_btree_block	*block)
885 {
886 	int			rval = 0;
887 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
888 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
889 
890 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
891 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
892 				     cur->bc_ops->buf_ops);
893 		rval++;
894 	}
895 
896 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
897 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
898 				     cur->bc_ops->buf_ops);
899 		rval++;
900 	}
901 
902 	return rval;
903 }
904 
905 STATIC int
906 xfs_btree_readahead_sblock(
907 	struct xfs_btree_cur	*cur,
908 	int			lr,
909 	struct xfs_btree_block *block)
910 {
911 	int			rval = 0;
912 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
913 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
914 
915 
916 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
917 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
918 				     left, 1, cur->bc_ops->buf_ops);
919 		rval++;
920 	}
921 
922 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
923 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
924 				     right, 1, cur->bc_ops->buf_ops);
925 		rval++;
926 	}
927 
928 	return rval;
929 }
930 
931 /*
932  * Read-ahead btree blocks, at the given level.
933  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
934  */
935 STATIC int
936 xfs_btree_readahead(
937 	struct xfs_btree_cur	*cur,		/* btree cursor */
938 	int			lev,		/* level in btree */
939 	int			lr)		/* left/right bits */
940 {
941 	struct xfs_btree_block	*block;
942 
943 	/*
944 	 * No readahead needed if we are at the root level and the
945 	 * btree root is stored in the inode.
946 	 */
947 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
948 	    (lev == cur->bc_nlevels - 1))
949 		return 0;
950 
951 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
952 		return 0;
953 
954 	cur->bc_ra[lev] |= lr;
955 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
956 
957 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
958 		return xfs_btree_readahead_lblock(cur, lr, block);
959 	return xfs_btree_readahead_sblock(cur, lr, block);
960 }
961 
962 STATIC xfs_daddr_t
963 xfs_btree_ptr_to_daddr(
964 	struct xfs_btree_cur	*cur,
965 	union xfs_btree_ptr	*ptr)
966 {
967 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
968 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
969 
970 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
971 	} else {
972 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
973 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
974 
975 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
976 					be32_to_cpu(ptr->s));
977 	}
978 }
979 
980 /*
981  * Readahead @count btree blocks at the given @ptr location.
982  *
983  * We don't need to care about long or short form btrees here as we have a
984  * method of converting the ptr directly to a daddr available to us.
985  */
986 STATIC void
987 xfs_btree_readahead_ptr(
988 	struct xfs_btree_cur	*cur,
989 	union xfs_btree_ptr	*ptr,
990 	xfs_extlen_t		count)
991 {
992 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
993 			  xfs_btree_ptr_to_daddr(cur, ptr),
994 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
995 }
996 
997 /*
998  * Set the buffer for level "lev" in the cursor to bp, releasing
999  * any previous buffer.
1000  */
1001 STATIC void
1002 xfs_btree_setbuf(
1003 	xfs_btree_cur_t		*cur,	/* btree cursor */
1004 	int			lev,	/* level in btree */
1005 	xfs_buf_t		*bp)	/* new buffer to set */
1006 {
1007 	struct xfs_btree_block	*b;	/* btree block */
1008 
1009 	if (cur->bc_bufs[lev])
1010 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1011 	cur->bc_bufs[lev] = bp;
1012 	cur->bc_ra[lev] = 0;
1013 
1014 	b = XFS_BUF_TO_BLOCK(bp);
1015 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1016 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1017 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1018 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1019 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1020 	} else {
1021 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1022 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1023 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1024 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1025 	}
1026 }
1027 
1028 STATIC int
1029 xfs_btree_ptr_is_null(
1030 	struct xfs_btree_cur	*cur,
1031 	union xfs_btree_ptr	*ptr)
1032 {
1033 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1034 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1035 	else
1036 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1037 }
1038 
1039 STATIC void
1040 xfs_btree_set_ptr_null(
1041 	struct xfs_btree_cur	*cur,
1042 	union xfs_btree_ptr	*ptr)
1043 {
1044 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1045 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1046 	else
1047 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1048 }
1049 
1050 /*
1051  * Get/set/init sibling pointers
1052  */
1053 STATIC void
1054 xfs_btree_get_sibling(
1055 	struct xfs_btree_cur	*cur,
1056 	struct xfs_btree_block	*block,
1057 	union xfs_btree_ptr	*ptr,
1058 	int			lr)
1059 {
1060 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1061 
1062 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1063 		if (lr == XFS_BB_RIGHTSIB)
1064 			ptr->l = block->bb_u.l.bb_rightsib;
1065 		else
1066 			ptr->l = block->bb_u.l.bb_leftsib;
1067 	} else {
1068 		if (lr == XFS_BB_RIGHTSIB)
1069 			ptr->s = block->bb_u.s.bb_rightsib;
1070 		else
1071 			ptr->s = block->bb_u.s.bb_leftsib;
1072 	}
1073 }
1074 
1075 STATIC void
1076 xfs_btree_set_sibling(
1077 	struct xfs_btree_cur	*cur,
1078 	struct xfs_btree_block	*block,
1079 	union xfs_btree_ptr	*ptr,
1080 	int			lr)
1081 {
1082 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1083 
1084 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1085 		if (lr == XFS_BB_RIGHTSIB)
1086 			block->bb_u.l.bb_rightsib = ptr->l;
1087 		else
1088 			block->bb_u.l.bb_leftsib = ptr->l;
1089 	} else {
1090 		if (lr == XFS_BB_RIGHTSIB)
1091 			block->bb_u.s.bb_rightsib = ptr->s;
1092 		else
1093 			block->bb_u.s.bb_leftsib = ptr->s;
1094 	}
1095 }
1096 
1097 void
1098 xfs_btree_init_block_int(
1099 	struct xfs_mount	*mp,
1100 	struct xfs_btree_block	*buf,
1101 	xfs_daddr_t		blkno,
1102 	xfs_btnum_t		btnum,
1103 	__u16			level,
1104 	__u16			numrecs,
1105 	__u64			owner,
1106 	unsigned int		flags)
1107 {
1108 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1109 	__u32			magic = xfs_btree_magic(crc, btnum);
1110 
1111 	buf->bb_magic = cpu_to_be32(magic);
1112 	buf->bb_level = cpu_to_be16(level);
1113 	buf->bb_numrecs = cpu_to_be16(numrecs);
1114 
1115 	if (flags & XFS_BTREE_LONG_PTRS) {
1116 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1117 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1118 		if (crc) {
1119 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1120 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1121 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1122 			buf->bb_u.l.bb_pad = 0;
1123 			buf->bb_u.l.bb_lsn = 0;
1124 		}
1125 	} else {
1126 		/* owner is a 32 bit value on short blocks */
1127 		__u32 __owner = (__u32)owner;
1128 
1129 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1130 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1131 		if (crc) {
1132 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1133 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1134 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1135 			buf->bb_u.s.bb_lsn = 0;
1136 		}
1137 	}
1138 }
1139 
1140 void
1141 xfs_btree_init_block(
1142 	struct xfs_mount *mp,
1143 	struct xfs_buf	*bp,
1144 	xfs_btnum_t	btnum,
1145 	__u16		level,
1146 	__u16		numrecs,
1147 	__u64		owner,
1148 	unsigned int	flags)
1149 {
1150 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1151 				 btnum, level, numrecs, owner, flags);
1152 }
1153 
1154 STATIC void
1155 xfs_btree_init_block_cur(
1156 	struct xfs_btree_cur	*cur,
1157 	struct xfs_buf		*bp,
1158 	int			level,
1159 	int			numrecs)
1160 {
1161 	__u64			owner;
1162 
1163 	/*
1164 	 * we can pull the owner from the cursor right now as the different
1165 	 * owners align directly with the pointer size of the btree. This may
1166 	 * change in future, but is safe for current users of the generic btree
1167 	 * code.
1168 	 */
1169 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1170 		owner = cur->bc_private.b.ip->i_ino;
1171 	else
1172 		owner = cur->bc_private.a.agno;
1173 
1174 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1175 				 cur->bc_btnum, level, numrecs,
1176 				 owner, cur->bc_flags);
1177 }
1178 
1179 /*
1180  * Return true if ptr is the last record in the btree and
1181  * we need to track updates to this record.  The decision
1182  * will be further refined in the update_lastrec method.
1183  */
1184 STATIC int
1185 xfs_btree_is_lastrec(
1186 	struct xfs_btree_cur	*cur,
1187 	struct xfs_btree_block	*block,
1188 	int			level)
1189 {
1190 	union xfs_btree_ptr	ptr;
1191 
1192 	if (level > 0)
1193 		return 0;
1194 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1195 		return 0;
1196 
1197 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1198 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1199 		return 0;
1200 	return 1;
1201 }
1202 
1203 STATIC void
1204 xfs_btree_buf_to_ptr(
1205 	struct xfs_btree_cur	*cur,
1206 	struct xfs_buf		*bp,
1207 	union xfs_btree_ptr	*ptr)
1208 {
1209 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1210 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1211 					XFS_BUF_ADDR(bp)));
1212 	else {
1213 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1214 					XFS_BUF_ADDR(bp)));
1215 	}
1216 }
1217 
1218 STATIC void
1219 xfs_btree_set_refs(
1220 	struct xfs_btree_cur	*cur,
1221 	struct xfs_buf		*bp)
1222 {
1223 	switch (cur->bc_btnum) {
1224 	case XFS_BTNUM_BNO:
1225 	case XFS_BTNUM_CNT:
1226 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1227 		break;
1228 	case XFS_BTNUM_INO:
1229 	case XFS_BTNUM_FINO:
1230 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1231 		break;
1232 	case XFS_BTNUM_BMAP:
1233 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1234 		break;
1235 	case XFS_BTNUM_RMAP:
1236 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1237 		break;
1238 	case XFS_BTNUM_REFC:
1239 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1240 		break;
1241 	default:
1242 		ASSERT(0);
1243 	}
1244 }
1245 
1246 STATIC int
1247 xfs_btree_get_buf_block(
1248 	struct xfs_btree_cur	*cur,
1249 	union xfs_btree_ptr	*ptr,
1250 	int			flags,
1251 	struct xfs_btree_block	**block,
1252 	struct xfs_buf		**bpp)
1253 {
1254 	struct xfs_mount	*mp = cur->bc_mp;
1255 	xfs_daddr_t		d;
1256 
1257 	/* need to sort out how callers deal with failures first */
1258 	ASSERT(!(flags & XBF_TRYLOCK));
1259 
1260 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1261 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1262 				 mp->m_bsize, flags);
1263 
1264 	if (!*bpp)
1265 		return -ENOMEM;
1266 
1267 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1268 	*block = XFS_BUF_TO_BLOCK(*bpp);
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Read in the buffer at the given ptr and return the buffer and
1274  * the block pointer within the buffer.
1275  */
1276 STATIC int
1277 xfs_btree_read_buf_block(
1278 	struct xfs_btree_cur	*cur,
1279 	union xfs_btree_ptr	*ptr,
1280 	int			flags,
1281 	struct xfs_btree_block	**block,
1282 	struct xfs_buf		**bpp)
1283 {
1284 	struct xfs_mount	*mp = cur->bc_mp;
1285 	xfs_daddr_t		d;
1286 	int			error;
1287 
1288 	/* need to sort out how callers deal with failures first */
1289 	ASSERT(!(flags & XBF_TRYLOCK));
1290 
1291 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1292 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1293 				   mp->m_bsize, flags, bpp,
1294 				   cur->bc_ops->buf_ops);
1295 	if (error)
1296 		return error;
1297 
1298 	xfs_btree_set_refs(cur, *bpp);
1299 	*block = XFS_BUF_TO_BLOCK(*bpp);
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Copy keys from one btree block to another.
1305  */
1306 STATIC void
1307 xfs_btree_copy_keys(
1308 	struct xfs_btree_cur	*cur,
1309 	union xfs_btree_key	*dst_key,
1310 	union xfs_btree_key	*src_key,
1311 	int			numkeys)
1312 {
1313 	ASSERT(numkeys >= 0);
1314 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1315 }
1316 
1317 /*
1318  * Copy records from one btree block to another.
1319  */
1320 STATIC void
1321 xfs_btree_copy_recs(
1322 	struct xfs_btree_cur	*cur,
1323 	union xfs_btree_rec	*dst_rec,
1324 	union xfs_btree_rec	*src_rec,
1325 	int			numrecs)
1326 {
1327 	ASSERT(numrecs >= 0);
1328 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1329 }
1330 
1331 /*
1332  * Copy block pointers from one btree block to another.
1333  */
1334 STATIC void
1335 xfs_btree_copy_ptrs(
1336 	struct xfs_btree_cur	*cur,
1337 	union xfs_btree_ptr	*dst_ptr,
1338 	union xfs_btree_ptr	*src_ptr,
1339 	int			numptrs)
1340 {
1341 	ASSERT(numptrs >= 0);
1342 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1343 }
1344 
1345 /*
1346  * Shift keys one index left/right inside a single btree block.
1347  */
1348 STATIC void
1349 xfs_btree_shift_keys(
1350 	struct xfs_btree_cur	*cur,
1351 	union xfs_btree_key	*key,
1352 	int			dir,
1353 	int			numkeys)
1354 {
1355 	char			*dst_key;
1356 
1357 	ASSERT(numkeys >= 0);
1358 	ASSERT(dir == 1 || dir == -1);
1359 
1360 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1361 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1362 }
1363 
1364 /*
1365  * Shift records one index left/right inside a single btree block.
1366  */
1367 STATIC void
1368 xfs_btree_shift_recs(
1369 	struct xfs_btree_cur	*cur,
1370 	union xfs_btree_rec	*rec,
1371 	int			dir,
1372 	int			numrecs)
1373 {
1374 	char			*dst_rec;
1375 
1376 	ASSERT(numrecs >= 0);
1377 	ASSERT(dir == 1 || dir == -1);
1378 
1379 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1380 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1381 }
1382 
1383 /*
1384  * Shift block pointers one index left/right inside a single btree block.
1385  */
1386 STATIC void
1387 xfs_btree_shift_ptrs(
1388 	struct xfs_btree_cur	*cur,
1389 	union xfs_btree_ptr	*ptr,
1390 	int			dir,
1391 	int			numptrs)
1392 {
1393 	char			*dst_ptr;
1394 
1395 	ASSERT(numptrs >= 0);
1396 	ASSERT(dir == 1 || dir == -1);
1397 
1398 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1399 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1400 }
1401 
1402 /*
1403  * Log key values from the btree block.
1404  */
1405 STATIC void
1406 xfs_btree_log_keys(
1407 	struct xfs_btree_cur	*cur,
1408 	struct xfs_buf		*bp,
1409 	int			first,
1410 	int			last)
1411 {
1412 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1413 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1414 
1415 	if (bp) {
1416 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1417 		xfs_trans_log_buf(cur->bc_tp, bp,
1418 				  xfs_btree_key_offset(cur, first),
1419 				  xfs_btree_key_offset(cur, last + 1) - 1);
1420 	} else {
1421 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1422 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1423 	}
1424 
1425 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1426 }
1427 
1428 /*
1429  * Log record values from the btree block.
