xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 2d972b6a)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_alloc.h"
37 #include "xfs_log.h"
38 
39 /*
40  * Cursor allocation zone.
41  */
42 kmem_zone_t	*xfs_btree_cur_zone;
43 
44 /*
45  * Btree magic numbers.
46  */
47 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
48 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
49 	  XFS_FIBT_MAGIC, 0 },
50 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
51 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
52 	  XFS_REFC_CRC_MAGIC }
53 };
54 
55 uint32_t
56 xfs_btree_magic(
57 	int			crc,
58 	xfs_btnum_t		btnum)
59 {
60 	uint32_t		magic = xfs_magics[crc][btnum];
61 
62 	/* Ensure we asked for crc for crc-only magics. */
63 	ASSERT(magic != 0);
64 	return magic;
65 }
66 
67 /*
68  * Check a long btree block header.  Return the address of the failing check,
69  * or NULL if everything is ok.
70  */
71 xfs_failaddr_t
72 __xfs_btree_check_lblock(
73 	struct xfs_btree_cur	*cur,
74 	struct xfs_btree_block	*block,
75 	int			level,
76 	struct xfs_buf		*bp)
77 {
78 	struct xfs_mount	*mp = cur->bc_mp;
79 	xfs_btnum_t		btnum = cur->bc_btnum;
80 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
81 
82 	if (crc) {
83 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
84 			return __this_address;
85 		if (block->bb_u.l.bb_blkno !=
86 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
87 			return __this_address;
88 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
89 			return __this_address;
90 	}
91 
92 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
93 		return __this_address;
94 	if (be16_to_cpu(block->bb_level) != level)
95 		return __this_address;
96 	if (be16_to_cpu(block->bb_numrecs) >
97 	    cur->bc_ops->get_maxrecs(cur, level))
98 		return __this_address;
99 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
100 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
101 			level + 1))
102 		return __this_address;
103 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
104 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
105 			level + 1))
106 		return __this_address;
107 
108 	return NULL;
109 }
110 
111 /* Check a long btree block header. */
112 static int
113 xfs_btree_check_lblock(
114 	struct xfs_btree_cur	*cur,
115 	struct xfs_btree_block	*block,
116 	int			level,
117 	struct xfs_buf		*bp)
118 {
119 	struct xfs_mount	*mp = cur->bc_mp;
120 	xfs_failaddr_t		fa;
121 
122 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
123 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
124 			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
125 		if (bp)
126 			trace_xfs_btree_corrupt(bp, _RET_IP_);
127 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
128 		return -EFSCORRUPTED;
129 	}
130 	return 0;
131 }
132 
133 /*
134  * Check a short btree block header.  Return the address of the failing check,
135  * or NULL if everything is ok.
136  */
137 xfs_failaddr_t
138 __xfs_btree_check_sblock(
139 	struct xfs_btree_cur	*cur,
140 	struct xfs_btree_block	*block,
141 	int			level,
142 	struct xfs_buf		*bp)
143 {
144 	struct xfs_mount	*mp = cur->bc_mp;
145 	xfs_btnum_t		btnum = cur->bc_btnum;
146 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
147 
148 	if (crc) {
149 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
150 			return __this_address;
151 		if (block->bb_u.s.bb_blkno !=
152 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
153 			return __this_address;
154 	}
155 
156 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
157 		return __this_address;
158 	if (be16_to_cpu(block->bb_level) != level)
159 		return __this_address;
160 	if (be16_to_cpu(block->bb_numrecs) >
161 	    cur->bc_ops->get_maxrecs(cur, level))
162 		return __this_address;
163 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
164 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
165 			level + 1))
166 		return __this_address;
167 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
168 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
169 			level + 1))
170 		return __this_address;
171 
172 	return NULL;
173 }
174 
175 /* Check a short btree block header. */
176 STATIC int
177 xfs_btree_check_sblock(
178 	struct xfs_btree_cur	*cur,
179 	struct xfs_btree_block	*block,
180 	int			level,
181 	struct xfs_buf		*bp)
182 {
183 	struct xfs_mount	*mp = cur->bc_mp;
184 	xfs_failaddr_t		fa;
185 
186 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
187 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
188 			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
189 		if (bp)
190 			trace_xfs_btree_corrupt(bp, _RET_IP_);
191 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
192 		return -EFSCORRUPTED;
193 	}
194 	return 0;
195 }
196 
197 /*
198  * Debug routine: check that block header is ok.
199  */
200 int
201 xfs_btree_check_block(
202 	struct xfs_btree_cur	*cur,	/* btree cursor */
203 	struct xfs_btree_block	*block,	/* generic btree block pointer */
204 	int			level,	/* level of the btree block */
205 	struct xfs_buf		*bp)	/* buffer containing block, if any */
206 {
207 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
208 		return xfs_btree_check_lblock(cur, block, level, bp);
209 	else
210 		return xfs_btree_check_sblock(cur, block, level, bp);
211 }
212 
213 /* Check that this long pointer is valid and points within the fs. */
214 bool
215 xfs_btree_check_lptr(
216 	struct xfs_btree_cur	*cur,
217 	xfs_fsblock_t		fsbno,
218 	int			level)
219 {
220 	if (level <= 0)
221 		return false;
222 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
223 }
224 
225 /* Check that this short pointer is valid and points within the AG. */
226 bool
227 xfs_btree_check_sptr(
228 	struct xfs_btree_cur	*cur,
229 	xfs_agblock_t		agbno,
230 	int			level)
231 {
232 	if (level <= 0)
233 		return false;
234 	return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
235 }
236 
237 #ifdef DEBUG
238 /*
239  * Check that a given (indexed) btree pointer at a certain level of a
240  * btree is valid and doesn't point past where it should.
241  */
242 static int
243 xfs_btree_check_ptr(
244 	struct xfs_btree_cur	*cur,
245 	union xfs_btree_ptr	*ptr,
246 	int			index,
247 	int			level)
248 {
249 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
250 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 				xfs_btree_check_lptr(cur,
252 					be64_to_cpu((&ptr->l)[index]), level));
253 	} else {
254 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
255 				xfs_btree_check_sptr(cur,
256 					be32_to_cpu((&ptr->s)[index]), level));
257 	}
258 
259 	return 0;
260 }
261 #endif
262 
263 /*
264  * Calculate CRC on the whole btree block and stuff it into the
265  * long-form btree header.
266  *
267  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
268  * it into the buffer so recovery knows what the last modification was that made
269  * it to disk.
270  */
271 void
272 xfs_btree_lblock_calc_crc(
273 	struct xfs_buf		*bp)
274 {
275 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
276 	struct xfs_buf_log_item	*bip = bp->b_log_item;
277 
278 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
279 		return;
280 	if (bip)
281 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
282 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
283 }
284 
285 bool
286 xfs_btree_lblock_verify_crc(
287 	struct xfs_buf		*bp)
288 {
289 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
290 	struct xfs_mount	*mp = bp->b_target->bt_mount;
291 
292 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
293 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
294 			return false;
295 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
296 	}
297 
298 	return true;
299 }
300 
301 /*
302  * Calculate CRC on the whole btree block and stuff it into the
303  * short-form btree header.
304  *
305  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
306  * it into the buffer so recovery knows what the last modification was that made
307  * it to disk.
308  */
309 void
310 xfs_btree_sblock_calc_crc(
311 	struct xfs_buf		*bp)
312 {
313 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
314 	struct xfs_buf_log_item	*bip = bp->b_log_item;
315 
316 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
317 		return;
318 	if (bip)
319 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
320 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
321 }
322 
323 bool
324 xfs_btree_sblock_verify_crc(
325 	struct xfs_buf		*bp)
326 {
327 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
328 	struct xfs_mount	*mp = bp->b_target->bt_mount;
329 
330 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
331 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
332 			return __this_address;
333 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
334 	}
335 
336 	return true;
337 }
338 
339 static int
340 xfs_btree_free_block(
341 	struct xfs_btree_cur	*cur,
342 	struct xfs_buf		*bp)
343 {
344 	int			error;
345 
346 	error = cur->bc_ops->free_block(cur, bp);
347 	if (!error) {
348 		xfs_trans_binval(cur->bc_tp, bp);
349 		XFS_BTREE_STATS_INC(cur, free);
350 	}
351 	return error;
352 }
353 
354 /*
355  * Delete the btree cursor.
356  */
357 void
358 xfs_btree_del_cursor(
359 	xfs_btree_cur_t	*cur,		/* btree cursor */
360 	int		error)		/* del because of error */
361 {
362 	int		i;		/* btree level */
363 
364 	/*
365 	 * Clear the buffer pointers, and release the buffers.
366 	 * If we're doing this in the face of an error, we
367 	 * need to make sure to inspect all of the entries
368 	 * in the bc_bufs array for buffers to be unlocked.
369 	 * This is because some of the btree code works from
370 	 * level n down to 0, and if we get an error along
371 	 * the way we won't have initialized all the entries
372 	 * down to 0.
373 	 */
374 	for (i = 0; i < cur->bc_nlevels; i++) {
375 		if (cur->bc_bufs[i])
376 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
377 		else if (!error)
378 			break;
379 	}
380 	/*
381 	 * Can't free a bmap cursor without having dealt with the
382 	 * allocated indirect blocks' accounting.
383 	 */
384 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
385 	       cur->bc_private.b.allocated == 0);
386 	/*
387 	 * Free the cursor.
388 	 */
389 	kmem_zone_free(xfs_btree_cur_zone, cur);
390 }
391 
392 /*
393  * Duplicate the btree cursor.
394  * Allocate a new one, copy the record, re-get the buffers.
395  */
396 int					/* error */
397 xfs_btree_dup_cursor(
398 	xfs_btree_cur_t	*cur,		/* input cursor */
399 	xfs_btree_cur_t	**ncur)		/* output cursor */
400 {
401 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
402 	int		error;		/* error return value */
403 	int		i;		/* level number of btree block */
404 	xfs_mount_t	*mp;		/* mount structure for filesystem */
405 	xfs_btree_cur_t	*new;		/* new cursor value */
406 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
407 
408 	tp = cur->bc_tp;
409 	mp = cur->bc_mp;
410 
411 	/*
412 	 * Allocate a new cursor like the old one.
413 	 */
414 	new = cur->bc_ops->dup_cursor(cur);
415 
416 	/*
417 	 * Copy the record currently in the cursor.
418 	 */
419 	new->bc_rec = cur->bc_rec;
420 
421 	/*
422 	 * For each level current, re-get the buffer and copy the ptr value.
423 	 */
424 	for (i = 0; i < new->bc_nlevels; i++) {
425 		new->bc_ptrs[i] = cur->bc_ptrs[i];
426 		new->bc_ra[i] = cur->bc_ra[i];
427 		bp = cur->bc_bufs[i];
428 		if (bp) {
429 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
430 						   XFS_BUF_ADDR(bp), mp->m_bsize,
431 						   0, &bp,
432 						   cur->bc_ops->buf_ops);
433 			if (error) {
434 				xfs_btree_del_cursor(new, error);
435 				*ncur = NULL;
436 				return error;
437 			}
438 		}
439 		new->bc_bufs[i] = bp;
440 	}
441 	*ncur = new;
442 	return 0;
443 }
444 
445 /*
446  * XFS btree block layout and addressing:
447  *
448  * There are two types of blocks in the btree: leaf and non-leaf blocks.
449  *
450  * The leaf record start with a header then followed by records containing
451  * the values.  A non-leaf block also starts with the same header, and
452  * then first contains lookup keys followed by an equal number of pointers
453  * to the btree blocks at the previous level.
454  *
455  *		+--------+-------+-------+-------+-------+-------+-------+
456  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
457  *		+--------+-------+-------+-------+-------+-------+-------+
458  *
459  *		+--------+-------+-------+-------+-------+-------+-------+
460  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
461  *		+--------+-------+-------+-------+-------+-------+-------+
462  *
463  * The header is called struct xfs_btree_block for reasons better left unknown
464  * and comes in different versions for short (32bit) and long (64bit) block
465  * pointers.  The record and key structures are defined by the btree instances
466  * and opaque to the btree core.  The block pointers are simple disk endian
467  * integers, available in a short (32bit) and long (64bit) variant.
468  *
469  * The helpers below calculate the offset of a given record, key or pointer
470  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
471  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
472  * inside the btree block is done using indices starting at one, not zero!
473  *
474  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
475  * overlapping intervals.  In such a tree, records are still sorted lowest to
476  * highest and indexed by the smallest key value that refers to the record.
477  * However, nodes are different: each pointer has two associated keys -- one
478  * indexing the lowest key available in the block(s) below (the same behavior
479  * as the key in a regular btree) and another indexing the highest key
480  * available in the block(s) below.  Because records are /not/ sorted by the
481  * highest key, all leaf block updates require us to compute the highest key
482  * that matches any record in the leaf and to recursively update the high keys
483  * in the nodes going further up in the tree, if necessary.  Nodes look like
484  * this:
485  *
486  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
487  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
488  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
489  *
490  * To perform an interval query on an overlapped tree, perform the usual
491  * depth-first search and use the low and high keys to decide if we can skip
492  * that particular node.  If a leaf node is reached, return the records that
493  * intersect the interval.  Note that an interval query may return numerous
494  * entries.  For a non-overlapped tree, simply search for the record associated
495  * with the lowest key and iterate forward until a non-matching record is
496  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
497  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
498  * more detail.
499  *
500  * Why do we care about overlapping intervals?  Let's say you have a bunch of
501  * reverse mapping records on a reflink filesystem:
502  *
503  * 1: +- file A startblock B offset C length D -----------+
504  * 2:      +- file E startblock F offset G length H --------------+
505  * 3:      +- file I startblock F offset J length K --+
506  * 4:                                                        +- file L... --+
507  *
508  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
509  * we'd simply increment the length of record 1.  But how do we find the record
510  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
511  * record 3 because the keys are ordered first by startblock.  An interval
512  * query would return records 1 and 2 because they both overlap (B+D-1), and
513  * from that we can pick out record 1 as the appropriate left neighbor.
514  *
515  * In the non-overlapped case you can do a LE lookup and decrement the cursor
516  * because a record's interval must end before the next record.
517  */
518 
519 /*
520  * Return size of the btree block header for this btree instance.
521  */
522 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
523 {
524 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
525 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 			return XFS_BTREE_LBLOCK_CRC_LEN;
527 		return XFS_BTREE_LBLOCK_LEN;
528 	}
529 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
530 		return XFS_BTREE_SBLOCK_CRC_LEN;
531 	return XFS_BTREE_SBLOCK_LEN;
532 }
533 
534 /*
535  * Return size of btree block pointers for this btree instance.
536  */
537 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
538 {
539 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
540 		sizeof(__be64) : sizeof(__be32);
541 }
542 
543 /*
544  * Calculate offset of the n-th record in a btree block.
545  */
546 STATIC size_t
547 xfs_btree_rec_offset(
548 	struct xfs_btree_cur	*cur,
549 	int			n)
550 {
551 	return xfs_btree_block_len(cur) +
552 		(n - 1) * cur->bc_ops->rec_len;
553 }
554 
555 /*
556  * Calculate offset of the n-th key in a btree block.
557  */
558 STATIC size_t
559 xfs_btree_key_offset(
560 	struct xfs_btree_cur	*cur,
561 	int			n)
562 {
563 	return xfs_btree_block_len(cur) +
564 		(n - 1) * cur->bc_ops->key_len;
565 }
566 
567 /*
568  * Calculate offset of the n-th high key in a btree block.
569  */
570 STATIC size_t
571 xfs_btree_high_key_offset(
572 	struct xfs_btree_cur	*cur,
573 	int			n)
574 {
575 	return xfs_btree_block_len(cur) +
576 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
577 }
578 
579 /*
580  * Calculate offset of the n-th block pointer in a btree block.
581  */
582 STATIC size_t
583 xfs_btree_ptr_offset(
584 	struct xfs_btree_cur	*cur,
585 	int			n,
586 	int			level)
587 {
588 	return xfs_btree_block_len(cur) +
589 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
590 		(n - 1) * xfs_btree_ptr_len(cur);
591 }
592 
593 /*
594  * Return a pointer to the n-th record in the btree block.
595  */
596 union xfs_btree_rec *
597 xfs_btree_rec_addr(
598 	struct xfs_btree_cur	*cur,
599 	int			n,
600 	struct xfs_btree_block	*block)
601 {
602 	return (union xfs_btree_rec *)
603 		((char *)block + xfs_btree_rec_offset(cur, n));
604 }
605 
606 /*
607  * Return a pointer to the n-th key in the btree block.
608  */
609 union xfs_btree_key *
610 xfs_btree_key_addr(
611 	struct xfs_btree_cur	*cur,
612 	int			n,
613 	struct xfs_btree_block	*block)
614 {
615 	return (union xfs_btree_key *)
616 		((char *)block + xfs_btree_key_offset(cur, n));
617 }
618 
619 /*
620  * Return a pointer to the n-th high key in the btree block.
621  */
622 union xfs_btree_key *
623 xfs_btree_high_key_addr(
624 	struct xfs_btree_cur	*cur,
625 	int			n,
626 	struct xfs_btree_block	*block)
627 {
628 	return (union xfs_btree_key *)
629 		((char *)block + xfs_btree_high_key_offset(cur, n));
630 }
631 
632 /*
633  * Return a pointer to the n-th block pointer in the btree block.
634  */
635 union xfs_btree_ptr *
636 xfs_btree_ptr_addr(
637 	struct xfs_btree_cur	*cur,
638 	int			n,
639 	struct xfs_btree_block	*block)
640 {
641 	int			level = xfs_btree_get_level(block);
642 
643 	ASSERT(block->bb_level != 0);
644 
645 	return (union xfs_btree_ptr *)
646 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
647 }
648 
649 /*
650  * Get the root block which is stored in the inode.
