xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 3ca3af7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * Check a long btree block header.  Return the address of the failing check,
56  * or NULL if everything is ok.
57  */
58 xfs_failaddr_t
59 __xfs_btree_check_lblock(
60 	struct xfs_btree_cur	*cur,
61 	struct xfs_btree_block	*block,
62 	int			level,
63 	struct xfs_buf		*bp)
64 {
65 	struct xfs_mount	*mp = cur->bc_mp;
66 	xfs_btnum_t		btnum = cur->bc_btnum;
67 	int			crc = xfs_has_crc(mp);
68 
69 	if (crc) {
70 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
71 			return __this_address;
72 		if (block->bb_u.l.bb_blkno !=
73 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
74 			return __this_address;
75 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
76 			return __this_address;
77 	}
78 
79 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
80 		return __this_address;
81 	if (be16_to_cpu(block->bb_level) != level)
82 		return __this_address;
83 	if (be16_to_cpu(block->bb_numrecs) >
84 	    cur->bc_ops->get_maxrecs(cur, level))
85 		return __this_address;
86 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
87 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
88 			level + 1))
89 		return __this_address;
90 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
91 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
92 			level + 1))
93 		return __this_address;
94 
95 	return NULL;
96 }
97 
98 /* Check a long btree block header. */
99 static int
100 xfs_btree_check_lblock(
101 	struct xfs_btree_cur	*cur,
102 	struct xfs_btree_block	*block,
103 	int			level,
104 	struct xfs_buf		*bp)
105 {
106 	struct xfs_mount	*mp = cur->bc_mp;
107 	xfs_failaddr_t		fa;
108 
109 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
110 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
111 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
112 		if (bp)
113 			trace_xfs_btree_corrupt(bp, _RET_IP_);
114 		return -EFSCORRUPTED;
115 	}
116 	return 0;
117 }
118 
119 /*
120  * Check a short btree block header.  Return the address of the failing check,
121  * or NULL if everything is ok.
122  */
123 xfs_failaddr_t
124 __xfs_btree_check_sblock(
125 	struct xfs_btree_cur	*cur,
126 	struct xfs_btree_block	*block,
127 	int			level,
128 	struct xfs_buf		*bp)
129 {
130 	struct xfs_mount	*mp = cur->bc_mp;
131 	xfs_btnum_t		btnum = cur->bc_btnum;
132 	int			crc = xfs_has_crc(mp);
133 
134 	if (crc) {
135 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
136 			return __this_address;
137 		if (block->bb_u.s.bb_blkno !=
138 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
139 			return __this_address;
140 	}
141 
142 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
143 		return __this_address;
144 	if (be16_to_cpu(block->bb_level) != level)
145 		return __this_address;
146 	if (be16_to_cpu(block->bb_numrecs) >
147 	    cur->bc_ops->get_maxrecs(cur, level))
148 		return __this_address;
149 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
150 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
151 			level + 1))
152 		return __this_address;
153 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
154 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
155 			level + 1))
156 		return __this_address;
157 
158 	return NULL;
159 }
160 
161 /* Check a short btree block header. */
162 STATIC int
163 xfs_btree_check_sblock(
164 	struct xfs_btree_cur	*cur,
165 	struct xfs_btree_block	*block,
166 	int			level,
167 	struct xfs_buf		*bp)
168 {
169 	struct xfs_mount	*mp = cur->bc_mp;
170 	xfs_failaddr_t		fa;
171 
172 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
173 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
174 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
175 		if (bp)
176 			trace_xfs_btree_corrupt(bp, _RET_IP_);
177 		return -EFSCORRUPTED;
178 	}
179 	return 0;
180 }
181 
182 /*
183  * Debug routine: check that block header is ok.
184  */
185 int
186 xfs_btree_check_block(
187 	struct xfs_btree_cur	*cur,	/* btree cursor */
188 	struct xfs_btree_block	*block,	/* generic btree block pointer */
189 	int			level,	/* level of the btree block */
190 	struct xfs_buf		*bp)	/* buffer containing block, if any */
191 {
192 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 		return xfs_btree_check_lblock(cur, block, level, bp);
194 	else
195 		return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197 
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
200 xfs_btree_check_lptr(
201 	struct xfs_btree_cur	*cur,
202 	xfs_fsblock_t		fsbno,
203 	int			level)
204 {
205 	if (level <= 0)
206 		return false;
207 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209 
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
212 xfs_btree_check_sptr(
213 	struct xfs_btree_cur	*cur,
214 	xfs_agblock_t		agbno,
215 	int			level)
216 {
217 	if (level <= 0)
218 		return false;
219 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
220 }
221 
222 /*
223  * Check that a given (indexed) btree pointer at a certain level of a
224  * btree is valid and doesn't point past where it should.
225  */
226 static int
227 xfs_btree_check_ptr(
228 	struct xfs_btree_cur		*cur,
229 	const union xfs_btree_ptr	*ptr,
230 	int				index,
231 	int				level)
232 {
233 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 				level))
236 			return 0;
237 		xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 				cur->bc_ino.ip->i_ino,
240 				cur->bc_ino.whichfork, cur->bc_btnum,
241 				level, index);
242 	} else {
243 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 				level))
245 			return 0;
246 		xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
249 				level, index);
250 	}
251 
252 	return -EFSCORRUPTED;
253 }
254 
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...)	(0)
259 #endif
260 
261 /*
262  * Calculate CRC on the whole btree block and stuff it into the
263  * long-form btree header.
264  *
265  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266  * it into the buffer so recovery knows what the last modification was that made
267  * it to disk.
268  */
269 void
270 xfs_btree_lblock_calc_crc(
271 	struct xfs_buf		*bp)
272 {
273 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
274 	struct xfs_buf_log_item	*bip = bp->b_log_item;
275 
276 	if (!xfs_has_crc(bp->b_mount))
277 		return;
278 	if (bip)
279 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282 
283 bool
284 xfs_btree_lblock_verify_crc(
285 	struct xfs_buf		*bp)
286 {
287 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
288 	struct xfs_mount	*mp = bp->b_mount;
289 
290 	if (xfs_has_crc(mp)) {
291 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 			return false;
293 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 	}
295 
296 	return true;
297 }
298 
299 /*
300  * Calculate CRC on the whole btree block and stuff it into the
301  * short-form btree header.
302  *
303  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304  * it into the buffer so recovery knows what the last modification was that made
305  * it to disk.
306  */
307 void
308 xfs_btree_sblock_calc_crc(
309 	struct xfs_buf		*bp)
310 {
311 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
312 	struct xfs_buf_log_item	*bip = bp->b_log_item;
313 
314 	if (!xfs_has_crc(bp->b_mount))
315 		return;
316 	if (bip)
317 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320 
321 bool
322 xfs_btree_sblock_verify_crc(
323 	struct xfs_buf		*bp)
324 {
325 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
326 	struct xfs_mount	*mp = bp->b_mount;
327 
328 	if (xfs_has_crc(mp)) {
329 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 			return false;
331 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 	}
333 
334 	return true;
335 }
336 
337 static int
338 xfs_btree_free_block(
339 	struct xfs_btree_cur	*cur,
340 	struct xfs_buf		*bp)
341 {
342 	int			error;
343 
344 	error = cur->bc_ops->free_block(cur, bp);
345 	if (!error) {
346 		xfs_trans_binval(cur->bc_tp, bp);
347 		XFS_BTREE_STATS_INC(cur, free);
348 	}
349 	return error;
350 }
351 
352 /*
353  * Delete the btree cursor.
354  */
355 void
356 xfs_btree_del_cursor(
357 	struct xfs_btree_cur	*cur,		/* btree cursor */
358 	int			error)		/* del because of error */
359 {
360 	int			i;		/* btree level */
361 
362 	/*
363 	 * Clear the buffer pointers and release the buffers. If we're doing
364 	 * this because of an error, inspect all of the entries in the bc_bufs
365 	 * array for buffers to be unlocked. This is because some of the btree
366 	 * code works from level n down to 0, and if we get an error along the
367 	 * way we won't have initialized all the entries down to 0.
368 	 */
369 	for (i = 0; i < cur->bc_nlevels; i++) {
370 		if (cur->bc_levels[i].bp)
371 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
372 		else if (!error)
373 			break;
374 	}
375 
376 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
377 	       xfs_is_shutdown(cur->bc_mp));
378 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
379 		kmem_free(cur->bc_ops);
380 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
381 		xfs_perag_put(cur->bc_ag.pag);
382 	kmem_cache_free(cur->bc_cache, cur);
383 }
384 
385 /*
386  * Duplicate the btree cursor.
387  * Allocate a new one, copy the record, re-get the buffers.
388  */
389 int					/* error */
390 xfs_btree_dup_cursor(
391 	struct xfs_btree_cur *cur,		/* input cursor */
392 	struct xfs_btree_cur **ncur)		/* output cursor */
393 {
394 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
395 	int		error;		/* error return value */
396 	int		i;		/* level number of btree block */
397 	xfs_mount_t	*mp;		/* mount structure for filesystem */
398 	struct xfs_btree_cur *new;		/* new cursor value */
399 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
400 
401 	tp = cur->bc_tp;
402 	mp = cur->bc_mp;
403 
404 	/*
405 	 * Allocate a new cursor like the old one.
406 	 */
407 	new = cur->bc_ops->dup_cursor(cur);
408 
409 	/*
410 	 * Copy the record currently in the cursor.
411 	 */
412 	new->bc_rec = cur->bc_rec;
413 
414 	/*
415 	 * For each level current, re-get the buffer and copy the ptr value.
416 	 */
417 	for (i = 0; i < new->bc_nlevels; i++) {
418 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
419 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
420 		bp = cur->bc_levels[i].bp;
421 		if (bp) {
422 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
423 						   xfs_buf_daddr(bp), mp->m_bsize,
424 						   0, &bp,
425 						   cur->bc_ops->buf_ops);
426 			if (error) {
427 				xfs_btree_del_cursor(new, error);
428 				*ncur = NULL;
429 				return error;
430 			}
431 		}
432 		new->bc_levels[i].bp = bp;
433 	}
434 	*ncur = new;
435 	return 0;
436 }
437 
438 /*
439  * XFS btree block layout and addressing:
440  *
441  * There are two types of blocks in the btree: leaf and non-leaf blocks.
442  *
443  * The leaf record start with a header then followed by records containing
444  * the values.  A non-leaf block also starts with the same header, and
445  * then first contains lookup keys followed by an equal number of pointers
446  * to the btree blocks at the previous level.
447  *
448  *		+--------+-------+-------+-------+-------+-------+-------+
449  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
450  *		+--------+-------+-------+-------+-------+-------+-------+
451  *
452  *		+--------+-------+-------+-------+-------+-------+-------+
453  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
454  *		+--------+-------+-------+-------+-------+-------+-------+
455  *
456  * The header is called struct xfs_btree_block for reasons better left unknown
457  * and comes in different versions for short (32bit) and long (64bit) block
458  * pointers.  The record and key structures are defined by the btree instances
459  * and opaque to the btree core.  The block pointers are simple disk endian
460  * integers, available in a short (32bit) and long (64bit) variant.
461  *
462  * The helpers below calculate the offset of a given record, key or pointer
463  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
464  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
465  * inside the btree block is done using indices starting at one, not zero!
466  *
467  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
468  * overlapping intervals.  In such a tree, records are still sorted lowest to
469  * highest and indexed by the smallest key value that refers to the record.
470  * However, nodes are different: each pointer has two associated keys -- one
471  * indexing the lowest key available in the block(s) below (the same behavior
472  * as the key in a regular btree) and another indexing the highest key
473  * available in the block(s) below.  Because records are /not/ sorted by the
474  * highest key, all leaf block updates require us to compute the highest key
475  * that matches any record in the leaf and to recursively update the high keys
476  * in the nodes going further up in the tree, if necessary.  Nodes look like
477  * this:
478  *
479  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
480  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
481  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
482  *
483  * To perform an interval query on an overlapped tree, perform the usual
484  * depth-first search and use the low and high keys to decide if we can skip
485  * that particular node.  If a leaf node is reached, return the records that
486  * intersect the interval.  Note that an interval query may return numerous
487  * entries.  For a non-overlapped tree, simply search for the record associated
488  * with the lowest key and iterate forward until a non-matching record is
489  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
490  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
491  * more detail.
492  *
493  * Why do we care about overlapping intervals?  Let's say you have a bunch of
494  * reverse mapping records on a reflink filesystem:
495  *
496  * 1: +- file A startblock B offset C length D -----------+
497  * 2:      +- file E startblock F offset G length H --------------+
498  * 3:      +- file I startblock F offset J length K --+
499  * 4:                                                        +- file L... --+
500  *
501  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
502  * we'd simply increment the length of record 1.  But how do we find the record
503  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
504  * record 3 because the keys are ordered first by startblock.  An interval
505  * query would return records 1 and 2 because they both overlap (B+D-1), and
506  * from that we can pick out record 1 as the appropriate left neighbor.
507  *
508  * In the non-overlapped case you can do a LE lookup and decrement the cursor
509  * because a record's interval must end before the next record.
510  */
511 
512 /*
513  * Return size of the btree block header for this btree instance.
514  */
515 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
516 {
517 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
518 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
519 			return XFS_BTREE_LBLOCK_CRC_LEN;
520 		return XFS_BTREE_LBLOCK_LEN;
521 	}
522 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
523 		return XFS_BTREE_SBLOCK_CRC_LEN;
524 	return XFS_BTREE_SBLOCK_LEN;
525 }
526 
527 /*
528  * Return size of btree block pointers for this btree instance.
529  */
530 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
531 {
532 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
533 		sizeof(__be64) : sizeof(__be32);
534 }
535 
536 /*
537  * Calculate offset of the n-th record in a btree block.
538  */
539 STATIC size_t
540 xfs_btree_rec_offset(
541 	struct xfs_btree_cur	*cur,
542 	int			n)
543 {
544 	return xfs_btree_block_len(cur) +
545 		(n - 1) * cur->bc_ops->rec_len;
546 }
547 
548 /*
549  * Calculate offset of the n-th key in a btree block.
550  */
551 STATIC size_t
552 xfs_btree_key_offset(
553 	struct xfs_btree_cur	*cur,
554 	int			n)
555 {
556 	return xfs_btree_block_len(cur) +
557 		(n - 1) * cur->bc_ops->key_len;
558 }
559 
560 /*
561  * Calculate offset of the n-th high key in a btree block.
562  */
563 STATIC size_t
564 xfs_btree_high_key_offset(
565 	struct xfs_btree_cur	*cur,
566 	int			n)
567 {
568 	return xfs_btree_block_len(cur) +
569 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
570 }
571 
572 /*
573  * Calculate offset of the n-th block pointer in a btree block.
574  */
575 STATIC size_t
576 xfs_btree_ptr_offset(
577 	struct xfs_btree_cur	*cur,
578 	int			n,
579 	int			level)
580 {
581 	return xfs_btree_block_len(cur) +
582 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
583 		(n - 1) * xfs_btree_ptr_len(cur);
584 }
585 
586 /*
587  * Return a pointer to the n-th record in the btree block.
588  */
589 union xfs_btree_rec *
590 xfs_btree_rec_addr(
591 	struct xfs_btree_cur	*cur,
592 	int			n,
593 	struct xfs_btree_block	*block)
594 {
595 	return (union xfs_btree_rec *)
596 		((char *)block + xfs_btree_rec_offset(cur, n));
597 }
598 
599 /*
600  * Return a pointer to the n-th key in the btree block.
601  */
602 union xfs_btree_key *
603 xfs_btree_key_addr(
604 	struct xfs_btree_cur	*cur,
605 	int			n,
606 	struct xfs_btree_block	*block)
607 {
608 	return (union xfs_btree_key *)
609 		((char *)block + xfs_btree_key_offset(cur, n));
610 }
611 
612 /*
613  * Return a pointer to the n-th high key in the btree block.
614  */
615 union xfs_btree_key *
616 xfs_btree_high_key_addr(
617 	struct xfs_btree_cur	*cur,
618 	int			n,
619 	struct xfs_btree_block	*block)
620 {
621 	return (union xfs_btree_key *)
622 		((char *)block + xfs_btree_high_key_offset(cur, n));
623 }
624 
625 /*
626  * Return a pointer to the n-th block pointer in the btree block.
627  */
628 union xfs_btree_ptr *
629 xfs_btree_ptr_addr(
630 	struct xfs_btree_cur	*cur,
631 	int			n,
632 	struct xfs_btree_block	*block)
633 {
634 	int			level = xfs_btree_get_level(block);
635 
636 	ASSERT(block->bb_level != 0);
637 
638 	return (union xfs_btree_ptr *)
639 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
640 }
641 
642 struct xfs_ifork *
643 xfs_btree_ifork_ptr(
644 	struct xfs_btree_cur	*cur)
645 {
646 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
647 
648 	if (cur->bc_flags & XFS_BTREE_STAGING)
649 		return cur->bc_ino.ifake->if_fork;
650 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
651 }
652 
653 /*
654  * Get the root block which is stored in the inode.
655  *
656  * For now this btree implementation assumes the btree root is always
657  * stored in the if_broot field of an inode fork.
658  */
659 STATIC struct xfs_btree_block *
660 xfs_btree_get_iroot(
661 	struct xfs_btree_cur	*cur)
662 {
663 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
664 
665 	return (struct xfs_btree_block *)ifp->if_broot;
666 }
667 
668 /*
669  * Retrieve the block pointer from the cursor at the given level.
670  * This may be an inode btree root or from a buffer.
671  */
672 struct xfs_btree_block *		/* generic btree block pointer */
673 xfs_btree_get_block(
674 	struct xfs_btree_cur	*cur,	/* btree cursor */
675 	int			level,	/* level in btree */
676 	struct xfs_buf		**bpp)	/* buffer containing the block */
677 {
678 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
679 	    (level == cur->bc_nlevels - 1)) {
680 		*bpp = NULL;
681 		return xfs_btree_get_iroot(cur);
682 	}
683 
684 	*bpp = cur->bc_levels[level].bp;
685 	return XFS_BUF_TO_BLOCK(*bpp);
686 }
687 
688 /*
689  * Change the cursor to point to the first record at the given level.
690  * Other levels are unaffected.
691  */
692 STATIC int				/* success=1, failure=0 */
693 xfs_btree_firstrec(
694 	struct xfs_btree_cur	*cur,	/* btree cursor */
695 	int			level)	/* level to change */
696 {
697 	struct xfs_btree_block	*block;	/* generic btree block pointer */
698 	struct xfs_buf		*bp;	/* buffer containing block */
699 
700 	/*
701 	 * Get the block pointer for this level.