1430  */
1431 void
1432 xfs_btree_log_recs(
1433 	struct xfs_btree_cur	*cur,
1434 	struct xfs_buf		*bp,
1435 	int			first,
1436 	int			last)
1437 {
1438 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1439 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1440 
1441 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 	xfs_trans_log_buf(cur->bc_tp, bp,
1443 			  xfs_btree_rec_offset(cur, first),
1444 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1445 
1446 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1447 }
1448 
1449 /*
1450  * Log block pointer fields from a btree block (nonleaf).
1451  */
1452 STATIC void
1453 xfs_btree_log_ptrs(
1454 	struct xfs_btree_cur	*cur,	/* btree cursor */
1455 	struct xfs_buf		*bp,	/* buffer containing btree block */
1456 	int			first,	/* index of first pointer to log */
1457 	int			last)	/* index of last pointer to log */
1458 {
1459 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1460 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1461 
1462 	if (bp) {
1463 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1464 		int			level = xfs_btree_get_level(block);
1465 
1466 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1467 		xfs_trans_log_buf(cur->bc_tp, bp,
1468 				xfs_btree_ptr_offset(cur, first, level),
1469 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1470 	} else {
1471 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1472 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1473 	}
1474 
1475 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1476 }
1477 
1478 /*
1479  * Log fields from a btree block header.
1480  */
1481 void
1482 xfs_btree_log_block(
1483 	struct xfs_btree_cur	*cur,	/* btree cursor */
1484 	struct xfs_buf		*bp,	/* buffer containing btree block */
1485 	int			fields)	/* mask of fields: XFS_BB_... */
1486 {
1487 	int			first;	/* first byte offset logged */
1488 	int			last;	/* last byte offset logged */
1489 	static const short	soffsets[] = {	/* table of offsets (short) */
1490 		offsetof(struct xfs_btree_block, bb_magic),
1491 		offsetof(struct xfs_btree_block, bb_level),
1492 		offsetof(struct xfs_btree_block, bb_numrecs),
1493 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1494 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1495 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1496 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1497 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1498 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1499 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1500 		XFS_BTREE_SBLOCK_CRC_LEN
1501 	};
1502 	static const short	loffsets[] = {	/* table of offsets (long) */
1503 		offsetof(struct xfs_btree_block, bb_magic),
1504 		offsetof(struct xfs_btree_block, bb_level),
1505 		offsetof(struct xfs_btree_block, bb_numrecs),
1506 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1507 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1508 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1509 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1510 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1511 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1512 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1513 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1514 		XFS_BTREE_LBLOCK_CRC_LEN
1515 	};
1516 
1517 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1518 	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1519 
1520 	if (bp) {
1521 		int nbits;
1522 
1523 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1524 			/*
1525 			 * We don't log the CRC when updating a btree
1526 			 * block but instead recreate it during log
1527 			 * recovery.  As the log buffers have checksums
1528 			 * of their own this is safe and avoids logging a crc
1529 			 * update in a lot of places.
1530 			 */
1531 			if (fields == XFS_BB_ALL_BITS)
1532 				fields = XFS_BB_ALL_BITS_CRC;
1533 			nbits = XFS_BB_NUM_BITS_CRC;
1534 		} else {
1535 			nbits = XFS_BB_NUM_BITS;
1536 		}
1537 		xfs_btree_offsets(fields,
1538 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1539 					loffsets : soffsets,
1540 				  nbits, &first, &last);
1541 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1542 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1543 	} else {
1544 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1545 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1546 	}
1547 
1548 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1549 }
1550 
1551 /*
1552  * Increment cursor by one record at the level.
1553  * For nonzero levels the leaf-ward information is untouched.
1554  */
1555 int						/* error */
1556 xfs_btree_increment(
1557 	struct xfs_btree_cur	*cur,
1558 	int			level,
1559 	int			*stat)		/* success/failure */
1560 {
1561 	struct xfs_btree_block	*block;
1562 	union xfs_btree_ptr	ptr;
1563 	struct xfs_buf		*bp;
1564 	int			error;		/* error return value */
1565 	int			lev;
1566 
1567 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1568 	XFS_BTREE_TRACE_ARGI(cur, level);
1569 
1570 	ASSERT(level < cur->bc_nlevels);
1571 
1572 	/* Read-ahead to the right at this level. */
1573 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1574 
1575 	/* Get a pointer to the btree block. */
1576 	block = xfs_btree_get_block(cur, level, &bp);
1577 
1578 #ifdef DEBUG
1579 	error = xfs_btree_check_block(cur, block, level, bp);
1580 	if (error)
1581 		goto error0;
1582 #endif
1583 
1584 	/* We're done if we remain in the block after the increment. */
1585 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1586 		goto out1;
1587 
1588 	/* Fail if we just went off the right edge of the tree. */
1589 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1590 	if (xfs_btree_ptr_is_null(cur, &ptr))
1591 		goto out0;
1592 
1593 	XFS_BTREE_STATS_INC(cur, increment);
1594 
1595 	/*
1596 	 * March up the tree incrementing pointers.
1597 	 * Stop when we don't go off the right edge of a block.
1598 	 */
1599 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1600 		block = xfs_btree_get_block(cur, lev, &bp);
1601 
1602 #ifdef DEBUG
1603 		error = xfs_btree_check_block(cur, block, lev, bp);
1604 		if (error)
1605 			goto error0;
1606 #endif
1607 
1608 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1609 			break;
1610 
1611 		/* Read-ahead the right block for the next loop. */
1612 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1613 	}
1614 
1615 	/*
1616 	 * If we went off the root then we are either seriously
1617 	 * confused or have the tree root in an inode.
1618 	 */
1619 	if (lev == cur->bc_nlevels) {
1620 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1621 			goto out0;
1622 		ASSERT(0);
1623 		error = -EFSCORRUPTED;
1624 		goto error0;
1625 	}
1626 	ASSERT(lev < cur->bc_nlevels);
1627 
1628 	/*
1629 	 * Now walk back down the tree, fixing up the cursor's buffer
1630 	 * pointers and key numbers.
1631 	 */
1632 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1633 		union xfs_btree_ptr	*ptrp;
1634 
1635 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1636 		--lev;
1637 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1638 		if (error)
1639 			goto error0;
1640 
1641 		xfs_btree_setbuf(cur, lev, bp);
1642 		cur->bc_ptrs[lev] = 1;
1643 	}
1644 out1:
1645 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1646 	*stat = 1;
1647 	return 0;
1648 
1649 out0:
1650 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1651 	*stat = 0;
1652 	return 0;
1653 
1654 error0:
1655 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1656 	return error;
1657 }
1658 
1659 /*
1660  * Decrement cursor by one record at the level.
1661  * For nonzero levels the leaf-ward information is untouched.
1662  */
1663 int						/* error */
1664 xfs_btree_decrement(
1665 	struct xfs_btree_cur	*cur,
1666 	int			level,
1667 	int			*stat)		/* success/failure */
1668 {
1669 	struct xfs_btree_block	*block;
1670 	xfs_buf_t		*bp;
1671 	int			error;		/* error return value */
1672 	int			lev;
1673 	union xfs_btree_ptr	ptr;
1674 
1675 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1676 	XFS_BTREE_TRACE_ARGI(cur, level);
1677 
1678 	ASSERT(level < cur->bc_nlevels);
1679 
1680 	/* Read-ahead to the left at this level. */
1681 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1682 
1683 	/* We're done if we remain in the block after the decrement. */
1684 	if (--cur->bc_ptrs[level] > 0)
1685 		goto out1;
1686 
1687 	/* Get a pointer to the btree block. */
1688 	block = xfs_btree_get_block(cur, level, &bp);
1689 
1690 #ifdef DEBUG
1691 	error = xfs_btree_check_block(cur, block, level, bp);
1692 	if (error)
1693 		goto error0;
1694 #endif
1695 
1696 	/* Fail if we just went off the left edge of the tree. */
1697 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1698 	if (xfs_btree_ptr_is_null(cur, &ptr))
1699 		goto out0;
1700 
1701 	XFS_BTREE_STATS_INC(cur, decrement);
1702 
1703 	/*
1704 	 * March up the tree decrementing pointers.
1705 	 * Stop when we don't go off the left edge of a block.
1706 	 */
1707 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1708 		if (--cur->bc_ptrs[lev] > 0)
1709 			break;
1710 		/* Read-ahead the left block for the next loop. */
1711 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1712 	}
1713 
1714 	/*
1715 	 * If we went off the root then we are seriously confused.
1716 	 * or the root of the tree is in an inode.
1717 	 */
1718 	if (lev == cur->bc_nlevels) {
1719 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1720 			goto out0;
1721 		ASSERT(0);
1722 		error = -EFSCORRUPTED;
1723 		goto error0;
1724 	}
1725 	ASSERT(lev < cur->bc_nlevels);
1726 
1727 	/*
1728 	 * Now walk back down the tree, fixing up the cursor's buffer
1729 	 * pointers and key numbers.
1730 	 */
1731 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1732 		union xfs_btree_ptr	*ptrp;
1733 
1734 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1735 		--lev;
1736 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1737 		if (error)
1738 			goto error0;
1739 		xfs_btree_setbuf(cur, lev, bp);
1740 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1741 	}
1742 out1:
1743 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1744 	*stat = 1;
1745 	return 0;
1746 
1747 out0:
1748 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1749 	*stat = 0;
1750 	return 0;
1751 
1752 error0:
1753 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1754 	return error;
1755 }
1756 
1757 int
1758 xfs_btree_lookup_get_block(
1759 	struct xfs_btree_cur	*cur,	/* btree cursor */
1760 	int			level,	/* level in the btree */
1761 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1762 	struct xfs_btree_block	**blkp) /* return btree block */
1763 {
1764 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1765 	int			error = 0;
1766 
1767 	/* special case the root block if in an inode */
1768 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1769 	    (level == cur->bc_nlevels - 1)) {
1770 		*blkp = xfs_btree_get_iroot(cur);
1771 		return 0;
1772 	}
1773 
1774 	/*
1775 	 * If the old buffer at this level for the disk address we are
1776 	 * looking for re-use it.
1777 	 *
1778 	 * Otherwise throw it away and get a new one.
1779 	 */
1780 	bp = cur->bc_bufs[level];
1781 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1782 		*blkp = XFS_BUF_TO_BLOCK(bp);
1783 		return 0;
1784 	}
1785 
1786 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1787 	if (error)
1788 		return error;
1789 
1790 	/* Check the inode owner since the verifiers don't. */
1791 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1792 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1793 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1794 			cur->bc_private.b.ip->i_ino)
1795 		goto out_bad;
1796 
1797 	/* Did we get the level we were looking for? */
1798 	if (be16_to_cpu((*blkp)->bb_level) != level)
1799 		goto out_bad;
1800 
1801 	/* Check that internal nodes have at least one record. */
1802 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1803 		goto out_bad;
1804 
1805 	xfs_btree_setbuf(cur, level, bp);
1806 	return 0;
1807 
1808 out_bad:
1809 	*blkp = NULL;
1810 	xfs_trans_brelse(cur->bc_tp, bp);
1811 	return -EFSCORRUPTED;
1812 }
1813 
1814 /*
1815  * Get current search key.  For level 0 we don't actually have a key
1816  * structure so we make one up from the record.  For all other levels
1817  * we just return the right key.
1818  */
1819 STATIC union xfs_btree_key *
1820 xfs_lookup_get_search_key(
1821 	struct xfs_btree_cur	*cur,
1822 	int			level,
1823 	int			keyno,
1824 	struct xfs_btree_block	*block,
1825 	union xfs_btree_key	*kp)
1826 {
1827 	if (level == 0) {
1828 		cur->bc_ops->init_key_from_rec(kp,
1829 				xfs_btree_rec_addr(cur, keyno, block));
1830 		return kp;
1831 	}
1832 
1833 	return xfs_btree_key_addr(cur, keyno, block);
1834 }
1835 
1836 /*
1837  * Lookup the record.  The cursor is made to point to it, based on dir.
1838  * stat is set to 0 if can't find any such record, 1 for success.
1839  */
1840 int					/* error */
1841 xfs_btree_lookup(
1842 	struct xfs_btree_cur	*cur,	/* btree cursor */
1843 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1844 	int			*stat)	/* success/failure */
1845 {
1846 	struct xfs_btree_block	*block;	/* current btree block */
1847 	int64_t			diff;	/* difference for the current key */
1848 	int			error;	/* error return value */
1849 	int			keyno;	/* current key number */
1850 	int			level;	/* level in the btree */
1851 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1852 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1853 
1854 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1855 	XFS_BTREE_TRACE_ARGI(cur, dir);
1856 
1857 	XFS_BTREE_STATS_INC(cur, lookup);
1858 
1859 	/* No such thing as a zero-level tree. */
1860 	if (cur->bc_nlevels == 0)
1861 		return -EFSCORRUPTED;
1862 
1863 	block = NULL;
1864 	keyno = 0;
1865 
1866 	/* initialise start pointer from cursor */
1867 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1868 	pp = &ptr;
1869 
1870 	/*
1871 	 * Iterate over each level in the btree, starting at the root.
1872 	 * For each level above the leaves, find the key we need, based
1873 	 * on the lookup record, then follow the corresponding block
1874 	 * pointer down to the next level.
1875 	 */
1876 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1877 		/* Get the block we need to do the lookup on. */
1878 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1879 		if (error)
1880 			goto error0;
1881 
1882 		if (diff == 0) {
1883 			/*
1884 			 * If we already had a key match at a higher level, we
1885 			 * know we need to use the first entry in this block.
1886 			 */
1887 			keyno = 1;
1888 		} else {
1889 			/* Otherwise search this block. Do a binary search. */
1890 
1891 			int	high;	/* high entry number */
1892 			int	low;	/* low entry number */
1893 
1894 			/* Set low and high entry numbers, 1-based. */
1895 			low = 1;
1896 			high = xfs_btree_get_numrecs(block);
1897 			if (!high) {
1898 				/* Block is empty, must be an empty leaf. */
1899 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1900 
1901 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1902 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1903 				*stat = 0;
1904 				return 0;
1905 			}
1906 
1907 			/* Binary search the block. */
1908 			while (low <= high) {
1909 				union xfs_btree_key	key;
1910 				union xfs_btree_key	*kp;
1911 
1912 				XFS_BTREE_STATS_INC(cur, compare);
1913 
1914 				/* keyno is average of low and high. */
1915 				keyno = (low + high) >> 1;
1916 
1917 				/* Get current search key */
1918 				kp = xfs_lookup_get_search_key(cur, level,
1919 						keyno, block, &key);
1920 
1921 				/*
1922 				 * Compute difference to get next direction:
1923 				 *  - less than, move right
1924 				 *  - greater than, move left
1925 				 *  - equal, we're done
1926 				 */
1927 				diff = cur->bc_ops->key_diff(cur, kp);
1928 				if (diff < 0)
1929 					low = keyno + 1;
1930 				else if (diff > 0)
1931 					high = keyno - 1;
1932 				else
1933 					break;
1934 			}
1935 		}
1936 
1937 		/*
1938 		 * If there are more levels, set up for the next level
1939 		 * by getting the block number and filling in the cursor.