651  *
652  * For now this btree implementation assumes the btree root is always
653  * stored in the if_broot field of an inode fork.
654  */
655 STATIC struct xfs_btree_block *
656 xfs_btree_get_iroot(
657 	struct xfs_btree_cur	*cur)
658 {
659 	struct xfs_ifork	*ifp;
660 
661 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
662 	return (struct xfs_btree_block *)ifp->if_broot;
663 }
664 
665 /*
666  * Retrieve the block pointer from the cursor at the given level.
667  * This may be an inode btree root or from a buffer.
668  */
669 struct xfs_btree_block *		/* generic btree block pointer */
670 xfs_btree_get_block(
671 	struct xfs_btree_cur	*cur,	/* btree cursor */
672 	int			level,	/* level in btree */
673 	struct xfs_buf		**bpp)	/* buffer containing the block */
674 {
675 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
676 	    (level == cur->bc_nlevels - 1)) {
677 		*bpp = NULL;
678 		return xfs_btree_get_iroot(cur);
679 	}
680 
681 	*bpp = cur->bc_bufs[level];
682 	return XFS_BUF_TO_BLOCK(*bpp);
683 }
684 
685 /*
686  * Get a buffer for the block, return it with no data read.
687  * Long-form addressing.
688  */
689 xfs_buf_t *				/* buffer for fsbno */
690 xfs_btree_get_bufl(
691 	xfs_mount_t	*mp,		/* file system mount point */
692 	xfs_trans_t	*tp,		/* transaction pointer */
693 	xfs_fsblock_t	fsbno,		/* file system block number */
694 	uint		lock)		/* lock flags for get_buf */
695 {
696 	xfs_daddr_t		d;		/* real disk block address */
697 
698 	ASSERT(fsbno != NULLFSBLOCK);
699 	d = XFS_FSB_TO_DADDR(mp, fsbno);
700 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
701 }
702 
703 /*
704  * Get a buffer for the block, return it with no data read.
705  * Short-form addressing.
706  */
707 xfs_buf_t *				/* buffer for agno/agbno */
708 xfs_btree_get_bufs(
709 	xfs_mount_t	*mp,		/* file system mount point */
710 	xfs_trans_t	*tp,		/* transaction pointer */
711 	xfs_agnumber_t	agno,		/* allocation group number */
712 	xfs_agblock_t	agbno,		/* allocation group block number */
713 	uint		lock)		/* lock flags for get_buf */
714 {
715 	xfs_daddr_t		d;		/* real disk block address */
716 
717 	ASSERT(agno != NULLAGNUMBER);
718 	ASSERT(agbno != NULLAGBLOCK);
719 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
720 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
721 }
722 
723 /*
724  * Check for the cursor referring to the last block at the given level.
725  */
726 int					/* 1=is last block, 0=not last block */
727 xfs_btree_islastblock(
728 	xfs_btree_cur_t		*cur,	/* btree cursor */
729 	int			level)	/* level to check */
730 {
731 	struct xfs_btree_block	*block;	/* generic btree block pointer */
732 	xfs_buf_t		*bp;	/* buffer containing block */
733 
734 	block = xfs_btree_get_block(cur, level, &bp);
735 	xfs_btree_check_block(cur, block, level, bp);
736 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
737 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
738 	else
739 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
740 }
741 
742 /*
743  * Change the cursor to point to the first record at the given level.
744  * Other levels are unaffected.
745  */
746 STATIC int				/* success=1, failure=0 */
747 xfs_btree_firstrec(
748 	xfs_btree_cur_t		*cur,	/* btree cursor */
749 	int			level)	/* level to change */
750 {
751 	struct xfs_btree_block	*block;	/* generic btree block pointer */
752 	xfs_buf_t		*bp;	/* buffer containing block */
753 
754 	/*
755 	 * Get the block pointer for this level.
756 	 */
757 	block = xfs_btree_get_block(cur, level, &bp);
758 	if (xfs_btree_check_block(cur, block, level, bp))
759 		return 0;
760 	/*
761 	 * It's empty, there is no such record.
762 	 */
763 	if (!block->bb_numrecs)
764 		return 0;
765 	/*
766 	 * Set the ptr value to 1, that's the first record/key.
767 	 */
768 	cur->bc_ptrs[level] = 1;
769 	return 1;
770 }
771 
772 /*
773  * Change the cursor to point to the last record in the current block
774  * at the given level.  Other levels are unaffected.
775  */
776 STATIC int				/* success=1, failure=0 */
777 xfs_btree_lastrec(
778 	xfs_btree_cur_t		*cur,	/* btree cursor */
779 	int			level)	/* level to change */
780 {
781 	struct xfs_btree_block	*block;	/* generic btree block pointer */
782 	xfs_buf_t		*bp;	/* buffer containing block */
783 
784 	/*
785 	 * Get the block pointer for this level.
786 	 */
787 	block = xfs_btree_get_block(cur, level, &bp);
788 	if (xfs_btree_check_block(cur, block, level, bp))
789 		return 0;
790 	/*
791 	 * It's empty, there is no such record.
792 	 */
793 	if (!block->bb_numrecs)
794 		return 0;
795 	/*
796 	 * Set the ptr value to numrecs, that's the last record/key.
797 	 */
798 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
799 	return 1;
800 }
801 
802 /*
803  * Compute first and last byte offsets for the fields given.
804  * Interprets the offsets table, which contains struct field offsets.
805  */
806 void
807 xfs_btree_offsets(
808 	int64_t		fields,		/* bitmask of fields */
809 	const short	*offsets,	/* table of field offsets */
810 	int		nbits,		/* number of bits to inspect */
811 	int		*first,		/* output: first byte offset */
812 	int		*last)		/* output: last byte offset */
813 {
814 	int		i;		/* current bit number */
815 	int64_t		imask;		/* mask for current bit number */
816 
817 	ASSERT(fields != 0);
818 	/*
819 	 * Find the lowest bit, so the first byte offset.
820 	 */
821 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
822 		if (imask & fields) {
823 			*first = offsets[i];
824 			break;
825 		}
826 	}
827 	/*
828 	 * Find the highest bit, so the last byte offset.
829 	 */
830 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
831 		if (imask & fields) {
832 			*last = offsets[i + 1] - 1;
833 			break;
834 		}
835 	}
836 }
837 
838 /*
839  * Get a buffer for the block, return it read in.
840  * Long-form addressing.
841  */
842 int
843 xfs_btree_read_bufl(
844 	struct xfs_mount	*mp,		/* file system mount point */
845 	struct xfs_trans	*tp,		/* transaction pointer */
846 	xfs_fsblock_t		fsbno,		/* file system block number */
847 	uint			lock,		/* lock flags for read_buf */
848 	struct xfs_buf		**bpp,		/* buffer for fsbno */
849 	int			refval,		/* ref count value for buffer */
850 	const struct xfs_buf_ops *ops)
851 {
852 	struct xfs_buf		*bp;		/* return value */
853 	xfs_daddr_t		d;		/* real disk block address */
854 	int			error;
855 
856 	if (!xfs_verify_fsbno(mp, fsbno))
857 		return -EFSCORRUPTED;
858 	d = XFS_FSB_TO_DADDR(mp, fsbno);
859 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
860 				   mp->m_bsize, lock, &bp, ops);
861 	if (error)
862 		return error;
863 	if (bp)
864 		xfs_buf_set_ref(bp, refval);
865 	*bpp = bp;
866 	return 0;
867 }
868 
869 /*
870  * Read-ahead the block, don't wait for it, don't return a buffer.
871  * Long-form addressing.
872  */
873 /* ARGSUSED */
874 void
875 xfs_btree_reada_bufl(
876 	struct xfs_mount	*mp,		/* file system mount point */
877 	xfs_fsblock_t		fsbno,		/* file system block number */
878 	xfs_extlen_t		count,		/* count of filesystem blocks */
879 	const struct xfs_buf_ops *ops)
880 {
881 	xfs_daddr_t		d;
882 
883 	ASSERT(fsbno != NULLFSBLOCK);
884 	d = XFS_FSB_TO_DADDR(mp, fsbno);
885 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
886 }
887 
888 /*
889  * Read-ahead the block, don't wait for it, don't return a buffer.
890  * Short-form addressing.
891  */
892 /* ARGSUSED */
893 void
894 xfs_btree_reada_bufs(
895 	struct xfs_mount	*mp,		/* file system mount point */
896 	xfs_agnumber_t		agno,		/* allocation group number */
897 	xfs_agblock_t		agbno,		/* allocation group block number */
898 	xfs_extlen_t		count,		/* count of filesystem blocks */
899 	const struct xfs_buf_ops *ops)
900 {
901 	xfs_daddr_t		d;
902 
903 	ASSERT(agno != NULLAGNUMBER);
904 	ASSERT(agbno != NULLAGBLOCK);
905 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
906 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
907 }
908 
909 STATIC int
910 xfs_btree_readahead_lblock(
911 	struct xfs_btree_cur	*cur,
912 	int			lr,
913 	struct xfs_btree_block	*block)
914 {
915 	int			rval = 0;
916 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
917 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
918 
919 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
920 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
921 				     cur->bc_ops->buf_ops);
922 		rval++;
923 	}
924 
925 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
926 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
927 				     cur->bc_ops->buf_ops);
928 		rval++;
929 	}
930 
931 	return rval;
932 }
933 
934 STATIC int
935 xfs_btree_readahead_sblock(
936 	struct xfs_btree_cur	*cur,
937 	int			lr,
938 	struct xfs_btree_block *block)
939 {
940 	int			rval = 0;
941 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
942 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
943 
944 
945 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
946 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
947 				     left, 1, cur->bc_ops->buf_ops);
948 		rval++;
949 	}
950 
951 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
952 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
953 				     right, 1, cur->bc_ops->buf_ops);
954 		rval++;
955 	}
956 
957 	return rval;
958 }
959 
960 /*
961  * Read-ahead btree blocks, at the given level.
962  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
963  */
964 STATIC int
965 xfs_btree_readahead(
966 	struct xfs_btree_cur	*cur,		/* btree cursor */
967 	int			lev,		/* level in btree */
968 	int			lr)		/* left/right bits */
969 {
970 	struct xfs_btree_block	*block;
971 
972 	/*
973 	 * No readahead needed if we are at the root level and the
974 	 * btree root is stored in the inode.
975 	 */
976 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
977 	    (lev == cur->bc_nlevels - 1))
978 		return 0;
979 
980 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
981 		return 0;
982 
983 	cur->bc_ra[lev] |= lr;
984 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
985 
986 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
987 		return xfs_btree_readahead_lblock(cur, lr, block);
988 	return xfs_btree_readahead_sblock(cur, lr, block);
989 }
990 
991 STATIC xfs_daddr_t
992 xfs_btree_ptr_to_daddr(
993 	struct xfs_btree_cur	*cur,
994 	union xfs_btree_ptr	*ptr)
995 {
996 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
997 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
998 
999 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000 	} else {
1001 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1003 
1004 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005 					be32_to_cpu(ptr->s));
1006 	}
1007 }
1008 
1009 /*
1010  * Readahead @count btree blocks at the given @ptr location.
1011  *
1012  * We don't need to care about long or short form btrees here as we have a
1013  * method of converting the ptr directly to a daddr available to us.
1014  */
1015 STATIC void
1016 xfs_btree_readahead_ptr(
1017 	struct xfs_btree_cur	*cur,
1018 	union xfs_btree_ptr	*ptr,
1019 	xfs_extlen_t		count)
1020 {
1021 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022 			  xfs_btree_ptr_to_daddr(cur, ptr),
1023 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1024 }
1025 
1026 /*
1027  * Set the buffer for level "lev" in the cursor to bp, releasing
1028  * any previous buffer.
1029  */
1030 STATIC void
1031 xfs_btree_setbuf(
1032 	xfs_btree_cur_t		*cur,	/* btree cursor */
1033 	int			lev,	/* level in btree */
1034 	xfs_buf_t		*bp)	/* new buffer to set */
1035 {
1036 	struct xfs_btree_block	*b;	/* btree block */
1037 
1038 	if (cur->bc_bufs[lev])
1039 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1040 	cur->bc_bufs[lev] = bp;
1041 	cur->bc_ra[lev] = 0;
1042 
1043 	b = XFS_BUF_TO_BLOCK(bp);
1044 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1045 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1046 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1047 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1048 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049 	} else {
1050 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1051 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1052 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1053 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1054 	}
1055 }
1056 
1057 bool
1058 xfs_btree_ptr_is_null(
1059 	struct xfs_btree_cur	*cur,
1060 	union xfs_btree_ptr	*ptr)
1061 {
1062 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1063 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1064 	else
1065 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1066 }
1067 
1068 STATIC void
1069 xfs_btree_set_ptr_null(
1070 	struct xfs_btree_cur	*cur,
1071 	union xfs_btree_ptr	*ptr)
1072 {
1073 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1074 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1075 	else
1076 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1077 }
1078 
1079 /*
1080  * Get/set/init sibling pointers
1081  */
1082 void
1083 xfs_btree_get_sibling(
1084 	struct xfs_btree_cur	*cur,
1085 	struct xfs_btree_block	*block,
1086 	union xfs_btree_ptr	*ptr,
1087 	int			lr)
1088 {
1089 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1090 
1091 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092 		if (lr == XFS_BB_RIGHTSIB)
1093 			ptr->l = block->bb_u.l.bb_rightsib;
1094 		else
1095 			ptr->l = block->bb_u.l.bb_leftsib;
1096 	} else {
1097 		if (lr == XFS_BB_RIGHTSIB)
1098 			ptr->s = block->bb_u.s.bb_rightsib;
1099 		else
1100 			ptr->s = block->bb_u.s.bb_leftsib;
1101 	}
1102 }
1103 
1104 STATIC void
1105 xfs_btree_set_sibling(
1106 	struct xfs_btree_cur	*cur,
1107 	struct xfs_btree_block	*block,
1108 	union xfs_btree_ptr	*ptr,
1109 	int			lr)
1110 {
1111 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1112 
1113 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114 		if (lr == XFS_BB_RIGHTSIB)
1115 			block->bb_u.l.bb_rightsib = ptr->l;
1116 		else
1117 			block->bb_u.l.bb_leftsib = ptr->l;
1118 	} else {
1119 		if (lr == XFS_BB_RIGHTSIB)
1120 			block->bb_u.s.bb_rightsib = ptr->s;
1121 		else
1122 			block->bb_u.s.bb_leftsib = ptr->s;
1123 	}
1124 }
1125 
1126 void
1127 xfs_btree_init_block_int(
1128 	struct xfs_mount	*mp,
1129 	struct xfs_btree_block	*buf,
1130 	xfs_daddr_t		blkno,
1131 	xfs_btnum_t		btnum,
1132 	__u16			level,
1133 	__u16			numrecs,
1134 	__u64			owner,
1135 	unsigned int		flags)
1136 {
1137 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1138 	__u32			magic = xfs_btree_magic(crc, btnum);
1139 
1140 	buf->bb_magic = cpu_to_be32(magic);
1141 	buf->bb_level = cpu_to_be16(level);
1142 	buf->bb_numrecs = cpu_to_be16(numrecs);
1143 
1144 	if (flags & XFS_BTREE_LONG_PTRS) {
1145 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1147 		if (crc) {
1148 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1150 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1151 			buf->bb_u.l.bb_pad = 0;
1152 			buf->bb_u.l.bb_lsn = 0;
1153 		}
1154 	} else {
1155 		/* owner is a 32 bit value on short blocks */
1156 		__u32 __owner = (__u32)owner;
1157 
1158 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1160 		if (crc) {
1161 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1163 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1164 			buf->bb_u.s.bb_lsn = 0;
1165 		}
1166 	}
1167 }
1168 
1169 void
1170 xfs_btree_init_block(
1171 	struct xfs_mount *mp,
1172 	struct xfs_buf	*bp,
1173 	xfs_btnum_t	btnum,
1174 	__u16		level,
1175 	__u16		numrecs,
1176 	__u64		owner,
1177 	unsigned int	flags)
1178 {
1179 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1180 				 btnum, level, numrecs, owner, flags);
1181 }
1182 
1183 STATIC void
1184 xfs_btree_init_block_cur(
1185 	struct xfs_btree_cur	*cur,
1186 	struct xfs_buf		*bp,
1187 	int			level,
1188 	int			numrecs)
1189 {
1190 	__u64			owner;
1191 
1192 	/*
1193 	 * we can pull the owner from the cursor right now as the different
1194 	 * owners align directly with the pointer size of the btree. This may
1195 	 * change in future, but is safe for current users of the generic btree
1196 	 * code.
1197 	 */
1198 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199 		owner = cur->bc_private.b.ip->i_ino;
1200 	else
1201 		owner = cur->bc_private.a.agno;
1202 
1203 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1204 				 cur->bc_btnum, level, numrecs,
1205 				 owner, cur->bc_flags);
1206 }
1207 
1208 /*
1209  * Return true if ptr is the last record in the btree and
1210  * we need to track updates to this record.  The decision
1211  * will be further refined in the update_lastrec method.