702 	 */
703 	block = xfs_btree_get_block(cur, level, &bp);
704 	if (xfs_btree_check_block(cur, block, level, bp))
705 		return 0;
706 	/*
707 	 * It's empty, there is no such record.
708 	 */
709 	if (!block->bb_numrecs)
710 		return 0;
711 	/*
712 	 * Set the ptr value to 1, that's the first record/key.
713 	 */
714 	cur->bc_levels[level].ptr = 1;
715 	return 1;
716 }
717 
718 /*
719  * Change the cursor to point to the last record in the current block
720  * at the given level.  Other levels are unaffected.
721  */
722 STATIC int				/* success=1, failure=0 */
723 xfs_btree_lastrec(
724 	struct xfs_btree_cur	*cur,	/* btree cursor */
725 	int			level)	/* level to change */
726 {
727 	struct xfs_btree_block	*block;	/* generic btree block pointer */
728 	struct xfs_buf		*bp;	/* buffer containing block */
729 
730 	/*
731 	 * Get the block pointer for this level.
732 	 */
733 	block = xfs_btree_get_block(cur, level, &bp);
734 	if (xfs_btree_check_block(cur, block, level, bp))
735 		return 0;
736 	/*
737 	 * It's empty, there is no such record.
738 	 */
739 	if (!block->bb_numrecs)
740 		return 0;
741 	/*
742 	 * Set the ptr value to numrecs, that's the last record/key.
743 	 */
744 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
745 	return 1;
746 }
747 
748 /*
749  * Compute first and last byte offsets for the fields given.
750  * Interprets the offsets table, which contains struct field offsets.
751  */
752 void
753 xfs_btree_offsets(
754 	int64_t		fields,		/* bitmask of fields */
755 	const short	*offsets,	/* table of field offsets */
756 	int		nbits,		/* number of bits to inspect */
757 	int		*first,		/* output: first byte offset */
758 	int		*last)		/* output: last byte offset */
759 {
760 	int		i;		/* current bit number */
761 	int64_t		imask;		/* mask for current bit number */
762 
763 	ASSERT(fields != 0);
764 	/*
765 	 * Find the lowest bit, so the first byte offset.
766 	 */
767 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
768 		if (imask & fields) {
769 			*first = offsets[i];
770 			break;
771 		}
772 	}
773 	/*
774 	 * Find the highest bit, so the last byte offset.
775 	 */
776 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
777 		if (imask & fields) {
778 			*last = offsets[i + 1] - 1;
779 			break;
780 		}
781 	}
782 }
783 
784 /*
785  * Get a buffer for the block, return it read in.
786  * Long-form addressing.
787  */
788 int
789 xfs_btree_read_bufl(
790 	struct xfs_mount	*mp,		/* file system mount point */
791 	struct xfs_trans	*tp,		/* transaction pointer */
792 	xfs_fsblock_t		fsbno,		/* file system block number */
793 	struct xfs_buf		**bpp,		/* buffer for fsbno */
794 	int			refval,		/* ref count value for buffer */
795 	const struct xfs_buf_ops *ops)
796 {
797 	struct xfs_buf		*bp;		/* return value */
798 	xfs_daddr_t		d;		/* real disk block address */
799 	int			error;
800 
801 	if (!xfs_verify_fsbno(mp, fsbno))
802 		return -EFSCORRUPTED;
803 	d = XFS_FSB_TO_DADDR(mp, fsbno);
804 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
805 				   mp->m_bsize, 0, &bp, ops);
806 	if (error)
807 		return error;
808 	if (bp)
809 		xfs_buf_set_ref(bp, refval);
810 	*bpp = bp;
811 	return 0;
812 }
813 
814 /*
815  * Read-ahead the block, don't wait for it, don't return a buffer.
816  * Long-form addressing.
817  */
818 /* ARGSUSED */
819 void
820 xfs_btree_reada_bufl(
821 	struct xfs_mount	*mp,		/* file system mount point */
822 	xfs_fsblock_t		fsbno,		/* file system block number */
823 	xfs_extlen_t		count,		/* count of filesystem blocks */
824 	const struct xfs_buf_ops *ops)
825 {
826 	xfs_daddr_t		d;
827 
828 	ASSERT(fsbno != NULLFSBLOCK);
829 	d = XFS_FSB_TO_DADDR(mp, fsbno);
830 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
831 }
832 
833 /*
834  * Read-ahead the block, don't wait for it, don't return a buffer.
835  * Short-form addressing.
836  */
837 /* ARGSUSED */
838 void
839 xfs_btree_reada_bufs(
840 	struct xfs_mount	*mp,		/* file system mount point */
841 	xfs_agnumber_t		agno,		/* allocation group number */
842 	xfs_agblock_t		agbno,		/* allocation group block number */
843 	xfs_extlen_t		count,		/* count of filesystem blocks */
844 	const struct xfs_buf_ops *ops)
845 {
846 	xfs_daddr_t		d;
847 
848 	ASSERT(agno != NULLAGNUMBER);
849 	ASSERT(agbno != NULLAGBLOCK);
850 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
851 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
852 }
853 
854 STATIC int
855 xfs_btree_readahead_lblock(
856 	struct xfs_btree_cur	*cur,
857 	int			lr,
858 	struct xfs_btree_block	*block)
859 {
860 	int			rval = 0;
861 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
862 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
863 
864 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
865 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
866 				     cur->bc_ops->buf_ops);
867 		rval++;
868 	}
869 
870 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
871 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
872 				     cur->bc_ops->buf_ops);
873 		rval++;
874 	}
875 
876 	return rval;
877 }
878 
879 STATIC int
880 xfs_btree_readahead_sblock(
881 	struct xfs_btree_cur	*cur,
882 	int			lr,
883 	struct xfs_btree_block *block)
884 {
885 	int			rval = 0;
886 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
887 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
888 
889 
890 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
891 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
892 				     left, 1, cur->bc_ops->buf_ops);
893 		rval++;
894 	}
895 
896 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
897 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
898 				     right, 1, cur->bc_ops->buf_ops);
899 		rval++;
900 	}
901 
902 	return rval;
903 }
904 
905 /*
906  * Read-ahead btree blocks, at the given level.
907  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
908  */
909 STATIC int
910 xfs_btree_readahead(
911 	struct xfs_btree_cur	*cur,		/* btree cursor */
912 	int			lev,		/* level in btree */
913 	int			lr)		/* left/right bits */
914 {
915 	struct xfs_btree_block	*block;
916 
917 	/*
918 	 * No readahead needed if we are at the root level and the
919 	 * btree root is stored in the inode.
920 	 */
921 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
922 	    (lev == cur->bc_nlevels - 1))
923 		return 0;
924 
925 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
926 		return 0;
927 
928 	cur->bc_levels[lev].ra |= lr;
929 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
930 
931 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
932 		return xfs_btree_readahead_lblock(cur, lr, block);
933 	return xfs_btree_readahead_sblock(cur, lr, block);
934 }
935 
936 STATIC int
937 xfs_btree_ptr_to_daddr(
938 	struct xfs_btree_cur		*cur,
939 	const union xfs_btree_ptr	*ptr,
940 	xfs_daddr_t			*daddr)
941 {
942 	xfs_fsblock_t		fsbno;
943 	xfs_agblock_t		agbno;
944 	int			error;
945 
946 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
947 	if (error)
948 		return error;
949 
950 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
951 		fsbno = be64_to_cpu(ptr->l);
952 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
953 	} else {
954 		agbno = be32_to_cpu(ptr->s);
955 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
956 				agbno);
957 	}
958 
959 	return 0;
960 }
961 
962 /*
963  * Readahead @count btree blocks at the given @ptr location.
964  *
965  * We don't need to care about long or short form btrees here as we have a
966  * method of converting the ptr directly to a daddr available to us.
967  */
968 STATIC void
969 xfs_btree_readahead_ptr(
970 	struct xfs_btree_cur	*cur,
971 	union xfs_btree_ptr	*ptr,
972 	xfs_extlen_t		count)
973 {
974 	xfs_daddr_t		daddr;
975 
976 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
977 		return;
978 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
979 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981 
982 /*
983  * Set the buffer for level "lev" in the cursor to bp, releasing
984  * any previous buffer.
985  */
986 STATIC void
987 xfs_btree_setbuf(
988 	struct xfs_btree_cur	*cur,	/* btree cursor */
989 	int			lev,	/* level in btree */
990 	struct xfs_buf		*bp)	/* new buffer to set */
991 {
992 	struct xfs_btree_block	*b;	/* btree block */
993 
994 	if (cur->bc_levels[lev].bp)
995 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
996 	cur->bc_levels[lev].bp = bp;
997 	cur->bc_levels[lev].ra = 0;
998 
999 	b = XFS_BUF_TO_BLOCK(bp);
1000 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1003 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1005 	} else {
1006 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1008 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1010 	}
1011 }
1012 
1013 bool
1014 xfs_btree_ptr_is_null(
1015 	struct xfs_btree_cur		*cur,
1016 	const union xfs_btree_ptr	*ptr)
1017 {
1018 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 	else
1021 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023 
1024 void
1025 xfs_btree_set_ptr_null(
1026 	struct xfs_btree_cur	*cur,
1027 	union xfs_btree_ptr	*ptr)
1028 {
1029 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 	else
1032 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034 
1035 /*
1036  * Get/set/init sibling pointers
1037  */
1038 void
1039 xfs_btree_get_sibling(
1040 	struct xfs_btree_cur	*cur,
1041 	struct xfs_btree_block	*block,
1042 	union xfs_btree_ptr	*ptr,
1043 	int			lr)
1044 {
1045 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046 
1047 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 		if (lr == XFS_BB_RIGHTSIB)
1049 			ptr->l = block->bb_u.l.bb_rightsib;
1050 		else
1051 			ptr->l = block->bb_u.l.bb_leftsib;
1052 	} else {
1053 		if (lr == XFS_BB_RIGHTSIB)
1054 			ptr->s = block->bb_u.s.bb_rightsib;
1055 		else
1056 			ptr->s = block->bb_u.s.bb_leftsib;
1057 	}
1058 }
1059 
1060 void
1061 xfs_btree_set_sibling(
1062 	struct xfs_btree_cur		*cur,
1063 	struct xfs_btree_block		*block,
1064 	const union xfs_btree_ptr	*ptr,
1065 	int				lr)
1066 {
1067 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068 
1069 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 		if (lr == XFS_BB_RIGHTSIB)
1071 			block->bb_u.l.bb_rightsib = ptr->l;
1072 		else
1073 			block->bb_u.l.bb_leftsib = ptr->l;
1074 	} else {
1075 		if (lr == XFS_BB_RIGHTSIB)
1076 			block->bb_u.s.bb_rightsib = ptr->s;
1077 		else
1078 			block->bb_u.s.bb_leftsib = ptr->s;
1079 	}
1080 }
1081 
1082 void
1083 xfs_btree_init_block_int(
1084 	struct xfs_mount	*mp,
1085 	struct xfs_btree_block	*buf,
1086 	xfs_daddr_t		blkno,
1087 	xfs_btnum_t		btnum,
1088 	__u16			level,
1089 	__u16			numrecs,
1090 	__u64			owner,
1091 	unsigned int		flags)
1092 {
1093 	int			crc = xfs_has_crc(mp);
1094 	__u32			magic = xfs_btree_magic(crc, btnum);
1095 
1096 	buf->bb_magic = cpu_to_be32(magic);
1097 	buf->bb_level = cpu_to_be16(level);
1098 	buf->bb_numrecs = cpu_to_be16(numrecs);
1099 
1100 	if (flags & XFS_BTREE_LONG_PTRS) {
1101 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1102 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1103 		if (crc) {
1104 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1105 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1106 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1107 			buf->bb_u.l.bb_pad = 0;
1108 			buf->bb_u.l.bb_lsn = 0;
1109 		}
1110 	} else {
1111 		/* owner is a 32 bit value on short blocks */
1112 		__u32 __owner = (__u32)owner;
1113 
1114 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1115 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1116 		if (crc) {
1117 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1118 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1119 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1120 			buf->bb_u.s.bb_lsn = 0;
1121 		}
1122 	}
1123 }
1124 
1125 void
1126 xfs_btree_init_block(
1127 	struct xfs_mount *mp,
1128 	struct xfs_buf	*bp,
1129 	xfs_btnum_t	btnum,
1130 	__u16		level,
1131 	__u16		numrecs,
1132 	__u64		owner)
1133 {
1134 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1135 				 btnum, level, numrecs, owner, 0);
1136 }
1137 
1138 void
1139 xfs_btree_init_block_cur(
1140 	struct xfs_btree_cur	*cur,
1141 	struct xfs_buf		*bp,
1142 	int			level,
1143 	int			numrecs)
1144 {
1145 	__u64			owner;
1146 
1147 	/*
1148 	 * we can pull the owner from the cursor right now as the different
1149 	 * owners align directly with the pointer size of the btree. This may
1150 	 * change in future, but is safe for current users of the generic btree
1151 	 * code.
1152 	 */
1153 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1154 		owner = cur->bc_ino.ip->i_ino;
1155 	else
1156 		owner = cur->bc_ag.pag->pag_agno;
1157 
1158 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1159 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1160 				numrecs, owner, cur->bc_flags);
1161 }
1162 
1163 /*
1164  * Return true if ptr is the last record in the btree and
1165  * we need to track updates to this record.  The decision
1166  * will be further refined in the update_lastrec method.
1167  */
1168 STATIC int
1169 xfs_btree_is_lastrec(
1170 	struct xfs_btree_cur	*cur,
1171 	struct xfs_btree_block	*block,
1172 	int			level)
1173 {
1174 	union xfs_btree_ptr	ptr;
1175 
1176 	if (level > 0)
1177 		return 0;
1178 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1179 		return 0;
1180 
1181 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1182 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1183 		return 0;
1184 	return 1;
1185 }
1186 
1187 STATIC void
1188 xfs_btree_buf_to_ptr(
1189 	struct xfs_btree_cur	*cur,
1190 	struct xfs_buf		*bp,
1191 	union xfs_btree_ptr	*ptr)
1192 {
1193 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1194 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1195 					xfs_buf_daddr(bp)));
1196 	else {
1197 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1198 					xfs_buf_daddr(bp)));
1199 	}
1200 }
1201 
1202 STATIC void
1203 xfs_btree_set_refs(
1204 	struct xfs_btree_cur	*cur,
1205 	struct xfs_buf		*bp)
1206 {
1207 	switch (cur->bc_btnum) {
1208 	case XFS_BTNUM_BNO:
1209 	case XFS_BTNUM_CNT:
1210 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1211 		break;
1212 	case XFS_BTNUM_INO:
1213 	case XFS_BTNUM_FINO:
1214 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1215 		break;
1216 	case XFS_BTNUM_BMAP:
1217 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1218 		break;
1219 	case XFS_BTNUM_RMAP:
1220 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1221 		break;
1222 	case XFS_BTNUM_REFC:
1223 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1224 		break;
1225 	default:
1226 		ASSERT(0);
1227 	}
1228 }
1229 
1230 int
1231 xfs_btree_get_buf_block(
1232 	struct xfs_btree_cur		*cur,
1233 	const union xfs_btree_ptr	*ptr,
1234 	struct xfs_btree_block		**block,
1235 	struct xfs_buf			**bpp)
1236 {
1237 	struct xfs_mount	*mp = cur->bc_mp;
1238 	xfs_daddr_t		d;
1239 	int			error;
1240 
1241 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1242 	if (error)
1243 		return error;
1244 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1245 			0, bpp);
1246 	if (error)
1247 		return error;
1248 
1249 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 	*block = XFS_BUF_TO_BLOCK(*bpp);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Read in the buffer at the given ptr and return the buffer and
1256  * the block pointer within the buffer.
1257  */
1258 STATIC int
1259 xfs_btree_read_buf_block(
1260 	struct xfs_btree_cur		*cur,
1261 	const union xfs_btree_ptr	*ptr,
1262 	int				flags,
1263 	struct xfs_btree_block		**block,
1264 	struct xfs_buf			**bpp)
1265 {
1266 	struct xfs_mount	*mp = cur->bc_mp;
1267 	xfs_daddr_t		d;
1268 	int			error;
1269 
1270 	/* need to sort out how callers deal with failures first */
1271 	ASSERT(!(flags & XBF_TRYLOCK));
1272 
1273 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1274 	if (error)
1275 		return error;
1276 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1277 				   mp->m_bsize, flags, bpp,
1278 				   cur->bc_ops->buf_ops);
1279 	if (error)
1280 		return error;
1281 
1282 	xfs_btree_set_refs(cur, *bpp);
1283 	*block = XFS_BUF_TO_BLOCK(*bpp);
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Copy keys from one btree block to another.
1289  */
1290 void
1291 xfs_btree_copy_keys(
1292 	struct xfs_btree_cur		*cur,
1293 	union xfs_btree_key		*dst_key,
1294 	const union xfs_btree_key	*src_key,
1295 	int				numkeys)
1296 {
1297 	ASSERT(numkeys >= 0);
1298 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1299 }
1300 
1301 /*
1302  * Copy records from one btree block to another.
1303  */
1304 STATIC void
1305 xfs_btree_copy_recs(
1306 	struct xfs_btree_cur	*cur,
1307 	union xfs_btree_rec	*dst_rec,
1308 	union xfs_btree_rec	*src_rec,
1309 	int			numrecs)
1310 {
1311 	ASSERT(numrecs >= 0);
1312 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1313 }
1314 
1315 /*
1316  * Copy block pointers from one btree block to another.
1317  */
1318 void
1319 xfs_btree_copy_ptrs(
1320 	struct xfs_btree_cur	*cur,
1321 	union xfs_btree_ptr	*dst_ptr,
1322 	const union xfs_btree_ptr *src_ptr,
1323 	int			numptrs)
1324 {
1325 	ASSERT(numptrs >= 0);
1326 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1327 }
1328 
1329 /*
1330  * Shift keys one index left/right inside a single btree block.
1331  */
1332 STATIC void
1333 xfs_btree_shift_keys(
1334 	struct xfs_btree_cur	*cur,
1335 	union xfs_btree_key	*key,
1336 	int			dir,
1337 	int			numkeys)
1338 {
1339 	char			*dst_key;
1340 
1341 	ASSERT(numkeys >= 0);
1342 	ASSERT(dir == 1 || dir == -1);
1343 
1344 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1345 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1346 }
1347 
1348 /*
1349  * Shift records one index left/right inside a single btree block.