1940 		 */
1941 		if (level > 0) {
1942 			/*
1943 			 * If we moved left, need the previous key number,
1944 			 * unless there isn't one.
1945 			 */
1946 			if (diff > 0 && --keyno < 1)
1947 				keyno = 1;
1948 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1949 
1950 #ifdef DEBUG
1951 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1952 			if (error)
1953 				goto error0;
1954 #endif
1955 			cur->bc_ptrs[level] = keyno;
1956 		}
1957 	}
1958 
1959 	/* Done with the search. See if we need to adjust the results. */
1960 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1961 		keyno++;
1962 		/*
1963 		 * If ge search and we went off the end of the block, but it's
1964 		 * not the last block, we're in the wrong block.
1965 		 */
1966 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1967 		if (dir == XFS_LOOKUP_GE &&
1968 		    keyno > xfs_btree_get_numrecs(block) &&
1969 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1970 			int	i;
1971 
1972 			cur->bc_ptrs[0] = keyno;
1973 			error = xfs_btree_increment(cur, 0, &i);
1974 			if (error)
1975 				goto error0;
1976 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1977 			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1978 			*stat = 1;
1979 			return 0;
1980 		}
1981 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1982 		keyno--;
1983 	cur->bc_ptrs[0] = keyno;
1984 
1985 	/* Return if we succeeded or not. */
1986 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1987 		*stat = 0;
1988 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1989 		*stat = 1;
1990 	else
1991 		*stat = 0;
1992 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1993 	return 0;
1994 
1995 error0:
1996 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1997 	return error;
1998 }
1999 
2000 /* Find the high key storage area from a regular key. */
2001 STATIC union xfs_btree_key *
2002 xfs_btree_high_key_from_key(
2003 	struct xfs_btree_cur	*cur,
2004 	union xfs_btree_key	*key)
2005 {
2006 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2007 	return (union xfs_btree_key *)((char *)key +
2008 			(cur->bc_ops->key_len / 2));
2009 }
2010 
2011 /* Determine the low (and high if overlapped) keys of a leaf block */
2012 STATIC void
2013 xfs_btree_get_leaf_keys(
2014 	struct xfs_btree_cur	*cur,
2015 	struct xfs_btree_block	*block,
2016 	union xfs_btree_key	*key)
2017 {
2018 	union xfs_btree_key	max_hkey;
2019 	union xfs_btree_key	hkey;
2020 	union xfs_btree_rec	*rec;
2021 	union xfs_btree_key	*high;
2022 	int			n;
2023 
2024 	rec = xfs_btree_rec_addr(cur, 1, block);
2025 	cur->bc_ops->init_key_from_rec(key, rec);
2026 
2027 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2028 
2029 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2030 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2031 			rec = xfs_btree_rec_addr(cur, n, block);
2032 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2033 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2034 					> 0)
2035 				max_hkey = hkey;
2036 		}
2037 
2038 		high = xfs_btree_high_key_from_key(cur, key);
2039 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2040 	}
2041 }
2042 
2043 /* Determine the low (and high if overlapped) keys of a node block */
2044 STATIC void
2045 xfs_btree_get_node_keys(
2046 	struct xfs_btree_cur	*cur,
2047 	struct xfs_btree_block	*block,
2048 	union xfs_btree_key	*key)
2049 {
2050 	union xfs_btree_key	*hkey;
2051 	union xfs_btree_key	*max_hkey;
2052 	union xfs_btree_key	*high;
2053 	int			n;
2054 
2055 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2056 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2057 				cur->bc_ops->key_len / 2);
2058 
2059 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2060 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2061 			hkey = xfs_btree_high_key_addr(cur, n, block);
2062 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2063 				max_hkey = hkey;
2064 		}
2065 
2066 		high = xfs_btree_high_key_from_key(cur, key);
2067 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2068 	} else {
2069 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2070 				cur->bc_ops->key_len);
2071 	}
2072 }
2073 
2074 /* Derive the keys for any btree block. */
2075 STATIC void
2076 xfs_btree_get_keys(
2077 	struct xfs_btree_cur	*cur,
2078 	struct xfs_btree_block	*block,
2079 	union xfs_btree_key	*key)
2080 {
2081 	if (be16_to_cpu(block->bb_level) == 0)
2082 		xfs_btree_get_leaf_keys(cur, block, key);
2083 	else
2084 		xfs_btree_get_node_keys(cur, block, key);
2085 }
2086 
2087 /*
2088  * Decide if we need to update the parent keys of a btree block.  For
2089  * a standard btree this is only necessary if we're updating the first
2090  * record/key.  For an overlapping btree, we must always update the
2091  * keys because the highest key can be in any of the records or keys
2092  * in the block.
2093  */
2094 static inline bool
2095 xfs_btree_needs_key_update(
2096 	struct xfs_btree_cur	*cur,
2097 	int			ptr)
2098 {
2099 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2100 }
2101 
2102 /*
2103  * Update the low and high parent keys of the given level, progressing
2104  * towards the root.  If force_all is false, stop if the keys for a given
2105  * level do not need updating.
2106  */
2107 STATIC int
2108 __xfs_btree_updkeys(
2109 	struct xfs_btree_cur	*cur,
2110 	int			level,
2111 	struct xfs_btree_block	*block,
2112 	struct xfs_buf		*bp0,
2113 	bool			force_all)
2114 {
2115 	union xfs_btree_key	key;	/* keys from current level */
2116 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2117 	union xfs_btree_key	*hkey;
2118 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2119 	union xfs_btree_key	*nhkey;
2120 	struct xfs_buf		*bp;
2121 	int			ptr;
2122 
2123 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2124 
2125 	/* Exit if there aren't any parent levels to update. */
2126 	if (level + 1 >= cur->bc_nlevels)
2127 		return 0;
2128 
2129 	trace_xfs_btree_updkeys(cur, level, bp0);
2130 
2131 	lkey = &key;
2132 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2133 	xfs_btree_get_keys(cur, block, lkey);
2134 	for (level++; level < cur->bc_nlevels; level++) {
2135 #ifdef DEBUG
2136 		int		error;
2137 #endif
2138 		block = xfs_btree_get_block(cur, level, &bp);
2139 		trace_xfs_btree_updkeys(cur, level, bp);
2140 #ifdef DEBUG
2141 		error = xfs_btree_check_block(cur, block, level, bp);
2142 		if (error) {
2143 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2144 			return error;
2145 		}
2146 #endif
2147 		ptr = cur->bc_ptrs[level];
2148 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2149 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2150 		if (!force_all &&
2151 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2152 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2153 			break;
2154 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2155 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2156 		if (level + 1 >= cur->bc_nlevels)
2157 			break;
2158 		xfs_btree_get_node_keys(cur, block, lkey);
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /* Update all the keys from some level in cursor back to the root. */
2165 STATIC int
2166 xfs_btree_updkeys_force(
2167 	struct xfs_btree_cur	*cur,
2168 	int			level)
2169 {
2170 	struct xfs_buf		*bp;
2171 	struct xfs_btree_block	*block;
2172 
2173 	block = xfs_btree_get_block(cur, level, &bp);
2174 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2175 }
2176 
2177 /*
2178  * Update the parent keys of the given level, progressing towards the root.
2179  */
2180 STATIC int
2181 xfs_btree_update_keys(
2182 	struct xfs_btree_cur	*cur,
2183 	int			level)
2184 {
2185 	struct xfs_btree_block	*block;
2186 	struct xfs_buf		*bp;
2187 	union xfs_btree_key	*kp;
2188 	union xfs_btree_key	key;
2189 	int			ptr;
2190 
2191 	ASSERT(level >= 0);
2192 
2193 	block = xfs_btree_get_block(cur, level, &bp);
2194 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2195 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2196 
2197 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2198 	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2199 
2200 	/*
2201 	 * Go up the tree from this level toward the root.
2202 	 * At each level, update the key value to the value input.
2203 	 * Stop when we reach a level where the cursor isn't pointing
2204 	 * at the first entry in the block.
2205 	 */
2206 	xfs_btree_get_keys(cur, block, &key);
2207 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2208 #ifdef DEBUG
2209 		int		error;
2210 #endif
2211 		block = xfs_btree_get_block(cur, level, &bp);
2212 #ifdef DEBUG
2213 		error = xfs_btree_check_block(cur, block, level, bp);
2214 		if (error) {
2215 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2216 			return error;
2217 		}
2218 #endif
2219 		ptr = cur->bc_ptrs[level];
2220 		kp = xfs_btree_key_addr(cur, ptr, block);
2221 		xfs_btree_copy_keys(cur, kp, &key, 1);
2222 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2223 	}
2224 
2225 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Update the record referred to by cur to the value in the
2231  * given record. This either works (return 0) or gets an
2232  * EFSCORRUPTED error.
2233  */
2234 int
2235 xfs_btree_update(
2236 	struct xfs_btree_cur	*cur,
2237 	union xfs_btree_rec	*rec)
2238 {
2239 	struct xfs_btree_block	*block;
2240 	struct xfs_buf		*bp;
2241 	int			error;
2242 	int			ptr;
2243 	union xfs_btree_rec	*rp;
2244 
2245 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2246 	XFS_BTREE_TRACE_ARGR(cur, rec);
2247 
2248 	/* Pick up the current block. */
2249 	block = xfs_btree_get_block(cur, 0, &bp);
2250 
2251 #ifdef DEBUG
2252 	error = xfs_btree_check_block(cur, block, 0, bp);
2253 	if (error)
2254 		goto error0;
2255 #endif
2256 	/* Get the address of the rec to be updated. */
2257 	ptr = cur->bc_ptrs[0];
2258 	rp = xfs_btree_rec_addr(cur, ptr, block);
2259 
2260 	/* Fill in the new contents and log them. */
2261 	xfs_btree_copy_recs(cur, rp, rec, 1);
2262 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2263 
2264 	/*
2265 	 * If we are tracking the last record in the tree and
2266 	 * we are at the far right edge of the tree, update it.
2267 	 */
2268 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2269 		cur->bc_ops->update_lastrec(cur, block, rec,
2270 					    ptr, LASTREC_UPDATE);
2271 	}
2272 
2273 	/* Pass new key value up to our parent. */
2274 	if (xfs_btree_needs_key_update(cur, ptr)) {
2275 		error = xfs_btree_update_keys(cur, 0);
2276 		if (error)
2277 			goto error0;
2278 	}
2279 
2280 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2281 	return 0;
2282 
2283 error0:
2284 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2285 	return error;
2286 }
2287 
2288 /*
2289  * Move 1 record left from cur/level if possible.
2290  * Update cur to reflect the new path.
2291  */
2292 STATIC int					/* error */
2293 xfs_btree_lshift(
2294 	struct xfs_btree_cur	*cur,
2295 	int			level,
2296 	int			*stat)		/* success/failure */
2297 {
2298 	struct xfs_buf		*lbp;		/* left buffer pointer */
2299 	struct xfs_btree_block	*left;		/* left btree block */
2300 	int			lrecs;		/* left record count */
2301 	struct xfs_buf		*rbp;		/* right buffer pointer */
2302 	struct xfs_btree_block	*right;		/* right btree block */
2303 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2304 	int			rrecs;		/* right record count */
2305 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2306 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2307 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2308 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2309 	int			error;		/* error return value */
2310 	int			i;
2311 
2312 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2313 	XFS_BTREE_TRACE_ARGI(cur, level);
2314 
2315 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2316 	    level == cur->bc_nlevels - 1)
2317 		goto out0;
2318 
2319 	/* Set up variables for this block as "right". */
2320 	right = xfs_btree_get_block(cur, level, &rbp);
2321 
2322 #ifdef DEBUG
2323 	error = xfs_btree_check_block(cur, right, level, rbp);
2324 	if (error)
2325 		goto error0;
2326 #endif
2327 
2328 	/* If we've got no left sibling then we can't shift an entry left. */
2329 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2330 	if (xfs_btree_ptr_is_null(cur, &lptr))
2331 		goto out0;
2332 
2333 	/*
2334 	 * If the cursor entry is the one that would be moved, don't
2335 	 * do it... it's too complicated.
2336 	 */
2337 	if (cur->bc_ptrs[level] <= 1)
2338 		goto out0;
2339 
2340 	/* Set up the left neighbor as "left". */
2341 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2342 	if (error)
2343 		goto error0;
2344 
2345 	/* If it's full, it can't take another entry. */
2346 	lrecs = xfs_btree_get_numrecs(left);
2347 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2348 		goto out0;
2349 
2350 	rrecs = xfs_btree_get_numrecs(right);
2351 
2352 	/*
2353 	 * We add one entry to the left side and remove one for the right side.
2354 	 * Account for it here, the changes will be updated on disk and logged
2355 	 * later.
2356 	 */
2357 	lrecs++;
2358 	rrecs--;
2359 
2360 	XFS_BTREE_STATS_INC(cur, lshift);
2361 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2362 
2363 	/*
2364 	 * If non-leaf, copy a key and a ptr to the left block.
2365 	 * Log the changes to the left block.
2366 	 */
2367 	if (level > 0) {
2368 		/* It's a non-leaf.  Move keys and pointers. */
2369 		union xfs_btree_key	*lkp;	/* left btree key */
2370 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2371 
2372 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2373 		rkp = xfs_btree_key_addr(cur, 1, right);
2374 
2375 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2376 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2377 #ifdef DEBUG
2378 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2379 		if (error)
2380 			goto error0;
2381 #endif
2382 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2383 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2384 
2385 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2386 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2387 
2388 		ASSERT(cur->bc_ops->keys_inorder(cur,
2389 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2390 	} else {
2391 		/* It's a leaf.  Move records.  */
2392 		union xfs_btree_rec	*lrp;	/* left record pointer */
2393 
2394 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2395 		rrp = xfs_btree_rec_addr(cur, 1, right);
2396 
2397 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2398 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2399 
2400 		ASSERT(cur->bc_ops->recs_inorder(cur,
2401 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2402 	}
2403 
2404 	xfs_btree_set_numrecs(left, lrecs);
2405 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2406 
2407 	xfs_btree_set_numrecs(right, rrecs);
2408 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2409 
2410 	/*
2411 	 * Slide the contents of right down one entry.
2412 	 */
2413 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2414 	if (level > 0) {
2415 		/* It's a nonleaf. operate on keys and ptrs */
2416 #ifdef DEBUG
2417 		int			i;		/* loop index */
2418 
2419 		for (i = 0; i < rrecs; i++) {
2420 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2421 			if (error)
2422 				goto error0;
2423 		}
2424 #endif
2425 		xfs_btree_shift_keys(cur,
2426 				xfs_btree_key_addr(cur, 2, right),
2427 				-1, rrecs);
2428 		xfs_btree_shift_ptrs(cur,
2429 				xfs_btree_ptr_addr(cur, 2, right),
2430 				-1, rrecs);
2431 
2432 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2433 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2434 	} else {
2435 		/* It's a leaf. operate on records */
2436 		xfs_btree_shift_recs(cur,
2437 			xfs_btree_rec_addr(cur, 2, right),
2438 			-1, rrecs);
2439 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2440 	}
2441 
2442 	/*
2443 	 * Using a temporary cursor, update the parent key values of the
2444 	 * block on the left.