1212  */
1213 STATIC int
1214 xfs_btree_is_lastrec(
1215 	struct xfs_btree_cur	*cur,
1216 	struct xfs_btree_block	*block,
1217 	int			level)
1218 {
1219 	union xfs_btree_ptr	ptr;
1220 
1221 	if (level > 0)
1222 		return 0;
1223 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224 		return 0;
1225 
1226 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1228 		return 0;
1229 	return 1;
1230 }
1231 
1232 STATIC void
1233 xfs_btree_buf_to_ptr(
1234 	struct xfs_btree_cur	*cur,
1235 	struct xfs_buf		*bp,
1236 	union xfs_btree_ptr	*ptr)
1237 {
1238 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240 					XFS_BUF_ADDR(bp)));
1241 	else {
1242 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1243 					XFS_BUF_ADDR(bp)));
1244 	}
1245 }
1246 
1247 STATIC void
1248 xfs_btree_set_refs(
1249 	struct xfs_btree_cur	*cur,
1250 	struct xfs_buf		*bp)
1251 {
1252 	switch (cur->bc_btnum) {
1253 	case XFS_BTNUM_BNO:
1254 	case XFS_BTNUM_CNT:
1255 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1256 		break;
1257 	case XFS_BTNUM_INO:
1258 	case XFS_BTNUM_FINO:
1259 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1260 		break;
1261 	case XFS_BTNUM_BMAP:
1262 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1263 		break;
1264 	case XFS_BTNUM_RMAP:
1265 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266 		break;
1267 	case XFS_BTNUM_REFC:
1268 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269 		break;
1270 	default:
1271 		ASSERT(0);
1272 	}
1273 }
1274 
1275 STATIC int
1276 xfs_btree_get_buf_block(
1277 	struct xfs_btree_cur	*cur,
1278 	union xfs_btree_ptr	*ptr,
1279 	int			flags,
1280 	struct xfs_btree_block	**block,
1281 	struct xfs_buf		**bpp)
1282 {
1283 	struct xfs_mount	*mp = cur->bc_mp;
1284 	xfs_daddr_t		d;
1285 
1286 	/* need to sort out how callers deal with failures first */
1287 	ASSERT(!(flags & XBF_TRYLOCK));
1288 
1289 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1290 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291 				 mp->m_bsize, flags);
1292 
1293 	if (!*bpp)
1294 		return -ENOMEM;
1295 
1296 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1297 	*block = XFS_BUF_TO_BLOCK(*bpp);
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Read in the buffer at the given ptr and return the buffer and
1303  * the block pointer within the buffer.
1304  */
1305 STATIC int
1306 xfs_btree_read_buf_block(
1307 	struct xfs_btree_cur	*cur,
1308 	union xfs_btree_ptr	*ptr,
1309 	int			flags,
1310 	struct xfs_btree_block	**block,
1311 	struct xfs_buf		**bpp)
1312 {
1313 	struct xfs_mount	*mp = cur->bc_mp;
1314 	xfs_daddr_t		d;
1315 	int			error;
1316 
1317 	/* need to sort out how callers deal with failures first */
1318 	ASSERT(!(flags & XBF_TRYLOCK));
1319 
1320 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1321 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1322 				   mp->m_bsize, flags, bpp,
1323 				   cur->bc_ops->buf_ops);
1324 	if (error)
1325 		return error;
1326 
1327 	xfs_btree_set_refs(cur, *bpp);
1328 	*block = XFS_BUF_TO_BLOCK(*bpp);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Copy keys from one btree block to another.
1334  */
1335 STATIC void
1336 xfs_btree_copy_keys(
1337 	struct xfs_btree_cur	*cur,
1338 	union xfs_btree_key	*dst_key,
1339 	union xfs_btree_key	*src_key,
1340 	int			numkeys)
1341 {
1342 	ASSERT(numkeys >= 0);
1343 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1344 }
1345 
1346 /*
1347  * Copy records from one btree block to another.
1348  */
1349 STATIC void
1350 xfs_btree_copy_recs(
1351 	struct xfs_btree_cur	*cur,
1352 	union xfs_btree_rec	*dst_rec,
1353 	union xfs_btree_rec	*src_rec,
1354 	int			numrecs)
1355 {
1356 	ASSERT(numrecs >= 0);
1357 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1358 }
1359 
1360 /*
1361  * Copy block pointers from one btree block to another.
1362  */
1363 STATIC void
1364 xfs_btree_copy_ptrs(
1365 	struct xfs_btree_cur	*cur,
1366 	union xfs_btree_ptr	*dst_ptr,
1367 	union xfs_btree_ptr	*src_ptr,
1368 	int			numptrs)
1369 {
1370 	ASSERT(numptrs >= 0);
1371 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1372 }
1373 
1374 /*
1375  * Shift keys one index left/right inside a single btree block.
1376  */
1377 STATIC void
1378 xfs_btree_shift_keys(
1379 	struct xfs_btree_cur	*cur,
1380 	union xfs_btree_key	*key,
1381 	int			dir,
1382 	int			numkeys)
1383 {
1384 	char			*dst_key;
1385 
1386 	ASSERT(numkeys >= 0);
1387 	ASSERT(dir == 1 || dir == -1);
1388 
1389 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1391 }
1392 
1393 /*
1394  * Shift records one index left/right inside a single btree block.
1395  */
1396 STATIC void
1397 xfs_btree_shift_recs(
1398 	struct xfs_btree_cur	*cur,
1399 	union xfs_btree_rec	*rec,
1400 	int			dir,
1401 	int			numrecs)
1402 {
1403 	char			*dst_rec;
1404 
1405 	ASSERT(numrecs >= 0);
1406 	ASSERT(dir == 1 || dir == -1);
1407 
1408 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1410 }
1411 
1412 /*
1413  * Shift block pointers one index left/right inside a single btree block.
1414  */
1415 STATIC void
1416 xfs_btree_shift_ptrs(
1417 	struct xfs_btree_cur	*cur,
1418 	union xfs_btree_ptr	*ptr,
1419 	int			dir,
1420 	int			numptrs)
1421 {
1422 	char			*dst_ptr;
1423 
1424 	ASSERT(numptrs >= 0);
1425 	ASSERT(dir == 1 || dir == -1);
1426 
1427 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1429 }
1430 
1431 /*
1432  * Log key values from the btree block.
1433  */
1434 STATIC void
1435 xfs_btree_log_keys(
1436 	struct xfs_btree_cur	*cur,
1437 	struct xfs_buf		*bp,
1438 	int			first,
1439 	int			last)
1440 {
1441 
1442 	if (bp) {
1443 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1444 		xfs_trans_log_buf(cur->bc_tp, bp,
1445 				  xfs_btree_key_offset(cur, first),
1446 				  xfs_btree_key_offset(cur, last + 1) - 1);
1447 	} else {
1448 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1449 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1450 	}
1451 }
1452 
1453 /*
1454  * Log record values from the btree block.
1455  */
1456 void
1457 xfs_btree_log_recs(
1458 	struct xfs_btree_cur	*cur,
1459 	struct xfs_buf		*bp,
1460 	int			first,
1461 	int			last)
1462 {
1463 
1464 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1465 	xfs_trans_log_buf(cur->bc_tp, bp,
1466 			  xfs_btree_rec_offset(cur, first),
1467 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1468 
1469 }
1470 
1471 /*
1472  * Log block pointer fields from a btree block (nonleaf).
1473  */
1474 STATIC void
1475 xfs_btree_log_ptrs(
1476 	struct xfs_btree_cur	*cur,	/* btree cursor */
1477 	struct xfs_buf		*bp,	/* buffer containing btree block */
1478 	int			first,	/* index of first pointer to log */
1479 	int			last)	/* index of last pointer to log */
1480 {
1481 
1482 	if (bp) {
1483 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1484 		int			level = xfs_btree_get_level(block);
1485 
1486 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1487 		xfs_trans_log_buf(cur->bc_tp, bp,
1488 				xfs_btree_ptr_offset(cur, first, level),
1489 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1490 	} else {
1491 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1492 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1493 	}
1494 
1495 }
1496 
1497 /*
1498  * Log fields from a btree block header.
1499  */
1500 void
1501 xfs_btree_log_block(
1502 	struct xfs_btree_cur	*cur,	/* btree cursor */
1503 	struct xfs_buf		*bp,	/* buffer containing btree block */
1504 	int			fields)	/* mask of fields: XFS_BB_... */
1505 {
1506 	int			first;	/* first byte offset logged */
1507 	int			last;	/* last byte offset logged */
1508 	static const short	soffsets[] = {	/* table of offsets (short) */
1509 		offsetof(struct xfs_btree_block, bb_magic),
1510 		offsetof(struct xfs_btree_block, bb_level),
1511 		offsetof(struct xfs_btree_block, bb_numrecs),
1512 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1513 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1514 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1515 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1516 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1517 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1518 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1519 		XFS_BTREE_SBLOCK_CRC_LEN
1520 	};
1521 	static const short	loffsets[] = {	/* table of offsets (long) */
1522 		offsetof(struct xfs_btree_block, bb_magic),
1523 		offsetof(struct xfs_btree_block, bb_level),
1524 		offsetof(struct xfs_btree_block, bb_numrecs),
1525 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1526 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1527 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1528 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1529 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1530 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1531 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1532 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1533 		XFS_BTREE_LBLOCK_CRC_LEN
1534 	};
1535 
1536 	if (bp) {
1537 		int nbits;
1538 
1539 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1540 			/*
1541 			 * We don't log the CRC when updating a btree
1542 			 * block but instead recreate it during log
1543 			 * recovery.  As the log buffers have checksums
1544 			 * of their own this is safe and avoids logging a crc
1545 			 * update in a lot of places.
1546 			 */
1547 			if (fields == XFS_BB_ALL_BITS)
1548 				fields = XFS_BB_ALL_BITS_CRC;
1549 			nbits = XFS_BB_NUM_BITS_CRC;
1550 		} else {
1551 			nbits = XFS_BB_NUM_BITS;
1552 		}
1553 		xfs_btree_offsets(fields,
1554 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1555 					loffsets : soffsets,
1556 				  nbits, &first, &last);
1557 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1558 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1559 	} else {
1560 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1561 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1562 	}
1563 }
1564 
1565 /*
1566  * Increment cursor by one record at the level.
1567  * For nonzero levels the leaf-ward information is untouched.
1568  */
1569 int						/* error */
1570 xfs_btree_increment(
1571 	struct xfs_btree_cur	*cur,
1572 	int			level,
1573 	int			*stat)		/* success/failure */
1574 {
1575 	struct xfs_btree_block	*block;
1576 	union xfs_btree_ptr	ptr;
1577 	struct xfs_buf		*bp;
1578 	int			error;		/* error return value */
1579 	int			lev;
1580 
1581 	ASSERT(level < cur->bc_nlevels);
1582 
1583 	/* Read-ahead to the right at this level. */
1584 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1585 
1586 	/* Get a pointer to the btree block. */
1587 	block = xfs_btree_get_block(cur, level, &bp);
1588 
1589 #ifdef DEBUG
1590 	error = xfs_btree_check_block(cur, block, level, bp);
1591 	if (error)
1592 		goto error0;
1593 #endif
1594 
1595 	/* We're done if we remain in the block after the increment. */
1596 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1597 		goto out1;
1598 
1599 	/* Fail if we just went off the right edge of the tree. */
1600 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1601 	if (xfs_btree_ptr_is_null(cur, &ptr))
1602 		goto out0;
1603 
1604 	XFS_BTREE_STATS_INC(cur, increment);
1605 
1606 	/*
1607 	 * March up the tree incrementing pointers.
1608 	 * Stop when we don't go off the right edge of a block.
1609 	 */
1610 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1611 		block = xfs_btree_get_block(cur, lev, &bp);
1612 
1613 #ifdef DEBUG
1614 		error = xfs_btree_check_block(cur, block, lev, bp);
1615 		if (error)
1616 			goto error0;
1617 #endif
1618 
1619 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1620 			break;
1621 
1622 		/* Read-ahead the right block for the next loop. */
1623 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1624 	}
1625 
1626 	/*
1627 	 * If we went off the root then we are either seriously
1628 	 * confused or have the tree root in an inode.
1629 	 */
1630 	if (lev == cur->bc_nlevels) {
1631 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1632 			goto out0;
1633 		ASSERT(0);
1634 		error = -EFSCORRUPTED;
1635 		goto error0;
1636 	}
1637 	ASSERT(lev < cur->bc_nlevels);
1638 
1639 	/*
1640 	 * Now walk back down the tree, fixing up the cursor's buffer
1641 	 * pointers and key numbers.
1642 	 */
1643 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1644 		union xfs_btree_ptr	*ptrp;
1645 
1646 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1647 		--lev;
1648 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1649 		if (error)
1650 			goto error0;
1651 
1652 		xfs_btree_setbuf(cur, lev, bp);
1653 		cur->bc_ptrs[lev] = 1;
1654 	}
1655 out1:
1656 	*stat = 1;
1657 	return 0;
1658 
1659 out0:
1660 	*stat = 0;
1661 	return 0;
1662 
1663 error0:
1664 	return error;
1665 }
1666 
1667 /*
1668  * Decrement cursor by one record at the level.
1669  * For nonzero levels the leaf-ward information is untouched.
1670  */
1671 int						/* error */
1672 xfs_btree_decrement(
1673 	struct xfs_btree_cur	*cur,
1674 	int			level,
1675 	int			*stat)		/* success/failure */
1676 {
1677 	struct xfs_btree_block	*block;
1678 	xfs_buf_t		*bp;
1679 	int			error;		/* error return value */
1680 	int			lev;
1681 	union xfs_btree_ptr	ptr;
1682 
1683 	ASSERT(level < cur->bc_nlevels);
1684 
1685 	/* Read-ahead to the left at this level. */
1686 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1687 
1688 	/* We're done if we remain in the block after the decrement. */
1689 	if (--cur->bc_ptrs[level] > 0)
1690 		goto out1;
1691 
1692 	/* Get a pointer to the btree block. */
1693 	block = xfs_btree_get_block(cur, level, &bp);
1694 
1695 #ifdef DEBUG
1696 	error = xfs_btree_check_block(cur, block, level, bp);
1697 	if (error)
1698 		goto error0;
1699 #endif
1700 
1701 	/* Fail if we just went off the left edge of the tree. */
1702 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1703 	if (xfs_btree_ptr_is_null(cur, &ptr))
1704 		goto out0;
1705 
1706 	XFS_BTREE_STATS_INC(cur, decrement);
1707 
1708 	/*
1709 	 * March up the tree decrementing pointers.
1710 	 * Stop when we don't go off the left edge of a block.
1711 	 */
1712 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1713 		if (--cur->bc_ptrs[lev] > 0)
1714 			break;
1715 		/* Read-ahead the left block for the next loop. */
1716 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1717 	}
1718 
1719 	/*
1720 	 * If we went off the root then we are seriously confused.
1721 	 * or the root of the tree is in an inode.
1722 	 */
1723 	if (lev == cur->bc_nlevels) {
1724 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1725 			goto out0;
1726 		ASSERT(0);
1727 		error = -EFSCORRUPTED;
1728 		goto error0;
1729 	}
1730 	ASSERT(lev < cur->bc_nlevels);
1731 
1732 	/*
1733 	 * Now walk back down the tree, fixing up the cursor's buffer
1734 	 * pointers and key numbers.
1735 	 */
1736 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1737 		union xfs_btree_ptr	*ptrp;
1738 
1739 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1740 		--lev;
1741 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1742 		if (error)
1743 			goto error0;
1744 		xfs_btree_setbuf(cur, lev, bp);
1745 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1746 	}
1747 out1:
1748 	*stat = 1;
1749 	return 0;
1750 
1751 out0:
1752 	*stat = 0;
1753 	return 0;
1754 
1755 error0:
1756 	return error;
1757 }
1758 
1759 int
1760 xfs_btree_lookup_get_block(
1761 	struct xfs_btree_cur	*cur,	/* btree cursor */
1762 	int			level,	/* level in the btree */
1763 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1764 	struct xfs_btree_block	**blkp) /* return btree block */
1765 {
1766 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1767 	int			error = 0;
1768 
1769 	/* special case the root block if in an inode */
1770 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1771 	    (level == cur->bc_nlevels - 1)) {
1772 		*blkp = xfs_btree_get_iroot(cur);
1773 		return 0;
1774 	}
1775 
1776 	/*
1777 	 * If the old buffer at this level for the disk address we are
1778 	 * looking for re-use it.
1779 	 *
1780 	 * Otherwise throw it away and get a new one.
1781 	 */
1782 	bp = cur->bc_bufs[level];
1783 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1784 		*blkp = XFS_BUF_TO_BLOCK(bp);
1785 		return 0;
1786 	}
1787 
1788 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1789 	if (error)
1790 		return error;
1791 
1792 	/* Check the inode owner since the verifiers don't. */
1793 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1794 	    !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1795 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1796 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1797 			cur->bc_private.b.ip->i_ino)
1798 		goto out_bad;
1799 
1800 	/* Did we get the level we were looking for? */
1801 	if (be16_to_cpu((*blkp)->bb_level) != level)
1802 		goto out_bad;
1803 
1804 	/* Check that internal nodes have at least one record. */
1805 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1806 		goto out_bad;
1807 
1808 	xfs_btree_setbuf(cur, level, bp);
1809 	return 0;
1810 
1811 out_bad:
1812 	*blkp = NULL;
1813 	xfs_trans_brelse(cur->bc_tp, bp);
1814 	return -EFSCORRUPTED;
1815 }
1816 
1817 /*
1818  * Get current search key.  For level 0 we don't actually have a key
1819  * structure so we make one up from the record.  For all other levels
1820  * we just return the right key.
1821  */
1822 STATIC union xfs_btree_key *
1823 xfs_lookup_get_search_key(
1824 	struct xfs_btree_cur	*cur,
1825 	int			level,
1826 	int			keyno,
1827 	struct xfs_btree_block	*block,
1828 	union xfs_btree_key	*kp)
1829 {
1830 	if (level == 0) {
1831 		cur->bc_ops->init_key_from_rec(kp,
1832 				xfs_btree_rec_addr(cur, keyno, block));
1833 		return kp;
1834 	}
1835 
1836 	return xfs_btree_key_addr(cur, keyno, block);
1837 }
1838 
1839 /*
1840  * Lookup the record.  The cursor is made to point to it, based on dir.