1350  */
1351 STATIC void
1352 xfs_btree_shift_recs(
1353 	struct xfs_btree_cur	*cur,
1354 	union xfs_btree_rec	*rec,
1355 	int			dir,
1356 	int			numrecs)
1357 {
1358 	char			*dst_rec;
1359 
1360 	ASSERT(numrecs >= 0);
1361 	ASSERT(dir == 1 || dir == -1);
1362 
1363 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1364 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1365 }
1366 
1367 /*
1368  * Shift block pointers one index left/right inside a single btree block.
1369  */
1370 STATIC void
1371 xfs_btree_shift_ptrs(
1372 	struct xfs_btree_cur	*cur,
1373 	union xfs_btree_ptr	*ptr,
1374 	int			dir,
1375 	int			numptrs)
1376 {
1377 	char			*dst_ptr;
1378 
1379 	ASSERT(numptrs >= 0);
1380 	ASSERT(dir == 1 || dir == -1);
1381 
1382 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1383 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1384 }
1385 
1386 /*
1387  * Log key values from the btree block.
1388  */
1389 STATIC void
1390 xfs_btree_log_keys(
1391 	struct xfs_btree_cur	*cur,
1392 	struct xfs_buf		*bp,
1393 	int			first,
1394 	int			last)
1395 {
1396 
1397 	if (bp) {
1398 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 		xfs_trans_log_buf(cur->bc_tp, bp,
1400 				  xfs_btree_key_offset(cur, first),
1401 				  xfs_btree_key_offset(cur, last + 1) - 1);
1402 	} else {
1403 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1404 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1405 	}
1406 }
1407 
1408 /*
1409  * Log record values from the btree block.
1410  */
1411 void
1412 xfs_btree_log_recs(
1413 	struct xfs_btree_cur	*cur,
1414 	struct xfs_buf		*bp,
1415 	int			first,
1416 	int			last)
1417 {
1418 
1419 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 	xfs_trans_log_buf(cur->bc_tp, bp,
1421 			  xfs_btree_rec_offset(cur, first),
1422 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1423 
1424 }
1425 
1426 /*
1427  * Log block pointer fields from a btree block (nonleaf).
1428  */
1429 STATIC void
1430 xfs_btree_log_ptrs(
1431 	struct xfs_btree_cur	*cur,	/* btree cursor */
1432 	struct xfs_buf		*bp,	/* buffer containing btree block */
1433 	int			first,	/* index of first pointer to log */
1434 	int			last)	/* index of last pointer to log */
1435 {
1436 
1437 	if (bp) {
1438 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1439 		int			level = xfs_btree_get_level(block);
1440 
1441 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 		xfs_trans_log_buf(cur->bc_tp, bp,
1443 				xfs_btree_ptr_offset(cur, first, level),
1444 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1445 	} else {
1446 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1447 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1448 	}
1449 
1450 }
1451 
1452 /*
1453  * Log fields from a btree block header.
1454  */
1455 void
1456 xfs_btree_log_block(
1457 	struct xfs_btree_cur	*cur,	/* btree cursor */
1458 	struct xfs_buf		*bp,	/* buffer containing btree block */
1459 	int			fields)	/* mask of fields: XFS_BB_... */
1460 {
1461 	int			first;	/* first byte offset logged */
1462 	int			last;	/* last byte offset logged */
1463 	static const short	soffsets[] = {	/* table of offsets (short) */
1464 		offsetof(struct xfs_btree_block, bb_magic),
1465 		offsetof(struct xfs_btree_block, bb_level),
1466 		offsetof(struct xfs_btree_block, bb_numrecs),
1467 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1468 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1469 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1470 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1471 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1472 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1473 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1474 		XFS_BTREE_SBLOCK_CRC_LEN
1475 	};
1476 	static const short	loffsets[] = {	/* table of offsets (long) */
1477 		offsetof(struct xfs_btree_block, bb_magic),
1478 		offsetof(struct xfs_btree_block, bb_level),
1479 		offsetof(struct xfs_btree_block, bb_numrecs),
1480 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1481 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1482 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1483 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1484 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1485 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1486 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1487 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1488 		XFS_BTREE_LBLOCK_CRC_LEN
1489 	};
1490 
1491 	if (bp) {
1492 		int nbits;
1493 
1494 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1495 			/*
1496 			 * We don't log the CRC when updating a btree
1497 			 * block but instead recreate it during log
1498 			 * recovery.  As the log buffers have checksums
1499 			 * of their own this is safe and avoids logging a crc
1500 			 * update in a lot of places.
1501 			 */
1502 			if (fields == XFS_BB_ALL_BITS)
1503 				fields = XFS_BB_ALL_BITS_CRC;
1504 			nbits = XFS_BB_NUM_BITS_CRC;
1505 		} else {
1506 			nbits = XFS_BB_NUM_BITS;
1507 		}
1508 		xfs_btree_offsets(fields,
1509 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1510 					loffsets : soffsets,
1511 				  nbits, &first, &last);
1512 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1513 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1514 	} else {
1515 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1516 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1517 	}
1518 }
1519 
1520 /*
1521  * Increment cursor by one record at the level.
1522  * For nonzero levels the leaf-ward information is untouched.
1523  */
1524 int						/* error */
1525 xfs_btree_increment(
1526 	struct xfs_btree_cur	*cur,
1527 	int			level,
1528 	int			*stat)		/* success/failure */
1529 {
1530 	struct xfs_btree_block	*block;
1531 	union xfs_btree_ptr	ptr;
1532 	struct xfs_buf		*bp;
1533 	int			error;		/* error return value */
1534 	int			lev;
1535 
1536 	ASSERT(level < cur->bc_nlevels);
1537 
1538 	/* Read-ahead to the right at this level. */
1539 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1540 
1541 	/* Get a pointer to the btree block. */
1542 	block = xfs_btree_get_block(cur, level, &bp);
1543 
1544 #ifdef DEBUG
1545 	error = xfs_btree_check_block(cur, block, level, bp);
1546 	if (error)
1547 		goto error0;
1548 #endif
1549 
1550 	/* We're done if we remain in the block after the increment. */
1551 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1552 		goto out1;
1553 
1554 	/* Fail if we just went off the right edge of the tree. */
1555 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1556 	if (xfs_btree_ptr_is_null(cur, &ptr))
1557 		goto out0;
1558 
1559 	XFS_BTREE_STATS_INC(cur, increment);
1560 
1561 	/*
1562 	 * March up the tree incrementing pointers.
1563 	 * Stop when we don't go off the right edge of a block.
1564 	 */
1565 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1566 		block = xfs_btree_get_block(cur, lev, &bp);
1567 
1568 #ifdef DEBUG
1569 		error = xfs_btree_check_block(cur, block, lev, bp);
1570 		if (error)
1571 			goto error0;
1572 #endif
1573 
1574 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1575 			break;
1576 
1577 		/* Read-ahead the right block for the next loop. */
1578 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1579 	}
1580 
1581 	/*
1582 	 * If we went off the root then we are either seriously
1583 	 * confused or have the tree root in an inode.
1584 	 */
1585 	if (lev == cur->bc_nlevels) {
1586 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1587 			goto out0;
1588 		ASSERT(0);
1589 		error = -EFSCORRUPTED;
1590 		goto error0;
1591 	}
1592 	ASSERT(lev < cur->bc_nlevels);
1593 
1594 	/*
1595 	 * Now walk back down the tree, fixing up the cursor's buffer
1596 	 * pointers and key numbers.
1597 	 */
1598 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1599 		union xfs_btree_ptr	*ptrp;
1600 
1601 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1602 		--lev;
1603 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1604 		if (error)
1605 			goto error0;
1606 
1607 		xfs_btree_setbuf(cur, lev, bp);
1608 		cur->bc_levels[lev].ptr = 1;
1609 	}
1610 out1:
1611 	*stat = 1;
1612 	return 0;
1613 
1614 out0:
1615 	*stat = 0;
1616 	return 0;
1617 
1618 error0:
1619 	return error;
1620 }
1621 
1622 /*
1623  * Decrement cursor by one record at the level.
1624  * For nonzero levels the leaf-ward information is untouched.
1625  */
1626 int						/* error */
1627 xfs_btree_decrement(
1628 	struct xfs_btree_cur	*cur,
1629 	int			level,
1630 	int			*stat)		/* success/failure */
1631 {
1632 	struct xfs_btree_block	*block;
1633 	struct xfs_buf		*bp;
1634 	int			error;		/* error return value */
1635 	int			lev;
1636 	union xfs_btree_ptr	ptr;
1637 
1638 	ASSERT(level < cur->bc_nlevels);
1639 
1640 	/* Read-ahead to the left at this level. */
1641 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1642 
1643 	/* We're done if we remain in the block after the decrement. */
1644 	if (--cur->bc_levels[level].ptr > 0)
1645 		goto out1;
1646 
1647 	/* Get a pointer to the btree block. */
1648 	block = xfs_btree_get_block(cur, level, &bp);
1649 
1650 #ifdef DEBUG
1651 	error = xfs_btree_check_block(cur, block, level, bp);
1652 	if (error)
1653 		goto error0;
1654 #endif
1655 
1656 	/* Fail if we just went off the left edge of the tree. */
1657 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1658 	if (xfs_btree_ptr_is_null(cur, &ptr))
1659 		goto out0;
1660 
1661 	XFS_BTREE_STATS_INC(cur, decrement);
1662 
1663 	/*
1664 	 * March up the tree decrementing pointers.
1665 	 * Stop when we don't go off the left edge of a block.
1666 	 */
1667 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1668 		if (--cur->bc_levels[lev].ptr > 0)
1669 			break;
1670 		/* Read-ahead the left block for the next loop. */
1671 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1672 	}
1673 
1674 	/*
1675 	 * If we went off the root then we are seriously confused.
1676 	 * or the root of the tree is in an inode.
1677 	 */
1678 	if (lev == cur->bc_nlevels) {
1679 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1680 			goto out0;
1681 		ASSERT(0);
1682 		error = -EFSCORRUPTED;
1683 		goto error0;
1684 	}
1685 	ASSERT(lev < cur->bc_nlevels);
1686 
1687 	/*
1688 	 * Now walk back down the tree, fixing up the cursor's buffer
1689 	 * pointers and key numbers.
1690 	 */
1691 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1692 		union xfs_btree_ptr	*ptrp;
1693 
1694 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1695 		--lev;
1696 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1697 		if (error)
1698 			goto error0;
1699 		xfs_btree_setbuf(cur, lev, bp);
1700 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1701 	}
1702 out1:
1703 	*stat = 1;
1704 	return 0;
1705 
1706 out0:
1707 	*stat = 0;
1708 	return 0;
1709 
1710 error0:
1711 	return error;
1712 }
1713 
1714 int
1715 xfs_btree_lookup_get_block(
1716 	struct xfs_btree_cur		*cur,	/* btree cursor */
1717 	int				level,	/* level in the btree */
1718 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1719 	struct xfs_btree_block		**blkp) /* return btree block */
1720 {
1721 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1722 	xfs_daddr_t		daddr;
1723 	int			error = 0;
1724 
1725 	/* special case the root block if in an inode */
1726 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1727 	    (level == cur->bc_nlevels - 1)) {
1728 		*blkp = xfs_btree_get_iroot(cur);
1729 		return 0;
1730 	}
1731 
1732 	/*
1733 	 * If the old buffer at this level for the disk address we are
1734 	 * looking for re-use it.
1735 	 *
1736 	 * Otherwise throw it away and get a new one.
1737 	 */
1738 	bp = cur->bc_levels[level].bp;
1739 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1740 	if (error)
1741 		return error;
1742 	if (bp && xfs_buf_daddr(bp) == daddr) {
1743 		*blkp = XFS_BUF_TO_BLOCK(bp);
1744 		return 0;
1745 	}
1746 
1747 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1748 	if (error)
1749 		return error;
1750 
1751 	/* Check the inode owner since the verifiers don't. */
1752 	if (xfs_has_crc(cur->bc_mp) &&
1753 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1754 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1755 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1756 			cur->bc_ino.ip->i_ino)
1757 		goto out_bad;
1758 
1759 	/* Did we get the level we were looking for? */
1760 	if (be16_to_cpu((*blkp)->bb_level) != level)
1761 		goto out_bad;
1762 
1763 	/* Check that internal nodes have at least one record. */
1764 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1765 		goto out_bad;
1766 
1767 	xfs_btree_setbuf(cur, level, bp);
1768 	return 0;
1769 
1770 out_bad:
1771 	*blkp = NULL;
1772 	xfs_buf_mark_corrupt(bp);
1773 	xfs_trans_brelse(cur->bc_tp, bp);
1774 	return -EFSCORRUPTED;
1775 }
1776 
1777 /*
1778  * Get current search key.  For level 0 we don't actually have a key
1779  * structure so we make one up from the record.  For all other levels
1780  * we just return the right key.
1781  */
1782 STATIC union xfs_btree_key *
1783 xfs_lookup_get_search_key(
1784 	struct xfs_btree_cur	*cur,
1785 	int			level,
1786 	int			keyno,
1787 	struct xfs_btree_block	*block,
1788 	union xfs_btree_key	*kp)
1789 {
1790 	if (level == 0) {
1791 		cur->bc_ops->init_key_from_rec(kp,
1792 				xfs_btree_rec_addr(cur, keyno, block));
1793 		return kp;
1794 	}
1795 
1796 	return xfs_btree_key_addr(cur, keyno, block);
1797 }
1798 
1799 /*
1800  * Lookup the record.  The cursor is made to point to it, based on dir.
1801  * stat is set to 0 if can't find any such record, 1 for success.
1802  */
1803 int					/* error */
1804 xfs_btree_lookup(
1805 	struct xfs_btree_cur	*cur,	/* btree cursor */
1806 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1807 	int			*stat)	/* success/failure */
1808 {
1809 	struct xfs_btree_block	*block;	/* current btree block */
1810 	int64_t			diff;	/* difference for the current key */
1811 	int			error;	/* error return value */
1812 	int			keyno;	/* current key number */
1813 	int			level;	/* level in the btree */
1814 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1815 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1816 
1817 	XFS_BTREE_STATS_INC(cur, lookup);
1818 
1819 	/* No such thing as a zero-level tree. */
1820 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1821 		return -EFSCORRUPTED;
1822 
1823 	block = NULL;
1824 	keyno = 0;
1825 
1826 	/* initialise start pointer from cursor */
1827 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1828 	pp = &ptr;
1829 
1830 	/*
1831 	 * Iterate over each level in the btree, starting at the root.
1832 	 * For each level above the leaves, find the key we need, based
1833 	 * on the lookup record, then follow the corresponding block
1834 	 * pointer down to the next level.
1835 	 */
1836 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1837 		/* Get the block we need to do the lookup on. */
1838 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1839 		if (error)
1840 			goto error0;
1841 
1842 		if (diff == 0) {
1843 			/*
1844 			 * If we already had a key match at a higher level, we
1845 			 * know we need to use the first entry in this block.
1846 			 */
1847 			keyno = 1;
1848 		} else {
1849 			/* Otherwise search this block. Do a binary search. */
1850 
1851 			int	high;	/* high entry number */
1852 			int	low;	/* low entry number */
1853 
1854 			/* Set low and high entry numbers, 1-based. */
1855 			low = 1;
1856 			high = xfs_btree_get_numrecs(block);
1857 			if (!high) {
1858 				/* Block is empty, must be an empty leaf. */
1859 				if (level != 0 || cur->bc_nlevels != 1) {
1860 					XFS_CORRUPTION_ERROR(__func__,
1861 							XFS_ERRLEVEL_LOW,
1862 							cur->bc_mp, block,
1863 							sizeof(*block));
1864 					return -EFSCORRUPTED;
1865 				}
1866 
1867 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1868 				*stat = 0;
1869 				return 0;
1870 			}
1871 
1872 			/* Binary search the block. */
1873 			while (low <= high) {
1874 				union xfs_btree_key	key;
1875 				union xfs_btree_key	*kp;
1876 
1877 				XFS_BTREE_STATS_INC(cur, compare);
1878 
1879 				/* keyno is average of low and high. */
1880 				keyno = (low + high) >> 1;
1881 
1882 				/* Get current search key */
1883 				kp = xfs_lookup_get_search_key(cur, level,
1884 						keyno, block, &key);
1885 
1886 				/*
1887 				 * Compute difference to get next direction:
1888 				 *  - less than, move right
1889 				 *  - greater than, move left
1890 				 *  - equal, we're done
1891 				 */
1892 				diff = cur->bc_ops->key_diff(cur, kp);
1893 				if (diff < 0)
1894 					low = keyno + 1;
1895 				else if (diff > 0)
1896 					high = keyno - 1;
1897 				else
1898 					break;
1899 			}
1900 		}
1901 
1902 		/*
1903 		 * If there are more levels, set up for the next level
1904 		 * by getting the block number and filling in the cursor.
1905 		 */
1906 		if (level > 0) {
1907 			/*
1908 			 * If we moved left, need the previous key number,
1909 			 * unless there isn't one.
1910 			 */
1911 			if (diff > 0 && --keyno < 1)
1912 				keyno = 1;
1913 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1914 
1915 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1916 			if (error)
1917 				goto error0;
1918 
1919 			cur->bc_levels[level].ptr = keyno;
1920 		}
1921 	}
1922 
1923 	/* Done with the search. See if we need to adjust the results. */
1924 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1925 		keyno++;
1926 		/*
1927 		 * If ge search and we went off the end of the block, but it's
1928 		 * not the last block, we're in the wrong block.