2445 	 */
2446 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2447 		error = xfs_btree_dup_cursor(cur, &tcur);
2448 		if (error)
2449 			goto error0;
2450 		i = xfs_btree_firstrec(tcur, level);
2451 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2452 
2453 		error = xfs_btree_decrement(tcur, level, &i);
2454 		if (error)
2455 			goto error1;
2456 
2457 		/* Update the parent high keys of the left block, if needed. */
2458 		error = xfs_btree_update_keys(tcur, level);
2459 		if (error)
2460 			goto error1;
2461 
2462 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2463 	}
2464 
2465 	/* Update the parent keys of the right block. */
2466 	error = xfs_btree_update_keys(cur, level);
2467 	if (error)
2468 		goto error0;
2469 
2470 	/* Slide the cursor value left one. */
2471 	cur->bc_ptrs[level]--;
2472 
2473 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2474 	*stat = 1;
2475 	return 0;
2476 
2477 out0:
2478 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2479 	*stat = 0;
2480 	return 0;
2481 
2482 error0:
2483 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2484 	return error;
2485 
2486 error1:
2487 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2488 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2489 	return error;
2490 }
2491 
2492 /*
2493  * Move 1 record right from cur/level if possible.
2494  * Update cur to reflect the new path.
2495  */
2496 STATIC int					/* error */
2497 xfs_btree_rshift(
2498 	struct xfs_btree_cur	*cur,
2499 	int			level,
2500 	int			*stat)		/* success/failure */
2501 {
2502 	struct xfs_buf		*lbp;		/* left buffer pointer */
2503 	struct xfs_btree_block	*left;		/* left btree block */
2504 	struct xfs_buf		*rbp;		/* right buffer pointer */
2505 	struct xfs_btree_block	*right;		/* right btree block */
2506 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2507 	union xfs_btree_ptr	rptr;		/* right block pointer */
2508 	union xfs_btree_key	*rkp;		/* right btree key */
2509 	int			rrecs;		/* right record count */
2510 	int			lrecs;		/* left record count */
2511 	int			error;		/* error return value */
2512 	int			i;		/* loop counter */
2513 
2514 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2515 	XFS_BTREE_TRACE_ARGI(cur, level);
2516 
2517 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2518 	    (level == cur->bc_nlevels - 1))
2519 		goto out0;
2520 
2521 	/* Set up variables for this block as "left". */
2522 	left = xfs_btree_get_block(cur, level, &lbp);
2523 
2524 #ifdef DEBUG
2525 	error = xfs_btree_check_block(cur, left, level, lbp);
2526 	if (error)
2527 		goto error0;
2528 #endif
2529 
2530 	/* If we've got no right sibling then we can't shift an entry right. */
2531 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2532 	if (xfs_btree_ptr_is_null(cur, &rptr))
2533 		goto out0;
2534 
2535 	/*
2536 	 * If the cursor entry is the one that would be moved, don't
2537 	 * do it... it's too complicated.
2538 	 */
2539 	lrecs = xfs_btree_get_numrecs(left);
2540 	if (cur->bc_ptrs[level] >= lrecs)
2541 		goto out0;
2542 
2543 	/* Set up the right neighbor as "right". */
2544 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2545 	if (error)
2546 		goto error0;
2547 
2548 	/* If it's full, it can't take another entry. */
2549 	rrecs = xfs_btree_get_numrecs(right);
2550 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2551 		goto out0;
2552 
2553 	XFS_BTREE_STATS_INC(cur, rshift);
2554 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2555 
2556 	/*
2557 	 * Make a hole at the start of the right neighbor block, then
2558 	 * copy the last left block entry to the hole.
2559 	 */
2560 	if (level > 0) {
2561 		/* It's a nonleaf. make a hole in the keys and ptrs */
2562 		union xfs_btree_key	*lkp;
2563 		union xfs_btree_ptr	*lpp;
2564 		union xfs_btree_ptr	*rpp;
2565 
2566 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2567 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2568 		rkp = xfs_btree_key_addr(cur, 1, right);
2569 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2570 
2571 #ifdef DEBUG
2572 		for (i = rrecs - 1; i >= 0; i--) {
2573 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2574 			if (error)
2575 				goto error0;
2576 		}
2577 #endif
2578 
2579 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2580 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2581 
2582 #ifdef DEBUG
2583 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2584 		if (error)
2585 			goto error0;
2586 #endif
2587 
2588 		/* Now put the new data in, and log it. */
2589 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2590 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2591 
2592 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2593 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2594 
2595 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2596 			xfs_btree_key_addr(cur, 2, right)));
2597 	} else {
2598 		/* It's a leaf. make a hole in the records */
2599 		union xfs_btree_rec	*lrp;
2600 		union xfs_btree_rec	*rrp;
2601 
2602 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2603 		rrp = xfs_btree_rec_addr(cur, 1, right);
2604 
2605 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2606 
2607 		/* Now put the new data in, and log it. */
2608 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2609 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2610 	}
2611 
2612 	/*
2613 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2614 	 */
2615 	xfs_btree_set_numrecs(left, --lrecs);
2616 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2617 
2618 	xfs_btree_set_numrecs(right, ++rrecs);
2619 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2620 
2621 	/*
2622 	 * Using a temporary cursor, update the parent key values of the
2623 	 * block on the right.
2624 	 */
2625 	error = xfs_btree_dup_cursor(cur, &tcur);
2626 	if (error)
2627 		goto error0;
2628 	i = xfs_btree_lastrec(tcur, level);
2629 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2630 
2631 	error = xfs_btree_increment(tcur, level, &i);
2632 	if (error)
2633 		goto error1;
2634 
2635 	/* Update the parent high keys of the left block, if needed. */
2636 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2637 		error = xfs_btree_update_keys(cur, level);
2638 		if (error)
2639 			goto error1;
2640 	}
2641 
2642 	/* Update the parent keys of the right block. */
2643 	error = xfs_btree_update_keys(tcur, level);
2644 	if (error)
2645 		goto error1;
2646 
2647 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2648 
2649 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2650 	*stat = 1;
2651 	return 0;
2652 
2653 out0:
2654 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2655 	*stat = 0;
2656 	return 0;
2657 
2658 error0:
2659 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2660 	return error;
2661 
2662 error1:
2663 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2664 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2665 	return error;
2666 }
2667 
2668 /*
2669  * Split cur/level block in half.
2670  * Return new block number and the key to its first
2671  * record (to be inserted into parent).
2672  */
2673 STATIC int					/* error */
2674 __xfs_btree_split(
2675 	struct xfs_btree_cur	*cur,
2676 	int			level,
2677 	union xfs_btree_ptr	*ptrp,
2678 	union xfs_btree_key	*key,
2679 	struct xfs_btree_cur	**curp,
2680 	int			*stat)		/* success/failure */
2681 {
2682 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2683 	struct xfs_buf		*lbp;		/* left buffer pointer */
2684 	struct xfs_btree_block	*left;		/* left btree block */
2685 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2686 	struct xfs_buf		*rbp;		/* right buffer pointer */
2687 	struct xfs_btree_block	*right;		/* right btree block */
2688 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2689 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2690 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2691 	int			lrecs;
2692 	int			rrecs;
2693 	int			src_index;
2694 	int			error;		/* error return value */
2695 #ifdef DEBUG
2696 	int			i;
2697 #endif
2698 
2699 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2700 	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2701 
2702 	XFS_BTREE_STATS_INC(cur, split);
2703 
2704 	/* Set up left block (current one). */
2705 	left = xfs_btree_get_block(cur, level, &lbp);
2706 
2707 #ifdef DEBUG
2708 	error = xfs_btree_check_block(cur, left, level, lbp);
2709 	if (error)
2710 		goto error0;
2711 #endif
2712 
2713 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2714 
2715 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2716 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2717 	if (error)
2718 		goto error0;
2719 	if (*stat == 0)
2720 		goto out0;
2721 	XFS_BTREE_STATS_INC(cur, alloc);
2722 
2723 	/* Set up the new block as "right". */
2724 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2725 	if (error)
2726 		goto error0;
2727 
2728 	/* Fill in the btree header for the new right block. */
2729 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2730 
2731 	/*
2732 	 * Split the entries between the old and the new block evenly.
2733 	 * Make sure that if there's an odd number of entries now, that
2734 	 * each new block will have the same number of entries.
2735 	 */
2736 	lrecs = xfs_btree_get_numrecs(left);
2737 	rrecs = lrecs / 2;
2738 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2739 		rrecs++;
2740 	src_index = (lrecs - rrecs + 1);
2741 
2742 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2743 
2744 	/* Adjust numrecs for the later get_*_keys() calls. */
2745 	lrecs -= rrecs;
2746 	xfs_btree_set_numrecs(left, lrecs);
2747 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2748 
2749 	/*
2750 	 * Copy btree block entries from the left block over to the
2751 	 * new block, the right. Update the right block and log the
2752 	 * changes.
2753 	 */
2754 	if (level > 0) {
2755 		/* It's a non-leaf.  Move keys and pointers. */
2756 		union xfs_btree_key	*lkp;	/* left btree key */
2757 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2758 		union xfs_btree_key	*rkp;	/* right btree key */
2759 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2760 
2761 		lkp = xfs_btree_key_addr(cur, src_index, left);
2762 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2763 		rkp = xfs_btree_key_addr(cur, 1, right);
2764 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2765 
2766 #ifdef DEBUG
2767 		for (i = src_index; i < rrecs; i++) {
2768 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2769 			if (error)
2770 				goto error0;
2771 		}
2772 #endif
2773 
2774 		/* Copy the keys & pointers to the new block. */
2775 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2776 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2777 
2778 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2779 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2780 
2781 		/* Stash the keys of the new block for later insertion. */
2782 		xfs_btree_get_node_keys(cur, right, key);
2783 	} else {
2784 		/* It's a leaf.  Move records.  */
2785 		union xfs_btree_rec	*lrp;	/* left record pointer */
2786 		union xfs_btree_rec	*rrp;	/* right record pointer */
2787 
2788 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2789 		rrp = xfs_btree_rec_addr(cur, 1, right);
2790 
2791 		/* Copy records to the new block. */
2792 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2793 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2794 
2795 		/* Stash the keys of the new block for later insertion. */
2796 		xfs_btree_get_leaf_keys(cur, right, key);
2797 	}
2798 
2799 	/*
2800 	 * Find the left block number by looking in the buffer.
2801 	 * Adjust sibling pointers.
2802 	 */
2803 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2804 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2805 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2806 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2807 
2808 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2809 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2810 
2811 	/*
2812 	 * If there's a block to the new block's right, make that block
2813 	 * point back to right instead of to left.
2814 	 */
2815 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2816 		error = xfs_btree_read_buf_block(cur, &rrptr,
2817 							0, &rrblock, &rrbp);
2818 		if (error)
2819 			goto error0;
2820 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2821 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2822 	}
2823 
2824 	/* Update the parent high keys of the left block, if needed. */
2825 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2826 		error = xfs_btree_update_keys(cur, level);
2827 		if (error)
2828 			goto error0;
2829 	}
2830 
2831 	/*
2832 	 * If the cursor is really in the right block, move it there.
2833 	 * If it's just pointing past the last entry in left, then we'll
2834 	 * insert there, so don't change anything in that case.
2835 	 */
2836 	if (cur->bc_ptrs[level] > lrecs + 1) {
2837 		xfs_btree_setbuf(cur, level, rbp);
2838 		cur->bc_ptrs[level] -= lrecs;
2839 	}
2840 	/*
2841 	 * If there are more levels, we'll need another cursor which refers
2842 	 * the right block, no matter where this cursor was.
2843 	 */
2844 	if (level + 1 < cur->bc_nlevels) {
2845 		error = xfs_btree_dup_cursor(cur, curp);
2846 		if (error)
2847 			goto error0;
2848 		(*curp)->bc_ptrs[level + 1]++;
2849 	}
2850 	*ptrp = rptr;
2851 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2852 	*stat = 1;
2853 	return 0;
2854 out0:
2855 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2856 	*stat = 0;
2857 	return 0;
2858 
2859 error0:
2860 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2861 	return error;
2862 }
2863 
2864 struct xfs_btree_split_args {
2865 	struct xfs_btree_cur	*cur;
2866 	int			level;
2867 	union xfs_btree_ptr	*ptrp;
2868 	union xfs_btree_key	*key;
2869 	struct xfs_btree_cur	**curp;
2870 	int			*stat;		/* success/failure */
2871 	int			result;
2872 	bool			kswapd;	/* allocation in kswapd context */
2873 	struct completion	*done;
2874 	struct work_struct	work;
2875 };
2876 
2877 /*
2878  * Stack switching interfaces for allocation
2879  */
2880 static void
2881 xfs_btree_split_worker(
2882 	struct work_struct	*work)
2883 {
2884 	struct xfs_btree_split_args	*args = container_of(work,
2885 						struct xfs_btree_split_args, work);
2886 	unsigned long		pflags;
2887 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2888 
2889 	/*
2890 	 * we are in a transaction context here, but may also be doing work
2891 	 * in kswapd context, and hence we may need to inherit that state
2892 	 * temporarily to ensure that we don't block waiting for memory reclaim
2893 	 * in any way.
2894 	 */
2895 	if (args->kswapd)
2896 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2897 
2898 	current_set_flags_nested(&pflags, new_pflags);
2899 
2900 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2901 					 args->key, args->curp, args->stat);
2902 	complete(args->done);
2903 
2904 	current_restore_flags_nested(&pflags, new_pflags);
2905 }
2906 
2907 /*
2908  * BMBT split requests often come in with little stack to work on. Push
2909  * them off to a worker thread so there is lots of stack to use. For the other
2910  * btree types, just call directly to avoid the context switch overhead here.
2911  */
2912 STATIC int					/* error */
2913 xfs_btree_split(
2914 	struct xfs_btree_cur	*cur,
2915 	int			level,
2916 	union xfs_btree_ptr	*ptrp,
2917 	union xfs_btree_key	*key,
2918 	struct xfs_btree_cur	**curp,
2919 	int			*stat)		/* success/failure */
2920 {
2921 	struct xfs_btree_split_args	args;
2922 	DECLARE_COMPLETION_ONSTACK(done);
2923 
2924 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2925 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2926 
2927 	args.cur = cur;
2928 	args.level = level;
2929 	args.ptrp = ptrp;
2930 	args.key = key;
2931 	args.curp = curp;
2932 	args.stat = stat;
2933 	args.done = &done;
2934 	args.kswapd = current_is_kswapd();
2935 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2936 	queue_work(xfs_alloc_wq, &args.work);
2937 	wait_for_completion(&done);
2938 	destroy_work_on_stack(&args.work);
2939 	return args.result;
2940 }
2941 
2942 
2943 /*
2944  * Copy the old inode root contents into a real block and make the
2945  * broot point to it.