1841  * stat is set to 0 if can't find any such record, 1 for success.
1842  */
1843 int					/* error */
1844 xfs_btree_lookup(
1845 	struct xfs_btree_cur	*cur,	/* btree cursor */
1846 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1847 	int			*stat)	/* success/failure */
1848 {
1849 	struct xfs_btree_block	*block;	/* current btree block */
1850 	int64_t			diff;	/* difference for the current key */
1851 	int			error;	/* error return value */
1852 	int			keyno;	/* current key number */
1853 	int			level;	/* level in the btree */
1854 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1855 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1856 
1857 	XFS_BTREE_STATS_INC(cur, lookup);
1858 
1859 	/* No such thing as a zero-level tree. */
1860 	if (cur->bc_nlevels == 0)
1861 		return -EFSCORRUPTED;
1862 
1863 	block = NULL;
1864 	keyno = 0;
1865 
1866 	/* initialise start pointer from cursor */
1867 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1868 	pp = &ptr;
1869 
1870 	/*
1871 	 * Iterate over each level in the btree, starting at the root.
1872 	 * For each level above the leaves, find the key we need, based
1873 	 * on the lookup record, then follow the corresponding block
1874 	 * pointer down to the next level.
1875 	 */
1876 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1877 		/* Get the block we need to do the lookup on. */
1878 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1879 		if (error)
1880 			goto error0;
1881 
1882 		if (diff == 0) {
1883 			/*
1884 			 * If we already had a key match at a higher level, we
1885 			 * know we need to use the first entry in this block.
1886 			 */
1887 			keyno = 1;
1888 		} else {
1889 			/* Otherwise search this block. Do a binary search. */
1890 
1891 			int	high;	/* high entry number */
1892 			int	low;	/* low entry number */
1893 
1894 			/* Set low and high entry numbers, 1-based. */
1895 			low = 1;
1896 			high = xfs_btree_get_numrecs(block);
1897 			if (!high) {
1898 				/* Block is empty, must be an empty leaf. */
1899 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1900 
1901 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1902 				*stat = 0;
1903 				return 0;
1904 			}
1905 
1906 			/* Binary search the block. */
1907 			while (low <= high) {
1908 				union xfs_btree_key	key;
1909 				union xfs_btree_key	*kp;
1910 
1911 				XFS_BTREE_STATS_INC(cur, compare);
1912 
1913 				/* keyno is average of low and high. */
1914 				keyno = (low + high) >> 1;
1915 
1916 				/* Get current search key */
1917 				kp = xfs_lookup_get_search_key(cur, level,
1918 						keyno, block, &key);
1919 
1920 				/*
1921 				 * Compute difference to get next direction:
1922 				 *  - less than, move right
1923 				 *  - greater than, move left
1924 				 *  - equal, we're done
1925 				 */
1926 				diff = cur->bc_ops->key_diff(cur, kp);
1927 				if (diff < 0)
1928 					low = keyno + 1;
1929 				else if (diff > 0)
1930 					high = keyno - 1;
1931 				else
1932 					break;
1933 			}
1934 		}
1935 
1936 		/*
1937 		 * If there are more levels, set up for the next level
1938 		 * by getting the block number and filling in the cursor.
1939 		 */
1940 		if (level > 0) {
1941 			/*
1942 			 * If we moved left, need the previous key number,
1943 			 * unless there isn't one.
1944 			 */
1945 			if (diff > 0 && --keyno < 1)
1946 				keyno = 1;
1947 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1948 
1949 #ifdef DEBUG
1950 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1951 			if (error)
1952 				goto error0;
1953 #endif
1954 			cur->bc_ptrs[level] = keyno;
1955 		}
1956 	}
1957 
1958 	/* Done with the search. See if we need to adjust the results. */
1959 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1960 		keyno++;
1961 		/*
1962 		 * If ge search and we went off the end of the block, but it's
1963 		 * not the last block, we're in the wrong block.
1964 		 */
1965 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1966 		if (dir == XFS_LOOKUP_GE &&
1967 		    keyno > xfs_btree_get_numrecs(block) &&
1968 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1969 			int	i;
1970 
1971 			cur->bc_ptrs[0] = keyno;
1972 			error = xfs_btree_increment(cur, 0, &i);
1973 			if (error)
1974 				goto error0;
1975 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1976 			*stat = 1;
1977 			return 0;
1978 		}
1979 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1980 		keyno--;
1981 	cur->bc_ptrs[0] = keyno;
1982 
1983 	/* Return if we succeeded or not. */
1984 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1985 		*stat = 0;
1986 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1987 		*stat = 1;
1988 	else
1989 		*stat = 0;
1990 	return 0;
1991 
1992 error0:
1993 	return error;
1994 }
1995 
1996 /* Find the high key storage area from a regular key. */
1997 union xfs_btree_key *
1998 xfs_btree_high_key_from_key(
1999 	struct xfs_btree_cur	*cur,
2000 	union xfs_btree_key	*key)
2001 {
2002 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2003 	return (union xfs_btree_key *)((char *)key +
2004 			(cur->bc_ops->key_len / 2));
2005 }
2006 
2007 /* Determine the low (and high if overlapped) keys of a leaf block */
2008 STATIC void
2009 xfs_btree_get_leaf_keys(
2010 	struct xfs_btree_cur	*cur,
2011 	struct xfs_btree_block	*block,
2012 	union xfs_btree_key	*key)
2013 {
2014 	union xfs_btree_key	max_hkey;
2015 	union xfs_btree_key	hkey;
2016 	union xfs_btree_rec	*rec;
2017 	union xfs_btree_key	*high;
2018 	int			n;
2019 
2020 	rec = xfs_btree_rec_addr(cur, 1, block);
2021 	cur->bc_ops->init_key_from_rec(key, rec);
2022 
2023 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024 
2025 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2026 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2027 			rec = xfs_btree_rec_addr(cur, n, block);
2028 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2029 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2030 					> 0)
2031 				max_hkey = hkey;
2032 		}
2033 
2034 		high = xfs_btree_high_key_from_key(cur, key);
2035 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2036 	}
2037 }
2038 
2039 /* Determine the low (and high if overlapped) keys of a node block */
2040 STATIC void
2041 xfs_btree_get_node_keys(
2042 	struct xfs_btree_cur	*cur,
2043 	struct xfs_btree_block	*block,
2044 	union xfs_btree_key	*key)
2045 {
2046 	union xfs_btree_key	*hkey;
2047 	union xfs_btree_key	*max_hkey;
2048 	union xfs_btree_key	*high;
2049 	int			n;
2050 
2051 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2052 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2053 				cur->bc_ops->key_len / 2);
2054 
2055 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2056 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2057 			hkey = xfs_btree_high_key_addr(cur, n, block);
2058 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2059 				max_hkey = hkey;
2060 		}
2061 
2062 		high = xfs_btree_high_key_from_key(cur, key);
2063 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2064 	} else {
2065 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2066 				cur->bc_ops->key_len);
2067 	}
2068 }
2069 
2070 /* Derive the keys for any btree block. */
2071 void
2072 xfs_btree_get_keys(
2073 	struct xfs_btree_cur	*cur,
2074 	struct xfs_btree_block	*block,
2075 	union xfs_btree_key	*key)
2076 {
2077 	if (be16_to_cpu(block->bb_level) == 0)
2078 		xfs_btree_get_leaf_keys(cur, block, key);
2079 	else
2080 		xfs_btree_get_node_keys(cur, block, key);
2081 }
2082 
2083 /*
2084  * Decide if we need to update the parent keys of a btree block.  For
2085  * a standard btree this is only necessary if we're updating the first
2086  * record/key.  For an overlapping btree, we must always update the
2087  * keys because the highest key can be in any of the records or keys
2088  * in the block.
2089  */
2090 static inline bool
2091 xfs_btree_needs_key_update(
2092 	struct xfs_btree_cur	*cur,
2093 	int			ptr)
2094 {
2095 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2096 }
2097 
2098 /*
2099  * Update the low and high parent keys of the given level, progressing
2100  * towards the root.  If force_all is false, stop if the keys for a given
2101  * level do not need updating.
2102  */
2103 STATIC int
2104 __xfs_btree_updkeys(
2105 	struct xfs_btree_cur	*cur,
2106 	int			level,
2107 	struct xfs_btree_block	*block,
2108 	struct xfs_buf		*bp0,
2109 	bool			force_all)
2110 {
2111 	union xfs_btree_key	key;	/* keys from current level */
2112 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2113 	union xfs_btree_key	*hkey;
2114 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2115 	union xfs_btree_key	*nhkey;
2116 	struct xfs_buf		*bp;
2117 	int			ptr;
2118 
2119 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2120 
2121 	/* Exit if there aren't any parent levels to update. */
2122 	if (level + 1 >= cur->bc_nlevels)
2123 		return 0;
2124 
2125 	trace_xfs_btree_updkeys(cur, level, bp0);
2126 
2127 	lkey = &key;
2128 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2129 	xfs_btree_get_keys(cur, block, lkey);
2130 	for (level++; level < cur->bc_nlevels; level++) {
2131 #ifdef DEBUG
2132 		int		error;
2133 #endif
2134 		block = xfs_btree_get_block(cur, level, &bp);
2135 		trace_xfs_btree_updkeys(cur, level, bp);
2136 #ifdef DEBUG
2137 		error = xfs_btree_check_block(cur, block, level, bp);
2138 		if (error)
2139 			return error;
2140 #endif
2141 		ptr = cur->bc_ptrs[level];
2142 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2143 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2144 		if (!force_all &&
2145 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2146 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2147 			break;
2148 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2149 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2150 		if (level + 1 >= cur->bc_nlevels)
2151 			break;
2152 		xfs_btree_get_node_keys(cur, block, lkey);
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 /* Update all the keys from some level in cursor back to the root. */
2159 STATIC int
2160 xfs_btree_updkeys_force(
2161 	struct xfs_btree_cur	*cur,
2162 	int			level)
2163 {
2164 	struct xfs_buf		*bp;
2165 	struct xfs_btree_block	*block;
2166 
2167 	block = xfs_btree_get_block(cur, level, &bp);
2168 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2169 }
2170 
2171 /*
2172  * Update the parent keys of the given level, progressing towards the root.
2173  */
2174 STATIC int
2175 xfs_btree_update_keys(
2176 	struct xfs_btree_cur	*cur,
2177 	int			level)
2178 {
2179 	struct xfs_btree_block	*block;
2180 	struct xfs_buf		*bp;
2181 	union xfs_btree_key	*kp;
2182 	union xfs_btree_key	key;
2183 	int			ptr;
2184 
2185 	ASSERT(level >= 0);
2186 
2187 	block = xfs_btree_get_block(cur, level, &bp);
2188 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2189 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2190 
2191 	/*
2192 	 * Go up the tree from this level toward the root.
2193 	 * At each level, update the key value to the value input.
2194 	 * Stop when we reach a level where the cursor isn't pointing
2195 	 * at the first entry in the block.
2196 	 */
2197 	xfs_btree_get_keys(cur, block, &key);
2198 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2199 #ifdef DEBUG
2200 		int		error;
2201 #endif
2202 		block = xfs_btree_get_block(cur, level, &bp);
2203 #ifdef DEBUG
2204 		error = xfs_btree_check_block(cur, block, level, bp);
2205 		if (error)
2206 			return error;
2207 #endif
2208 		ptr = cur->bc_ptrs[level];
2209 		kp = xfs_btree_key_addr(cur, ptr, block);
2210 		xfs_btree_copy_keys(cur, kp, &key, 1);
2211 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /*
2218  * Update the record referred to by cur to the value in the
2219  * given record. This either works (return 0) or gets an
2220  * EFSCORRUPTED error.
2221  */
2222 int
2223 xfs_btree_update(
2224 	struct xfs_btree_cur	*cur,
2225 	union xfs_btree_rec	*rec)
2226 {
2227 	struct xfs_btree_block	*block;
2228 	struct xfs_buf		*bp;
2229 	int			error;
2230 	int			ptr;
2231 	union xfs_btree_rec	*rp;
2232 
2233 	/* Pick up the current block. */
2234 	block = xfs_btree_get_block(cur, 0, &bp);
2235 
2236 #ifdef DEBUG
2237 	error = xfs_btree_check_block(cur, block, 0, bp);
2238 	if (error)
2239 		goto error0;
2240 #endif
2241 	/* Get the address of the rec to be updated. */
2242 	ptr = cur->bc_ptrs[0];
2243 	rp = xfs_btree_rec_addr(cur, ptr, block);
2244 
2245 	/* Fill in the new contents and log them. */
2246 	xfs_btree_copy_recs(cur, rp, rec, 1);
2247 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2248 
2249 	/*
2250 	 * If we are tracking the last record in the tree and
2251 	 * we are at the far right edge of the tree, update it.
2252 	 */
2253 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2254 		cur->bc_ops->update_lastrec(cur, block, rec,
2255 					    ptr, LASTREC_UPDATE);
2256 	}
2257 
2258 	/* Pass new key value up to our parent. */
2259 	if (xfs_btree_needs_key_update(cur, ptr)) {
2260 		error = xfs_btree_update_keys(cur, 0);
2261 		if (error)
2262 			goto error0;
2263 	}
2264 
2265 	return 0;
2266 
2267 error0:
2268 	return error;
2269 }
2270 
2271 /*
2272  * Move 1 record left from cur/level if possible.
2273  * Update cur to reflect the new path.
2274  */
2275 STATIC int					/* error */
2276 xfs_btree_lshift(
2277 	struct xfs_btree_cur	*cur,
2278 	int			level,
2279 	int			*stat)		/* success/failure */
2280 {
2281 	struct xfs_buf		*lbp;		/* left buffer pointer */
2282 	struct xfs_btree_block	*left;		/* left btree block */
2283 	int			lrecs;		/* left record count */
2284 	struct xfs_buf		*rbp;		/* right buffer pointer */
2285 	struct xfs_btree_block	*right;		/* right btree block */
2286 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2287 	int			rrecs;		/* right record count */
2288 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2289 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2290 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2291 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2292 	int			error;		/* error return value */
2293 	int			i;
2294 
2295 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2296 	    level == cur->bc_nlevels - 1)
2297 		goto out0;
2298 
2299 	/* Set up variables for this block as "right". */
2300 	right = xfs_btree_get_block(cur, level, &rbp);
2301 
2302 #ifdef DEBUG
2303 	error = xfs_btree_check_block(cur, right, level, rbp);
2304 	if (error)
2305 		goto error0;
2306 #endif
2307 
2308 	/* If we've got no left sibling then we can't shift an entry left. */
2309 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2310 	if (xfs_btree_ptr_is_null(cur, &lptr))
2311 		goto out0;
2312 
2313 	/*
2314 	 * If the cursor entry is the one that would be moved, don't
2315 	 * do it... it's too complicated.
2316 	 */
2317 	if (cur->bc_ptrs[level] <= 1)
2318 		goto out0;
2319 
2320 	/* Set up the left neighbor as "left". */
2321 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2322 	if (error)
2323 		goto error0;
2324 
2325 	/* If it's full, it can't take another entry. */
2326 	lrecs = xfs_btree_get_numrecs(left);
2327 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2328 		goto out0;
2329 
2330 	rrecs = xfs_btree_get_numrecs(right);
2331 
2332 	/*
2333 	 * We add one entry to the left side and remove one for the right side.
2334 	 * Account for it here, the changes will be updated on disk and logged
2335 	 * later.
2336 	 */
2337 	lrecs++;
2338 	rrecs--;
2339 
2340 	XFS_BTREE_STATS_INC(cur, lshift);
2341 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2342 
2343 	/*
2344 	 * If non-leaf, copy a key and a ptr to the left block.
2345 	 * Log the changes to the left block.
2346 	 */
2347 	if (level > 0) {
2348 		/* It's a non-leaf.  Move keys and pointers. */
2349 		union xfs_btree_key	*lkp;	/* left btree key */
2350 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2351 
2352 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2353 		rkp = xfs_btree_key_addr(cur, 1, right);
2354 
2355 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2356 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2357 #ifdef DEBUG
2358 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2359 		if (error)
2360 			goto error0;
2361 #endif
2362 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2363 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2364 
2365 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2366 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2367 
2368 		ASSERT(cur->bc_ops->keys_inorder(cur,
2369 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2370 	} else {
2371 		/* It's a leaf.  Move records.  */
2372 		union xfs_btree_rec	*lrp;	/* left record pointer */
2373 
2374 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2375 		rrp = xfs_btree_rec_addr(cur, 1, right);
2376 
2377 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2378 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2379 
2380 		ASSERT(cur->bc_ops->recs_inorder(cur,
2381 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2382 	}
2383 
2384 	xfs_btree_set_numrecs(left, lrecs);
2385 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2386 
2387 	xfs_btree_set_numrecs(right, rrecs);
2388 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2389 
2390 	/*
2391 	 * Slide the contents of right down one entry.
2392 	 */
2393 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2394 	if (level > 0) {
2395 		/* It's a nonleaf. operate on keys and ptrs */
2396 #ifdef DEBUG
2397 		int			i;		/* loop index */
2398 
2399 		for (i = 0; i < rrecs; i++) {
2400 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2401 			if (error)
2402 				goto error0;
2403 		}
2404 #endif
2405 		xfs_btree_shift_keys(cur,
2406 				xfs_btree_key_addr(cur, 2, right),
2407 				-1, rrecs);
2408 		xfs_btree_shift_ptrs(cur,
2409 				xfs_btree_ptr_addr(cur, 2, right),
2410 				-1, rrecs);
2411 
2412 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2413 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2414 	} else {
2415 		/* It's a leaf. operate on records */
2416 		xfs_btree_shift_recs(cur,
2417 			xfs_btree_rec_addr(cur, 2, right),
2418 			-1, rrecs);
2419 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2420 	}
2421 
2422 	/*
2423 	 * Using a temporary cursor, update the parent key values of the
2424 	 * block on the left.