1929 		 */
1930 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1931 		if (dir == XFS_LOOKUP_GE &&
1932 		    keyno > xfs_btree_get_numrecs(block) &&
1933 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1934 			int	i;
1935 
1936 			cur->bc_levels[0].ptr = keyno;
1937 			error = xfs_btree_increment(cur, 0, &i);
1938 			if (error)
1939 				goto error0;
1940 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1941 				return -EFSCORRUPTED;
1942 			*stat = 1;
1943 			return 0;
1944 		}
1945 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1946 		keyno--;
1947 	cur->bc_levels[0].ptr = keyno;
1948 
1949 	/* Return if we succeeded or not. */
1950 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1951 		*stat = 0;
1952 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1953 		*stat = 1;
1954 	else
1955 		*stat = 0;
1956 	return 0;
1957 
1958 error0:
1959 	return error;
1960 }
1961 
1962 /* Find the high key storage area from a regular key. */
1963 union xfs_btree_key *
1964 xfs_btree_high_key_from_key(
1965 	struct xfs_btree_cur	*cur,
1966 	union xfs_btree_key	*key)
1967 {
1968 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969 	return (union xfs_btree_key *)((char *)key +
1970 			(cur->bc_ops->key_len / 2));
1971 }
1972 
1973 /* Determine the low (and high if overlapped) keys of a leaf block */
1974 STATIC void
1975 xfs_btree_get_leaf_keys(
1976 	struct xfs_btree_cur	*cur,
1977 	struct xfs_btree_block	*block,
1978 	union xfs_btree_key	*key)
1979 {
1980 	union xfs_btree_key	max_hkey;
1981 	union xfs_btree_key	hkey;
1982 	union xfs_btree_rec	*rec;
1983 	union xfs_btree_key	*high;
1984 	int			n;
1985 
1986 	rec = xfs_btree_rec_addr(cur, 1, block);
1987 	cur->bc_ops->init_key_from_rec(key, rec);
1988 
1989 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990 
1991 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993 			rec = xfs_btree_rec_addr(cur, n, block);
1994 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996 					> 0)
1997 				max_hkey = hkey;
1998 		}
1999 
2000 		high = xfs_btree_high_key_from_key(cur, key);
2001 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002 	}
2003 }
2004 
2005 /* Determine the low (and high if overlapped) keys of a node block */
2006 STATIC void
2007 xfs_btree_get_node_keys(
2008 	struct xfs_btree_cur	*cur,
2009 	struct xfs_btree_block	*block,
2010 	union xfs_btree_key	*key)
2011 {
2012 	union xfs_btree_key	*hkey;
2013 	union xfs_btree_key	*max_hkey;
2014 	union xfs_btree_key	*high;
2015 	int			n;
2016 
2017 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019 				cur->bc_ops->key_len / 2);
2020 
2021 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 			hkey = xfs_btree_high_key_addr(cur, n, block);
2024 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025 				max_hkey = hkey;
2026 		}
2027 
2028 		high = xfs_btree_high_key_from_key(cur, key);
2029 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030 	} else {
2031 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032 				cur->bc_ops->key_len);
2033 	}
2034 }
2035 
2036 /* Derive the keys for any btree block. */
2037 void
2038 xfs_btree_get_keys(
2039 	struct xfs_btree_cur	*cur,
2040 	struct xfs_btree_block	*block,
2041 	union xfs_btree_key	*key)
2042 {
2043 	if (be16_to_cpu(block->bb_level) == 0)
2044 		xfs_btree_get_leaf_keys(cur, block, key);
2045 	else
2046 		xfs_btree_get_node_keys(cur, block, key);
2047 }
2048 
2049 /*
2050  * Decide if we need to update the parent keys of a btree block.  For
2051  * a standard btree this is only necessary if we're updating the first
2052  * record/key.  For an overlapping btree, we must always update the
2053  * keys because the highest key can be in any of the records or keys
2054  * in the block.
2055  */
2056 static inline bool
2057 xfs_btree_needs_key_update(
2058 	struct xfs_btree_cur	*cur,
2059 	int			ptr)
2060 {
2061 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062 }
2063 
2064 /*
2065  * Update the low and high parent keys of the given level, progressing
2066  * towards the root.  If force_all is false, stop if the keys for a given
2067  * level do not need updating.
2068  */
2069 STATIC int
2070 __xfs_btree_updkeys(
2071 	struct xfs_btree_cur	*cur,
2072 	int			level,
2073 	struct xfs_btree_block	*block,
2074 	struct xfs_buf		*bp0,
2075 	bool			force_all)
2076 {
2077 	union xfs_btree_key	key;	/* keys from current level */
2078 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2079 	union xfs_btree_key	*hkey;
2080 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2081 	union xfs_btree_key	*nhkey;
2082 	struct xfs_buf		*bp;
2083 	int			ptr;
2084 
2085 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086 
2087 	/* Exit if there aren't any parent levels to update. */
2088 	if (level + 1 >= cur->bc_nlevels)
2089 		return 0;
2090 
2091 	trace_xfs_btree_updkeys(cur, level, bp0);
2092 
2093 	lkey = &key;
2094 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2095 	xfs_btree_get_keys(cur, block, lkey);
2096 	for (level++; level < cur->bc_nlevels; level++) {
2097 #ifdef DEBUG
2098 		int		error;
2099 #endif
2100 		block = xfs_btree_get_block(cur, level, &bp);
2101 		trace_xfs_btree_updkeys(cur, level, bp);
2102 #ifdef DEBUG
2103 		error = xfs_btree_check_block(cur, block, level, bp);
2104 		if (error)
2105 			return error;
2106 #endif
2107 		ptr = cur->bc_levels[level].ptr;
2108 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2109 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2110 		if (!force_all &&
2111 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2112 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2113 			break;
2114 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2115 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2116 		if (level + 1 >= cur->bc_nlevels)
2117 			break;
2118 		xfs_btree_get_node_keys(cur, block, lkey);
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 /* Update all the keys from some level in cursor back to the root. */
2125 STATIC int
2126 xfs_btree_updkeys_force(
2127 	struct xfs_btree_cur	*cur,
2128 	int			level)
2129 {
2130 	struct xfs_buf		*bp;
2131 	struct xfs_btree_block	*block;
2132 
2133 	block = xfs_btree_get_block(cur, level, &bp);
2134 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2135 }
2136 
2137 /*
2138  * Update the parent keys of the given level, progressing towards the root.
2139  */
2140 STATIC int
2141 xfs_btree_update_keys(
2142 	struct xfs_btree_cur	*cur,
2143 	int			level)
2144 {
2145 	struct xfs_btree_block	*block;
2146 	struct xfs_buf		*bp;
2147 	union xfs_btree_key	*kp;
2148 	union xfs_btree_key	key;
2149 	int			ptr;
2150 
2151 	ASSERT(level >= 0);
2152 
2153 	block = xfs_btree_get_block(cur, level, &bp);
2154 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2155 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2156 
2157 	/*
2158 	 * Go up the tree from this level toward the root.
2159 	 * At each level, update the key value to the value input.
2160 	 * Stop when we reach a level where the cursor isn't pointing
2161 	 * at the first entry in the block.
2162 	 */
2163 	xfs_btree_get_keys(cur, block, &key);
2164 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2165 #ifdef DEBUG
2166 		int		error;
2167 #endif
2168 		block = xfs_btree_get_block(cur, level, &bp);
2169 #ifdef DEBUG
2170 		error = xfs_btree_check_block(cur, block, level, bp);
2171 		if (error)
2172 			return error;
2173 #endif
2174 		ptr = cur->bc_levels[level].ptr;
2175 		kp = xfs_btree_key_addr(cur, ptr, block);
2176 		xfs_btree_copy_keys(cur, kp, &key, 1);
2177 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Update the record referred to by cur to the value in the
2185  * given record. This either works (return 0) or gets an
2186  * EFSCORRUPTED error.
2187  */
2188 int
2189 xfs_btree_update(
2190 	struct xfs_btree_cur	*cur,
2191 	union xfs_btree_rec	*rec)
2192 {
2193 	struct xfs_btree_block	*block;
2194 	struct xfs_buf		*bp;
2195 	int			error;
2196 	int			ptr;
2197 	union xfs_btree_rec	*rp;
2198 
2199 	/* Pick up the current block. */
2200 	block = xfs_btree_get_block(cur, 0, &bp);
2201 
2202 #ifdef DEBUG
2203 	error = xfs_btree_check_block(cur, block, 0, bp);
2204 	if (error)
2205 		goto error0;
2206 #endif
2207 	/* Get the address of the rec to be updated. */
2208 	ptr = cur->bc_levels[0].ptr;
2209 	rp = xfs_btree_rec_addr(cur, ptr, block);
2210 
2211 	/* Fill in the new contents and log them. */
2212 	xfs_btree_copy_recs(cur, rp, rec, 1);
2213 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2214 
2215 	/*
2216 	 * If we are tracking the last record in the tree and
2217 	 * we are at the far right edge of the tree, update it.
2218 	 */
2219 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2220 		cur->bc_ops->update_lastrec(cur, block, rec,
2221 					    ptr, LASTREC_UPDATE);
2222 	}
2223 
2224 	/* Pass new key value up to our parent. */
2225 	if (xfs_btree_needs_key_update(cur, ptr)) {
2226 		error = xfs_btree_update_keys(cur, 0);
2227 		if (error)
2228 			goto error0;
2229 	}
2230 
2231 	return 0;
2232 
2233 error0:
2234 	return error;
2235 }
2236 
2237 /*
2238  * Move 1 record left from cur/level if possible.
2239  * Update cur to reflect the new path.
2240  */
2241 STATIC int					/* error */
2242 xfs_btree_lshift(
2243 	struct xfs_btree_cur	*cur,
2244 	int			level,
2245 	int			*stat)		/* success/failure */
2246 {
2247 	struct xfs_buf		*lbp;		/* left buffer pointer */
2248 	struct xfs_btree_block	*left;		/* left btree block */
2249 	int			lrecs;		/* left record count */
2250 	struct xfs_buf		*rbp;		/* right buffer pointer */
2251 	struct xfs_btree_block	*right;		/* right btree block */
2252 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2253 	int			rrecs;		/* right record count */
2254 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2255 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2256 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2257 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2258 	int			error;		/* error return value */
2259 	int			i;
2260 
2261 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2262 	    level == cur->bc_nlevels - 1)
2263 		goto out0;
2264 
2265 	/* Set up variables for this block as "right". */
2266 	right = xfs_btree_get_block(cur, level, &rbp);
2267 
2268 #ifdef DEBUG
2269 	error = xfs_btree_check_block(cur, right, level, rbp);
2270 	if (error)
2271 		goto error0;
2272 #endif
2273 
2274 	/* If we've got no left sibling then we can't shift an entry left. */
2275 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2276 	if (xfs_btree_ptr_is_null(cur, &lptr))
2277 		goto out0;
2278 
2279 	/*
2280 	 * If the cursor entry is the one that would be moved, don't
2281 	 * do it... it's too complicated.
2282 	 */
2283 	if (cur->bc_levels[level].ptr <= 1)
2284 		goto out0;
2285 
2286 	/* Set up the left neighbor as "left". */
2287 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2288 	if (error)
2289 		goto error0;
2290 
2291 	/* If it's full, it can't take another entry. */
2292 	lrecs = xfs_btree_get_numrecs(left);
2293 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2294 		goto out0;
2295 
2296 	rrecs = xfs_btree_get_numrecs(right);
2297 
2298 	/*
2299 	 * We add one entry to the left side and remove one for the right side.
2300 	 * Account for it here, the changes will be updated on disk and logged
2301 	 * later.
2302 	 */
2303 	lrecs++;
2304 	rrecs--;
2305 
2306 	XFS_BTREE_STATS_INC(cur, lshift);
2307 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2308 
2309 	/*
2310 	 * If non-leaf, copy a key and a ptr to the left block.
2311 	 * Log the changes to the left block.
2312 	 */
2313 	if (level > 0) {
2314 		/* It's a non-leaf.  Move keys and pointers. */
2315 		union xfs_btree_key	*lkp;	/* left btree key */
2316 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2317 
2318 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2319 		rkp = xfs_btree_key_addr(cur, 1, right);
2320 
2321 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2322 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2323 
2324 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2325 		if (error)
2326 			goto error0;
2327 
2328 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2329 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2330 
2331 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2332 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2333 
2334 		ASSERT(cur->bc_ops->keys_inorder(cur,
2335 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2336 	} else {
2337 		/* It's a leaf.  Move records.  */
2338 		union xfs_btree_rec	*lrp;	/* left record pointer */
2339 
2340 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2341 		rrp = xfs_btree_rec_addr(cur, 1, right);
2342 
2343 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2344 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2345 
2346 		ASSERT(cur->bc_ops->recs_inorder(cur,
2347 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2348 	}
2349 
2350 	xfs_btree_set_numrecs(left, lrecs);
2351 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2352 
2353 	xfs_btree_set_numrecs(right, rrecs);
2354 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2355 
2356 	/*
2357 	 * Slide the contents of right down one entry.
2358 	 */
2359 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2360 	if (level > 0) {
2361 		/* It's a nonleaf. operate on keys and ptrs */
2362 		for (i = 0; i < rrecs; i++) {
2363 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2364 			if (error)
2365 				goto error0;
2366 		}
2367 
2368 		xfs_btree_shift_keys(cur,
2369 				xfs_btree_key_addr(cur, 2, right),
2370 				-1, rrecs);
2371 		xfs_btree_shift_ptrs(cur,
2372 				xfs_btree_ptr_addr(cur, 2, right),
2373 				-1, rrecs);
2374 
2375 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2376 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2377 	} else {
2378 		/* It's a leaf. operate on records */
2379 		xfs_btree_shift_recs(cur,
2380 			xfs_btree_rec_addr(cur, 2, right),
2381 			-1, rrecs);
2382 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2383 	}
2384 
2385 	/*
2386 	 * Using a temporary cursor, update the parent key values of the
2387 	 * block on the left.
2388 	 */
2389 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2390 		error = xfs_btree_dup_cursor(cur, &tcur);
2391 		if (error)
2392 			goto error0;
2393 		i = xfs_btree_firstrec(tcur, level);
2394 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2395 			error = -EFSCORRUPTED;
2396 			goto error0;
2397 		}
2398 
2399 		error = xfs_btree_decrement(tcur, level, &i);
2400 		if (error)
2401 			goto error1;
2402 
2403 		/* Update the parent high keys of the left block, if needed. */
2404 		error = xfs_btree_update_keys(tcur, level);
2405 		if (error)
2406 			goto error1;
2407 
2408 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2409 	}
2410 
2411 	/* Update the parent keys of the right block. */
2412 	error = xfs_btree_update_keys(cur, level);
2413 	if (error)
2414 		goto error0;
2415 
2416 	/* Slide the cursor value left one. */
2417 	cur->bc_levels[level].ptr--;
2418 
2419 	*stat = 1;
2420 	return 0;
2421 
2422 out0:
2423 	*stat = 0;
2424 	return 0;
2425 
2426 error0:
2427 	return error;
2428 
2429 error1:
2430 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2431 	return error;
2432 }
2433 
2434 /*
2435  * Move 1 record right from cur/level if possible.
2436  * Update cur to reflect the new path.
2437  */
2438 STATIC int					/* error */
2439 xfs_btree_rshift(
2440 	struct xfs_btree_cur	*cur,
2441 	int			level,
2442 	int			*stat)		/* success/failure */
2443 {
2444 	struct xfs_buf		*lbp;		/* left buffer pointer */
2445 	struct xfs_btree_block	*left;		/* left btree block */
2446 	struct xfs_buf		*rbp;		/* right buffer pointer */
2447 	struct xfs_btree_block	*right;		/* right btree block */
2448 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2449 	union xfs_btree_ptr	rptr;		/* right block pointer */
2450 	union xfs_btree_key	*rkp;		/* right btree key */
2451 	int			rrecs;		/* right record count */
2452 	int			lrecs;		/* left record count */
2453 	int			error;		/* error return value */
2454 	int			i;		/* loop counter */
2455 
2456 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2457 	    (level == cur->bc_nlevels - 1))
2458 		goto out0;
2459 
2460 	/* Set up variables for this block as "left". */
2461 	left = xfs_btree_get_block(cur, level, &lbp);
2462 
2463 #ifdef DEBUG
2464 	error = xfs_btree_check_block(cur, left, level, lbp);
2465 	if (error)
2466 		goto error0;
2467 #endif
2468 
2469 	/* If we've got no right sibling then we can't shift an entry right. */
2470 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2471 	if (xfs_btree_ptr_is_null(cur, &rptr))
2472 		goto out0;
2473 
2474 	/*
2475 	 * If the cursor entry is the one that would be moved, don't
2476 	 * do it... it's too complicated.
2477 	 */
2478 	lrecs = xfs_btree_get_numrecs(left);
2479 	if (cur->bc_levels[level].ptr >= lrecs)
2480 		goto out0;
2481 
2482 	/* Set up the right neighbor as "right". */
2483 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2484 	if (error)
2485 		goto error0;
2486 
2487 	/* If it's full, it can't take another entry. */
2488 	rrecs = xfs_btree_get_numrecs(right);
2489 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2490 		goto out0;
2491 
2492 	XFS_BTREE_STATS_INC(cur, rshift);
2493 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2494 
2495 	/*
2496 	 * Make a hole at the start of the right neighbor block, then
2497 	 * copy the last left block entry to the hole.
2498 	 */
2499 	if (level > 0) {
2500 		/* It's a nonleaf. make a hole in the keys and ptrs */
2501 		union xfs_btree_key	*lkp;
2502 		union xfs_btree_ptr	*lpp;
2503 		union xfs_btree_ptr	*rpp;
2504 
2505 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2506 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2507 		rkp = xfs_btree_key_addr(cur, 1, right);
2508 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2509 
2510 		for (i = rrecs - 1; i >= 0; i--) {
2511 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2512 			if (error)
2513 				goto error0;
2514 		}
2515 
2516 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2517 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2518 
2519 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2520 		if (error)
2521 			goto error0;
2522 
2523 		/* Now put the new data in, and log it. */
2524 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2525 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2526 
2527 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2528 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2529 
2530 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2531 			xfs_btree_key_addr(cur, 2, right)));
2532 	} else {
2533 		/* It's a leaf. make a hole in the records */
2534 		union xfs_btree_rec	*lrp;
2535 		union xfs_btree_rec	*rrp;
2536 
2537 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2538 		rrp = xfs_btree_rec_addr(cur, 1, right);
2539 
2540 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2541 
2542 		/* Now put the new data in, and log it. */
2543 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2544 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2545 	}
2546 
2547 	/*
2548 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2549 	 */
2550 	xfs_btree_set_numrecs(left, --lrecs);
2551 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2552 
2553 	xfs_btree_set_numrecs(right, ++rrecs);
2554 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2555 
2556 	/*
2557 	 * Using a temporary cursor, update the parent key values of the
2558 	 * block on the right.
2559 	 */
2560 	error = xfs_btree_dup_cursor(cur, &tcur);
2561 	if (error)
2562 		goto error0;
2563 	i = xfs_btree_lastrec(tcur, level);
2564 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2565 		error = -EFSCORRUPTED;
2566 		goto error0;
2567 	}
2568 
2569 	error = xfs_btree_increment(tcur, level, &i);
2570 	if (error)
2571 		goto error1;
2572 
2573 	/* Update the parent high keys of the left block, if needed. */
2574 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2575 		error = xfs_btree_update_keys(cur, level);
2576 		if (error)
2577 			goto error1;
2578 	}
2579 
2580 	/* Update the parent keys of the right block. */
2581 	error = xfs_btree_update_keys(tcur, level);
2582 	if (error)
2583 		goto error1;
2584 
2585 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2586 
2587 	*stat = 1;
2588 	return 0;
2589 
2590 out0:
2591 	*stat = 0;
2592 	return 0;
2593 
2594 error0:
2595 	return error;
2596 
2597 error1:
2598 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2599 	return error;
2600 }
2601 
2602 /*
2603  * Split cur/level block in half.