2946  */
2947 int						/* error */
2948 xfs_btree_new_iroot(
2949 	struct xfs_btree_cur	*cur,		/* btree cursor */
2950 	int			*logflags,	/* logging flags for inode */
2951 	int			*stat)		/* return status - 0 fail */
2952 {
2953 	struct xfs_buf		*cbp;		/* buffer for cblock */
2954 	struct xfs_btree_block	*block;		/* btree block */
2955 	struct xfs_btree_block	*cblock;	/* child btree block */
2956 	union xfs_btree_key	*ckp;		/* child key pointer */
2957 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2958 	union xfs_btree_key	*kp;		/* pointer to btree key */
2959 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2960 	union xfs_btree_ptr	nptr;		/* new block addr */
2961 	int			level;		/* btree level */
2962 	int			error;		/* error return code */
2963 #ifdef DEBUG
2964 	int			i;		/* loop counter */
2965 #endif
2966 
2967 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2968 	XFS_BTREE_STATS_INC(cur, newroot);
2969 
2970 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2971 
2972 	level = cur->bc_nlevels - 1;
2973 
2974 	block = xfs_btree_get_iroot(cur);
2975 	pp = xfs_btree_ptr_addr(cur, 1, block);
2976 
2977 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2978 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2979 	if (error)
2980 		goto error0;
2981 	if (*stat == 0) {
2982 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2983 		return 0;
2984 	}
2985 	XFS_BTREE_STATS_INC(cur, alloc);
2986 
2987 	/* Copy the root into a real block. */
2988 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2989 	if (error)
2990 		goto error0;
2991 
2992 	/*
2993 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2994 	 * In that case have to also ensure the blkno remains correct
2995 	 */
2996 	memcpy(cblock, block, xfs_btree_block_len(cur));
2997 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2998 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2999 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3000 		else
3001 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3002 	}
3003 
3004 	be16_add_cpu(&block->bb_level, 1);
3005 	xfs_btree_set_numrecs(block, 1);
3006 	cur->bc_nlevels++;
3007 	cur->bc_ptrs[level + 1] = 1;
3008 
3009 	kp = xfs_btree_key_addr(cur, 1, block);
3010 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3011 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3012 
3013 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3014 #ifdef DEBUG
3015 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3016 		error = xfs_btree_check_ptr(cur, pp, i, level);
3017 		if (error)
3018 			goto error0;
3019 	}
3020 #endif
3021 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3022 
3023 #ifdef DEBUG
3024 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3025 	if (error)
3026 		goto error0;
3027 #endif
3028 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3029 
3030 	xfs_iroot_realloc(cur->bc_private.b.ip,
3031 			  1 - xfs_btree_get_numrecs(cblock),
3032 			  cur->bc_private.b.whichfork);
3033 
3034 	xfs_btree_setbuf(cur, level, cbp);
3035 
3036 	/*
3037 	 * Do all this logging at the end so that
3038 	 * the root is at the right level.
3039 	 */
3040 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3041 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3042 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3043 
3044 	*logflags |=
3045 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3046 	*stat = 1;
3047 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3048 	return 0;
3049 error0:
3050 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3051 	return error;
3052 }
3053 
3054 /*
3055  * Allocate a new root block, fill it in.
3056  */
3057 STATIC int				/* error */
3058 xfs_btree_new_root(
3059 	struct xfs_btree_cur	*cur,	/* btree cursor */
3060 	int			*stat)	/* success/failure */
3061 {
3062 	struct xfs_btree_block	*block;	/* one half of the old root block */
3063 	struct xfs_buf		*bp;	/* buffer containing block */
3064 	int			error;	/* error return value */
3065 	struct xfs_buf		*lbp;	/* left buffer pointer */
3066 	struct xfs_btree_block	*left;	/* left btree block */
3067 	struct xfs_buf		*nbp;	/* new (root) buffer */
3068 	struct xfs_btree_block	*new;	/* new (root) btree block */
3069 	int			nptr;	/* new value for key index, 1 or 2 */
3070 	struct xfs_buf		*rbp;	/* right buffer pointer */
3071 	struct xfs_btree_block	*right;	/* right btree block */
3072 	union xfs_btree_ptr	rptr;
3073 	union xfs_btree_ptr	lptr;
3074 
3075 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3076 	XFS_BTREE_STATS_INC(cur, newroot);
3077 
3078 	/* initialise our start point from the cursor */
3079 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3080 
3081 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3082 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3083 	if (error)
3084 		goto error0;
3085 	if (*stat == 0)
3086 		goto out0;
3087 	XFS_BTREE_STATS_INC(cur, alloc);
3088 
3089 	/* Set up the new block. */
3090 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3091 	if (error)
3092 		goto error0;
3093 
3094 	/* Set the root in the holding structure  increasing the level by 1. */
3095 	cur->bc_ops->set_root(cur, &lptr, 1);
3096 
3097 	/*
3098 	 * At the previous root level there are now two blocks: the old root,
3099 	 * and the new block generated when it was split.  We don't know which
3100 	 * one the cursor is pointing at, so we set up variables "left" and
3101 	 * "right" for each case.
3102 	 */
3103 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3104 
3105 #ifdef DEBUG
3106 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3107 	if (error)
3108 		goto error0;
3109 #endif
3110 
3111 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3112 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3113 		/* Our block is left, pick up the right block. */
3114 		lbp = bp;
3115 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3116 		left = block;
3117 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3118 		if (error)
3119 			goto error0;
3120 		bp = rbp;
3121 		nptr = 1;
3122 	} else {
3123 		/* Our block is right, pick up the left block. */
3124 		rbp = bp;
3125 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3126 		right = block;
3127 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3128 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3129 		if (error)
3130 			goto error0;
3131 		bp = lbp;
3132 		nptr = 2;
3133 	}
3134 
3135 	/* Fill in the new block's btree header and log it. */
3136 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3137 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3138 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3139 			!xfs_btree_ptr_is_null(cur, &rptr));
3140 
3141 	/* Fill in the key data in the new root. */
3142 	if (xfs_btree_get_level(left) > 0) {
3143 		/*
3144 		 * Get the keys for the left block's keys and put them directly
3145 		 * in the parent block.  Do the same for the right block.
3146 		 */
3147 		xfs_btree_get_node_keys(cur, left,
3148 				xfs_btree_key_addr(cur, 1, new));
3149 		xfs_btree_get_node_keys(cur, right,
3150 				xfs_btree_key_addr(cur, 2, new));
3151 	} else {
3152 		/*
3153 		 * Get the keys for the left block's records and put them
3154 		 * directly in the parent block.  Do the same for the right
3155 		 * block.
3156 		 */
3157 		xfs_btree_get_leaf_keys(cur, left,
3158 			xfs_btree_key_addr(cur, 1, new));
3159 		xfs_btree_get_leaf_keys(cur, right,
3160 			xfs_btree_key_addr(cur, 2, new));
3161 	}
3162 	xfs_btree_log_keys(cur, nbp, 1, 2);
3163 
3164 	/* Fill in the pointer data in the new root. */
3165 	xfs_btree_copy_ptrs(cur,
3166 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3167 	xfs_btree_copy_ptrs(cur,
3168 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3169 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3170 
3171 	/* Fix up the cursor. */
3172 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3173 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3174 	cur->bc_nlevels++;
3175 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3176 	*stat = 1;
3177 	return 0;
3178 error0:
3179 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3180 	return error;
3181 out0:
3182 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3183 	*stat = 0;
3184 	return 0;
3185 }
3186 
3187 STATIC int
3188 xfs_btree_make_block_unfull(
3189 	struct xfs_btree_cur	*cur,	/* btree cursor */
3190 	int			level,	/* btree level */
3191 	int			numrecs,/* # of recs in block */
3192 	int			*oindex,/* old tree index */
3193 	int			*index,	/* new tree index */
3194 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3195 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3196 	union xfs_btree_key	*key,	/* key of new block */
3197 	int			*stat)
3198 {
3199 	int			error = 0;
3200 
3201 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3202 	    level == cur->bc_nlevels - 1) {
3203 	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3204 
3205 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3206 			/* A root block that can be made bigger. */
3207 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3208 			*stat = 1;
3209 		} else {
3210 			/* A root block that needs replacing */
3211 			int	logflags = 0;
3212 
3213 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3214 			if (error || *stat == 0)
3215 				return error;
3216 
3217 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3218 		}
3219 
3220 		return 0;
3221 	}
3222 
3223 	/* First, try shifting an entry to the right neighbor. */
3224 	error = xfs_btree_rshift(cur, level, stat);
3225 	if (error || *stat)
3226 		return error;
3227 
3228 	/* Next, try shifting an entry to the left neighbor. */
3229 	error = xfs_btree_lshift(cur, level, stat);
3230 	if (error)
3231 		return error;
3232 
3233 	if (*stat) {
3234 		*oindex = *index = cur->bc_ptrs[level];
3235 		return 0;
3236 	}
3237 
3238 	/*
3239 	 * Next, try splitting the current block in half.
3240 	 *
3241 	 * If this works we have to re-set our variables because we
3242 	 * could be in a different block now.
3243 	 */
3244 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3245 	if (error || *stat == 0)
3246 		return error;
3247 
3248 
3249 	*index = cur->bc_ptrs[level];
3250 	return 0;
3251 }
3252 
3253 /*
3254  * Insert one record/level.  Return information to the caller
3255  * allowing the next level up to proceed if necessary.
3256  */
3257 STATIC int
3258 xfs_btree_insrec(
3259 	struct xfs_btree_cur	*cur,	/* btree cursor */
3260 	int			level,	/* level to insert record at */
3261 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3262 	union xfs_btree_rec	*rec,	/* record to insert */
3263 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3264 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3265 	int			*stat)	/* success/failure */
3266 {
3267 	struct xfs_btree_block	*block;	/* btree block */
3268 	struct xfs_buf		*bp;	/* buffer for block */
3269 	union xfs_btree_ptr	nptr;	/* new block ptr */
3270 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3271 	union xfs_btree_key	nkey;	/* new block key */
3272 	union xfs_btree_key	*lkey;
3273 	int			optr;	/* old key/record index */
3274 	int			ptr;	/* key/record index */
3275 	int			numrecs;/* number of records */
3276 	int			error;	/* error return value */
3277 #ifdef DEBUG
3278 	int			i;
3279 #endif
3280 	xfs_daddr_t		old_bn;
3281 
3282 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3283 	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3284 
3285 	ncur = NULL;
3286 	lkey = &nkey;
3287 
3288 	/*
3289 	 * If we have an external root pointer, and we've made it to the
3290 	 * root level, allocate a new root block and we're done.
3291 	 */
3292 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3293 	    (level >= cur->bc_nlevels)) {
3294 		error = xfs_btree_new_root(cur, stat);
3295 		xfs_btree_set_ptr_null(cur, ptrp);
3296 
3297 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3298 		return error;
3299 	}
3300 
3301 	/* If we're off the left edge, return failure. */
3302 	ptr = cur->bc_ptrs[level];
3303 	if (ptr == 0) {
3304 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3305 		*stat = 0;
3306 		return 0;
3307 	}
3308 
3309 	optr = ptr;
3310 
3311 	XFS_BTREE_STATS_INC(cur, insrec);
3312 
3313 	/* Get pointers to the btree buffer and block. */
3314 	block = xfs_btree_get_block(cur, level, &bp);
3315 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3316 	numrecs = xfs_btree_get_numrecs(block);
3317 
3318 #ifdef DEBUG
3319 	error = xfs_btree_check_block(cur, block, level, bp);
3320 	if (error)
3321 		goto error0;
3322 
3323 	/* Check that the new entry is being inserted in the right place. */
3324 	if (ptr <= numrecs) {
3325 		if (level == 0) {
3326 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3327 				xfs_btree_rec_addr(cur, ptr, block)));
3328 		} else {
3329 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3330 				xfs_btree_key_addr(cur, ptr, block)));
3331 		}
3332 	}
3333 #endif
3334 
3335 	/*
3336 	 * If the block is full, we can't insert the new entry until we
3337 	 * make the block un-full.
3338 	 */
3339 	xfs_btree_set_ptr_null(cur, &nptr);
3340 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3341 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3342 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3343 		if (error || *stat == 0)
3344 			goto error0;
3345 	}
3346 
3347 	/*
3348 	 * The current block may have changed if the block was
3349 	 * previously full and we have just made space in it.
3350 	 */
3351 	block = xfs_btree_get_block(cur, level, &bp);
3352 	numrecs = xfs_btree_get_numrecs(block);
3353 
3354 #ifdef DEBUG
3355 	error = xfs_btree_check_block(cur, block, level, bp);
3356 	if (error)
3357 		return error;
3358 #endif
3359 
3360 	/*
3361 	 * At this point we know there's room for our new entry in the block
3362 	 * we're pointing at.
3363 	 */
3364 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3365 
3366 	if (level > 0) {
3367 		/* It's a nonleaf. make a hole in the keys and ptrs */
3368 		union xfs_btree_key	*kp;
3369 		union xfs_btree_ptr	*pp;
3370 
3371 		kp = xfs_btree_key_addr(cur, ptr, block);
3372 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3373 
3374 #ifdef DEBUG
3375 		for (i = numrecs - ptr; i >= 0; i--) {
3376 			error = xfs_btree_check_ptr(cur, pp, i, level);
3377 			if (error)
3378 				return error;
3379 		}
3380 #endif
3381 
3382 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3383 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3384 
3385 #ifdef DEBUG
3386 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3387 		if (error)
3388 			goto error0;
3389 #endif
3390 
3391 		/* Now put the new data in, bump numrecs and log it. */
3392 		xfs_btree_copy_keys(cur, kp, key, 1);
3393 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3394 		numrecs++;
3395 		xfs_btree_set_numrecs(block, numrecs);
3396 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3397 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3398 #ifdef DEBUG
3399 		if (ptr < numrecs) {
3400 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3401 				xfs_btree_key_addr(cur, ptr + 1, block)));
3402 		}
3403 #endif
3404 	} else {
3405 		/* It's a leaf. make a hole in the records */
3406 		union xfs_btree_rec             *rp;
3407 
3408 		rp = xfs_btree_rec_addr(cur, ptr, block);
3409 
3410 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3411 
3412 		/* Now put the new data in, bump numrecs and log it. */
3413 		xfs_btree_copy_recs(cur, rp, rec, 1);
3414 		xfs_btree_set_numrecs(block, ++numrecs);
3415 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3416 #ifdef DEBUG
3417 		if (ptr < numrecs) {
3418 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3419 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3420 		}
3421 #endif
3422 	}
3423 
3424 	/* Log the new number of records in the btree header. */
3425 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3426 
3427 	/*
3428 	 * If we just inserted into a new tree block, we have to
3429 	 * recalculate nkey here because nkey is out of date.