2425 	 */
2426 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2427 		error = xfs_btree_dup_cursor(cur, &tcur);
2428 		if (error)
2429 			goto error0;
2430 		i = xfs_btree_firstrec(tcur, level);
2431 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2432 
2433 		error = xfs_btree_decrement(tcur, level, &i);
2434 		if (error)
2435 			goto error1;
2436 
2437 		/* Update the parent high keys of the left block, if needed. */
2438 		error = xfs_btree_update_keys(tcur, level);
2439 		if (error)
2440 			goto error1;
2441 
2442 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2443 	}
2444 
2445 	/* Update the parent keys of the right block. */
2446 	error = xfs_btree_update_keys(cur, level);
2447 	if (error)
2448 		goto error0;
2449 
2450 	/* Slide the cursor value left one. */
2451 	cur->bc_ptrs[level]--;
2452 
2453 	*stat = 1;
2454 	return 0;
2455 
2456 out0:
2457 	*stat = 0;
2458 	return 0;
2459 
2460 error0:
2461 	return error;
2462 
2463 error1:
2464 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2465 	return error;
2466 }
2467 
2468 /*
2469  * Move 1 record right from cur/level if possible.
2470  * Update cur to reflect the new path.
2471  */
2472 STATIC int					/* error */
2473 xfs_btree_rshift(
2474 	struct xfs_btree_cur	*cur,
2475 	int			level,
2476 	int			*stat)		/* success/failure */
2477 {
2478 	struct xfs_buf		*lbp;		/* left buffer pointer */
2479 	struct xfs_btree_block	*left;		/* left btree block */
2480 	struct xfs_buf		*rbp;		/* right buffer pointer */
2481 	struct xfs_btree_block	*right;		/* right btree block */
2482 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2483 	union xfs_btree_ptr	rptr;		/* right block pointer */
2484 	union xfs_btree_key	*rkp;		/* right btree key */
2485 	int			rrecs;		/* right record count */
2486 	int			lrecs;		/* left record count */
2487 	int			error;		/* error return value */
2488 	int			i;		/* loop counter */
2489 
2490 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2491 	    (level == cur->bc_nlevels - 1))
2492 		goto out0;
2493 
2494 	/* Set up variables for this block as "left". */
2495 	left = xfs_btree_get_block(cur, level, &lbp);
2496 
2497 #ifdef DEBUG
2498 	error = xfs_btree_check_block(cur, left, level, lbp);
2499 	if (error)
2500 		goto error0;
2501 #endif
2502 
2503 	/* If we've got no right sibling then we can't shift an entry right. */
2504 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2505 	if (xfs_btree_ptr_is_null(cur, &rptr))
2506 		goto out0;
2507 
2508 	/*
2509 	 * If the cursor entry is the one that would be moved, don't
2510 	 * do it... it's too complicated.
2511 	 */
2512 	lrecs = xfs_btree_get_numrecs(left);
2513 	if (cur->bc_ptrs[level] >= lrecs)
2514 		goto out0;
2515 
2516 	/* Set up the right neighbor as "right". */
2517 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2518 	if (error)
2519 		goto error0;
2520 
2521 	/* If it's full, it can't take another entry. */
2522 	rrecs = xfs_btree_get_numrecs(right);
2523 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2524 		goto out0;
2525 
2526 	XFS_BTREE_STATS_INC(cur, rshift);
2527 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2528 
2529 	/*
2530 	 * Make a hole at the start of the right neighbor block, then
2531 	 * copy the last left block entry to the hole.
2532 	 */
2533 	if (level > 0) {
2534 		/* It's a nonleaf. make a hole in the keys and ptrs */
2535 		union xfs_btree_key	*lkp;
2536 		union xfs_btree_ptr	*lpp;
2537 		union xfs_btree_ptr	*rpp;
2538 
2539 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2540 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2541 		rkp = xfs_btree_key_addr(cur, 1, right);
2542 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2543 
2544 #ifdef DEBUG
2545 		for (i = rrecs - 1; i >= 0; i--) {
2546 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2547 			if (error)
2548 				goto error0;
2549 		}
2550 #endif
2551 
2552 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2553 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2554 
2555 #ifdef DEBUG
2556 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2557 		if (error)
2558 			goto error0;
2559 #endif
2560 
2561 		/* Now put the new data in, and log it. */
2562 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2563 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2564 
2565 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2566 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2567 
2568 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2569 			xfs_btree_key_addr(cur, 2, right)));
2570 	} else {
2571 		/* It's a leaf. make a hole in the records */
2572 		union xfs_btree_rec	*lrp;
2573 		union xfs_btree_rec	*rrp;
2574 
2575 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2576 		rrp = xfs_btree_rec_addr(cur, 1, right);
2577 
2578 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2579 
2580 		/* Now put the new data in, and log it. */
2581 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2582 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2583 	}
2584 
2585 	/*
2586 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2587 	 */
2588 	xfs_btree_set_numrecs(left, --lrecs);
2589 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2590 
2591 	xfs_btree_set_numrecs(right, ++rrecs);
2592 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2593 
2594 	/*
2595 	 * Using a temporary cursor, update the parent key values of the
2596 	 * block on the right.
2597 	 */
2598 	error = xfs_btree_dup_cursor(cur, &tcur);
2599 	if (error)
2600 		goto error0;
2601 	i = xfs_btree_lastrec(tcur, level);
2602 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2603 
2604 	error = xfs_btree_increment(tcur, level, &i);
2605 	if (error)
2606 		goto error1;
2607 
2608 	/* Update the parent high keys of the left block, if needed. */
2609 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2610 		error = xfs_btree_update_keys(cur, level);
2611 		if (error)
2612 			goto error1;
2613 	}
2614 
2615 	/* Update the parent keys of the right block. */
2616 	error = xfs_btree_update_keys(tcur, level);
2617 	if (error)
2618 		goto error1;
2619 
2620 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2621 
2622 	*stat = 1;
2623 	return 0;
2624 
2625 out0:
2626 	*stat = 0;
2627 	return 0;
2628 
2629 error0:
2630 	return error;
2631 
2632 error1:
2633 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2634 	return error;
2635 }
2636 
2637 /*
2638  * Split cur/level block in half.
2639  * Return new block number and the key to its first
2640  * record (to be inserted into parent).
2641  */
2642 STATIC int					/* error */
2643 __xfs_btree_split(
2644 	struct xfs_btree_cur	*cur,
2645 	int			level,
2646 	union xfs_btree_ptr	*ptrp,
2647 	union xfs_btree_key	*key,
2648 	struct xfs_btree_cur	**curp,
2649 	int			*stat)		/* success/failure */
2650 {
2651 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2652 	struct xfs_buf		*lbp;		/* left buffer pointer */
2653 	struct xfs_btree_block	*left;		/* left btree block */
2654 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2655 	struct xfs_buf		*rbp;		/* right buffer pointer */
2656 	struct xfs_btree_block	*right;		/* right btree block */
2657 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2658 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2659 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2660 	int			lrecs;
2661 	int			rrecs;
2662 	int			src_index;
2663 	int			error;		/* error return value */
2664 #ifdef DEBUG
2665 	int			i;
2666 #endif
2667 
2668 	XFS_BTREE_STATS_INC(cur, split);
2669 
2670 	/* Set up left block (current one). */
2671 	left = xfs_btree_get_block(cur, level, &lbp);
2672 
2673 #ifdef DEBUG
2674 	error = xfs_btree_check_block(cur, left, level, lbp);
2675 	if (error)
2676 		goto error0;
2677 #endif
2678 
2679 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2680 
2681 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2682 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2683 	if (error)
2684 		goto error0;
2685 	if (*stat == 0)
2686 		goto out0;
2687 	XFS_BTREE_STATS_INC(cur, alloc);
2688 
2689 	/* Set up the new block as "right". */
2690 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2691 	if (error)
2692 		goto error0;
2693 
2694 	/* Fill in the btree header for the new right block. */
2695 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2696 
2697 	/*
2698 	 * Split the entries between the old and the new block evenly.
2699 	 * Make sure that if there's an odd number of entries now, that
2700 	 * each new block will have the same number of entries.
2701 	 */
2702 	lrecs = xfs_btree_get_numrecs(left);
2703 	rrecs = lrecs / 2;
2704 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2705 		rrecs++;
2706 	src_index = (lrecs - rrecs + 1);
2707 
2708 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2709 
2710 	/* Adjust numrecs for the later get_*_keys() calls. */
2711 	lrecs -= rrecs;
2712 	xfs_btree_set_numrecs(left, lrecs);
2713 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2714 
2715 	/*
2716 	 * Copy btree block entries from the left block over to the
2717 	 * new block, the right. Update the right block and log the
2718 	 * changes.
2719 	 */
2720 	if (level > 0) {
2721 		/* It's a non-leaf.  Move keys and pointers. */
2722 		union xfs_btree_key	*lkp;	/* left btree key */
2723 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2724 		union xfs_btree_key	*rkp;	/* right btree key */
2725 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2726 
2727 		lkp = xfs_btree_key_addr(cur, src_index, left);
2728 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2729 		rkp = xfs_btree_key_addr(cur, 1, right);
2730 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2731 
2732 #ifdef DEBUG
2733 		for (i = src_index; i < rrecs; i++) {
2734 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2735 			if (error)
2736 				goto error0;
2737 		}
2738 #endif
2739 
2740 		/* Copy the keys & pointers to the new block. */
2741 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2742 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2743 
2744 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2745 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2746 
2747 		/* Stash the keys of the new block for later insertion. */
2748 		xfs_btree_get_node_keys(cur, right, key);
2749 	} else {
2750 		/* It's a leaf.  Move records.  */
2751 		union xfs_btree_rec	*lrp;	/* left record pointer */
2752 		union xfs_btree_rec	*rrp;	/* right record pointer */
2753 
2754 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2755 		rrp = xfs_btree_rec_addr(cur, 1, right);
2756 
2757 		/* Copy records to the new block. */
2758 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2759 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2760 
2761 		/* Stash the keys of the new block for later insertion. */
2762 		xfs_btree_get_leaf_keys(cur, right, key);
2763 	}
2764 
2765 	/*
2766 	 * Find the left block number by looking in the buffer.
2767 	 * Adjust sibling pointers.
2768 	 */
2769 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2770 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2771 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2772 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2773 
2774 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2775 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2776 
2777 	/*
2778 	 * If there's a block to the new block's right, make that block
2779 	 * point back to right instead of to left.
2780 	 */
2781 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2782 		error = xfs_btree_read_buf_block(cur, &rrptr,
2783 							0, &rrblock, &rrbp);
2784 		if (error)
2785 			goto error0;
2786 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2787 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2788 	}
2789 
2790 	/* Update the parent high keys of the left block, if needed. */
2791 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2792 		error = xfs_btree_update_keys(cur, level);
2793 		if (error)
2794 			goto error0;
2795 	}
2796 
2797 	/*
2798 	 * If the cursor is really in the right block, move it there.
2799 	 * If it's just pointing past the last entry in left, then we'll
2800 	 * insert there, so don't change anything in that case.
2801 	 */
2802 	if (cur->bc_ptrs[level] > lrecs + 1) {
2803 		xfs_btree_setbuf(cur, level, rbp);
2804 		cur->bc_ptrs[level] -= lrecs;
2805 	}
2806 	/*
2807 	 * If there are more levels, we'll need another cursor which refers
2808 	 * the right block, no matter where this cursor was.
2809 	 */
2810 	if (level + 1 < cur->bc_nlevels) {
2811 		error = xfs_btree_dup_cursor(cur, curp);
2812 		if (error)
2813 			goto error0;
2814 		(*curp)->bc_ptrs[level + 1]++;
2815 	}
2816 	*ptrp = rptr;
2817 	*stat = 1;
2818 	return 0;
2819 out0:
2820 	*stat = 0;
2821 	return 0;
2822 
2823 error0:
2824 	return error;
2825 }
2826 
2827 struct xfs_btree_split_args {
2828 	struct xfs_btree_cur	*cur;
2829 	int			level;
2830 	union xfs_btree_ptr	*ptrp;
2831 	union xfs_btree_key	*key;
2832 	struct xfs_btree_cur	**curp;
2833 	int			*stat;		/* success/failure */
2834 	int			result;
2835 	bool			kswapd;	/* allocation in kswapd context */
2836 	struct completion	*done;
2837 	struct work_struct	work;
2838 };
2839 
2840 /*
2841  * Stack switching interfaces for allocation
2842  */
2843 static void
2844 xfs_btree_split_worker(
2845 	struct work_struct	*work)
2846 {
2847 	struct xfs_btree_split_args	*args = container_of(work,
2848 						struct xfs_btree_split_args, work);
2849 	unsigned long		pflags;
2850 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2851 
2852 	/*
2853 	 * we are in a transaction context here, but may also be doing work
2854 	 * in kswapd context, and hence we may need to inherit that state
2855 	 * temporarily to ensure that we don't block waiting for memory reclaim
2856 	 * in any way.
2857 	 */
2858 	if (args->kswapd)
2859 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2860 
2861 	current_set_flags_nested(&pflags, new_pflags);
2862 
2863 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2864 					 args->key, args->curp, args->stat);
2865 	complete(args->done);
2866 
2867 	current_restore_flags_nested(&pflags, new_pflags);
2868 }
2869 
2870 /*
2871  * BMBT split requests often come in with little stack to work on. Push
2872  * them off to a worker thread so there is lots of stack to use. For the other
2873  * btree types, just call directly to avoid the context switch overhead here.
2874  */
2875 STATIC int					/* error */
2876 xfs_btree_split(
2877 	struct xfs_btree_cur	*cur,
2878 	int			level,
2879 	union xfs_btree_ptr	*ptrp,
2880 	union xfs_btree_key	*key,
2881 	struct xfs_btree_cur	**curp,
2882 	int			*stat)		/* success/failure */
2883 {
2884 	struct xfs_btree_split_args	args;
2885 	DECLARE_COMPLETION_ONSTACK(done);
2886 
2887 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2888 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2889 
2890 	args.cur = cur;
2891 	args.level = level;
2892 	args.ptrp = ptrp;
2893 	args.key = key;
2894 	args.curp = curp;
2895 	args.stat = stat;
2896 	args.done = &done;
2897 	args.kswapd = current_is_kswapd();
2898 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2899 	queue_work(xfs_alloc_wq, &args.work);
2900 	wait_for_completion(&done);
2901 	destroy_work_on_stack(&args.work);
2902 	return args.result;
2903 }
2904 
2905 
2906 /*
2907  * Copy the old inode root contents into a real block and make the
2908  * broot point to it.
2909  */
2910 int						/* error */
2911 xfs_btree_new_iroot(
2912 	struct xfs_btree_cur	*cur,		/* btree cursor */
2913 	int			*logflags,	/* logging flags for inode */
2914 	int			*stat)		/* return status - 0 fail */
2915 {
2916 	struct xfs_buf		*cbp;		/* buffer for cblock */
2917 	struct xfs_btree_block	*block;		/* btree block */
2918 	struct xfs_btree_block	*cblock;	/* child btree block */
2919 	union xfs_btree_key	*ckp;		/* child key pointer */
2920 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2921 	union xfs_btree_key	*kp;		/* pointer to btree key */
2922 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2923 	union xfs_btree_ptr	nptr;		/* new block addr */
2924 	int			level;		/* btree level */
2925 	int			error;		/* error return code */
2926 #ifdef DEBUG
2927 	int			i;		/* loop counter */
2928 #endif
2929 
2930 	XFS_BTREE_STATS_INC(cur, newroot);
2931 
2932 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933 
2934 	level = cur->bc_nlevels - 1;
2935 
2936 	block = xfs_btree_get_iroot(cur);
2937 	pp = xfs_btree_ptr_addr(cur, 1, block);
2938 
2939 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2940 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941 	if (error)
2942 		goto error0;
2943 	if (*stat == 0)
2944 		return 0;
2945 
2946 	XFS_BTREE_STATS_INC(cur, alloc);
2947 
2948 	/* Copy the root into a real block. */
2949 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2950 	if (error)
2951 		goto error0;
2952 
2953 	/*
2954 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2955 	 * In that case have to also ensure the blkno remains correct
2956 	 */
2957 	memcpy(cblock, block, xfs_btree_block_len(cur));
2958 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2959 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2960 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2961 		else
2962 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2963 	}
2964 
2965 	be16_add_cpu(&block->bb_level, 1);
2966 	xfs_btree_set_numrecs(block, 1);
2967 	cur->bc_nlevels++;
2968 	cur->bc_ptrs[level + 1] = 1;
2969 
2970 	kp = xfs_btree_key_addr(cur, 1, block);
2971 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2972 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2973 
2974 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2975 #ifdef DEBUG
2976 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2977 		error = xfs_btree_check_ptr(cur, pp, i, level);
2978 		if (error)
2979 			goto error0;
2980 	}
2981 #endif
2982 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2983 
2984 #ifdef DEBUG
2985 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2986 	if (error)
2987 		goto error0;
2988 #endif
2989 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2990 
2991 	xfs_iroot_realloc(cur->bc_private.b.ip,
2992 			  1 - xfs_btree_get_numrecs(cblock),
2993 			  cur->bc_private.b.whichfork);
2994 
2995 	xfs_btree_setbuf(cur, level, cbp);
2996 
2997 	/*
2998 	 * Do all this logging at the end so that
2999 	 * the root is at the right level.