2604  * Return new block number and the key to its first
2605  * record (to be inserted into parent).
2606  */
2607 STATIC int					/* error */
2608 __xfs_btree_split(
2609 	struct xfs_btree_cur	*cur,
2610 	int			level,
2611 	union xfs_btree_ptr	*ptrp,
2612 	union xfs_btree_key	*key,
2613 	struct xfs_btree_cur	**curp,
2614 	int			*stat)		/* success/failure */
2615 {
2616 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2617 	struct xfs_buf		*lbp;		/* left buffer pointer */
2618 	struct xfs_btree_block	*left;		/* left btree block */
2619 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2620 	struct xfs_buf		*rbp;		/* right buffer pointer */
2621 	struct xfs_btree_block	*right;		/* right btree block */
2622 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2623 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2624 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2625 	int			lrecs;
2626 	int			rrecs;
2627 	int			src_index;
2628 	int			error;		/* error return value */
2629 	int			i;
2630 
2631 	XFS_BTREE_STATS_INC(cur, split);
2632 
2633 	/* Set up left block (current one). */
2634 	left = xfs_btree_get_block(cur, level, &lbp);
2635 
2636 #ifdef DEBUG
2637 	error = xfs_btree_check_block(cur, left, level, lbp);
2638 	if (error)
2639 		goto error0;
2640 #endif
2641 
2642 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2643 
2644 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2645 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2646 	if (error)
2647 		goto error0;
2648 	if (*stat == 0)
2649 		goto out0;
2650 	XFS_BTREE_STATS_INC(cur, alloc);
2651 
2652 	/* Set up the new block as "right". */
2653 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2654 	if (error)
2655 		goto error0;
2656 
2657 	/* Fill in the btree header for the new right block. */
2658 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2659 
2660 	/*
2661 	 * Split the entries between the old and the new block evenly.
2662 	 * Make sure that if there's an odd number of entries now, that
2663 	 * each new block will have the same number of entries.
2664 	 */
2665 	lrecs = xfs_btree_get_numrecs(left);
2666 	rrecs = lrecs / 2;
2667 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2668 		rrecs++;
2669 	src_index = (lrecs - rrecs + 1);
2670 
2671 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2672 
2673 	/* Adjust numrecs for the later get_*_keys() calls. */
2674 	lrecs -= rrecs;
2675 	xfs_btree_set_numrecs(left, lrecs);
2676 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2677 
2678 	/*
2679 	 * Copy btree block entries from the left block over to the
2680 	 * new block, the right. Update the right block and log the
2681 	 * changes.
2682 	 */
2683 	if (level > 0) {
2684 		/* It's a non-leaf.  Move keys and pointers. */
2685 		union xfs_btree_key	*lkp;	/* left btree key */
2686 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2687 		union xfs_btree_key	*rkp;	/* right btree key */
2688 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2689 
2690 		lkp = xfs_btree_key_addr(cur, src_index, left);
2691 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2692 		rkp = xfs_btree_key_addr(cur, 1, right);
2693 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2694 
2695 		for (i = src_index; i < rrecs; i++) {
2696 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2697 			if (error)
2698 				goto error0;
2699 		}
2700 
2701 		/* Copy the keys & pointers to the new block. */
2702 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2703 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2704 
2705 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2706 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2707 
2708 		/* Stash the keys of the new block for later insertion. */
2709 		xfs_btree_get_node_keys(cur, right, key);
2710 	} else {
2711 		/* It's a leaf.  Move records.  */
2712 		union xfs_btree_rec	*lrp;	/* left record pointer */
2713 		union xfs_btree_rec	*rrp;	/* right record pointer */
2714 
2715 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2716 		rrp = xfs_btree_rec_addr(cur, 1, right);
2717 
2718 		/* Copy records to the new block. */
2719 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2720 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2721 
2722 		/* Stash the keys of the new block for later insertion. */
2723 		xfs_btree_get_leaf_keys(cur, right, key);
2724 	}
2725 
2726 	/*
2727 	 * Find the left block number by looking in the buffer.
2728 	 * Adjust sibling pointers.
2729 	 */
2730 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2731 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2732 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2733 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2734 
2735 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2736 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2737 
2738 	/*
2739 	 * If there's a block to the new block's right, make that block
2740 	 * point back to right instead of to left.
2741 	 */
2742 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2743 		error = xfs_btree_read_buf_block(cur, &rrptr,
2744 							0, &rrblock, &rrbp);
2745 		if (error)
2746 			goto error0;
2747 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2748 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2749 	}
2750 
2751 	/* Update the parent high keys of the left block, if needed. */
2752 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2753 		error = xfs_btree_update_keys(cur, level);
2754 		if (error)
2755 			goto error0;
2756 	}
2757 
2758 	/*
2759 	 * If the cursor is really in the right block, move it there.
2760 	 * If it's just pointing past the last entry in left, then we'll
2761 	 * insert there, so don't change anything in that case.
2762 	 */
2763 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2764 		xfs_btree_setbuf(cur, level, rbp);
2765 		cur->bc_levels[level].ptr -= lrecs;
2766 	}
2767 	/*
2768 	 * If there are more levels, we'll need another cursor which refers
2769 	 * the right block, no matter where this cursor was.
2770 	 */
2771 	if (level + 1 < cur->bc_nlevels) {
2772 		error = xfs_btree_dup_cursor(cur, curp);
2773 		if (error)
2774 			goto error0;
2775 		(*curp)->bc_levels[level + 1].ptr++;
2776 	}
2777 	*ptrp = rptr;
2778 	*stat = 1;
2779 	return 0;
2780 out0:
2781 	*stat = 0;
2782 	return 0;
2783 
2784 error0:
2785 	return error;
2786 }
2787 
2788 struct xfs_btree_split_args {
2789 	struct xfs_btree_cur	*cur;
2790 	int			level;
2791 	union xfs_btree_ptr	*ptrp;
2792 	union xfs_btree_key	*key;
2793 	struct xfs_btree_cur	**curp;
2794 	int			*stat;		/* success/failure */
2795 	int			result;
2796 	bool			kswapd;	/* allocation in kswapd context */
2797 	struct completion	*done;
2798 	struct work_struct	work;
2799 };
2800 
2801 /*
2802  * Stack switching interfaces for allocation
2803  */
2804 static void
2805 xfs_btree_split_worker(
2806 	struct work_struct	*work)
2807 {
2808 	struct xfs_btree_split_args	*args = container_of(work,
2809 						struct xfs_btree_split_args, work);
2810 	unsigned long		pflags;
2811 	unsigned long		new_pflags = 0;
2812 
2813 	/*
2814 	 * we are in a transaction context here, but may also be doing work
2815 	 * in kswapd context, and hence we may need to inherit that state
2816 	 * temporarily to ensure that we don't block waiting for memory reclaim
2817 	 * in any way.
2818 	 */
2819 	if (args->kswapd)
2820 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2821 
2822 	current_set_flags_nested(&pflags, new_pflags);
2823 	xfs_trans_set_context(args->cur->bc_tp);
2824 
2825 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2826 					 args->key, args->curp, args->stat);
2827 
2828 	xfs_trans_clear_context(args->cur->bc_tp);
2829 	current_restore_flags_nested(&pflags, new_pflags);
2830 
2831 	/*
2832 	 * Do not access args after complete() has run here. We don't own args
2833 	 * and the owner may run and free args before we return here.
2834 	 */
2835 	complete(args->done);
2836 
2837 }
2838 
2839 /*
2840  * BMBT split requests often come in with little stack to work on. Push
2841  * them off to a worker thread so there is lots of stack to use. For the other
2842  * btree types, just call directly to avoid the context switch overhead here.
2843  */
2844 STATIC int					/* error */
2845 xfs_btree_split(
2846 	struct xfs_btree_cur	*cur,
2847 	int			level,
2848 	union xfs_btree_ptr	*ptrp,
2849 	union xfs_btree_key	*key,
2850 	struct xfs_btree_cur	**curp,
2851 	int			*stat)		/* success/failure */
2852 {
2853 	struct xfs_btree_split_args	args;
2854 	DECLARE_COMPLETION_ONSTACK(done);
2855 
2856 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2857 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2858 
2859 	args.cur = cur;
2860 	args.level = level;
2861 	args.ptrp = ptrp;
2862 	args.key = key;
2863 	args.curp = curp;
2864 	args.stat = stat;
2865 	args.done = &done;
2866 	args.kswapd = current_is_kswapd();
2867 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2868 	queue_work(xfs_alloc_wq, &args.work);
2869 	wait_for_completion(&done);
2870 	destroy_work_on_stack(&args.work);
2871 	return args.result;
2872 }
2873 
2874 
2875 /*
2876  * Copy the old inode root contents into a real block and make the
2877  * broot point to it.
2878  */
2879 int						/* error */
2880 xfs_btree_new_iroot(
2881 	struct xfs_btree_cur	*cur,		/* btree cursor */
2882 	int			*logflags,	/* logging flags for inode */
2883 	int			*stat)		/* return status - 0 fail */
2884 {
2885 	struct xfs_buf		*cbp;		/* buffer for cblock */
2886 	struct xfs_btree_block	*block;		/* btree block */
2887 	struct xfs_btree_block	*cblock;	/* child btree block */
2888 	union xfs_btree_key	*ckp;		/* child key pointer */
2889 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2890 	union xfs_btree_key	*kp;		/* pointer to btree key */
2891 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2892 	union xfs_btree_ptr	nptr;		/* new block addr */
2893 	int			level;		/* btree level */
2894 	int			error;		/* error return code */
2895 	int			i;		/* loop counter */
2896 
2897 	XFS_BTREE_STATS_INC(cur, newroot);
2898 
2899 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2900 
2901 	level = cur->bc_nlevels - 1;
2902 
2903 	block = xfs_btree_get_iroot(cur);
2904 	pp = xfs_btree_ptr_addr(cur, 1, block);
2905 
2906 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2907 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2908 	if (error)
2909 		goto error0;
2910 	if (*stat == 0)
2911 		return 0;
2912 
2913 	XFS_BTREE_STATS_INC(cur, alloc);
2914 
2915 	/* Copy the root into a real block. */
2916 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2917 	if (error)
2918 		goto error0;
2919 
2920 	/*
2921 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2922 	 * In that case have to also ensure the blkno remains correct
2923 	 */
2924 	memcpy(cblock, block, xfs_btree_block_len(cur));
2925 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2926 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
2927 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2928 			cblock->bb_u.l.bb_blkno = bno;
2929 		else
2930 			cblock->bb_u.s.bb_blkno = bno;
2931 	}
2932 
2933 	be16_add_cpu(&block->bb_level, 1);
2934 	xfs_btree_set_numrecs(block, 1);
2935 	cur->bc_nlevels++;
2936 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
2937 	cur->bc_levels[level + 1].ptr = 1;
2938 
2939 	kp = xfs_btree_key_addr(cur, 1, block);
2940 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2941 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2942 
2943 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2944 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2945 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2946 		if (error)
2947 			goto error0;
2948 	}
2949 
2950 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2951 
2952 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2953 	if (error)
2954 		goto error0;
2955 
2956 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2957 
2958 	xfs_iroot_realloc(cur->bc_ino.ip,
2959 			  1 - xfs_btree_get_numrecs(cblock),
2960 			  cur->bc_ino.whichfork);
2961 
2962 	xfs_btree_setbuf(cur, level, cbp);
2963 
2964 	/*
2965 	 * Do all this logging at the end so that
2966 	 * the root is at the right level.
2967 	 */
2968 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2969 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2970 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2971 
2972 	*logflags |=
2973 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2974 	*stat = 1;
2975 	return 0;
2976 error0:
2977 	return error;
2978 }
2979 
2980 /*
2981  * Allocate a new root block, fill it in.
2982  */
2983 STATIC int				/* error */
2984 xfs_btree_new_root(
2985 	struct xfs_btree_cur	*cur,	/* btree cursor */
2986 	int			*stat)	/* success/failure */
2987 {
2988 	struct xfs_btree_block	*block;	/* one half of the old root block */
2989 	struct xfs_buf		*bp;	/* buffer containing block */
2990 	int			error;	/* error return value */
2991 	struct xfs_buf		*lbp;	/* left buffer pointer */
2992 	struct xfs_btree_block	*left;	/* left btree block */
2993 	struct xfs_buf		*nbp;	/* new (root) buffer */
2994 	struct xfs_btree_block	*new;	/* new (root) btree block */
2995 	int			nptr;	/* new value for key index, 1 or 2 */
2996 	struct xfs_buf		*rbp;	/* right buffer pointer */
2997 	struct xfs_btree_block	*right;	/* right btree block */
2998 	union xfs_btree_ptr	rptr;
2999 	union xfs_btree_ptr	lptr;
3000 
3001 	XFS_BTREE_STATS_INC(cur, newroot);
3002 
3003 	/* initialise our start point from the cursor */
3004 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3005 
3006 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3007 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3008 	if (error)
3009 		goto error0;
3010 	if (*stat == 0)
3011 		goto out0;
3012 	XFS_BTREE_STATS_INC(cur, alloc);
3013 
3014 	/* Set up the new block. */
3015 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3016 	if (error)
3017 		goto error0;
3018 
3019 	/* Set the root in the holding structure  increasing the level by 1. */
3020 	cur->bc_ops->set_root(cur, &lptr, 1);
3021 
3022 	/*
3023 	 * At the previous root level there are now two blocks: the old root,
3024 	 * and the new block generated when it was split.  We don't know which
3025 	 * one the cursor is pointing at, so we set up variables "left" and
3026 	 * "right" for each case.
3027 	 */
3028 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3029 
3030 #ifdef DEBUG
3031 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3032 	if (error)
3033 		goto error0;
3034 #endif
3035 
3036 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3037 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3038 		/* Our block is left, pick up the right block. */
3039 		lbp = bp;
3040 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3041 		left = block;
3042 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3043 		if (error)
3044 			goto error0;
3045 		bp = rbp;
3046 		nptr = 1;
3047 	} else {
3048 		/* Our block is right, pick up the left block. */
3049 		rbp = bp;
3050 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3051 		right = block;
3052 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3053 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3054 		if (error)
3055 			goto error0;
3056 		bp = lbp;
3057 		nptr = 2;
3058 	}
3059 
3060 	/* Fill in the new block's btree header and log it. */
3061 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3062 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3063 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3064 			!xfs_btree_ptr_is_null(cur, &rptr));
3065 
3066 	/* Fill in the key data in the new root. */
3067 	if (xfs_btree_get_level(left) > 0) {
3068 		/*
3069 		 * Get the keys for the left block's keys and put them directly
3070 		 * in the parent block.  Do the same for the right block.
3071 		 */
3072 		xfs_btree_get_node_keys(cur, left,
3073 				xfs_btree_key_addr(cur, 1, new));
3074 		xfs_btree_get_node_keys(cur, right,
3075 				xfs_btree_key_addr(cur, 2, new));
3076 	} else {
3077 		/*
3078 		 * Get the keys for the left block's records and put them
3079 		 * directly in the parent block.  Do the same for the right
3080 		 * block.
3081 		 */
3082 		xfs_btree_get_leaf_keys(cur, left,
3083 			xfs_btree_key_addr(cur, 1, new));
3084 		xfs_btree_get_leaf_keys(cur, right,
3085 			xfs_btree_key_addr(cur, 2, new));
3086 	}
3087 	xfs_btree_log_keys(cur, nbp, 1, 2);
3088 
3089 	/* Fill in the pointer data in the new root. */
3090 	xfs_btree_copy_ptrs(cur,
3091 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3092 	xfs_btree_copy_ptrs(cur,
3093 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3094 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3095 
3096 	/* Fix up the cursor. */
3097 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3098 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3099 	cur->bc_nlevels++;
3100 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3101 	*stat = 1;
3102 	return 0;
3103 error0:
3104 	return error;
3105 out0:
3106 	*stat = 0;
3107 	return 0;
3108 }
3109 
3110 STATIC int
3111 xfs_btree_make_block_unfull(
3112 	struct xfs_btree_cur	*cur,	/* btree cursor */
3113 	int			level,	/* btree level */
3114 	int			numrecs,/* # of recs in block */
3115 	int			*oindex,/* old tree index */
3116 	int			*index,	/* new tree index */
3117 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3118 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3119 	union xfs_btree_key	*key,	/* key of new block */
3120 	int			*stat)
3121 {
3122 	int			error = 0;
3123 
3124 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3125 	    level == cur->bc_nlevels - 1) {
3126 		struct xfs_inode *ip = cur->bc_ino.ip;
3127 
3128 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3129 			/* A root block that can be made bigger. */
3130 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3131 			*stat = 1;
3132 		} else {
3133 			/* A root block that needs replacing */
3134 			int	logflags = 0;
3135 
3136 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3137 			if (error || *stat == 0)
3138 				return error;
3139 
3140 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3141 		}
3142 
3143 		return 0;
3144 	}
3145 
3146 	/* First, try shifting an entry to the right neighbor. */
3147 	error = xfs_btree_rshift(cur, level, stat);
3148 	if (error || *stat)
3149 		return error;
3150 
3151 	/* Next, try shifting an entry to the left neighbor. */
3152 	error = xfs_btree_lshift(cur, level, stat);
3153 	if (error)
3154 		return error;
3155 
3156 	if (*stat) {
3157 		*oindex = *index = cur->bc_levels[level].ptr;
3158 		return 0;
3159 	}
3160 
3161 	/*
3162 	 * Next, try splitting the current block in half.
3163 	 *
3164 	 * If this works we have to re-set our variables because we
3165 	 * could be in a different block now.
3166 	 */
3167 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3168 	if (error || *stat == 0)
3169 		return error;
3170 
3171 
3172 	*index = cur->bc_levels[level].ptr;
3173 	return 0;
3174 }
3175 
3176 /*
3177  * Insert one record/level.  Return information to the caller
3178  * allowing the next level up to proceed if necessary.