3430 	 *
3431 	 * Otherwise we're just updating an existing block (having shoved
3432 	 * some records into the new tree block), so use the regular key
3433 	 * update mechanism.
3434 	 */
3435 	if (bp && bp->b_bn != old_bn) {
3436 		xfs_btree_get_keys(cur, block, lkey);
3437 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3438 		error = xfs_btree_update_keys(cur, level);
3439 		if (error)
3440 			goto error0;
3441 	}
3442 
3443 	/*
3444 	 * If we are tracking the last record in the tree and
3445 	 * we are at the far right edge of the tree, update it.
3446 	 */
3447 	if (xfs_btree_is_lastrec(cur, block, level)) {
3448 		cur->bc_ops->update_lastrec(cur, block, rec,
3449 					    ptr, LASTREC_INSREC);
3450 	}
3451 
3452 	/*
3453 	 * Return the new block number, if any.
3454 	 * If there is one, give back a record value and a cursor too.
3455 	 */
3456 	*ptrp = nptr;
3457 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3458 		xfs_btree_copy_keys(cur, key, lkey, 1);
3459 		*curp = ncur;
3460 	}
3461 
3462 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3463 	*stat = 1;
3464 	return 0;
3465 
3466 error0:
3467 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3468 	return error;
3469 }
3470 
3471 /*
3472  * Insert the record at the point referenced by cur.
3473  *
3474  * A multi-level split of the tree on insert will invalidate the original
3475  * cursor.  All callers of this function should assume that the cursor is
3476  * no longer valid and revalidate it.
3477  */
3478 int
3479 xfs_btree_insert(
3480 	struct xfs_btree_cur	*cur,
3481 	int			*stat)
3482 {
3483 	int			error;	/* error return value */
3484 	int			i;	/* result value, 0 for failure */
3485 	int			level;	/* current level number in btree */
3486 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3487 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3488 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3489 	union xfs_btree_key	bkey;	/* key of block to insert */
3490 	union xfs_btree_key	*key;
3491 	union xfs_btree_rec	rec;	/* record to insert */
3492 
3493 	level = 0;
3494 	ncur = NULL;
3495 	pcur = cur;
3496 	key = &bkey;
3497 
3498 	xfs_btree_set_ptr_null(cur, &nptr);
3499 
3500 	/* Make a key out of the record data to be inserted, and save it. */
3501 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3502 	cur->bc_ops->init_key_from_rec(key, &rec);
3503 
3504 	/*
3505 	 * Loop going up the tree, starting at the leaf level.
3506 	 * Stop when we don't get a split block, that must mean that
3507 	 * the insert is finished with this level.
3508 	 */
3509 	do {
3510 		/*
3511 		 * Insert nrec/nptr into this level of the tree.
3512 		 * Note if we fail, nptr will be null.
3513 		 */
3514 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3515 				&ncur, &i);
3516 		if (error) {
3517 			if (pcur != cur)
3518 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3519 			goto error0;
3520 		}
3521 
3522 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3523 		level++;
3524 
3525 		/*
3526 		 * See if the cursor we just used is trash.
3527 		 * Can't trash the caller's cursor, but otherwise we should
3528 		 * if ncur is a new cursor or we're about to be done.
3529 		 */
3530 		if (pcur != cur &&
3531 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3532 			/* Save the state from the cursor before we trash it */
3533 			if (cur->bc_ops->update_cursor)
3534 				cur->bc_ops->update_cursor(pcur, cur);
3535 			cur->bc_nlevels = pcur->bc_nlevels;
3536 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3537 		}
3538 		/* If we got a new cursor, switch to it. */
3539 		if (ncur) {
3540 			pcur = ncur;
3541 			ncur = NULL;
3542 		}
3543 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3544 
3545 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3546 	*stat = i;
3547 	return 0;
3548 error0:
3549 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3550 	return error;
3551 }
3552 
3553 /*
3554  * Try to merge a non-leaf block back into the inode root.
3555  *
3556  * Note: the killroot names comes from the fact that we're effectively
3557  * killing the old root block.  But because we can't just delete the
3558  * inode we have to copy the single block it was pointing to into the
3559  * inode.
3560  */
3561 STATIC int
3562 xfs_btree_kill_iroot(
3563 	struct xfs_btree_cur	*cur)
3564 {
3565 	int			whichfork = cur->bc_private.b.whichfork;
3566 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3567 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3568 	struct xfs_btree_block	*block;
3569 	struct xfs_btree_block	*cblock;
3570 	union xfs_btree_key	*kp;
3571 	union xfs_btree_key	*ckp;
3572 	union xfs_btree_ptr	*pp;
3573 	union xfs_btree_ptr	*cpp;
3574 	struct xfs_buf		*cbp;
3575 	int			level;
3576 	int			index;
3577 	int			numrecs;
3578 	int			error;
3579 #ifdef DEBUG
3580 	union xfs_btree_ptr	ptr;
3581 	int			i;
3582 #endif
3583 
3584 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3585 
3586 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3587 	ASSERT(cur->bc_nlevels > 1);
3588 
3589 	/*
3590 	 * Don't deal with the root block needs to be a leaf case.
3591 	 * We're just going to turn the thing back into extents anyway.
3592 	 */
3593 	level = cur->bc_nlevels - 1;
3594 	if (level == 1)
3595 		goto out0;
3596 
3597 	/*
3598 	 * Give up if the root has multiple children.
3599 	 */
3600 	block = xfs_btree_get_iroot(cur);
3601 	if (xfs_btree_get_numrecs(block) != 1)
3602 		goto out0;
3603 
3604 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3605 	numrecs = xfs_btree_get_numrecs(cblock);
3606 
3607 	/*
3608 	 * Only do this if the next level will fit.
3609 	 * Then the data must be copied up to the inode,
3610 	 * instead of freeing the root you free the next level.
3611 	 */
3612 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3613 		goto out0;
3614 
3615 	XFS_BTREE_STATS_INC(cur, killroot);
3616 
3617 #ifdef DEBUG
3618 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3619 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3620 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3621 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3622 #endif
3623 
3624 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3625 	if (index) {
3626 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3627 				  cur->bc_private.b.whichfork);
3628 		block = ifp->if_broot;
3629 	}
3630 
3631 	be16_add_cpu(&block->bb_numrecs, index);
3632 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3633 
3634 	kp = xfs_btree_key_addr(cur, 1, block);
3635 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3636 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3637 
3638 	pp = xfs_btree_ptr_addr(cur, 1, block);
3639 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3640 #ifdef DEBUG
3641 	for (i = 0; i < numrecs; i++) {
3642 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3643 		if (error) {
3644 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3645 			return error;
3646 		}
3647 	}
3648 #endif
3649 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3650 
3651 	error = xfs_btree_free_block(cur, cbp);
3652 	if (error) {
3653 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3654 		return error;
3655 	}
3656 
3657 	cur->bc_bufs[level - 1] = NULL;
3658 	be16_add_cpu(&block->bb_level, -1);
3659 	xfs_trans_log_inode(cur->bc_tp, ip,
3660 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3661 	cur->bc_nlevels--;
3662 out0:
3663 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3664 	return 0;
3665 }
3666 
3667 /*
3668  * Kill the current root node, and replace it with it's only child node.
3669  */
3670 STATIC int
3671 xfs_btree_kill_root(
3672 	struct xfs_btree_cur	*cur,
3673 	struct xfs_buf		*bp,
3674 	int			level,
3675 	union xfs_btree_ptr	*newroot)
3676 {
3677 	int			error;
3678 
3679 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3680 	XFS_BTREE_STATS_INC(cur, killroot);
3681 
3682 	/*
3683 	 * Update the root pointer, decreasing the level by 1 and then
3684 	 * free the old root.
3685 	 */
3686 	cur->bc_ops->set_root(cur, newroot, -1);
3687 
3688 	error = xfs_btree_free_block(cur, bp);
3689 	if (error) {
3690 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3691 		return error;
3692 	}
3693 
3694 	cur->bc_bufs[level] = NULL;
3695 	cur->bc_ra[level] = 0;
3696 	cur->bc_nlevels--;
3697 
3698 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3699 	return 0;
3700 }
3701 
3702 STATIC int
3703 xfs_btree_dec_cursor(
3704 	struct xfs_btree_cur	*cur,
3705 	int			level,
3706 	int			*stat)
3707 {
3708 	int			error;
3709 	int			i;
3710 
3711 	if (level > 0) {
3712 		error = xfs_btree_decrement(cur, level, &i);
3713 		if (error)
3714 			return error;
3715 	}
3716 
3717 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3718 	*stat = 1;
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Single level of the btree record deletion routine.
3724  * Delete record pointed to by cur/level.
3725  * Remove the record from its block then rebalance the tree.
3726  * Return 0 for error, 1 for done, 2 to go on to the next level.
3727  */
3728 STATIC int					/* error */
3729 xfs_btree_delrec(
3730 	struct xfs_btree_cur	*cur,		/* btree cursor */
3731 	int			level,		/* level removing record from */
3732 	int			*stat)		/* fail/done/go-on */
3733 {
3734 	struct xfs_btree_block	*block;		/* btree block */
3735 	union xfs_btree_ptr	cptr;		/* current block ptr */
3736 	struct xfs_buf		*bp;		/* buffer for block */
3737 	int			error;		/* error return value */
3738 	int			i;		/* loop counter */
3739 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3740 	struct xfs_buf		*lbp;		/* left buffer pointer */
3741 	struct xfs_btree_block	*left;		/* left btree block */
3742 	int			lrecs = 0;	/* left record count */
3743 	int			ptr;		/* key/record index */
3744 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3745 	struct xfs_buf		*rbp;		/* right buffer pointer */
3746 	struct xfs_btree_block	*right;		/* right btree block */
3747 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3748 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3749 	int			rrecs = 0;	/* right record count */
3750 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3751 	int			numrecs;	/* temporary numrec count */
3752 
3753 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3754 	XFS_BTREE_TRACE_ARGI(cur, level);
3755 
3756 	tcur = NULL;
3757 
3758 	/* Get the index of the entry being deleted, check for nothing there. */
3759 	ptr = cur->bc_ptrs[level];
3760 	if (ptr == 0) {
3761 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3762 		*stat = 0;
3763 		return 0;
3764 	}
3765 
3766 	/* Get the buffer & block containing the record or key/ptr. */
3767 	block = xfs_btree_get_block(cur, level, &bp);
3768 	numrecs = xfs_btree_get_numrecs(block);
3769 
3770 #ifdef DEBUG
3771 	error = xfs_btree_check_block(cur, block, level, bp);
3772 	if (error)
3773 		goto error0;
3774 #endif
3775 
3776 	/* Fail if we're off the end of the block. */
3777 	if (ptr > numrecs) {
3778 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3779 		*stat = 0;
3780 		return 0;
3781 	}
3782 
3783 	XFS_BTREE_STATS_INC(cur, delrec);
3784 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3785 
3786 	/* Excise the entries being deleted. */
3787 	if (level > 0) {
3788 		/* It's a nonleaf. operate on keys and ptrs */
3789 		union xfs_btree_key	*lkp;
3790 		union xfs_btree_ptr	*lpp;
3791 
3792 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3793 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3794 
3795 #ifdef DEBUG
3796 		for (i = 0; i < numrecs - ptr; i++) {
3797 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3798 			if (error)
3799 				goto error0;
3800 		}
3801 #endif
3802 
3803 		if (ptr < numrecs) {
3804 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3805 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3806 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3807 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3808 		}
3809 	} else {
3810 		/* It's a leaf. operate on records */
3811 		if (ptr < numrecs) {
3812 			xfs_btree_shift_recs(cur,
3813 				xfs_btree_rec_addr(cur, ptr + 1, block),
3814 				-1, numrecs - ptr);
3815 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3816 		}
3817 	}
3818 
3819 	/*
3820 	 * Decrement and log the number of entries in the block.
3821 	 */
3822 	xfs_btree_set_numrecs(block, --numrecs);
3823 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3824 
3825 	/*
3826 	 * If we are tracking the last record in the tree and
3827 	 * we are at the far right edge of the tree, update it.
3828 	 */
3829 	if (xfs_btree_is_lastrec(cur, block, level)) {
3830 		cur->bc_ops->update_lastrec(cur, block, NULL,
3831 					    ptr, LASTREC_DELREC);
3832 	}
3833 
3834 	/*
3835 	 * We're at the root level.  First, shrink the root block in-memory.
3836 	 * Try to get rid of the next level down.  If we can't then there's
3837 	 * nothing left to do.
3838 	 */
3839 	if (level == cur->bc_nlevels - 1) {
3840 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3841 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3842 					  cur->bc_private.b.whichfork);
3843 
3844 			error = xfs_btree_kill_iroot(cur);
3845 			if (error)
3846 				goto error0;
3847 
3848 			error = xfs_btree_dec_cursor(cur, level, stat);
3849 			if (error)
3850 				goto error0;
3851 			*stat = 1;
3852 			return 0;
3853 		}
3854 
3855 		/*
3856 		 * If this is the root level, and there's only one entry left,
3857 		 * and it's NOT the leaf level, then we can get rid of this
3858 		 * level.
3859 		 */
3860 		if (numrecs == 1 && level > 0) {
3861 			union xfs_btree_ptr	*pp;
3862 			/*
3863 			 * pp is still set to the first pointer in the block.
3864 			 * Make it the new root of the btree.
3865 			 */
3866 			pp = xfs_btree_ptr_addr(cur, 1, block);
3867 			error = xfs_btree_kill_root(cur, bp, level, pp);
3868 			if (error)
3869 				goto error0;
3870 		} else if (level > 0) {
3871 			error = xfs_btree_dec_cursor(cur, level, stat);
3872 			if (error)
3873 				goto error0;
3874 		}
3875 		*stat = 1;
3876 		return 0;
3877 	}
3878 
3879 	/*
3880 	 * If we deleted the leftmost entry in the block, update the
3881 	 * key values above us in the tree.
3882 	 */
3883 	if (xfs_btree_needs_key_update(cur, ptr)) {
3884 		error = xfs_btree_update_keys(cur, level);
3885 		if (error)
3886 			goto error0;
3887 	}
3888 
3889 	/*
3890 	 * If the number of records remaining in the block is at least
3891 	 * the minimum, we're done.
3892 	 */
3893 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3894 		error = xfs_btree_dec_cursor(cur, level, stat);
3895 		if (error)
3896 			goto error0;
3897 		return 0;
3898 	}
3899 
3900 	/*
3901 	 * Otherwise, we have to move some records around to keep the
3902 	 * tree balanced.  Look at the left and right sibling blocks to
3903 	 * see if we can re-balance by moving only one record.
3904 	 */
3905 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3906 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3907 
3908 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3909 		/*
3910 		 * One child of root, need to get a chance to copy its contents
3911 		 * into the root and delete it. Can't go up to next level,
3912 		 * there's nothing to delete there.