3000 	 */
3001 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3002 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3003 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004 
3005 	*logflags |=
3006 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3007 	*stat = 1;
3008 	return 0;
3009 error0:
3010 	return error;
3011 }
3012 
3013 /*
3014  * Allocate a new root block, fill it in.
3015  */
3016 STATIC int				/* error */
3017 xfs_btree_new_root(
3018 	struct xfs_btree_cur	*cur,	/* btree cursor */
3019 	int			*stat)	/* success/failure */
3020 {
3021 	struct xfs_btree_block	*block;	/* one half of the old root block */
3022 	struct xfs_buf		*bp;	/* buffer containing block */
3023 	int			error;	/* error return value */
3024 	struct xfs_buf		*lbp;	/* left buffer pointer */
3025 	struct xfs_btree_block	*left;	/* left btree block */
3026 	struct xfs_buf		*nbp;	/* new (root) buffer */
3027 	struct xfs_btree_block	*new;	/* new (root) btree block */
3028 	int			nptr;	/* new value for key index, 1 or 2 */
3029 	struct xfs_buf		*rbp;	/* right buffer pointer */
3030 	struct xfs_btree_block	*right;	/* right btree block */
3031 	union xfs_btree_ptr	rptr;
3032 	union xfs_btree_ptr	lptr;
3033 
3034 	XFS_BTREE_STATS_INC(cur, newroot);
3035 
3036 	/* initialise our start point from the cursor */
3037 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038 
3039 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3040 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041 	if (error)
3042 		goto error0;
3043 	if (*stat == 0)
3044 		goto out0;
3045 	XFS_BTREE_STATS_INC(cur, alloc);
3046 
3047 	/* Set up the new block. */
3048 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049 	if (error)
3050 		goto error0;
3051 
3052 	/* Set the root in the holding structure  increasing the level by 1. */
3053 	cur->bc_ops->set_root(cur, &lptr, 1);
3054 
3055 	/*
3056 	 * At the previous root level there are now two blocks: the old root,
3057 	 * and the new block generated when it was split.  We don't know which
3058 	 * one the cursor is pointing at, so we set up variables "left" and
3059 	 * "right" for each case.
3060 	 */
3061 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062 
3063 #ifdef DEBUG
3064 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065 	if (error)
3066 		goto error0;
3067 #endif
3068 
3069 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071 		/* Our block is left, pick up the right block. */
3072 		lbp = bp;
3073 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074 		left = block;
3075 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076 		if (error)
3077 			goto error0;
3078 		bp = rbp;
3079 		nptr = 1;
3080 	} else {
3081 		/* Our block is right, pick up the left block. */
3082 		rbp = bp;
3083 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084 		right = block;
3085 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087 		if (error)
3088 			goto error0;
3089 		bp = lbp;
3090 		nptr = 2;
3091 	}
3092 
3093 	/* Fill in the new block's btree header and log it. */
3094 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097 			!xfs_btree_ptr_is_null(cur, &rptr));
3098 
3099 	/* Fill in the key data in the new root. */
3100 	if (xfs_btree_get_level(left) > 0) {
3101 		/*
3102 		 * Get the keys for the left block's keys and put them directly
3103 		 * in the parent block.  Do the same for the right block.
3104 		 */
3105 		xfs_btree_get_node_keys(cur, left,
3106 				xfs_btree_key_addr(cur, 1, new));
3107 		xfs_btree_get_node_keys(cur, right,
3108 				xfs_btree_key_addr(cur, 2, new));
3109 	} else {
3110 		/*
3111 		 * Get the keys for the left block's records and put them
3112 		 * directly in the parent block.  Do the same for the right
3113 		 * block.
3114 		 */
3115 		xfs_btree_get_leaf_keys(cur, left,
3116 			xfs_btree_key_addr(cur, 1, new));
3117 		xfs_btree_get_leaf_keys(cur, right,
3118 			xfs_btree_key_addr(cur, 2, new));
3119 	}
3120 	xfs_btree_log_keys(cur, nbp, 1, 2);
3121 
3122 	/* Fill in the pointer data in the new root. */
3123 	xfs_btree_copy_ptrs(cur,
3124 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125 	xfs_btree_copy_ptrs(cur,
3126 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128 
3129 	/* Fix up the cursor. */
3130 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132 	cur->bc_nlevels++;
3133 	*stat = 1;
3134 	return 0;
3135 error0:
3136 	return error;
3137 out0:
3138 	*stat = 0;
3139 	return 0;
3140 }
3141 
3142 STATIC int
3143 xfs_btree_make_block_unfull(
3144 	struct xfs_btree_cur	*cur,	/* btree cursor */
3145 	int			level,	/* btree level */
3146 	int			numrecs,/* # of recs in block */
3147 	int			*oindex,/* old tree index */
3148 	int			*index,	/* new tree index */
3149 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3150 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3151 	union xfs_btree_key	*key,	/* key of new block */
3152 	int			*stat)
3153 {
3154 	int			error = 0;
3155 
3156 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3157 	    level == cur->bc_nlevels - 1) {
3158 		struct xfs_inode *ip = cur->bc_private.b.ip;
3159 
3160 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3161 			/* A root block that can be made bigger. */
3162 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3163 			*stat = 1;
3164 		} else {
3165 			/* A root block that needs replacing */
3166 			int	logflags = 0;
3167 
3168 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3169 			if (error || *stat == 0)
3170 				return error;
3171 
3172 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3173 		}
3174 
3175 		return 0;
3176 	}
3177 
3178 	/* First, try shifting an entry to the right neighbor. */
3179 	error = xfs_btree_rshift(cur, level, stat);
3180 	if (error || *stat)
3181 		return error;
3182 
3183 	/* Next, try shifting an entry to the left neighbor. */
3184 	error = xfs_btree_lshift(cur, level, stat);
3185 	if (error)
3186 		return error;
3187 
3188 	if (*stat) {
3189 		*oindex = *index = cur->bc_ptrs[level];
3190 		return 0;
3191 	}
3192 
3193 	/*
3194 	 * Next, try splitting the current block in half.
3195 	 *
3196 	 * If this works we have to re-set our variables because we
3197 	 * could be in a different block now.
3198 	 */
3199 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3200 	if (error || *stat == 0)
3201 		return error;
3202 
3203 
3204 	*index = cur->bc_ptrs[level];
3205 	return 0;
3206 }
3207 
3208 /*
3209  * Insert one record/level.  Return information to the caller
3210  * allowing the next level up to proceed if necessary.
3211  */
3212 STATIC int
3213 xfs_btree_insrec(
3214 	struct xfs_btree_cur	*cur,	/* btree cursor */
3215 	int			level,	/* level to insert record at */
3216 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3217 	union xfs_btree_rec	*rec,	/* record to insert */
3218 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3219 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3220 	int			*stat)	/* success/failure */
3221 {
3222 	struct xfs_btree_block	*block;	/* btree block */
3223 	struct xfs_buf		*bp;	/* buffer for block */
3224 	union xfs_btree_ptr	nptr;	/* new block ptr */
3225 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3226 	union xfs_btree_key	nkey;	/* new block key */
3227 	union xfs_btree_key	*lkey;
3228 	int			optr;	/* old key/record index */
3229 	int			ptr;	/* key/record index */
3230 	int			numrecs;/* number of records */
3231 	int			error;	/* error return value */
3232 #ifdef DEBUG
3233 	int			i;
3234 #endif
3235 	xfs_daddr_t		old_bn;
3236 
3237 	ncur = NULL;
3238 	lkey = &nkey;
3239 
3240 	/*
3241 	 * If we have an external root pointer, and we've made it to the
3242 	 * root level, allocate a new root block and we're done.
3243 	 */
3244 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 	    (level >= cur->bc_nlevels)) {
3246 		error = xfs_btree_new_root(cur, stat);
3247 		xfs_btree_set_ptr_null(cur, ptrp);
3248 
3249 		return error;
3250 	}
3251 
3252 	/* If we're off the left edge, return failure. */
3253 	ptr = cur->bc_ptrs[level];
3254 	if (ptr == 0) {
3255 		*stat = 0;
3256 		return 0;
3257 	}
3258 
3259 	optr = ptr;
3260 
3261 	XFS_BTREE_STATS_INC(cur, insrec);
3262 
3263 	/* Get pointers to the btree buffer and block. */
3264 	block = xfs_btree_get_block(cur, level, &bp);
3265 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 	numrecs = xfs_btree_get_numrecs(block);
3267 
3268 #ifdef DEBUG
3269 	error = xfs_btree_check_block(cur, block, level, bp);
3270 	if (error)
3271 		goto error0;
3272 
3273 	/* Check that the new entry is being inserted in the right place. */
3274 	if (ptr <= numrecs) {
3275 		if (level == 0) {
3276 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 				xfs_btree_rec_addr(cur, ptr, block)));
3278 		} else {
3279 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 				xfs_btree_key_addr(cur, ptr, block)));
3281 		}
3282 	}
3283 #endif
3284 
3285 	/*
3286 	 * If the block is full, we can't insert the new entry until we
3287 	 * make the block un-full.
3288 	 */
3289 	xfs_btree_set_ptr_null(cur, &nptr);
3290 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3293 		if (error || *stat == 0)
3294 			goto error0;
3295 	}
3296 
3297 	/*
3298 	 * The current block may have changed if the block was
3299 	 * previously full and we have just made space in it.
3300 	 */
3301 	block = xfs_btree_get_block(cur, level, &bp);
3302 	numrecs = xfs_btree_get_numrecs(block);
3303 
3304 #ifdef DEBUG
3305 	error = xfs_btree_check_block(cur, block, level, bp);
3306 	if (error)
3307 		return error;
3308 #endif
3309 
3310 	/*
3311 	 * At this point we know there's room for our new entry in the block
3312 	 * we're pointing at.
3313 	 */
3314 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315 
3316 	if (level > 0) {
3317 		/* It's a nonleaf. make a hole in the keys and ptrs */
3318 		union xfs_btree_key	*kp;
3319 		union xfs_btree_ptr	*pp;
3320 
3321 		kp = xfs_btree_key_addr(cur, ptr, block);
3322 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3323 
3324 #ifdef DEBUG
3325 		for (i = numrecs - ptr; i >= 0; i--) {
3326 			error = xfs_btree_check_ptr(cur, pp, i, level);
3327 			if (error)
3328 				return error;
3329 		}
3330 #endif
3331 
3332 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3333 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3334 
3335 #ifdef DEBUG
3336 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3337 		if (error)
3338 			goto error0;
3339 #endif
3340 
3341 		/* Now put the new data in, bump numrecs and log it. */
3342 		xfs_btree_copy_keys(cur, kp, key, 1);
3343 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3344 		numrecs++;
3345 		xfs_btree_set_numrecs(block, numrecs);
3346 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3347 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3348 #ifdef DEBUG
3349 		if (ptr < numrecs) {
3350 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3351 				xfs_btree_key_addr(cur, ptr + 1, block)));
3352 		}
3353 #endif
3354 	} else {
3355 		/* It's a leaf. make a hole in the records */
3356 		union xfs_btree_rec             *rp;
3357 
3358 		rp = xfs_btree_rec_addr(cur, ptr, block);
3359 
3360 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3361 
3362 		/* Now put the new data in, bump numrecs and log it. */
3363 		xfs_btree_copy_recs(cur, rp, rec, 1);
3364 		xfs_btree_set_numrecs(block, ++numrecs);
3365 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3366 #ifdef DEBUG
3367 		if (ptr < numrecs) {
3368 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3369 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3370 		}
3371 #endif
3372 	}
3373 
3374 	/* Log the new number of records in the btree header. */
3375 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3376 
3377 	/*
3378 	 * If we just inserted into a new tree block, we have to
3379 	 * recalculate nkey here because nkey is out of date.
3380 	 *
3381 	 * Otherwise we're just updating an existing block (having shoved
3382 	 * some records into the new tree block), so use the regular key
3383 	 * update mechanism.
3384 	 */
3385 	if (bp && bp->b_bn != old_bn) {
3386 		xfs_btree_get_keys(cur, block, lkey);
3387 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3388 		error = xfs_btree_update_keys(cur, level);
3389 		if (error)
3390 			goto error0;
3391 	}
3392 
3393 	/*
3394 	 * If we are tracking the last record in the tree and
3395 	 * we are at the far right edge of the tree, update it.
3396 	 */
3397 	if (xfs_btree_is_lastrec(cur, block, level)) {
3398 		cur->bc_ops->update_lastrec(cur, block, rec,
3399 					    ptr, LASTREC_INSREC);
3400 	}
3401 
3402 	/*
3403 	 * Return the new block number, if any.
3404 	 * If there is one, give back a record value and a cursor too.
3405 	 */
3406 	*ptrp = nptr;
3407 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3408 		xfs_btree_copy_keys(cur, key, lkey, 1);
3409 		*curp = ncur;
3410 	}
3411 
3412 	*stat = 1;
3413 	return 0;
3414 
3415 error0:
3416 	return error;
3417 }
3418 
3419 /*
3420  * Insert the record at the point referenced by cur.
3421  *
3422  * A multi-level split of the tree on insert will invalidate the original
3423  * cursor.  All callers of this function should assume that the cursor is
3424  * no longer valid and revalidate it.
3425  */
3426 int
3427 xfs_btree_insert(
3428 	struct xfs_btree_cur	*cur,
3429 	int			*stat)
3430 {
3431 	int			error;	/* error return value */
3432 	int			i;	/* result value, 0 for failure */
3433 	int			level;	/* current level number in btree */
3434 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3435 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3436 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3437 	union xfs_btree_key	bkey;	/* key of block to insert */
3438 	union xfs_btree_key	*key;
3439 	union xfs_btree_rec	rec;	/* record to insert */
3440 
3441 	level = 0;
3442 	ncur = NULL;
3443 	pcur = cur;
3444 	key = &bkey;
3445 
3446 	xfs_btree_set_ptr_null(cur, &nptr);
3447 
3448 	/* Make a key out of the record data to be inserted, and save it. */
3449 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3450 	cur->bc_ops->init_key_from_rec(key, &rec);
3451 
3452 	/*
3453 	 * Loop going up the tree, starting at the leaf level.
3454 	 * Stop when we don't get a split block, that must mean that
3455 	 * the insert is finished with this level.
3456 	 */
3457 	do {
3458 		/*
3459 		 * Insert nrec/nptr into this level of the tree.
3460 		 * Note if we fail, nptr will be null.
3461 		 */
3462 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3463 				&ncur, &i);
3464 		if (error) {
3465 			if (pcur != cur)
3466 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3467 			goto error0;
3468 		}
3469 
3470 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3471 		level++;
3472 
3473 		/*
3474 		 * See if the cursor we just used is trash.
3475 		 * Can't trash the caller's cursor, but otherwise we should
3476 		 * if ncur is a new cursor or we're about to be done.
3477 		 */
3478 		if (pcur != cur &&
3479 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3480 			/* Save the state from the cursor before we trash it */
3481 			if (cur->bc_ops->update_cursor)
3482 				cur->bc_ops->update_cursor(pcur, cur);
3483 			cur->bc_nlevels = pcur->bc_nlevels;
3484 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3485 		}
3486 		/* If we got a new cursor, switch to it. */
3487 		if (ncur) {
3488 			pcur = ncur;
3489 			ncur = NULL;
3490 		}
3491 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3492 
3493 	*stat = i;
3494 	return 0;
3495 error0:
3496 	return error;
3497 }
3498 
3499 /*
3500  * Try to merge a non-leaf block back into the inode root.
3501  *
3502  * Note: the killroot names comes from the fact that we're effectively
3503  * killing the old root block.  But because we can't just delete the
3504  * inode we have to copy the single block it was pointing to into the
3505  * inode.
3506  */
3507 STATIC int
3508 xfs_btree_kill_iroot(
3509 	struct xfs_btree_cur	*cur)
3510 {
3511 	int			whichfork = cur->bc_private.b.whichfork;
3512 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3513 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3514 	struct xfs_btree_block	*block;
3515 	struct xfs_btree_block	*cblock;
3516 	union xfs_btree_key	*kp;
3517 	union xfs_btree_key	*ckp;
3518 	union xfs_btree_ptr	*pp;
3519 	union xfs_btree_ptr	*cpp;
3520 	struct xfs_buf		*cbp;
3521 	int			level;
3522 	int			index;
3523 	int			numrecs;
3524 	int			error;
3525 #ifdef DEBUG
3526 	union xfs_btree_ptr	ptr;
3527 	int			i;
3528 #endif
3529 
3530 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3531 	ASSERT(cur->bc_nlevels > 1);
3532 
3533 	/*
3534 	 * Don't deal with the root block needs to be a leaf case.
3535 	 * We're just going to turn the thing back into extents anyway.
3536 	 */
3537 	level = cur->bc_nlevels - 1;
3538 	if (level == 1)
3539 		goto out0;
3540 
3541 	/*
3542 	 * Give up if the root has multiple children.
3543 	 */
3544 	block = xfs_btree_get_iroot(cur);
3545 	if (xfs_btree_get_numrecs(block) != 1)
3546 		goto out0;
3547 
3548 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3549 	numrecs = xfs_btree_get_numrecs(cblock);
3550 
3551 	/*
3552 	 * Only do this if the next level will fit.
3553 	 * Then the data must be copied up to the inode,
3554 	 * instead of freeing the root you free the next level.