3179  */
3180 STATIC int
3181 xfs_btree_insrec(
3182 	struct xfs_btree_cur	*cur,	/* btree cursor */
3183 	int			level,	/* level to insert record at */
3184 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3185 	union xfs_btree_rec	*rec,	/* record to insert */
3186 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3187 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3188 	int			*stat)	/* success/failure */
3189 {
3190 	struct xfs_btree_block	*block;	/* btree block */
3191 	struct xfs_buf		*bp;	/* buffer for block */
3192 	union xfs_btree_ptr	nptr;	/* new block ptr */
3193 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3194 	union xfs_btree_key	nkey;	/* new block key */
3195 	union xfs_btree_key	*lkey;
3196 	int			optr;	/* old key/record index */
3197 	int			ptr;	/* key/record index */
3198 	int			numrecs;/* number of records */
3199 	int			error;	/* error return value */
3200 	int			i;
3201 	xfs_daddr_t		old_bn;
3202 
3203 	ncur = NULL;
3204 	lkey = &nkey;
3205 
3206 	/*
3207 	 * If we have an external root pointer, and we've made it to the
3208 	 * root level, allocate a new root block and we're done.
3209 	 */
3210 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3211 	    (level >= cur->bc_nlevels)) {
3212 		error = xfs_btree_new_root(cur, stat);
3213 		xfs_btree_set_ptr_null(cur, ptrp);
3214 
3215 		return error;
3216 	}
3217 
3218 	/* If we're off the left edge, return failure. */
3219 	ptr = cur->bc_levels[level].ptr;
3220 	if (ptr == 0) {
3221 		*stat = 0;
3222 		return 0;
3223 	}
3224 
3225 	optr = ptr;
3226 
3227 	XFS_BTREE_STATS_INC(cur, insrec);
3228 
3229 	/* Get pointers to the btree buffer and block. */
3230 	block = xfs_btree_get_block(cur, level, &bp);
3231 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3232 	numrecs = xfs_btree_get_numrecs(block);
3233 
3234 #ifdef DEBUG
3235 	error = xfs_btree_check_block(cur, block, level, bp);
3236 	if (error)
3237 		goto error0;
3238 
3239 	/* Check that the new entry is being inserted in the right place. */
3240 	if (ptr <= numrecs) {
3241 		if (level == 0) {
3242 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3243 				xfs_btree_rec_addr(cur, ptr, block)));
3244 		} else {
3245 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3246 				xfs_btree_key_addr(cur, ptr, block)));
3247 		}
3248 	}
3249 #endif
3250 
3251 	/*
3252 	 * If the block is full, we can't insert the new entry until we
3253 	 * make the block un-full.
3254 	 */
3255 	xfs_btree_set_ptr_null(cur, &nptr);
3256 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3257 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3258 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3259 		if (error || *stat == 0)
3260 			goto error0;
3261 	}
3262 
3263 	/*
3264 	 * The current block may have changed if the block was
3265 	 * previously full and we have just made space in it.
3266 	 */
3267 	block = xfs_btree_get_block(cur, level, &bp);
3268 	numrecs = xfs_btree_get_numrecs(block);
3269 
3270 #ifdef DEBUG
3271 	error = xfs_btree_check_block(cur, block, level, bp);
3272 	if (error)
3273 		return error;
3274 #endif
3275 
3276 	/*
3277 	 * At this point we know there's room for our new entry in the block
3278 	 * we're pointing at.
3279 	 */
3280 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3281 
3282 	if (level > 0) {
3283 		/* It's a nonleaf. make a hole in the keys and ptrs */
3284 		union xfs_btree_key	*kp;
3285 		union xfs_btree_ptr	*pp;
3286 
3287 		kp = xfs_btree_key_addr(cur, ptr, block);
3288 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3289 
3290 		for (i = numrecs - ptr; i >= 0; i--) {
3291 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3292 			if (error)
3293 				return error;
3294 		}
3295 
3296 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3297 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3298 
3299 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3300 		if (error)
3301 			goto error0;
3302 
3303 		/* Now put the new data in, bump numrecs and log it. */
3304 		xfs_btree_copy_keys(cur, kp, key, 1);
3305 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3306 		numrecs++;
3307 		xfs_btree_set_numrecs(block, numrecs);
3308 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3309 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3310 #ifdef DEBUG
3311 		if (ptr < numrecs) {
3312 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3313 				xfs_btree_key_addr(cur, ptr + 1, block)));
3314 		}
3315 #endif
3316 	} else {
3317 		/* It's a leaf. make a hole in the records */
3318 		union xfs_btree_rec             *rp;
3319 
3320 		rp = xfs_btree_rec_addr(cur, ptr, block);
3321 
3322 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3323 
3324 		/* Now put the new data in, bump numrecs and log it. */
3325 		xfs_btree_copy_recs(cur, rp, rec, 1);
3326 		xfs_btree_set_numrecs(block, ++numrecs);
3327 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3328 #ifdef DEBUG
3329 		if (ptr < numrecs) {
3330 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3331 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3332 		}
3333 #endif
3334 	}
3335 
3336 	/* Log the new number of records in the btree header. */
3337 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3338 
3339 	/*
3340 	 * If we just inserted into a new tree block, we have to
3341 	 * recalculate nkey here because nkey is out of date.
3342 	 *
3343 	 * Otherwise we're just updating an existing block (having shoved
3344 	 * some records into the new tree block), so use the regular key
3345 	 * update mechanism.
3346 	 */
3347 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3348 		xfs_btree_get_keys(cur, block, lkey);
3349 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3350 		error = xfs_btree_update_keys(cur, level);
3351 		if (error)
3352 			goto error0;
3353 	}
3354 
3355 	/*
3356 	 * If we are tracking the last record in the tree and
3357 	 * we are at the far right edge of the tree, update it.
3358 	 */
3359 	if (xfs_btree_is_lastrec(cur, block, level)) {
3360 		cur->bc_ops->update_lastrec(cur, block, rec,
3361 					    ptr, LASTREC_INSREC);
3362 	}
3363 
3364 	/*
3365 	 * Return the new block number, if any.
3366 	 * If there is one, give back a record value and a cursor too.
3367 	 */
3368 	*ptrp = nptr;
3369 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3370 		xfs_btree_copy_keys(cur, key, lkey, 1);
3371 		*curp = ncur;
3372 	}
3373 
3374 	*stat = 1;
3375 	return 0;
3376 
3377 error0:
3378 	return error;
3379 }
3380 
3381 /*
3382  * Insert the record at the point referenced by cur.
3383  *
3384  * A multi-level split of the tree on insert will invalidate the original
3385  * cursor.  All callers of this function should assume that the cursor is
3386  * no longer valid and revalidate it.
3387  */
3388 int
3389 xfs_btree_insert(
3390 	struct xfs_btree_cur	*cur,
3391 	int			*stat)
3392 {
3393 	int			error;	/* error return value */
3394 	int			i;	/* result value, 0 for failure */
3395 	int			level;	/* current level number in btree */
3396 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3397 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3398 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3399 	union xfs_btree_key	bkey;	/* key of block to insert */
3400 	union xfs_btree_key	*key;
3401 	union xfs_btree_rec	rec;	/* record to insert */
3402 
3403 	level = 0;
3404 	ncur = NULL;
3405 	pcur = cur;
3406 	key = &bkey;
3407 
3408 	xfs_btree_set_ptr_null(cur, &nptr);
3409 
3410 	/* Make a key out of the record data to be inserted, and save it. */
3411 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3412 	cur->bc_ops->init_key_from_rec(key, &rec);
3413 
3414 	/*
3415 	 * Loop going up the tree, starting at the leaf level.
3416 	 * Stop when we don't get a split block, that must mean that
3417 	 * the insert is finished with this level.
3418 	 */
3419 	do {
3420 		/*
3421 		 * Insert nrec/nptr into this level of the tree.
3422 		 * Note if we fail, nptr will be null.
3423 		 */
3424 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3425 				&ncur, &i);
3426 		if (error) {
3427 			if (pcur != cur)
3428 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3429 			goto error0;
3430 		}
3431 
3432 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3433 			error = -EFSCORRUPTED;
3434 			goto error0;
3435 		}
3436 		level++;
3437 
3438 		/*
3439 		 * See if the cursor we just used is trash.
3440 		 * Can't trash the caller's cursor, but otherwise we should
3441 		 * if ncur is a new cursor or we're about to be done.
3442 		 */
3443 		if (pcur != cur &&
3444 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3445 			/* Save the state from the cursor before we trash it */
3446 			if (cur->bc_ops->update_cursor)
3447 				cur->bc_ops->update_cursor(pcur, cur);
3448 			cur->bc_nlevels = pcur->bc_nlevels;
3449 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3450 		}
3451 		/* If we got a new cursor, switch to it. */
3452 		if (ncur) {
3453 			pcur = ncur;
3454 			ncur = NULL;
3455 		}
3456 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3457 
3458 	*stat = i;
3459 	return 0;
3460 error0:
3461 	return error;
3462 }
3463 
3464 /*
3465  * Try to merge a non-leaf block back into the inode root.
3466  *
3467  * Note: the killroot names comes from the fact that we're effectively
3468  * killing the old root block.  But because we can't just delete the
3469  * inode we have to copy the single block it was pointing to into the
3470  * inode.
3471  */
3472 STATIC int
3473 xfs_btree_kill_iroot(
3474 	struct xfs_btree_cur	*cur)
3475 {
3476 	int			whichfork = cur->bc_ino.whichfork;
3477 	struct xfs_inode	*ip = cur->bc_ino.ip;
3478 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3479 	struct xfs_btree_block	*block;
3480 	struct xfs_btree_block	*cblock;
3481 	union xfs_btree_key	*kp;
3482 	union xfs_btree_key	*ckp;
3483 	union xfs_btree_ptr	*pp;
3484 	union xfs_btree_ptr	*cpp;
3485 	struct xfs_buf		*cbp;
3486 	int			level;
3487 	int			index;
3488 	int			numrecs;
3489 	int			error;
3490 #ifdef DEBUG
3491 	union xfs_btree_ptr	ptr;
3492 #endif
3493 	int			i;
3494 
3495 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3496 	ASSERT(cur->bc_nlevels > 1);
3497 
3498 	/*
3499 	 * Don't deal with the root block needs to be a leaf case.
3500 	 * We're just going to turn the thing back into extents anyway.
3501 	 */
3502 	level = cur->bc_nlevels - 1;
3503 	if (level == 1)
3504 		goto out0;
3505 
3506 	/*
3507 	 * Give up if the root has multiple children.
3508 	 */
3509 	block = xfs_btree_get_iroot(cur);
3510 	if (xfs_btree_get_numrecs(block) != 1)
3511 		goto out0;
3512 
3513 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3514 	numrecs = xfs_btree_get_numrecs(cblock);
3515 
3516 	/*
3517 	 * Only do this if the next level will fit.
3518 	 * Then the data must be copied up to the inode,
3519 	 * instead of freeing the root you free the next level.
3520 	 */
3521 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3522 		goto out0;
3523 
3524 	XFS_BTREE_STATS_INC(cur, killroot);
3525 
3526 #ifdef DEBUG
3527 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3528 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3529 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3530 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3531 #endif
3532 
3533 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3534 	if (index) {
3535 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3536 				  cur->bc_ino.whichfork);
3537 		block = ifp->if_broot;
3538 	}
3539 
3540 	be16_add_cpu(&block->bb_numrecs, index);
3541 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3542 
3543 	kp = xfs_btree_key_addr(cur, 1, block);
3544 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3545 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3546 
3547 	pp = xfs_btree_ptr_addr(cur, 1, block);
3548 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3549 
3550 	for (i = 0; i < numrecs; i++) {
3551 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3552 		if (error)
3553 			return error;
3554 	}
3555 
3556 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3557 
3558 	error = xfs_btree_free_block(cur, cbp);
3559 	if (error)
3560 		return error;
3561 
3562 	cur->bc_levels[level - 1].bp = NULL;
3563 	be16_add_cpu(&block->bb_level, -1);
3564 	xfs_trans_log_inode(cur->bc_tp, ip,
3565 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3566 	cur->bc_nlevels--;
3567 out0:
3568 	return 0;
3569 }
3570 
3571 /*
3572  * Kill the current root node, and replace it with it's only child node.
3573  */
3574 STATIC int
3575 xfs_btree_kill_root(
3576 	struct xfs_btree_cur	*cur,
3577 	struct xfs_buf		*bp,
3578 	int			level,
3579 	union xfs_btree_ptr	*newroot)
3580 {
3581 	int			error;
3582 
3583 	XFS_BTREE_STATS_INC(cur, killroot);
3584 
3585 	/*
3586 	 * Update the root pointer, decreasing the level by 1 and then
3587 	 * free the old root.
3588 	 */
3589 	cur->bc_ops->set_root(cur, newroot, -1);
3590 
3591 	error = xfs_btree_free_block(cur, bp);
3592 	if (error)
3593 		return error;
3594 
3595 	cur->bc_levels[level].bp = NULL;
3596 	cur->bc_levels[level].ra = 0;
3597 	cur->bc_nlevels--;
3598 
3599 	return 0;
3600 }
3601 
3602 STATIC int
3603 xfs_btree_dec_cursor(
3604 	struct xfs_btree_cur	*cur,
3605 	int			level,
3606 	int			*stat)
3607 {
3608 	int			error;
3609 	int			i;
3610 
3611 	if (level > 0) {
3612 		error = xfs_btree_decrement(cur, level, &i);
3613 		if (error)
3614 			return error;
3615 	}
3616 
3617 	*stat = 1;
3618 	return 0;
3619 }
3620 
3621 /*
3622  * Single level of the btree record deletion routine.
3623  * Delete record pointed to by cur/level.
3624  * Remove the record from its block then rebalance the tree.
3625  * Return 0 for error, 1 for done, 2 to go on to the next level.
3626  */
3627 STATIC int					/* error */
3628 xfs_btree_delrec(
3629 	struct xfs_btree_cur	*cur,		/* btree cursor */
3630 	int			level,		/* level removing record from */
3631 	int			*stat)		/* fail/done/go-on */
3632 {
3633 	struct xfs_btree_block	*block;		/* btree block */
3634 	union xfs_btree_ptr	cptr;		/* current block ptr */
3635 	struct xfs_buf		*bp;		/* buffer for block */
3636 	int			error;		/* error return value */
3637 	int			i;		/* loop counter */
3638 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3639 	struct xfs_buf		*lbp;		/* left buffer pointer */
3640 	struct xfs_btree_block	*left;		/* left btree block */
3641 	int			lrecs = 0;	/* left record count */
3642 	int			ptr;		/* key/record index */
3643 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3644 	struct xfs_buf		*rbp;		/* right buffer pointer */
3645 	struct xfs_btree_block	*right;		/* right btree block */
3646 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3647 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3648 	int			rrecs = 0;	/* right record count */
3649 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3650 	int			numrecs;	/* temporary numrec count */
3651 
3652 	tcur = NULL;
3653 
3654 	/* Get the index of the entry being deleted, check for nothing there. */
3655 	ptr = cur->bc_levels[level].ptr;
3656 	if (ptr == 0) {
3657 		*stat = 0;
3658 		return 0;
3659 	}
3660 
3661 	/* Get the buffer & block containing the record or key/ptr. */
3662 	block = xfs_btree_get_block(cur, level, &bp);
3663 	numrecs = xfs_btree_get_numrecs(block);
3664 
3665 #ifdef DEBUG
3666 	error = xfs_btree_check_block(cur, block, level, bp);
3667 	if (error)
3668 		goto error0;
3669 #endif
3670 
3671 	/* Fail if we're off the end of the block. */
3672 	if (ptr > numrecs) {
3673 		*stat = 0;
3674 		return 0;
3675 	}
3676 
3677 	XFS_BTREE_STATS_INC(cur, delrec);
3678 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3679 
3680 	/* Excise the entries being deleted. */
3681 	if (level > 0) {
3682 		/* It's a nonleaf. operate on keys and ptrs */
3683 		union xfs_btree_key	*lkp;
3684 		union xfs_btree_ptr	*lpp;
3685 
3686 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3687 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3688 
3689 		for (i = 0; i < numrecs - ptr; i++) {
3690 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3691 			if (error)
3692 				goto error0;
3693 		}
3694 
3695 		if (ptr < numrecs) {
3696 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3697 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3698 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3699 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3700 		}
3701 	} else {
3702 		/* It's a leaf. operate on records */
3703 		if (ptr < numrecs) {
3704 			xfs_btree_shift_recs(cur,
3705 				xfs_btree_rec_addr(cur, ptr + 1, block),
3706 				-1, numrecs - ptr);
3707 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3708 		}
3709 	}
3710 
3711 	/*
3712 	 * Decrement and log the number of entries in the block.
3713 	 */
3714 	xfs_btree_set_numrecs(block, --numrecs);
3715 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3716 
3717 	/*
3718 	 * If we are tracking the last record in the tree and
3719 	 * we are at the far right edge of the tree, update it.
3720 	 */
3721 	if (xfs_btree_is_lastrec(cur, block, level)) {
3722 		cur->bc_ops->update_lastrec(cur, block, NULL,
3723 					    ptr, LASTREC_DELREC);
3724 	}
3725 
3726 	/*
3727 	 * We're at the root level.  First, shrink the root block in-memory.
3728 	 * Try to get rid of the next level down.  If we can't then there's
3729 	 * nothing left to do.
3730 	 */
3731 	if (level == cur->bc_nlevels - 1) {
3732 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3733 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3734 					  cur->bc_ino.whichfork);
3735 
3736 			error = xfs_btree_kill_iroot(cur);
3737 			if (error)
3738 				goto error0;
3739 
3740 			error = xfs_btree_dec_cursor(cur, level, stat);
3741 			if (error)
3742 				goto error0;
3743 			*stat = 1;
3744 			return 0;
3745 		}
3746 
3747 		/*
3748 		 * If this is the root level, and there's only one entry left,
3749 		 * and it's NOT the leaf level, then we can get rid of this
3750 		 * level.
3751 		 */
3752 		if (numrecs == 1 && level > 0) {
3753 			union xfs_btree_ptr	*pp;
3754 			/*
3755 			 * pp is still set to the first pointer in the block.
3756 			 * Make it the new root of the btree.
3757 			 */
3758 			pp = xfs_btree_ptr_addr(cur, 1, block);
3759 			error = xfs_btree_kill_root(cur, bp, level, pp);
3760 			if (error)
3761 				goto error0;
3762 		} else if (level > 0) {
3763 			error = xfs_btree_dec_cursor(cur, level, stat);
3764 			if (error)
3765 				goto error0;
3766 		}
3767 		*stat = 1;
3768 		return 0;
3769 	}
3770 
3771 	/*
3772 	 * If we deleted the leftmost entry in the block, update the
3773 	 * key values above us in the tree.
3774 	 */
3775 	if (xfs_btree_needs_key_update(cur, ptr)) {
3776 		error = xfs_btree_update_keys(cur, level);
3777 		if (error)
3778 			goto error0;
3779 	}
3780 
3781 	/*
3782 	 * If the number of records remaining in the block is at least
3783 	 * the minimum, we're done.