3913 		 */
3914 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3915 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3916 		    level == cur->bc_nlevels - 2) {
3917 			error = xfs_btree_kill_iroot(cur);
3918 			if (!error)
3919 				error = xfs_btree_dec_cursor(cur, level, stat);
3920 			if (error)
3921 				goto error0;
3922 			return 0;
3923 		}
3924 	}
3925 
3926 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3927 	       !xfs_btree_ptr_is_null(cur, &lptr));
3928 
3929 	/*
3930 	 * Duplicate the cursor so our btree manipulations here won't
3931 	 * disrupt the next level up.
3932 	 */
3933 	error = xfs_btree_dup_cursor(cur, &tcur);
3934 	if (error)
3935 		goto error0;
3936 
3937 	/*
3938 	 * If there's a right sibling, see if it's ok to shift an entry
3939 	 * out of it.
3940 	 */
3941 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3942 		/*
3943 		 * Move the temp cursor to the last entry in the next block.
3944 		 * Actually any entry but the first would suffice.
3945 		 */
3946 		i = xfs_btree_lastrec(tcur, level);
3947 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948 
3949 		error = xfs_btree_increment(tcur, level, &i);
3950 		if (error)
3951 			goto error0;
3952 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3953 
3954 		i = xfs_btree_lastrec(tcur, level);
3955 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3956 
3957 		/* Grab a pointer to the block. */
3958 		right = xfs_btree_get_block(tcur, level, &rbp);
3959 #ifdef DEBUG
3960 		error = xfs_btree_check_block(tcur, right, level, rbp);
3961 		if (error)
3962 			goto error0;
3963 #endif
3964 		/* Grab the current block number, for future use. */
3965 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3966 
3967 		/*
3968 		 * If right block is full enough so that removing one entry
3969 		 * won't make it too empty, and left-shifting an entry out
3970 		 * of right to us works, we're done.
3971 		 */
3972 		if (xfs_btree_get_numrecs(right) - 1 >=
3973 		    cur->bc_ops->get_minrecs(tcur, level)) {
3974 			error = xfs_btree_lshift(tcur, level, &i);
3975 			if (error)
3976 				goto error0;
3977 			if (i) {
3978 				ASSERT(xfs_btree_get_numrecs(block) >=
3979 				       cur->bc_ops->get_minrecs(tcur, level));
3980 
3981 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3982 				tcur = NULL;
3983 
3984 				error = xfs_btree_dec_cursor(cur, level, stat);
3985 				if (error)
3986 					goto error0;
3987 				return 0;
3988 			}
3989 		}
3990 
3991 		/*
3992 		 * Otherwise, grab the number of records in right for
3993 		 * future reference, and fix up the temp cursor to point
3994 		 * to our block again (last record).
3995 		 */
3996 		rrecs = xfs_btree_get_numrecs(right);
3997 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3998 			i = xfs_btree_firstrec(tcur, level);
3999 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4000 
4001 			error = xfs_btree_decrement(tcur, level, &i);
4002 			if (error)
4003 				goto error0;
4004 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4005 		}
4006 	}
4007 
4008 	/*
4009 	 * If there's a left sibling, see if it's ok to shift an entry
4010 	 * out of it.
4011 	 */
4012 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4013 		/*
4014 		 * Move the temp cursor to the first entry in the
4015 		 * previous block.
4016 		 */
4017 		i = xfs_btree_firstrec(tcur, level);
4018 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4019 
4020 		error = xfs_btree_decrement(tcur, level, &i);
4021 		if (error)
4022 			goto error0;
4023 		i = xfs_btree_firstrec(tcur, level);
4024 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4025 
4026 		/* Grab a pointer to the block. */
4027 		left = xfs_btree_get_block(tcur, level, &lbp);
4028 #ifdef DEBUG
4029 		error = xfs_btree_check_block(cur, left, level, lbp);
4030 		if (error)
4031 			goto error0;
4032 #endif
4033 		/* Grab the current block number, for future use. */
4034 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4035 
4036 		/*
4037 		 * If left block is full enough so that removing one entry
4038 		 * won't make it too empty, and right-shifting an entry out
4039 		 * of left to us works, we're done.
4040 		 */
4041 		if (xfs_btree_get_numrecs(left) - 1 >=
4042 		    cur->bc_ops->get_minrecs(tcur, level)) {
4043 			error = xfs_btree_rshift(tcur, level, &i);
4044 			if (error)
4045 				goto error0;
4046 			if (i) {
4047 				ASSERT(xfs_btree_get_numrecs(block) >=
4048 				       cur->bc_ops->get_minrecs(tcur, level));
4049 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4050 				tcur = NULL;
4051 				if (level == 0)
4052 					cur->bc_ptrs[0]++;
4053 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4054 				*stat = 1;
4055 				return 0;
4056 			}
4057 		}
4058 
4059 		/*
4060 		 * Otherwise, grab the number of records in right for
4061 		 * future reference.
4062 		 */
4063 		lrecs = xfs_btree_get_numrecs(left);
4064 	}
4065 
4066 	/* Delete the temp cursor, we're done with it. */
4067 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4068 	tcur = NULL;
4069 
4070 	/* If here, we need to do a join to keep the tree balanced. */
4071 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4072 
4073 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4074 	    lrecs + xfs_btree_get_numrecs(block) <=
4075 			cur->bc_ops->get_maxrecs(cur, level)) {
4076 		/*
4077 		 * Set "right" to be the starting block,
4078 		 * "left" to be the left neighbor.
4079 		 */
4080 		rptr = cptr;
4081 		right = block;
4082 		rbp = bp;
4083 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4084 		if (error)
4085 			goto error0;
4086 
4087 	/*
4088 	 * If that won't work, see if we can join with the right neighbor block.
4089 	 */
4090 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4091 		   rrecs + xfs_btree_get_numrecs(block) <=
4092 			cur->bc_ops->get_maxrecs(cur, level)) {
4093 		/*
4094 		 * Set "left" to be the starting block,
4095 		 * "right" to be the right neighbor.
4096 		 */
4097 		lptr = cptr;
4098 		left = block;
4099 		lbp = bp;
4100 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4101 		if (error)
4102 			goto error0;
4103 
4104 	/*
4105 	 * Otherwise, we can't fix the imbalance.
4106 	 * Just return.  This is probably a logic error, but it's not fatal.
4107 	 */
4108 	} else {
4109 		error = xfs_btree_dec_cursor(cur, level, stat);
4110 		if (error)
4111 			goto error0;
4112 		return 0;
4113 	}
4114 
4115 	rrecs = xfs_btree_get_numrecs(right);
4116 	lrecs = xfs_btree_get_numrecs(left);
4117 
4118 	/*
4119 	 * We're now going to join "left" and "right" by moving all the stuff
4120 	 * in "right" to "left" and deleting "right".
4121 	 */
4122 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4123 	if (level > 0) {
4124 		/* It's a non-leaf.  Move keys and pointers. */
4125 		union xfs_btree_key	*lkp;	/* left btree key */
4126 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4127 		union xfs_btree_key	*rkp;	/* right btree key */
4128 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4129 
4130 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4131 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4132 		rkp = xfs_btree_key_addr(cur, 1, right);
4133 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4134 #ifdef DEBUG
4135 		for (i = 1; i < rrecs; i++) {
4136 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4137 			if (error)
4138 				goto error0;
4139 		}
4140 #endif
4141 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4142 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4143 
4144 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4145 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4146 	} else {
4147 		/* It's a leaf.  Move records.  */
4148 		union xfs_btree_rec	*lrp;	/* left record pointer */
4149 		union xfs_btree_rec	*rrp;	/* right record pointer */
4150 
4151 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4152 		rrp = xfs_btree_rec_addr(cur, 1, right);
4153 
4154 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4155 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4156 	}
4157 
4158 	XFS_BTREE_STATS_INC(cur, join);
4159 
4160 	/*
4161 	 * Fix up the number of records and right block pointer in the
4162 	 * surviving block, and log it.
4163 	 */
4164 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4165 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4166 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4167 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4168 
4169 	/* If there is a right sibling, point it to the remaining block. */
4170 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4171 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4172 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4173 		if (error)
4174 			goto error0;
4175 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4176 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4177 	}
4178 
4179 	/* Free the deleted block. */
4180 	error = xfs_btree_free_block(cur, rbp);
4181 	if (error)
4182 		goto error0;
4183 
4184 	/*
4185 	 * If we joined with the left neighbor, set the buffer in the
4186 	 * cursor to the left block, and fix up the index.
4187 	 */
4188 	if (bp != lbp) {
4189 		cur->bc_bufs[level] = lbp;
4190 		cur->bc_ptrs[level] += lrecs;
4191 		cur->bc_ra[level] = 0;
4192 	}
4193 	/*
4194 	 * If we joined with the right neighbor and there's a level above
4195 	 * us, increment the cursor at that level.
4196 	 */
4197 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4198 		   (level + 1 < cur->bc_nlevels)) {
4199 		error = xfs_btree_increment(cur, level + 1, &i);
4200 		if (error)
4201 			goto error0;
4202 	}
4203 
4204 	/*
4205 	 * Readjust the ptr at this level if it's not a leaf, since it's
4206 	 * still pointing at the deletion point, which makes the cursor
4207 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4208 	 * We can't use decrement because it would change the next level up.
4209 	 */
4210 	if (level > 0)
4211 		cur->bc_ptrs[level]--;
4212 
4213 	/*
4214 	 * We combined blocks, so we have to update the parent keys if the
4215 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4216 	 * points to the old block so that the caller knows which record to
4217 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4218 	 * for us if we return stat == 2.  The other exit points from this
4219 	 * function don't require deletions further up the tree, so they can
4220 	 * call updkeys directly.
4221 	 */
4222 
4223 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4224 	/* Return value means the next level up has something to do. */
4225 	*stat = 2;
4226 	return 0;
4227 
4228 error0:
4229 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4230 	if (tcur)
4231 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4232 	return error;
4233 }
4234 
4235 /*
4236  * Delete the record pointed to by cur.
4237  * The cursor refers to the place where the record was (could be inserted)
4238  * when the operation returns.
4239  */
4240 int					/* error */
4241 xfs_btree_delete(
4242 	struct xfs_btree_cur	*cur,
4243 	int			*stat)	/* success/failure */
4244 {
4245 	int			error;	/* error return value */
4246 	int			level;
4247 	int			i;
4248 	bool			joined = false;
4249 
4250 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4251 
4252 	/*
4253 	 * Go up the tree, starting at leaf level.
4254 	 *
4255 	 * If 2 is returned then a join was done; go to the next level.
4256 	 * Otherwise we are done.
4257 	 */
4258 	for (level = 0, i = 2; i == 2; level++) {
4259 		error = xfs_btree_delrec(cur, level, &i);
4260 		if (error)
4261 			goto error0;
4262 		if (i == 2)
4263 			joined = true;
4264 	}
4265 
4266 	/*
4267 	 * If we combined blocks as part of deleting the record, delrec won't
4268 	 * have updated the parent high keys so we have to do that here.
4269 	 */
4270 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4271 		error = xfs_btree_updkeys_force(cur, 0);
4272 		if (error)
4273 			goto error0;
4274 	}
4275 
4276 	if (i == 0) {
4277 		for (level = 1; level < cur->bc_nlevels; level++) {
4278 			if (cur->bc_ptrs[level] == 0) {
4279 				error = xfs_btree_decrement(cur, level, &i);
4280 				if (error)
4281 					goto error0;
4282 				break;
4283 			}
4284 		}
4285 	}
4286 
4287 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4288 	*stat = i;
4289 	return 0;
4290 error0:
4291 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4292 	return error;
4293 }
4294 
4295 /*
4296  * Get the data from the pointed-to record.
4297  */
4298 int					/* error */
4299 xfs_btree_get_rec(
4300 	struct xfs_btree_cur	*cur,	/* btree cursor */
4301 	union xfs_btree_rec	**recp,	/* output: btree record */
4302 	int			*stat)	/* output: success/failure */
4303 {
4304 	struct xfs_btree_block	*block;	/* btree block */
4305 	struct xfs_buf		*bp;	/* buffer pointer */
4306 	int			ptr;	/* record number */
4307 #ifdef DEBUG
4308 	int			error;	/* error return value */
4309 #endif
4310 
4311 	ptr = cur->bc_ptrs[0];
4312 	block = xfs_btree_get_block(cur, 0, &bp);
4313 
4314 #ifdef DEBUG
4315 	error = xfs_btree_check_block(cur, block, 0, bp);
4316 	if (error)
4317 		return error;
4318 #endif
4319 
4320 	/*
4321 	 * Off the right end or left end, return failure.
4322 	 */
4323 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4324 		*stat = 0;
4325 		return 0;
4326 	}
4327 
4328 	/*
4329 	 * Point to the record and extract its data.
4330 	 */
4331 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4332 	*stat = 1;
4333 	return 0;
4334 }
4335 
4336 /* Visit a block in a btree. */
4337 STATIC int
4338 xfs_btree_visit_block(
4339 	struct xfs_btree_cur		*cur,
4340 	int				level,
4341 	xfs_btree_visit_blocks_fn	fn,
4342 	void				*data)
4343 {
4344 	struct xfs_btree_block		*block;
4345 	struct xfs_buf			*bp;
4346 	union xfs_btree_ptr		rptr;
4347 	int				error;
4348 
4349 	/* do right sibling readahead */
4350 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4351 	block = xfs_btree_get_block(cur, level, &bp);
4352 
4353 	/* process the block */
4354 	error = fn(cur, level, data);
4355 	if (error)
4356 		return error;
4357 
4358 	/* now read rh sibling block for next iteration */
4359 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4360 	if (xfs_btree_ptr_is_null(cur, &rptr))
4361 		return -ENOENT;
4362 
4363 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4364 }
4365 
4366 
4367 /* Visit every block in a btree. */
4368 int
4369 xfs_btree_visit_blocks(
4370 	struct xfs_btree_cur		*cur,
4371 	xfs_btree_visit_blocks_fn	fn,
4372 	void				*data)
4373 {
4374 	union xfs_btree_ptr		lptr;
4375 	int				level;
4376 	struct xfs_btree_block		*block = NULL;
4377 	int				error = 0;
4378 
4379 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4380 
4381 	/* for each level */
4382 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4383 		/* grab the left hand block */
4384 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4385 		if (error)
4386 			return error;
4387 
4388 		/* readahead the left most block for the next level down */
4389 		if (level > 0) {
4390 			union xfs_btree_ptr     *ptr;
4391 
4392 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4393 			xfs_btree_readahead_ptr(cur, ptr, 1);
4394 
4395 			/* save for the next iteration of the loop */
4396 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4397 		}
4398 
4399 		/* for each buffer in the level */
4400 		do {
4401 			error = xfs_btree_visit_block(cur, level, fn, data);
4402 		} while (!error);
4403 
4404 		if (error != -ENOENT)
4405 			return error;
4406 	}
4407 
4408 	return 0;
4409 }
4410 
4411 /*
4412  * Change the owner of a btree.
4413  *
4414  * The mechanism we use here is ordered buffer logging. Because we don't know
4415  * how many buffers were are going to need to modify, we don't really want to
4416  * have to make transaction reservations for the worst case of every buffer in a
4417  * full size btree as that may be more space that we can fit in the log....