3555 	 */
3556 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3557 		goto out0;
3558 
3559 	XFS_BTREE_STATS_INC(cur, killroot);
3560 
3561 #ifdef DEBUG
3562 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3563 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3564 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3565 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3566 #endif
3567 
3568 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3569 	if (index) {
3570 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3571 				  cur->bc_private.b.whichfork);
3572 		block = ifp->if_broot;
3573 	}
3574 
3575 	be16_add_cpu(&block->bb_numrecs, index);
3576 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3577 
3578 	kp = xfs_btree_key_addr(cur, 1, block);
3579 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3580 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3581 
3582 	pp = xfs_btree_ptr_addr(cur, 1, block);
3583 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3584 #ifdef DEBUG
3585 	for (i = 0; i < numrecs; i++) {
3586 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3587 		if (error)
3588 			return error;
3589 	}
3590 #endif
3591 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3592 
3593 	error = xfs_btree_free_block(cur, cbp);
3594 	if (error)
3595 		return error;
3596 
3597 	cur->bc_bufs[level - 1] = NULL;
3598 	be16_add_cpu(&block->bb_level, -1);
3599 	xfs_trans_log_inode(cur->bc_tp, ip,
3600 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3601 	cur->bc_nlevels--;
3602 out0:
3603 	return 0;
3604 }
3605 
3606 /*
3607  * Kill the current root node, and replace it with it's only child node.
3608  */
3609 STATIC int
3610 xfs_btree_kill_root(
3611 	struct xfs_btree_cur	*cur,
3612 	struct xfs_buf		*bp,
3613 	int			level,
3614 	union xfs_btree_ptr	*newroot)
3615 {
3616 	int			error;
3617 
3618 	XFS_BTREE_STATS_INC(cur, killroot);
3619 
3620 	/*
3621 	 * Update the root pointer, decreasing the level by 1 and then
3622 	 * free the old root.
3623 	 */
3624 	cur->bc_ops->set_root(cur, newroot, -1);
3625 
3626 	error = xfs_btree_free_block(cur, bp);
3627 	if (error)
3628 		return error;
3629 
3630 	cur->bc_bufs[level] = NULL;
3631 	cur->bc_ra[level] = 0;
3632 	cur->bc_nlevels--;
3633 
3634 	return 0;
3635 }
3636 
3637 STATIC int
3638 xfs_btree_dec_cursor(
3639 	struct xfs_btree_cur	*cur,
3640 	int			level,
3641 	int			*stat)
3642 {
3643 	int			error;
3644 	int			i;
3645 
3646 	if (level > 0) {
3647 		error = xfs_btree_decrement(cur, level, &i);
3648 		if (error)
3649 			return error;
3650 	}
3651 
3652 	*stat = 1;
3653 	return 0;
3654 }
3655 
3656 /*
3657  * Single level of the btree record deletion routine.
3658  * Delete record pointed to by cur/level.
3659  * Remove the record from its block then rebalance the tree.
3660  * Return 0 for error, 1 for done, 2 to go on to the next level.
3661  */
3662 STATIC int					/* error */
3663 xfs_btree_delrec(
3664 	struct xfs_btree_cur	*cur,		/* btree cursor */
3665 	int			level,		/* level removing record from */
3666 	int			*stat)		/* fail/done/go-on */
3667 {
3668 	struct xfs_btree_block	*block;		/* btree block */
3669 	union xfs_btree_ptr	cptr;		/* current block ptr */
3670 	struct xfs_buf		*bp;		/* buffer for block */
3671 	int			error;		/* error return value */
3672 	int			i;		/* loop counter */
3673 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3674 	struct xfs_buf		*lbp;		/* left buffer pointer */
3675 	struct xfs_btree_block	*left;		/* left btree block */
3676 	int			lrecs = 0;	/* left record count */
3677 	int			ptr;		/* key/record index */
3678 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3679 	struct xfs_buf		*rbp;		/* right buffer pointer */
3680 	struct xfs_btree_block	*right;		/* right btree block */
3681 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3682 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3683 	int			rrecs = 0;	/* right record count */
3684 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3685 	int			numrecs;	/* temporary numrec count */
3686 
3687 	tcur = NULL;
3688 
3689 	/* Get the index of the entry being deleted, check for nothing there. */
3690 	ptr = cur->bc_ptrs[level];
3691 	if (ptr == 0) {
3692 		*stat = 0;
3693 		return 0;
3694 	}
3695 
3696 	/* Get the buffer & block containing the record or key/ptr. */
3697 	block = xfs_btree_get_block(cur, level, &bp);
3698 	numrecs = xfs_btree_get_numrecs(block);
3699 
3700 #ifdef DEBUG
3701 	error = xfs_btree_check_block(cur, block, level, bp);
3702 	if (error)
3703 		goto error0;
3704 #endif
3705 
3706 	/* Fail if we're off the end of the block. */
3707 	if (ptr > numrecs) {
3708 		*stat = 0;
3709 		return 0;
3710 	}
3711 
3712 	XFS_BTREE_STATS_INC(cur, delrec);
3713 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3714 
3715 	/* Excise the entries being deleted. */
3716 	if (level > 0) {
3717 		/* It's a nonleaf. operate on keys and ptrs */
3718 		union xfs_btree_key	*lkp;
3719 		union xfs_btree_ptr	*lpp;
3720 
3721 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3722 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3723 
3724 #ifdef DEBUG
3725 		for (i = 0; i < numrecs - ptr; i++) {
3726 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3727 			if (error)
3728 				goto error0;
3729 		}
3730 #endif
3731 
3732 		if (ptr < numrecs) {
3733 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3734 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3735 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3736 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3737 		}
3738 	} else {
3739 		/* It's a leaf. operate on records */
3740 		if (ptr < numrecs) {
3741 			xfs_btree_shift_recs(cur,
3742 				xfs_btree_rec_addr(cur, ptr + 1, block),
3743 				-1, numrecs - ptr);
3744 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3745 		}
3746 	}
3747 
3748 	/*
3749 	 * Decrement and log the number of entries in the block.
3750 	 */
3751 	xfs_btree_set_numrecs(block, --numrecs);
3752 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3753 
3754 	/*
3755 	 * If we are tracking the last record in the tree and
3756 	 * we are at the far right edge of the tree, update it.
3757 	 */
3758 	if (xfs_btree_is_lastrec(cur, block, level)) {
3759 		cur->bc_ops->update_lastrec(cur, block, NULL,
3760 					    ptr, LASTREC_DELREC);
3761 	}
3762 
3763 	/*
3764 	 * We're at the root level.  First, shrink the root block in-memory.
3765 	 * Try to get rid of the next level down.  If we can't then there's
3766 	 * nothing left to do.
3767 	 */
3768 	if (level == cur->bc_nlevels - 1) {
3769 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3770 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3771 					  cur->bc_private.b.whichfork);
3772 
3773 			error = xfs_btree_kill_iroot(cur);
3774 			if (error)
3775 				goto error0;
3776 
3777 			error = xfs_btree_dec_cursor(cur, level, stat);
3778 			if (error)
3779 				goto error0;
3780 			*stat = 1;
3781 			return 0;
3782 		}
3783 
3784 		/*
3785 		 * If this is the root level, and there's only one entry left,
3786 		 * and it's NOT the leaf level, then we can get rid of this
3787 		 * level.
3788 		 */
3789 		if (numrecs == 1 && level > 0) {
3790 			union xfs_btree_ptr	*pp;
3791 			/*
3792 			 * pp is still set to the first pointer in the block.
3793 			 * Make it the new root of the btree.
3794 			 */
3795 			pp = xfs_btree_ptr_addr(cur, 1, block);
3796 			error = xfs_btree_kill_root(cur, bp, level, pp);
3797 			if (error)
3798 				goto error0;
3799 		} else if (level > 0) {
3800 			error = xfs_btree_dec_cursor(cur, level, stat);
3801 			if (error)
3802 				goto error0;
3803 		}
3804 		*stat = 1;
3805 		return 0;
3806 	}
3807 
3808 	/*
3809 	 * If we deleted the leftmost entry in the block, update the
3810 	 * key values above us in the tree.
3811 	 */
3812 	if (xfs_btree_needs_key_update(cur, ptr)) {
3813 		error = xfs_btree_update_keys(cur, level);
3814 		if (error)
3815 			goto error0;
3816 	}
3817 
3818 	/*
3819 	 * If the number of records remaining in the block is at least
3820 	 * the minimum, we're done.
3821 	 */
3822 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3823 		error = xfs_btree_dec_cursor(cur, level, stat);
3824 		if (error)
3825 			goto error0;
3826 		return 0;
3827 	}
3828 
3829 	/*
3830 	 * Otherwise, we have to move some records around to keep the
3831 	 * tree balanced.  Look at the left and right sibling blocks to
3832 	 * see if we can re-balance by moving only one record.
3833 	 */
3834 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3835 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3836 
3837 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3838 		/*
3839 		 * One child of root, need to get a chance to copy its contents
3840 		 * into the root and delete it. Can't go up to next level,
3841 		 * there's nothing to delete there.
3842 		 */
3843 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3844 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3845 		    level == cur->bc_nlevels - 2) {
3846 			error = xfs_btree_kill_iroot(cur);
3847 			if (!error)
3848 				error = xfs_btree_dec_cursor(cur, level, stat);
3849 			if (error)
3850 				goto error0;
3851 			return 0;
3852 		}
3853 	}
3854 
3855 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3856 	       !xfs_btree_ptr_is_null(cur, &lptr));
3857 
3858 	/*
3859 	 * Duplicate the cursor so our btree manipulations here won't
3860 	 * disrupt the next level up.
3861 	 */
3862 	error = xfs_btree_dup_cursor(cur, &tcur);
3863 	if (error)
3864 		goto error0;
3865 
3866 	/*
3867 	 * If there's a right sibling, see if it's ok to shift an entry
3868 	 * out of it.
3869 	 */
3870 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3871 		/*
3872 		 * Move the temp cursor to the last entry in the next block.
3873 		 * Actually any entry but the first would suffice.
3874 		 */
3875 		i = xfs_btree_lastrec(tcur, level);
3876 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3877 
3878 		error = xfs_btree_increment(tcur, level, &i);
3879 		if (error)
3880 			goto error0;
3881 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882 
3883 		i = xfs_btree_lastrec(tcur, level);
3884 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3885 
3886 		/* Grab a pointer to the block. */
3887 		right = xfs_btree_get_block(tcur, level, &rbp);
3888 #ifdef DEBUG
3889 		error = xfs_btree_check_block(tcur, right, level, rbp);
3890 		if (error)
3891 			goto error0;
3892 #endif
3893 		/* Grab the current block number, for future use. */
3894 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3895 
3896 		/*
3897 		 * If right block is full enough so that removing one entry
3898 		 * won't make it too empty, and left-shifting an entry out
3899 		 * of right to us works, we're done.
3900 		 */
3901 		if (xfs_btree_get_numrecs(right) - 1 >=
3902 		    cur->bc_ops->get_minrecs(tcur, level)) {
3903 			error = xfs_btree_lshift(tcur, level, &i);
3904 			if (error)
3905 				goto error0;
3906 			if (i) {
3907 				ASSERT(xfs_btree_get_numrecs(block) >=
3908 				       cur->bc_ops->get_minrecs(tcur, level));
3909 
3910 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3911 				tcur = NULL;
3912 
3913 				error = xfs_btree_dec_cursor(cur, level, stat);
3914 				if (error)
3915 					goto error0;
3916 				return 0;
3917 			}
3918 		}
3919 
3920 		/*
3921 		 * Otherwise, grab the number of records in right for
3922 		 * future reference, and fix up the temp cursor to point
3923 		 * to our block again (last record).
3924 		 */
3925 		rrecs = xfs_btree_get_numrecs(right);
3926 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3927 			i = xfs_btree_firstrec(tcur, level);
3928 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3929 
3930 			error = xfs_btree_decrement(tcur, level, &i);
3931 			if (error)
3932 				goto error0;
3933 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934 		}
3935 	}
3936 
3937 	/*
3938 	 * If there's a left sibling, see if it's ok to shift an entry
3939 	 * out of it.
3940 	 */
3941 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3942 		/*
3943 		 * Move the temp cursor to the first entry in the
3944 		 * previous block.
3945 		 */
3946 		i = xfs_btree_firstrec(tcur, level);
3947 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948 
3949 		error = xfs_btree_decrement(tcur, level, &i);
3950 		if (error)
3951 			goto error0;
3952 		i = xfs_btree_firstrec(tcur, level);
3953 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954 
3955 		/* Grab a pointer to the block. */
3956 		left = xfs_btree_get_block(tcur, level, &lbp);
3957 #ifdef DEBUG
3958 		error = xfs_btree_check_block(cur, left, level, lbp);
3959 		if (error)
3960 			goto error0;
3961 #endif
3962 		/* Grab the current block number, for future use. */
3963 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3964 
3965 		/*
3966 		 * If left block is full enough so that removing one entry
3967 		 * won't make it too empty, and right-shifting an entry out
3968 		 * of left to us works, we're done.
3969 		 */
3970 		if (xfs_btree_get_numrecs(left) - 1 >=
3971 		    cur->bc_ops->get_minrecs(tcur, level)) {
3972 			error = xfs_btree_rshift(tcur, level, &i);
3973 			if (error)
3974 				goto error0;
3975 			if (i) {
3976 				ASSERT(xfs_btree_get_numrecs(block) >=
3977 				       cur->bc_ops->get_minrecs(tcur, level));
3978 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979 				tcur = NULL;
3980 				if (level == 0)
3981 					cur->bc_ptrs[0]++;
3982 
3983 				*stat = 1;
3984 				return 0;
3985 			}
3986 		}
3987 
3988 		/*
3989 		 * Otherwise, grab the number of records in right for
3990 		 * future reference.
3991 		 */
3992 		lrecs = xfs_btree_get_numrecs(left);
3993 	}
3994 
3995 	/* Delete the temp cursor, we're done with it. */
3996 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3997 	tcur = NULL;
3998 
3999 	/* If here, we need to do a join to keep the tree balanced. */
4000 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4001 
4002 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4003 	    lrecs + xfs_btree_get_numrecs(block) <=
4004 			cur->bc_ops->get_maxrecs(cur, level)) {
4005 		/*
4006 		 * Set "right" to be the starting block,
4007 		 * "left" to be the left neighbor.
4008 		 */
4009 		rptr = cptr;
4010 		right = block;
4011 		rbp = bp;
4012 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4013 		if (error)
4014 			goto error0;
4015 
4016 	/*
4017 	 * If that won't work, see if we can join with the right neighbor block.
4018 	 */
4019 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4020 		   rrecs + xfs_btree_get_numrecs(block) <=
4021 			cur->bc_ops->get_maxrecs(cur, level)) {
4022 		/*
4023 		 * Set "left" to be the starting block,
4024 		 * "right" to be the right neighbor.
4025 		 */
4026 		lptr = cptr;
4027 		left = block;
4028 		lbp = bp;
4029 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4030 		if (error)
4031 			goto error0;
4032 
4033 	/*
4034 	 * Otherwise, we can't fix the imbalance.
4035 	 * Just return.  This is probably a logic error, but it's not fatal.
4036 	 */
4037 	} else {
4038 		error = xfs_btree_dec_cursor(cur, level, stat);
4039 		if (error)
4040 			goto error0;
4041 		return 0;
4042 	}
4043 
4044 	rrecs = xfs_btree_get_numrecs(right);
4045 	lrecs = xfs_btree_get_numrecs(left);
4046 
4047 	/*
4048 	 * We're now going to join "left" and "right" by moving all the stuff
4049 	 * in "right" to "left" and deleting "right".
4050 	 */
4051 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4052 	if (level > 0) {
4053 		/* It's a non-leaf.  Move keys and pointers. */
4054 		union xfs_btree_key	*lkp;	/* left btree key */
4055 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4056 		union xfs_btree_key	*rkp;	/* right btree key */
4057 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4058 
4059 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4060 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4061 		rkp = xfs_btree_key_addr(cur, 1, right);
4062 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4063 #ifdef DEBUG
4064 		for (i = 1; i < rrecs; i++) {
4065 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4066 			if (error)
4067 				goto error0;
4068 		}
4069 #endif
4070 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4071 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4072 
4073 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4074 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4075 	} else {
4076 		/* It's a leaf.  Move records.  */
4077 		union xfs_btree_rec	*lrp;	/* left record pointer */
4078 		union xfs_btree_rec	*rrp;	/* right record pointer */
4079 
4080 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4081 		rrp = xfs_btree_rec_addr(cur, 1, right);
4082 
4083 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4084 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4085 	}
4086 
4087 	XFS_BTREE_STATS_INC(cur, join);
4088 
4089 	/*
4090 	 * Fix up the number of records and right block pointer in the
4091 	 * surviving block, and log it.
4092 	 */
4093 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4094 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4095 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4096 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4097 
4098 	/* If there is a right sibling, point it to the remaining block. */
4099 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4100 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4101 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4102 		if (error)
4103 			goto error0;
4104 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4105 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4106 	}
4107 
4108 	/* Free the deleted block. */
4109 	error = xfs_btree_free_block(cur, rbp);
4110 	if (error)
4111 		goto error0;
4112 
4113 	/*
4114 	 * If we joined with the left neighbor, set the buffer in the
4115 	 * cursor to the left block, and fix up the index.
4116 	 */
4117 	if (bp != lbp) {
4118 		cur->bc_bufs[level] = lbp;
4119 		cur->bc_ptrs[level] += lrecs;
4120 		cur->bc_ra[level] = 0;
4121 	}
4122 	/*
4123 	 * If we joined with the right neighbor and there's a level above
4124 	 * us, increment the cursor at that level.
4125 	 */
4126 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4127 		   (level + 1 < cur->bc_nlevels)) {
4128 		error = xfs_btree_increment(cur, level + 1, &i);
4129 		if (error)
4130 			goto error0;
4131 	}
4132 
4133 	/*
4134 	 * Readjust the ptr at this level if it's not a leaf, since it's
4135 	 * still pointing at the deletion point, which makes the cursor
4136 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4137 	 * We can't use decrement because it would change the next level up.