3784 	 */
3785 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3786 		error = xfs_btree_dec_cursor(cur, level, stat);
3787 		if (error)
3788 			goto error0;
3789 		return 0;
3790 	}
3791 
3792 	/*
3793 	 * Otherwise, we have to move some records around to keep the
3794 	 * tree balanced.  Look at the left and right sibling blocks to
3795 	 * see if we can re-balance by moving only one record.
3796 	 */
3797 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3798 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3799 
3800 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3801 		/*
3802 		 * One child of root, need to get a chance to copy its contents
3803 		 * into the root and delete it. Can't go up to next level,
3804 		 * there's nothing to delete there.
3805 		 */
3806 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3807 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3808 		    level == cur->bc_nlevels - 2) {
3809 			error = xfs_btree_kill_iroot(cur);
3810 			if (!error)
3811 				error = xfs_btree_dec_cursor(cur, level, stat);
3812 			if (error)
3813 				goto error0;
3814 			return 0;
3815 		}
3816 	}
3817 
3818 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3819 	       !xfs_btree_ptr_is_null(cur, &lptr));
3820 
3821 	/*
3822 	 * Duplicate the cursor so our btree manipulations here won't
3823 	 * disrupt the next level up.
3824 	 */
3825 	error = xfs_btree_dup_cursor(cur, &tcur);
3826 	if (error)
3827 		goto error0;
3828 
3829 	/*
3830 	 * If there's a right sibling, see if it's ok to shift an entry
3831 	 * out of it.
3832 	 */
3833 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3834 		/*
3835 		 * Move the temp cursor to the last entry in the next block.
3836 		 * Actually any entry but the first would suffice.
3837 		 */
3838 		i = xfs_btree_lastrec(tcur, level);
3839 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3840 			error = -EFSCORRUPTED;
3841 			goto error0;
3842 		}
3843 
3844 		error = xfs_btree_increment(tcur, level, &i);
3845 		if (error)
3846 			goto error0;
3847 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3848 			error = -EFSCORRUPTED;
3849 			goto error0;
3850 		}
3851 
3852 		i = xfs_btree_lastrec(tcur, level);
3853 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3854 			error = -EFSCORRUPTED;
3855 			goto error0;
3856 		}
3857 
3858 		/* Grab a pointer to the block. */
3859 		right = xfs_btree_get_block(tcur, level, &rbp);
3860 #ifdef DEBUG
3861 		error = xfs_btree_check_block(tcur, right, level, rbp);
3862 		if (error)
3863 			goto error0;
3864 #endif
3865 		/* Grab the current block number, for future use. */
3866 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3867 
3868 		/*
3869 		 * If right block is full enough so that removing one entry
3870 		 * won't make it too empty, and left-shifting an entry out
3871 		 * of right to us works, we're done.
3872 		 */
3873 		if (xfs_btree_get_numrecs(right) - 1 >=
3874 		    cur->bc_ops->get_minrecs(tcur, level)) {
3875 			error = xfs_btree_lshift(tcur, level, &i);
3876 			if (error)
3877 				goto error0;
3878 			if (i) {
3879 				ASSERT(xfs_btree_get_numrecs(block) >=
3880 				       cur->bc_ops->get_minrecs(tcur, level));
3881 
3882 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3883 				tcur = NULL;
3884 
3885 				error = xfs_btree_dec_cursor(cur, level, stat);
3886 				if (error)
3887 					goto error0;
3888 				return 0;
3889 			}
3890 		}
3891 
3892 		/*
3893 		 * Otherwise, grab the number of records in right for
3894 		 * future reference, and fix up the temp cursor to point
3895 		 * to our block again (last record).
3896 		 */
3897 		rrecs = xfs_btree_get_numrecs(right);
3898 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3899 			i = xfs_btree_firstrec(tcur, level);
3900 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3901 				error = -EFSCORRUPTED;
3902 				goto error0;
3903 			}
3904 
3905 			error = xfs_btree_decrement(tcur, level, &i);
3906 			if (error)
3907 				goto error0;
3908 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3909 				error = -EFSCORRUPTED;
3910 				goto error0;
3911 			}
3912 		}
3913 	}
3914 
3915 	/*
3916 	 * If there's a left sibling, see if it's ok to shift an entry
3917 	 * out of it.
3918 	 */
3919 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3920 		/*
3921 		 * Move the temp cursor to the first entry in the
3922 		 * previous block.
3923 		 */
3924 		i = xfs_btree_firstrec(tcur, level);
3925 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3926 			error = -EFSCORRUPTED;
3927 			goto error0;
3928 		}
3929 
3930 		error = xfs_btree_decrement(tcur, level, &i);
3931 		if (error)
3932 			goto error0;
3933 		i = xfs_btree_firstrec(tcur, level);
3934 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935 			error = -EFSCORRUPTED;
3936 			goto error0;
3937 		}
3938 
3939 		/* Grab a pointer to the block. */
3940 		left = xfs_btree_get_block(tcur, level, &lbp);
3941 #ifdef DEBUG
3942 		error = xfs_btree_check_block(cur, left, level, lbp);
3943 		if (error)
3944 			goto error0;
3945 #endif
3946 		/* Grab the current block number, for future use. */
3947 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3948 
3949 		/*
3950 		 * If left block is full enough so that removing one entry
3951 		 * won't make it too empty, and right-shifting an entry out
3952 		 * of left to us works, we're done.
3953 		 */
3954 		if (xfs_btree_get_numrecs(left) - 1 >=
3955 		    cur->bc_ops->get_minrecs(tcur, level)) {
3956 			error = xfs_btree_rshift(tcur, level, &i);
3957 			if (error)
3958 				goto error0;
3959 			if (i) {
3960 				ASSERT(xfs_btree_get_numrecs(block) >=
3961 				       cur->bc_ops->get_minrecs(tcur, level));
3962 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3963 				tcur = NULL;
3964 				if (level == 0)
3965 					cur->bc_levels[0].ptr++;
3966 
3967 				*stat = 1;
3968 				return 0;
3969 			}
3970 		}
3971 
3972 		/*
3973 		 * Otherwise, grab the number of records in right for
3974 		 * future reference.
3975 		 */
3976 		lrecs = xfs_btree_get_numrecs(left);
3977 	}
3978 
3979 	/* Delete the temp cursor, we're done with it. */
3980 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3981 	tcur = NULL;
3982 
3983 	/* If here, we need to do a join to keep the tree balanced. */
3984 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3985 
3986 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3987 	    lrecs + xfs_btree_get_numrecs(block) <=
3988 			cur->bc_ops->get_maxrecs(cur, level)) {
3989 		/*
3990 		 * Set "right" to be the starting block,
3991 		 * "left" to be the left neighbor.
3992 		 */
3993 		rptr = cptr;
3994 		right = block;
3995 		rbp = bp;
3996 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3997 		if (error)
3998 			goto error0;
3999 
4000 	/*
4001 	 * If that won't work, see if we can join with the right neighbor block.
4002 	 */
4003 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4004 		   rrecs + xfs_btree_get_numrecs(block) <=
4005 			cur->bc_ops->get_maxrecs(cur, level)) {
4006 		/*
4007 		 * Set "left" to be the starting block,
4008 		 * "right" to be the right neighbor.
4009 		 */
4010 		lptr = cptr;
4011 		left = block;
4012 		lbp = bp;
4013 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4014 		if (error)
4015 			goto error0;
4016 
4017 	/*
4018 	 * Otherwise, we can't fix the imbalance.
4019 	 * Just return.  This is probably a logic error, but it's not fatal.
4020 	 */
4021 	} else {
4022 		error = xfs_btree_dec_cursor(cur, level, stat);
4023 		if (error)
4024 			goto error0;
4025 		return 0;
4026 	}
4027 
4028 	rrecs = xfs_btree_get_numrecs(right);
4029 	lrecs = xfs_btree_get_numrecs(left);
4030 
4031 	/*
4032 	 * We're now going to join "left" and "right" by moving all the stuff
4033 	 * in "right" to "left" and deleting "right".
4034 	 */
4035 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4036 	if (level > 0) {
4037 		/* It's a non-leaf.  Move keys and pointers. */
4038 		union xfs_btree_key	*lkp;	/* left btree key */
4039 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4040 		union xfs_btree_key	*rkp;	/* right btree key */
4041 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4042 
4043 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4044 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4045 		rkp = xfs_btree_key_addr(cur, 1, right);
4046 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4047 
4048 		for (i = 1; i < rrecs; i++) {
4049 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4050 			if (error)
4051 				goto error0;
4052 		}
4053 
4054 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4055 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4056 
4057 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4058 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4059 	} else {
4060 		/* It's a leaf.  Move records.  */
4061 		union xfs_btree_rec	*lrp;	/* left record pointer */
4062 		union xfs_btree_rec	*rrp;	/* right record pointer */
4063 
4064 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4065 		rrp = xfs_btree_rec_addr(cur, 1, right);
4066 
4067 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4068 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4069 	}
4070 
4071 	XFS_BTREE_STATS_INC(cur, join);
4072 
4073 	/*
4074 	 * Fix up the number of records and right block pointer in the
4075 	 * surviving block, and log it.
4076 	 */
4077 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4078 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4079 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4080 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4081 
4082 	/* If there is a right sibling, point it to the remaining block. */
4083 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4084 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4085 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4086 		if (error)
4087 			goto error0;
4088 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4089 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4090 	}
4091 
4092 	/* Free the deleted block. */
4093 	error = xfs_btree_free_block(cur, rbp);
4094 	if (error)
4095 		goto error0;
4096 
4097 	/*
4098 	 * If we joined with the left neighbor, set the buffer in the
4099 	 * cursor to the left block, and fix up the index.
4100 	 */
4101 	if (bp != lbp) {
4102 		cur->bc_levels[level].bp = lbp;
4103 		cur->bc_levels[level].ptr += lrecs;
4104 		cur->bc_levels[level].ra = 0;
4105 	}
4106 	/*
4107 	 * If we joined with the right neighbor and there's a level above
4108 	 * us, increment the cursor at that level.
4109 	 */
4110 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4111 		   (level + 1 < cur->bc_nlevels)) {
4112 		error = xfs_btree_increment(cur, level + 1, &i);
4113 		if (error)
4114 			goto error0;
4115 	}
4116 
4117 	/*
4118 	 * Readjust the ptr at this level if it's not a leaf, since it's
4119 	 * still pointing at the deletion point, which makes the cursor
4120 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4121 	 * We can't use decrement because it would change the next level up.
4122 	 */
4123 	if (level > 0)
4124 		cur->bc_levels[level].ptr--;
4125 
4126 	/*
4127 	 * We combined blocks, so we have to update the parent keys if the
4128 	 * btree supports overlapped intervals.  However,
4129 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4130 	 * knows which record to delete.  Therefore, the caller must be savvy
4131 	 * enough to call updkeys for us if we return stat == 2.  The other
4132 	 * exit points from this function don't require deletions further up
4133 	 * the tree, so they can call updkeys directly.
4134 	 */
4135 
4136 	/* Return value means the next level up has something to do. */
4137 	*stat = 2;
4138 	return 0;
4139 
4140 error0:
4141 	if (tcur)
4142 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4143 	return error;
4144 }
4145 
4146 /*
4147  * Delete the record pointed to by cur.
4148  * The cursor refers to the place where the record was (could be inserted)
4149  * when the operation returns.
4150  */
4151 int					/* error */
4152 xfs_btree_delete(
4153 	struct xfs_btree_cur	*cur,
4154 	int			*stat)	/* success/failure */
4155 {
4156 	int			error;	/* error return value */
4157 	int			level;
4158 	int			i;
4159 	bool			joined = false;
4160 
4161 	/*
4162 	 * Go up the tree, starting at leaf level.
4163 	 *
4164 	 * If 2 is returned then a join was done; go to the next level.
4165 	 * Otherwise we are done.
4166 	 */
4167 	for (level = 0, i = 2; i == 2; level++) {
4168 		error = xfs_btree_delrec(cur, level, &i);
4169 		if (error)
4170 			goto error0;
4171 		if (i == 2)
4172 			joined = true;
4173 	}
4174 
4175 	/*
4176 	 * If we combined blocks as part of deleting the record, delrec won't
4177 	 * have updated the parent high keys so we have to do that here.
4178 	 */
4179 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4180 		error = xfs_btree_updkeys_force(cur, 0);
4181 		if (error)
4182 			goto error0;
4183 	}
4184 
4185 	if (i == 0) {
4186 		for (level = 1; level < cur->bc_nlevels; level++) {
4187 			if (cur->bc_levels[level].ptr == 0) {
4188 				error = xfs_btree_decrement(cur, level, &i);
4189 				if (error)
4190 					goto error0;
4191 				break;
4192 			}
4193 		}
4194 	}
4195 
4196 	*stat = i;
4197 	return 0;
4198 error0:
4199 	return error;
4200 }
4201 
4202 /*
4203  * Get the data from the pointed-to record.
4204  */
4205 int					/* error */
4206 xfs_btree_get_rec(
4207 	struct xfs_btree_cur	*cur,	/* btree cursor */
4208 	union xfs_btree_rec	**recp,	/* output: btree record */
4209 	int			*stat)	/* output: success/failure */
4210 {
4211 	struct xfs_btree_block	*block;	/* btree block */
4212 	struct xfs_buf		*bp;	/* buffer pointer */
4213 	int			ptr;	/* record number */
4214 #ifdef DEBUG
4215 	int			error;	/* error return value */
4216 #endif
4217 
4218 	ptr = cur->bc_levels[0].ptr;
4219 	block = xfs_btree_get_block(cur, 0, &bp);
4220 
4221 #ifdef DEBUG
4222 	error = xfs_btree_check_block(cur, block, 0, bp);
4223 	if (error)
4224 		return error;
4225 #endif
4226 
4227 	/*
4228 	 * Off the right end or left end, return failure.
4229 	 */
4230 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4231 		*stat = 0;
4232 		return 0;
4233 	}
4234 
4235 	/*
4236 	 * Point to the record and extract its data.
4237 	 */
4238 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4239 	*stat = 1;
4240 	return 0;
4241 }
4242 
4243 /* Visit a block in a btree. */
4244 STATIC int
4245 xfs_btree_visit_block(
4246 	struct xfs_btree_cur		*cur,
4247 	int				level,
4248 	xfs_btree_visit_blocks_fn	fn,
4249 	void				*data)
4250 {
4251 	struct xfs_btree_block		*block;
4252 	struct xfs_buf			*bp;
4253 	union xfs_btree_ptr		rptr;
4254 	int				error;
4255 
4256 	/* do right sibling readahead */
4257 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4258 	block = xfs_btree_get_block(cur, level, &bp);
4259 
4260 	/* process the block */
4261 	error = fn(cur, level, data);
4262 	if (error)
4263 		return error;
4264 
4265 	/* now read rh sibling block for next iteration */
4266 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4267 	if (xfs_btree_ptr_is_null(cur, &rptr))
4268 		return -ENOENT;
4269 
4270 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4271 }
4272 
4273 
4274 /* Visit every block in a btree. */
4275 int
4276 xfs_btree_visit_blocks(
4277 	struct xfs_btree_cur		*cur,
4278 	xfs_btree_visit_blocks_fn	fn,
4279 	unsigned int			flags,
4280 	void				*data)
4281 {
4282 	union xfs_btree_ptr		lptr;
4283 	int				level;
4284 	struct xfs_btree_block		*block = NULL;
4285 	int				error = 0;
4286 
4287 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4288 
4289 	/* for each level */
4290 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4291 		/* grab the left hand block */
4292 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4293 		if (error)
4294 			return error;
4295 
4296 		/* readahead the left most block for the next level down */
4297 		if (level > 0) {
4298 			union xfs_btree_ptr     *ptr;
4299 
4300 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4301 			xfs_btree_readahead_ptr(cur, ptr, 1);
4302 
4303 			/* save for the next iteration of the loop */
4304 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4305 
4306 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4307 				continue;
4308 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4309 			continue;
4310 		}
4311 
4312 		/* for each buffer in the level */
4313 		do {
4314 			error = xfs_btree_visit_block(cur, level, fn, data);
4315 		} while (!error);
4316 
4317 		if (error != -ENOENT)
4318 			return error;
4319 	}
4320 
4321 	return 0;
4322 }
4323 
4324 /*
4325  * Change the owner of a btree.
4326  *
4327  * The mechanism we use here is ordered buffer logging. Because we don't know
4328  * how many buffers were are going to need to modify, we don't really want to
4329  * have to make transaction reservations for the worst case of every buffer in a
4330  * full size btree as that may be more space that we can fit in the log....
4331  *
4332  * We do the btree walk in the most optimal manner possible - we have sibling
4333  * pointers so we can just walk all the blocks on each level from left to right
4334  * in a single pass, and then move to the next level and do the same. We can
4335  * also do readahead on the sibling pointers to get IO moving more quickly,
4336  * though for slow disks this is unlikely to make much difference to performance
4337  * as the amount of CPU work we have to do before moving to the next block is
4338  * relatively small.
4339  *
4340  * For each btree block that we load, modify the owner appropriately, set the
4341  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4342  * we mark the region we change dirty so that if the buffer is relogged in
4343  * a subsequent transaction the changes we make here as an ordered buffer are
4344  * correctly relogged in that transaction.  If we are in recovery context, then
4345  * just queue the modified buffer as delayed write buffer so the transaction
4346  * recovery completion writes the changes to disk.
4347  */
4348 struct xfs_btree_block_change_owner_info {
4349 	uint64_t		new_owner;
4350 	struct list_head	*buffer_list;
4351 };
4352 
4353 static int
4354 xfs_btree_block_change_owner(
4355 	struct xfs_btree_cur	*cur,
4356 	int			level,
4357 	void			*data)
4358 {
4359 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4360 	struct xfs_btree_block	*block;
4361 	struct xfs_buf		*bp;
4362 
4363 	/* modify the owner */
4364 	block = xfs_btree_get_block(cur, level, &bp);
4365 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4366 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4367 			return 0;
4368 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4369 	} else {
4370 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4371 			return 0;
4372 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4373 	}
4374 
4375 	/*
4376 	 * If the block is a root block hosted in an inode, we might not have a
4377 	 * buffer pointer here and we shouldn't attempt to log the change as the
4378 	 * information is already held in the inode and discarded when the root
4379 	 * block is formatted into the on-disk inode fork. We still change it,
4380 	 * though, so everything is consistent in memory.