4418  *
4419  * We do the btree walk in the most optimal manner possible - we have sibling
4420  * pointers so we can just walk all the blocks on each level from left to right
4421  * in a single pass, and then move to the next level and do the same. We can
4422  * also do readahead on the sibling pointers to get IO moving more quickly,
4423  * though for slow disks this is unlikely to make much difference to performance
4424  * as the amount of CPU work we have to do before moving to the next block is
4425  * relatively small.
4426  *
4427  * For each btree block that we load, modify the owner appropriately, set the
4428  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4429  * we mark the region we change dirty so that if the buffer is relogged in
4430  * a subsequent transaction the changes we make here as an ordered buffer are
4431  * correctly relogged in that transaction.  If we are in recovery context, then
4432  * just queue the modified buffer as delayed write buffer so the transaction
4433  * recovery completion writes the changes to disk.
4434  */
4435 struct xfs_btree_block_change_owner_info {
4436 	uint64_t		new_owner;
4437 	struct list_head	*buffer_list;
4438 };
4439 
4440 static int
4441 xfs_btree_block_change_owner(
4442 	struct xfs_btree_cur	*cur,
4443 	int			level,
4444 	void			*data)
4445 {
4446 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4447 	struct xfs_btree_block	*block;
4448 	struct xfs_buf		*bp;
4449 
4450 	/* modify the owner */
4451 	block = xfs_btree_get_block(cur, level, &bp);
4452 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4453 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4454 	else
4455 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4456 
4457 	/*
4458 	 * If the block is a root block hosted in an inode, we might not have a
4459 	 * buffer pointer here and we shouldn't attempt to log the change as the
4460 	 * information is already held in the inode and discarded when the root
4461 	 * block is formatted into the on-disk inode fork. We still change it,
4462 	 * though, so everything is consistent in memory.
4463 	 */
4464 	if (bp) {
4465 		if (cur->bc_tp) {
4466 			xfs_trans_ordered_buf(cur->bc_tp, bp);
4467 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4468 		} else {
4469 			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4470 		}
4471 	} else {
4472 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4473 		ASSERT(level == cur->bc_nlevels - 1);
4474 	}
4475 
4476 	return 0;
4477 }
4478 
4479 int
4480 xfs_btree_change_owner(
4481 	struct xfs_btree_cur	*cur,
4482 	uint64_t		new_owner,
4483 	struct list_head	*buffer_list)
4484 {
4485 	struct xfs_btree_block_change_owner_info	bbcoi;
4486 
4487 	bbcoi.new_owner = new_owner;
4488 	bbcoi.buffer_list = buffer_list;
4489 
4490 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4491 			&bbcoi);
4492 }
4493 
4494 /**
4495  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4496  *				      btree block
4497  *
4498  * @bp: buffer containing the btree block
4499  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4500  * @pag_max_level: pointer to the per-ag max level field
4501  */
4502 bool
4503 xfs_btree_sblock_v5hdr_verify(
4504 	struct xfs_buf		*bp)
4505 {
4506 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4507 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4508 	struct xfs_perag	*pag = bp->b_pag;
4509 
4510 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4511 		return false;
4512 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4513 		return false;
4514 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4515 		return false;
4516 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4517 		return false;
4518 	return true;
4519 }
4520 
4521 /**
4522  * xfs_btree_sblock_verify() -- verify a short-format btree block
4523  *
4524  * @bp: buffer containing the btree block
4525  * @max_recs: maximum records allowed in this btree node
4526  */
4527 bool
4528 xfs_btree_sblock_verify(
4529 	struct xfs_buf		*bp,
4530 	unsigned int		max_recs)
4531 {
4532 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4533 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4534 
4535 	/* numrecs verification */
4536 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4537 		return false;
4538 
4539 	/* sibling pointer verification */
4540 	if (!block->bb_u.s.bb_leftsib ||
4541 	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4542 	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4543 		return false;
4544 	if (!block->bb_u.s.bb_rightsib ||
4545 	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4546 	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4547 		return false;
4548 
4549 	return true;
4550 }
4551 
4552 /*
4553  * Calculate the number of btree levels needed to store a given number of
4554  * records in a short-format btree.
4555  */
4556 uint
4557 xfs_btree_compute_maxlevels(
4558 	struct xfs_mount	*mp,
4559 	uint			*limits,
4560 	unsigned long		len)
4561 {
4562 	uint			level;
4563 	unsigned long		maxblocks;
4564 
4565 	maxblocks = (len + limits[0] - 1) / limits[0];
4566 	for (level = 1; maxblocks > 1; level++)
4567 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4568 	return level;
4569 }
4570 
4571 /*
4572  * Query a regular btree for all records overlapping a given interval.
4573  * Start with a LE lookup of the key of low_rec and return all records
4574  * until we find a record with a key greater than the key of high_rec.
4575  */
4576 STATIC int
4577 xfs_btree_simple_query_range(
4578 	struct xfs_btree_cur		*cur,
4579 	union xfs_btree_key		*low_key,
4580 	union xfs_btree_key		*high_key,
4581 	xfs_btree_query_range_fn	fn,
4582 	void				*priv)
4583 {
4584 	union xfs_btree_rec		*recp;
4585 	union xfs_btree_key		rec_key;
4586 	int64_t				diff;
4587 	int				stat;
4588 	bool				firstrec = true;
4589 	int				error;
4590 
4591 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4592 	ASSERT(cur->bc_ops->diff_two_keys);
4593 
4594 	/*
4595 	 * Find the leftmost record.  The btree cursor must be set
4596 	 * to the low record used to generate low_key.
4597 	 */
4598 	stat = 0;
4599 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4600 	if (error)
4601 		goto out;
4602 
4603 	/* Nothing?  See if there's anything to the right. */
4604 	if (!stat) {
4605 		error = xfs_btree_increment(cur, 0, &stat);
4606 		if (error)
4607 			goto out;
4608 	}
4609 
4610 	while (stat) {
4611 		/* Find the record. */
4612 		error = xfs_btree_get_rec(cur, &recp, &stat);
4613 		if (error || !stat)
4614 			break;
4615 
4616 		/* Skip if high_key(rec) < low_key. */
4617 		if (firstrec) {
4618 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4619 			firstrec = false;
4620 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4621 					&rec_key);
4622 			if (diff > 0)
4623 				goto advloop;
4624 		}
4625 
4626 		/* Stop if high_key < low_key(rec). */
4627 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4628 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4629 		if (diff > 0)
4630 			break;
4631 
4632 		/* Callback */
4633 		error = fn(cur, recp, priv);
4634 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4635 			break;
4636 
4637 advloop:
4638 		/* Move on to the next record. */
4639 		error = xfs_btree_increment(cur, 0, &stat);
4640 		if (error)
4641 			break;
4642 	}
4643 
4644 out:
4645 	return error;
4646 }
4647 
4648 /*
4649  * Query an overlapped interval btree for all records overlapping a given
4650  * interval.  This function roughly follows the algorithm given in
4651  * "Interval Trees" of _Introduction to Algorithms_, which is section
4652  * 14.3 in the 2nd and 3rd editions.
4653  *
4654  * First, generate keys for the low and high records passed in.
4655  *
4656  * For any leaf node, generate the high and low keys for the record.
4657  * If the record keys overlap with the query low/high keys, pass the
4658  * record to the function iterator.
4659  *
4660  * For any internal node, compare the low and high keys of each
4661  * pointer against the query low/high keys.  If there's an overlap,
4662  * follow the pointer.
4663  *
4664  * As an optimization, we stop scanning a block when we find a low key
4665  * that is greater than the query's high key.
4666  */
4667 STATIC int
4668 xfs_btree_overlapped_query_range(
4669 	struct xfs_btree_cur		*cur,
4670 	union xfs_btree_key		*low_key,
4671 	union xfs_btree_key		*high_key,
4672 	xfs_btree_query_range_fn	fn,
4673 	void				*priv)
4674 {
4675 	union xfs_btree_ptr		ptr;
4676 	union xfs_btree_ptr		*pp;
4677 	union xfs_btree_key		rec_key;
4678 	union xfs_btree_key		rec_hkey;
4679 	union xfs_btree_key		*lkp;
4680 	union xfs_btree_key		*hkp;
4681 	union xfs_btree_rec		*recp;
4682 	struct xfs_btree_block		*block;
4683 	int64_t				ldiff;
4684 	int64_t				hdiff;
4685 	int				level;
4686 	struct xfs_buf			*bp;
4687 	int				i;
4688 	int				error;
4689 
4690 	/* Load the root of the btree. */
4691 	level = cur->bc_nlevels - 1;
4692 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4693 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4694 	if (error)
4695 		return error;
4696 	xfs_btree_get_block(cur, level, &bp);
4697 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4698 #ifdef DEBUG
4699 	error = xfs_btree_check_block(cur, block, level, bp);
4700 	if (error)
4701 		goto out;
4702 #endif
4703 	cur->bc_ptrs[level] = 1;
4704 
4705 	while (level < cur->bc_nlevels) {
4706 		block = xfs_btree_get_block(cur, level, &bp);
4707 
4708 		/* End of node, pop back towards the root. */
4709 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4710 pop_up:
4711 			if (level < cur->bc_nlevels - 1)
4712 				cur->bc_ptrs[level + 1]++;
4713 			level++;
4714 			continue;
4715 		}
4716 
4717 		if (level == 0) {
4718 			/* Handle a leaf node. */
4719 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4720 
4721 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4722 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4723 					low_key);
4724 
4725 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4726 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4727 					&rec_key);
4728 
4729 			/*
4730 			 * If (record's high key >= query's low key) and
4731 			 *    (query's high key >= record's low key), then
4732 			 * this record overlaps the query range; callback.
4733 			 */
4734 			if (ldiff >= 0 && hdiff >= 0) {
4735 				error = fn(cur, recp, priv);
4736 				if (error < 0 ||
4737 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4738 					break;
4739 			} else if (hdiff < 0) {
4740 				/* Record is larger than high key; pop. */
4741 				goto pop_up;
4742 			}
4743 			cur->bc_ptrs[level]++;
4744 			continue;
4745 		}
4746 
4747 		/* Handle an internal node. */
4748 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4749 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4750 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4751 
4752 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4753 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4754 
4755 		/*
4756 		 * If (pointer's high key >= query's low key) and
4757 		 *    (query's high key >= pointer's low key), then
4758 		 * this record overlaps the query range; follow pointer.
4759 		 */
4760 		if (ldiff >= 0 && hdiff >= 0) {
4761 			level--;
4762 			error = xfs_btree_lookup_get_block(cur, level, pp,
4763 					&block);
4764 			if (error)
4765 				goto out;
4766 			xfs_btree_get_block(cur, level, &bp);
4767 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4768 #ifdef DEBUG
4769 			error = xfs_btree_check_block(cur, block, level, bp);
4770 			if (error)
4771 				goto out;
4772 #endif
4773 			cur->bc_ptrs[level] = 1;
4774 			continue;
4775 		} else if (hdiff < 0) {
4776 			/* The low key is larger than the upper range; pop. */
4777 			goto pop_up;
4778 		}
4779 		cur->bc_ptrs[level]++;
4780 	}
4781 
4782 out:
4783 	/*
4784 	 * If we don't end this function with the cursor pointing at a record
4785 	 * block, a subsequent non-error cursor deletion will not release
4786 	 * node-level buffers, causing a buffer leak.  This is quite possible
4787 	 * with a zero-results range query, so release the buffers if we
4788 	 * failed to return any results.
4789 	 */
4790 	if (cur->bc_bufs[0] == NULL) {
4791 		for (i = 0; i < cur->bc_nlevels; i++) {
4792 			if (cur->bc_bufs[i]) {
4793 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4794 				cur->bc_bufs[i] = NULL;
4795 				cur->bc_ptrs[i] = 0;
4796 				cur->bc_ra[i] = 0;
4797 			}
4798 		}
4799 	}
4800 
4801 	return error;
4802 }
4803 
4804 /*
4805  * Query a btree for all records overlapping a given interval of keys.  The
4806  * supplied function will be called with each record found; return one of the
4807  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4808  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4809  * negative error code.
4810  */
4811 int
4812 xfs_btree_query_range(
4813 	struct xfs_btree_cur		*cur,
4814 	union xfs_btree_irec		*low_rec,
4815 	union xfs_btree_irec		*high_rec,
4816 	xfs_btree_query_range_fn	fn,
4817 	void				*priv)
4818 {
4819 	union xfs_btree_rec		rec;
4820 	union xfs_btree_key		low_key;
4821 	union xfs_btree_key		high_key;
4822 
4823 	/* Find the keys of both ends of the interval. */
4824 	cur->bc_rec = *high_rec;
4825 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4826 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4827 
4828 	cur->bc_rec = *low_rec;
4829 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4830 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4831 
4832 	/* Enforce low key < high key. */
4833 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4834 		return -EINVAL;
4835 
4836 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4837 		return xfs_btree_simple_query_range(cur, &low_key,
4838 				&high_key, fn, priv);
4839 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4840 			fn, priv);
4841 }
4842 
4843 /* Query a btree for all records. */
4844 int
4845 xfs_btree_query_all(
4846 	struct xfs_btree_cur		*cur,
4847 	xfs_btree_query_range_fn	fn,
4848 	void				*priv)
4849 {
4850 	union xfs_btree_key		low_key;
4851 	union xfs_btree_key		high_key;
4852 
4853 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4854 	memset(&low_key, 0, sizeof(low_key));
4855 	memset(&high_key, 0xFF, sizeof(high_key));
4856 
4857 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4858 }
4859 
4860 /*
4861  * Calculate the number of blocks needed to store a given number of records
4862  * in a short-format (per-AG metadata) btree.
4863  */
4864 xfs_extlen_t
4865 xfs_btree_calc_size(
4866 	struct xfs_mount	*mp,
4867 	uint			*limits,
4868 	unsigned long long	len)
4869 {
4870 	int			level;
4871 	int			maxrecs;
4872 	xfs_extlen_t		rval;
4873 
4874 	maxrecs = limits[0];
4875 	for (level = 0, rval = 0; len > 1; level++) {
4876 		len += maxrecs - 1;
4877 		do_div(len, maxrecs);
4878 		maxrecs = limits[1];
4879 		rval += len;
4880 	}
4881 	return rval;
4882 }
4883 
4884 static int
4885 xfs_btree_count_blocks_helper(
4886 	struct xfs_btree_cur	*cur,
4887 	int			level,
4888 	void			*data)
4889 {
4890 	xfs_extlen_t		*blocks = data;
4891 	(*blocks)++;
4892 
4893 	return 0;
4894 }
4895 
4896 /* Count the blocks in a btree and return the result in *blocks. */
4897 int
4898 xfs_btree_count_blocks(
4899 	struct xfs_btree_cur	*cur,
4900 	xfs_extlen_t		*blocks)
4901 {
4902 	*blocks = 0;
4903 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4904 			blocks);
4905 }
4906