4381 	 */
4382 	if (!bp) {
4383 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4384 		ASSERT(level == cur->bc_nlevels - 1);
4385 		return 0;
4386 	}
4387 
4388 	if (cur->bc_tp) {
4389 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4390 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4391 			return -EAGAIN;
4392 		}
4393 	} else {
4394 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 int
4401 xfs_btree_change_owner(
4402 	struct xfs_btree_cur	*cur,
4403 	uint64_t		new_owner,
4404 	struct list_head	*buffer_list)
4405 {
4406 	struct xfs_btree_block_change_owner_info	bbcoi;
4407 
4408 	bbcoi.new_owner = new_owner;
4409 	bbcoi.buffer_list = buffer_list;
4410 
4411 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4412 			XFS_BTREE_VISIT_ALL, &bbcoi);
4413 }
4414 
4415 /* Verify the v5 fields of a long-format btree block. */
4416 xfs_failaddr_t
4417 xfs_btree_lblock_v5hdr_verify(
4418 	struct xfs_buf		*bp,
4419 	uint64_t		owner)
4420 {
4421 	struct xfs_mount	*mp = bp->b_mount;
4422 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4423 
4424 	if (!xfs_has_crc(mp))
4425 		return __this_address;
4426 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4427 		return __this_address;
4428 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4429 		return __this_address;
4430 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4431 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4432 		return __this_address;
4433 	return NULL;
4434 }
4435 
4436 /* Verify a long-format btree block. */
4437 xfs_failaddr_t
4438 xfs_btree_lblock_verify(
4439 	struct xfs_buf		*bp,
4440 	unsigned int		max_recs)
4441 {
4442 	struct xfs_mount	*mp = bp->b_mount;
4443 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4444 
4445 	/* numrecs verification */
4446 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4447 		return __this_address;
4448 
4449 	/* sibling pointer verification */
4450 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4451 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4452 		return __this_address;
4453 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4454 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4455 		return __this_address;
4456 
4457 	return NULL;
4458 }
4459 
4460 /**
4461  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4462  *				      btree block
4463  *
4464  * @bp: buffer containing the btree block
4465  */
4466 xfs_failaddr_t
4467 xfs_btree_sblock_v5hdr_verify(
4468 	struct xfs_buf		*bp)
4469 {
4470 	struct xfs_mount	*mp = bp->b_mount;
4471 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4472 	struct xfs_perag	*pag = bp->b_pag;
4473 
4474 	if (!xfs_has_crc(mp))
4475 		return __this_address;
4476 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4477 		return __this_address;
4478 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4479 		return __this_address;
4480 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4481 		return __this_address;
4482 	return NULL;
4483 }
4484 
4485 /**
4486  * xfs_btree_sblock_verify() -- verify a short-format btree block
4487  *
4488  * @bp: buffer containing the btree block
4489  * @max_recs: maximum records allowed in this btree node
4490  */
4491 xfs_failaddr_t
4492 xfs_btree_sblock_verify(
4493 	struct xfs_buf		*bp,
4494 	unsigned int		max_recs)
4495 {
4496 	struct xfs_mount	*mp = bp->b_mount;
4497 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4498 	xfs_agblock_t		agno;
4499 
4500 	/* numrecs verification */
4501 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4502 		return __this_address;
4503 
4504 	/* sibling pointer verification */
4505 	agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4506 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4507 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4508 		return __this_address;
4509 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4510 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4511 		return __this_address;
4512 
4513 	return NULL;
4514 }
4515 
4516 /*
4517  * For the given limits on leaf and keyptr records per block, calculate the
4518  * height of the tree needed to index the number of leaf records.
4519  */
4520 unsigned int
4521 xfs_btree_compute_maxlevels(
4522 	const unsigned int	*limits,
4523 	unsigned long long	records)
4524 {
4525 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4526 	unsigned int		height = 1;
4527 
4528 	while (level_blocks > 1) {
4529 		level_blocks = howmany_64(level_blocks, limits[1]);
4530 		height++;
4531 	}
4532 
4533 	return height;
4534 }
4535 
4536 /*
4537  * For the given limits on leaf and keyptr records per block, calculate the
4538  * number of blocks needed to index the given number of leaf records.
4539  */
4540 unsigned long long
4541 xfs_btree_calc_size(
4542 	const unsigned int	*limits,
4543 	unsigned long long	records)
4544 {
4545 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4546 	unsigned long long	blocks = level_blocks;
4547 
4548 	while (level_blocks > 1) {
4549 		level_blocks = howmany_64(level_blocks, limits[1]);
4550 		blocks += level_blocks;
4551 	}
4552 
4553 	return blocks;
4554 }
4555 
4556 /*
4557  * Given a number of available blocks for the btree to consume with records and
4558  * pointers, calculate the height of the tree needed to index all the records
4559  * that space can hold based on the number of pointers each interior node
4560  * holds.
4561  *
4562  * We start by assuming a single level tree consumes a single block, then track
4563  * the number of blocks each node level consumes until we no longer have space
4564  * to store the next node level. At this point, we are indexing all the leaf
4565  * blocks in the space, and there's no more free space to split the tree any
4566  * further. That's our maximum btree height.
4567  */
4568 unsigned int
4569 xfs_btree_space_to_height(
4570 	const unsigned int	*limits,
4571 	unsigned long long	leaf_blocks)
4572 {
4573 	unsigned long long	node_blocks = limits[1];
4574 	unsigned long long	blocks_left = leaf_blocks - 1;
4575 	unsigned int		height = 1;
4576 
4577 	if (leaf_blocks < 1)
4578 		return 0;
4579 
4580 	while (node_blocks < blocks_left) {
4581 		blocks_left -= node_blocks;
4582 		node_blocks *= limits[1];
4583 		height++;
4584 	}
4585 
4586 	return height;
4587 }
4588 
4589 /*
4590  * Query a regular btree for all records overlapping a given interval.
4591  * Start with a LE lookup of the key of low_rec and return all records
4592  * until we find a record with a key greater than the key of high_rec.
4593  */
4594 STATIC int
4595 xfs_btree_simple_query_range(
4596 	struct xfs_btree_cur		*cur,
4597 	const union xfs_btree_key	*low_key,
4598 	const union xfs_btree_key	*high_key,
4599 	xfs_btree_query_range_fn	fn,
4600 	void				*priv)
4601 {
4602 	union xfs_btree_rec		*recp;
4603 	union xfs_btree_key		rec_key;
4604 	int64_t				diff;
4605 	int				stat;
4606 	bool				firstrec = true;
4607 	int				error;
4608 
4609 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4610 	ASSERT(cur->bc_ops->diff_two_keys);
4611 
4612 	/*
4613 	 * Find the leftmost record.  The btree cursor must be set
4614 	 * to the low record used to generate low_key.
4615 	 */
4616 	stat = 0;
4617 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4618 	if (error)
4619 		goto out;
4620 
4621 	/* Nothing?  See if there's anything to the right. */
4622 	if (!stat) {
4623 		error = xfs_btree_increment(cur, 0, &stat);
4624 		if (error)
4625 			goto out;
4626 	}
4627 
4628 	while (stat) {
4629 		/* Find the record. */
4630 		error = xfs_btree_get_rec(cur, &recp, &stat);
4631 		if (error || !stat)
4632 			break;
4633 
4634 		/* Skip if high_key(rec) < low_key. */
4635 		if (firstrec) {
4636 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4637 			firstrec = false;
4638 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4639 					&rec_key);
4640 			if (diff > 0)
4641 				goto advloop;
4642 		}
4643 
4644 		/* Stop if high_key < low_key(rec). */
4645 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4646 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4647 		if (diff > 0)
4648 			break;
4649 
4650 		/* Callback */
4651 		error = fn(cur, recp, priv);
4652 		if (error)
4653 			break;
4654 
4655 advloop:
4656 		/* Move on to the next record. */
4657 		error = xfs_btree_increment(cur, 0, &stat);
4658 		if (error)
4659 			break;
4660 	}
4661 
4662 out:
4663 	return error;
4664 }
4665 
4666 /*
4667  * Query an overlapped interval btree for all records overlapping a given
4668  * interval.  This function roughly follows the algorithm given in
4669  * "Interval Trees" of _Introduction to Algorithms_, which is section
4670  * 14.3 in the 2nd and 3rd editions.
4671  *
4672  * First, generate keys for the low and high records passed in.
4673  *
4674  * For any leaf node, generate the high and low keys for the record.
4675  * If the record keys overlap with the query low/high keys, pass the
4676  * record to the function iterator.
4677  *
4678  * For any internal node, compare the low and high keys of each
4679  * pointer against the query low/high keys.  If there's an overlap,
4680  * follow the pointer.
4681  *
4682  * As an optimization, we stop scanning a block when we find a low key
4683  * that is greater than the query's high key.
4684  */
4685 STATIC int
4686 xfs_btree_overlapped_query_range(
4687 	struct xfs_btree_cur		*cur,
4688 	const union xfs_btree_key	*low_key,
4689 	const union xfs_btree_key	*high_key,
4690 	xfs_btree_query_range_fn	fn,
4691 	void				*priv)
4692 {
4693 	union xfs_btree_ptr		ptr;
4694 	union xfs_btree_ptr		*pp;
4695 	union xfs_btree_key		rec_key;
4696 	union xfs_btree_key		rec_hkey;
4697 	union xfs_btree_key		*lkp;
4698 	union xfs_btree_key		*hkp;
4699 	union xfs_btree_rec		*recp;
4700 	struct xfs_btree_block		*block;
4701 	int64_t				ldiff;
4702 	int64_t				hdiff;
4703 	int				level;
4704 	struct xfs_buf			*bp;
4705 	int				i;
4706 	int				error;
4707 
4708 	/* Load the root of the btree. */
4709 	level = cur->bc_nlevels - 1;
4710 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4711 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4712 	if (error)
4713 		return error;
4714 	xfs_btree_get_block(cur, level, &bp);
4715 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4716 #ifdef DEBUG
4717 	error = xfs_btree_check_block(cur, block, level, bp);
4718 	if (error)
4719 		goto out;
4720 #endif
4721 	cur->bc_levels[level].ptr = 1;
4722 
4723 	while (level < cur->bc_nlevels) {
4724 		block = xfs_btree_get_block(cur, level, &bp);
4725 
4726 		/* End of node, pop back towards the root. */
4727 		if (cur->bc_levels[level].ptr >
4728 					be16_to_cpu(block->bb_numrecs)) {
4729 pop_up:
4730 			if (level < cur->bc_nlevels - 1)
4731 				cur->bc_levels[level + 1].ptr++;
4732 			level++;
4733 			continue;
4734 		}
4735 
4736 		if (level == 0) {
4737 			/* Handle a leaf node. */
4738 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4739 					block);
4740 
4741 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4742 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4743 					low_key);
4744 
4745 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4746 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4747 					&rec_key);
4748 
4749 			/*
4750 			 * If (record's high key >= query's low key) and
4751 			 *    (query's high key >= record's low key), then
4752 			 * this record overlaps the query range; callback.
4753 			 */
4754 			if (ldiff >= 0 && hdiff >= 0) {
4755 				error = fn(cur, recp, priv);
4756 				if (error)
4757 					break;
4758 			} else if (hdiff < 0) {
4759 				/* Record is larger than high key; pop. */
4760 				goto pop_up;
4761 			}
4762 			cur->bc_levels[level].ptr++;
4763 			continue;
4764 		}
4765 
4766 		/* Handle an internal node. */
4767 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4768 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4769 				block);
4770 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4771 
4772 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4773 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4774 
4775 		/*
4776 		 * If (pointer's high key >= query's low key) and
4777 		 *    (query's high key >= pointer's low key), then
4778 		 * this record overlaps the query range; follow pointer.
4779 		 */
4780 		if (ldiff >= 0 && hdiff >= 0) {
4781 			level--;
4782 			error = xfs_btree_lookup_get_block(cur, level, pp,
4783 					&block);
4784 			if (error)
4785 				goto out;
4786 			xfs_btree_get_block(cur, level, &bp);
4787 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4788 #ifdef DEBUG
4789 			error = xfs_btree_check_block(cur, block, level, bp);
4790 			if (error)
4791 				goto out;
4792 #endif
4793 			cur->bc_levels[level].ptr = 1;
4794 			continue;
4795 		} else if (hdiff < 0) {
4796 			/* The low key is larger than the upper range; pop. */
4797 			goto pop_up;
4798 		}
4799 		cur->bc_levels[level].ptr++;
4800 	}
4801 
4802 out:
4803 	/*
4804 	 * If we don't end this function with the cursor pointing at a record
4805 	 * block, a subsequent non-error cursor deletion will not release
4806 	 * node-level buffers, causing a buffer leak.  This is quite possible
4807 	 * with a zero-results range query, so release the buffers if we
4808 	 * failed to return any results.
4809 	 */
4810 	if (cur->bc_levels[0].bp == NULL) {
4811 		for (i = 0; i < cur->bc_nlevels; i++) {
4812 			if (cur->bc_levels[i].bp) {
4813 				xfs_trans_brelse(cur->bc_tp,
4814 						cur->bc_levels[i].bp);
4815 				cur->bc_levels[i].bp = NULL;
4816 				cur->bc_levels[i].ptr = 0;
4817 				cur->bc_levels[i].ra = 0;
4818 			}
4819 		}
4820 	}
4821 
4822 	return error;
4823 }
4824 
4825 /*
4826  * Query a btree for all records overlapping a given interval of keys.  The
4827  * supplied function will be called with each record found; return one of the
4828  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4829  * code.  This function returns -ECANCELED, zero, or a negative error code.
4830  */
4831 int
4832 xfs_btree_query_range(
4833 	struct xfs_btree_cur		*cur,
4834 	const union xfs_btree_irec	*low_rec,
4835 	const union xfs_btree_irec	*high_rec,
4836 	xfs_btree_query_range_fn	fn,
4837 	void				*priv)
4838 {
4839 	union xfs_btree_rec		rec;
4840 	union xfs_btree_key		low_key;
4841 	union xfs_btree_key		high_key;
4842 
4843 	/* Find the keys of both ends of the interval. */
4844 	cur->bc_rec = *high_rec;
4845 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4846 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4847 
4848 	cur->bc_rec = *low_rec;
4849 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4850 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4851 
4852 	/* Enforce low key < high key. */
4853 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4854 		return -EINVAL;
4855 
4856 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4857 		return xfs_btree_simple_query_range(cur, &low_key,
4858 				&high_key, fn, priv);
4859 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4860 			fn, priv);
4861 }
4862 
4863 /* Query a btree for all records. */
4864 int
4865 xfs_btree_query_all(
4866 	struct xfs_btree_cur		*cur,
4867 	xfs_btree_query_range_fn	fn,
4868 	void				*priv)
4869 {
4870 	union xfs_btree_key		low_key;
4871 	union xfs_btree_key		high_key;
4872 
4873 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4874 	memset(&low_key, 0, sizeof(low_key));
4875 	memset(&high_key, 0xFF, sizeof(high_key));
4876 
4877 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4878 }
4879 
4880 static int
4881 xfs_btree_count_blocks_helper(
4882 	struct xfs_btree_cur	*cur,
4883 	int			level,
4884 	void			*data)
4885 {
4886 	xfs_extlen_t		*blocks = data;
4887 	(*blocks)++;
4888 
4889 	return 0;
4890 }
4891 
4892 /* Count the blocks in a btree and return the result in *blocks. */
4893 int
4894 xfs_btree_count_blocks(
4895 	struct xfs_btree_cur	*cur,
4896 	xfs_extlen_t		*blocks)
4897 {
4898 	*blocks = 0;
4899 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4900 			XFS_BTREE_VISIT_ALL, blocks);
4901 }
4902 
4903 /* Compare two btree pointers. */
4904 int64_t
4905 xfs_btree_diff_two_ptrs(
4906 	struct xfs_btree_cur		*cur,
4907 	const union xfs_btree_ptr	*a,
4908 	const union xfs_btree_ptr	*b)
4909 {
4910 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4911 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4912 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4913 }
4914 
4915 /* If there's an extent, we're done. */
4916 STATIC int
4917 xfs_btree_has_record_helper(
4918 	struct xfs_btree_cur		*cur,
4919 	const union xfs_btree_rec	*rec,
4920 	void				*priv)
4921 {
4922 	return -ECANCELED;
4923 }
4924 
4925 /* Is there a record covering a given range of keys? */
4926 int
4927 xfs_btree_has_record(
4928 	struct xfs_btree_cur		*cur,
4929 	const union xfs_btree_irec	*low,
4930 	const union xfs_btree_irec	*high,
4931 	bool				*exists)
4932 {
4933 	int				error;
4934 
4935 	error = xfs_btree_query_range(cur, low, high,
4936 			&xfs_btree_has_record_helper, NULL);
4937 	if (error == -ECANCELED) {
4938 		*exists = true;
4939 		return 0;
4940 	}
4941 	*exists = false;
4942 	return error;
4943 }
4944 
4945 /* Are there more records in this btree? */
4946 bool
4947 xfs_btree_has_more_records(
4948 	struct xfs_btree_cur	*cur)
4949 {
4950 	struct xfs_btree_block	*block;
4951 	struct xfs_buf		*bp;
4952 
4953 	block = xfs_btree_get_block(cur, 0, &bp);
4954 
4955 	/* There are still records in this block. */
4956 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
4957 		return true;
4958 
4959 	/* There are more record blocks. */
4960 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4961 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4962 	else
4963 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4964 }
4965 
4966 /* Set up all the btree cursor caches. */
4967 int __init
4968 xfs_btree_init_cur_caches(void)
4969 {
4970 	int		error;
4971 
4972 	error = xfs_allocbt_init_cur_cache();
4973 	if (error)
4974 		return error;
4975 	error = xfs_inobt_init_cur_cache();
4976 	if (error)
4977 		goto err;
4978 	error = xfs_bmbt_init_cur_cache();
4979 	if (error)
4980 		goto err;
4981 	error = xfs_rmapbt_init_cur_cache();
4982 	if (error)
4983 		goto err;
4984 	error = xfs_refcountbt_init_cur_cache();
4985 	if (error)
4986 		goto err;
4987 
4988 	return 0;
4989 err:
4990 	xfs_btree_destroy_cur_caches();
4991 	return error;
4992 }
4993 
4994 /* Destroy all the btree cursor caches, if they've been allocated. */
4995 void
4996 xfs_btree_destroy_cur_caches(void)
4997 {
4998 	xfs_allocbt_destroy_cur_cache();
4999 	xfs_inobt_destroy_cur_cache();
5000 	xfs_bmbt_destroy_cur_cache();
5001 	xfs_rmapbt_destroy_cur_cache();
5002 	xfs_refcountbt_destroy_cur_cache();
5003 }
5004