4138 	 */
4139 	if (level > 0)
4140 		cur->bc_ptrs[level]--;
4141 
4142 	/*
4143 	 * We combined blocks, so we have to update the parent keys if the
4144 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4145 	 * points to the old block so that the caller knows which record to
4146 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4147 	 * for us if we return stat == 2.  The other exit points from this
4148 	 * function don't require deletions further up the tree, so they can
4149 	 * call updkeys directly.
4150 	 */
4151 
4152 	/* Return value means the next level up has something to do. */
4153 	*stat = 2;
4154 	return 0;
4155 
4156 error0:
4157 	if (tcur)
4158 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4159 	return error;
4160 }
4161 
4162 /*
4163  * Delete the record pointed to by cur.
4164  * The cursor refers to the place where the record was (could be inserted)
4165  * when the operation returns.
4166  */
4167 int					/* error */
4168 xfs_btree_delete(
4169 	struct xfs_btree_cur	*cur,
4170 	int			*stat)	/* success/failure */
4171 {
4172 	int			error;	/* error return value */
4173 	int			level;
4174 	int			i;
4175 	bool			joined = false;
4176 
4177 	/*
4178 	 * Go up the tree, starting at leaf level.
4179 	 *
4180 	 * If 2 is returned then a join was done; go to the next level.
4181 	 * Otherwise we are done.
4182 	 */
4183 	for (level = 0, i = 2; i == 2; level++) {
4184 		error = xfs_btree_delrec(cur, level, &i);
4185 		if (error)
4186 			goto error0;
4187 		if (i == 2)
4188 			joined = true;
4189 	}
4190 
4191 	/*
4192 	 * If we combined blocks as part of deleting the record, delrec won't
4193 	 * have updated the parent high keys so we have to do that here.
4194 	 */
4195 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4196 		error = xfs_btree_updkeys_force(cur, 0);
4197 		if (error)
4198 			goto error0;
4199 	}
4200 
4201 	if (i == 0) {
4202 		for (level = 1; level < cur->bc_nlevels; level++) {
4203 			if (cur->bc_ptrs[level] == 0) {
4204 				error = xfs_btree_decrement(cur, level, &i);
4205 				if (error)
4206 					goto error0;
4207 				break;
4208 			}
4209 		}
4210 	}
4211 
4212 	*stat = i;
4213 	return 0;
4214 error0:
4215 	return error;
4216 }
4217 
4218 /*
4219  * Get the data from the pointed-to record.
4220  */
4221 int					/* error */
4222 xfs_btree_get_rec(
4223 	struct xfs_btree_cur	*cur,	/* btree cursor */
4224 	union xfs_btree_rec	**recp,	/* output: btree record */
4225 	int			*stat)	/* output: success/failure */
4226 {
4227 	struct xfs_btree_block	*block;	/* btree block */
4228 	struct xfs_buf		*bp;	/* buffer pointer */
4229 	int			ptr;	/* record number */
4230 #ifdef DEBUG
4231 	int			error;	/* error return value */
4232 #endif
4233 
4234 	ptr = cur->bc_ptrs[0];
4235 	block = xfs_btree_get_block(cur, 0, &bp);
4236 
4237 #ifdef DEBUG
4238 	error = xfs_btree_check_block(cur, block, 0, bp);
4239 	if (error)
4240 		return error;
4241 #endif
4242 
4243 	/*
4244 	 * Off the right end or left end, return failure.
4245 	 */
4246 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4247 		*stat = 0;
4248 		return 0;
4249 	}
4250 
4251 	/*
4252 	 * Point to the record and extract its data.
4253 	 */
4254 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4255 	*stat = 1;
4256 	return 0;
4257 }
4258 
4259 /* Visit a block in a btree. */
4260 STATIC int
4261 xfs_btree_visit_block(
4262 	struct xfs_btree_cur		*cur,
4263 	int				level,
4264 	xfs_btree_visit_blocks_fn	fn,
4265 	void				*data)
4266 {
4267 	struct xfs_btree_block		*block;
4268 	struct xfs_buf			*bp;
4269 	union xfs_btree_ptr		rptr;
4270 	int				error;
4271 
4272 	/* do right sibling readahead */
4273 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4274 	block = xfs_btree_get_block(cur, level, &bp);
4275 
4276 	/* process the block */
4277 	error = fn(cur, level, data);
4278 	if (error)
4279 		return error;
4280 
4281 	/* now read rh sibling block for next iteration */
4282 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4283 	if (xfs_btree_ptr_is_null(cur, &rptr))
4284 		return -ENOENT;
4285 
4286 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4287 }
4288 
4289 
4290 /* Visit every block in a btree. */
4291 int
4292 xfs_btree_visit_blocks(
4293 	struct xfs_btree_cur		*cur,
4294 	xfs_btree_visit_blocks_fn	fn,
4295 	void				*data)
4296 {
4297 	union xfs_btree_ptr		lptr;
4298 	int				level;
4299 	struct xfs_btree_block		*block = NULL;
4300 	int				error = 0;
4301 
4302 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4303 
4304 	/* for each level */
4305 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4306 		/* grab the left hand block */
4307 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4308 		if (error)
4309 			return error;
4310 
4311 		/* readahead the left most block for the next level down */
4312 		if (level > 0) {
4313 			union xfs_btree_ptr     *ptr;
4314 
4315 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4316 			xfs_btree_readahead_ptr(cur, ptr, 1);
4317 
4318 			/* save for the next iteration of the loop */
4319 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4320 		}
4321 
4322 		/* for each buffer in the level */
4323 		do {
4324 			error = xfs_btree_visit_block(cur, level, fn, data);
4325 		} while (!error);
4326 
4327 		if (error != -ENOENT)
4328 			return error;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 /*
4335  * Change the owner of a btree.
4336  *
4337  * The mechanism we use here is ordered buffer logging. Because we don't know
4338  * how many buffers were are going to need to modify, we don't really want to
4339  * have to make transaction reservations for the worst case of every buffer in a
4340  * full size btree as that may be more space that we can fit in the log....
4341  *
4342  * We do the btree walk in the most optimal manner possible - we have sibling
4343  * pointers so we can just walk all the blocks on each level from left to right
4344  * in a single pass, and then move to the next level and do the same. We can
4345  * also do readahead on the sibling pointers to get IO moving more quickly,
4346  * though for slow disks this is unlikely to make much difference to performance
4347  * as the amount of CPU work we have to do before moving to the next block is
4348  * relatively small.
4349  *
4350  * For each btree block that we load, modify the owner appropriately, set the
4351  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4352  * we mark the region we change dirty so that if the buffer is relogged in
4353  * a subsequent transaction the changes we make here as an ordered buffer are
4354  * correctly relogged in that transaction.  If we are in recovery context, then
4355  * just queue the modified buffer as delayed write buffer so the transaction
4356  * recovery completion writes the changes to disk.
4357  */
4358 struct xfs_btree_block_change_owner_info {
4359 	uint64_t		new_owner;
4360 	struct list_head	*buffer_list;
4361 };
4362 
4363 static int
4364 xfs_btree_block_change_owner(
4365 	struct xfs_btree_cur	*cur,
4366 	int			level,
4367 	void			*data)
4368 {
4369 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4370 	struct xfs_btree_block	*block;
4371 	struct xfs_buf		*bp;
4372 
4373 	/* modify the owner */
4374 	block = xfs_btree_get_block(cur, level, &bp);
4375 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4376 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4377 			return 0;
4378 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4379 	} else {
4380 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4381 			return 0;
4382 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4383 	}
4384 
4385 	/*
4386 	 * If the block is a root block hosted in an inode, we might not have a
4387 	 * buffer pointer here and we shouldn't attempt to log the change as the
4388 	 * information is already held in the inode and discarded when the root
4389 	 * block is formatted into the on-disk inode fork. We still change it,
4390 	 * though, so everything is consistent in memory.
4391 	 */
4392 	if (!bp) {
4393 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4394 		ASSERT(level == cur->bc_nlevels - 1);
4395 		return 0;
4396 	}
4397 
4398 	if (cur->bc_tp) {
4399 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4400 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4401 			return -EAGAIN;
4402 		}
4403 	} else {
4404 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4405 	}
4406 
4407 	return 0;
4408 }
4409 
4410 int
4411 xfs_btree_change_owner(
4412 	struct xfs_btree_cur	*cur,
4413 	uint64_t		new_owner,
4414 	struct list_head	*buffer_list)
4415 {
4416 	struct xfs_btree_block_change_owner_info	bbcoi;
4417 
4418 	bbcoi.new_owner = new_owner;
4419 	bbcoi.buffer_list = buffer_list;
4420 
4421 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4422 			&bbcoi);
4423 }
4424 
4425 /* Verify the v5 fields of a long-format btree block. */
4426 xfs_failaddr_t
4427 xfs_btree_lblock_v5hdr_verify(
4428 	struct xfs_buf		*bp,
4429 	uint64_t		owner)
4430 {
4431 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4432 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4433 
4434 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4435 		return __this_address;
4436 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4437 		return __this_address;
4438 	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4439 		return __this_address;
4440 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4441 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4442 		return __this_address;
4443 	return NULL;
4444 }
4445 
4446 /* Verify a long-format btree block. */
4447 xfs_failaddr_t
4448 xfs_btree_lblock_verify(
4449 	struct xfs_buf		*bp,
4450 	unsigned int		max_recs)
4451 {
4452 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4453 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4454 
4455 	/* numrecs verification */
4456 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4457 		return __this_address;
4458 
4459 	/* sibling pointer verification */
4460 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4461 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4462 		return __this_address;
4463 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4464 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4465 		return __this_address;
4466 
4467 	return NULL;
4468 }
4469 
4470 /**
4471  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4472  *				      btree block
4473  *
4474  * @bp: buffer containing the btree block
4475  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4476  * @pag_max_level: pointer to the per-ag max level field
4477  */
4478 xfs_failaddr_t
4479 xfs_btree_sblock_v5hdr_verify(
4480 	struct xfs_buf		*bp)
4481 {
4482 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4483 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4484 	struct xfs_perag	*pag = bp->b_pag;
4485 
4486 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4487 		return __this_address;
4488 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4489 		return __this_address;
4490 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4491 		return __this_address;
4492 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4493 		return __this_address;
4494 	return NULL;
4495 }
4496 
4497 /**
4498  * xfs_btree_sblock_verify() -- verify a short-format btree block
4499  *
4500  * @bp: buffer containing the btree block
4501  * @max_recs: maximum records allowed in this btree node
4502  */
4503 xfs_failaddr_t
4504 xfs_btree_sblock_verify(
4505 	struct xfs_buf		*bp,
4506 	unsigned int		max_recs)
4507 {
4508 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4509 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4510 	xfs_agblock_t		agno;
4511 
4512 	/* numrecs verification */
4513 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4514 		return __this_address;
4515 
4516 	/* sibling pointer verification */
4517 	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4518 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4519 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4520 		return __this_address;
4521 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4522 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4523 		return __this_address;
4524 
4525 	return NULL;
4526 }
4527 
4528 /*
4529  * Calculate the number of btree levels needed to store a given number of
4530  * records in a short-format btree.
4531  */
4532 uint
4533 xfs_btree_compute_maxlevels(
4534 	uint			*limits,
4535 	unsigned long		len)
4536 {
4537 	uint			level;
4538 	unsigned long		maxblocks;
4539 
4540 	maxblocks = (len + limits[0] - 1) / limits[0];
4541 	for (level = 1; maxblocks > 1; level++)
4542 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4543 	return level;
4544 }
4545 
4546 /*
4547  * Query a regular btree for all records overlapping a given interval.
4548  * Start with a LE lookup of the key of low_rec and return all records
4549  * until we find a record with a key greater than the key of high_rec.
4550  */
4551 STATIC int
4552 xfs_btree_simple_query_range(
4553 	struct xfs_btree_cur		*cur,
4554 	union xfs_btree_key		*low_key,
4555 	union xfs_btree_key		*high_key,
4556 	xfs_btree_query_range_fn	fn,
4557 	void				*priv)
4558 {
4559 	union xfs_btree_rec		*recp;
4560 	union xfs_btree_key		rec_key;
4561 	int64_t				diff;
4562 	int				stat;
4563 	bool				firstrec = true;
4564 	int				error;
4565 
4566 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4567 	ASSERT(cur->bc_ops->diff_two_keys);
4568 
4569 	/*
4570 	 * Find the leftmost record.  The btree cursor must be set
4571 	 * to the low record used to generate low_key.
4572 	 */
4573 	stat = 0;
4574 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4575 	if (error)
4576 		goto out;
4577 
4578 	/* Nothing?  See if there's anything to the right. */
4579 	if (!stat) {
4580 		error = xfs_btree_increment(cur, 0, &stat);
4581 		if (error)
4582 			goto out;
4583 	}
4584 
4585 	while (stat) {
4586 		/* Find the record. */
4587 		error = xfs_btree_get_rec(cur, &recp, &stat);
4588 		if (error || !stat)
4589 			break;
4590 
4591 		/* Skip if high_key(rec) < low_key. */
4592 		if (firstrec) {
4593 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4594 			firstrec = false;
4595 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4596 					&rec_key);
4597 			if (diff > 0)
4598 				goto advloop;
4599 		}
4600 
4601 		/* Stop if high_key < low_key(rec). */
4602 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4603 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4604 		if (diff > 0)
4605 			break;
4606 
4607 		/* Callback */
4608 		error = fn(cur, recp, priv);
4609 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4610 			break;
4611 
4612 advloop:
4613 		/* Move on to the next record. */
4614 		error = xfs_btree_increment(cur, 0, &stat);
4615 		if (error)
4616 			break;
4617 	}
4618 
4619 out:
4620 	return error;
4621 }
4622 
4623 /*
4624  * Query an overlapped interval btree for all records overlapping a given
4625  * interval.  This function roughly follows the algorithm given in
4626  * "Interval Trees" of _Introduction to Algorithms_, which is section
4627  * 14.3 in the 2nd and 3rd editions.
4628  *
4629  * First, generate keys for the low and high records passed in.
4630  *
4631  * For any leaf node, generate the high and low keys for the record.
4632  * If the record keys overlap with the query low/high keys, pass the
4633  * record to the function iterator.
4634  *
4635  * For any internal node, compare the low and high keys of each
4636  * pointer against the query low/high keys.  If there's an overlap,
4637  * follow the pointer.
4638  *
4639  * As an optimization, we stop scanning a block when we find a low key
4640  * that is greater than the query's high key.
4641  */
4642 STATIC int
4643 xfs_btree_overlapped_query_range(
4644 	struct xfs_btree_cur		*cur,
4645 	union xfs_btree_key		*low_key,
4646 	union xfs_btree_key		*high_key,
4647 	xfs_btree_query_range_fn	fn,
4648 	void				*priv)
4649 {
4650 	union xfs_btree_ptr		ptr;
4651 	union xfs_btree_ptr		*pp;
4652 	union xfs_btree_key		rec_key;
4653 	union xfs_btree_key		rec_hkey;
4654 	union xfs_btree_key		*lkp;
4655 	union xfs_btree_key		*hkp;
4656 	union xfs_btree_rec		*recp;
4657 	struct xfs_btree_block		*block;
4658 	int64_t				ldiff;
4659 	int64_t				hdiff;
4660 	int				level;
4661 	struct xfs_buf			*bp;
4662 	int				i;
4663 	int				error;
4664 
4665 	/* Load the root of the btree. */
4666 	level = cur->bc_nlevels - 1;
4667 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4668 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4669 	if (error)
4670 		return error;
4671 	xfs_btree_get_block(cur, level, &bp);
4672 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4673 #ifdef DEBUG
4674 	error = xfs_btree_check_block(cur, block, level, bp);
4675 	if (error)
4676 		goto out;
4677 #endif
4678 	cur->bc_ptrs[level] = 1;
4679 
4680 	while (level < cur->bc_nlevels) {
4681 		block = xfs_btree_get_block(cur, level, &bp);
4682 
4683 		/* End of node, pop back towards the root. */
4684 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4685 pop_up:
4686 			if (level < cur->bc_nlevels - 1)
4687 				cur->bc_ptrs[level + 1]++;
4688 			level++;
4689 			continue;
4690 		}
4691 
4692 		if (level == 0) {
4693 			/* Handle a leaf node. */
4694 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4695 
4696 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4697 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4698 					low_key);
4699 
4700 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4701 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4702 					&rec_key);
4703 
4704 			/*
4705 			 * If (record's high key >= query's low key) and
4706 			 *    (query's high key >= record's low key), then
4707 			 * this record overlaps the query range; callback.
4708 			 */
4709 			if (ldiff >= 0 && hdiff >= 0) {
4710 				error = fn(cur, recp, priv);
4711 				if (error < 0 ||
4712 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4713 					break;
4714 			} else if (hdiff < 0) {
4715 				/* Record is larger than high key; pop. */
4716 				goto pop_up;
4717 			}
4718 			cur->bc_ptrs[level]++;
4719 			continue;
4720 		}
4721 
4722 		/* Handle an internal node. */
4723 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4724 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4725 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4726 
4727 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4728 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4729 
4730 		/*
4731 		 * If (pointer's high key >= query's low key) and
4732 		 *    (query's high key >= pointer's low key), then
4733 		 * this record overlaps the query range; follow pointer.
4734 		 */
4735 		if (ldiff >= 0 && hdiff >= 0) {
4736 			level--;
4737 			error = xfs_btree_lookup_get_block(cur, level, pp,
4738 					&block);
4739 			if (error)
4740 				goto out;
4741 			xfs_btree_get_block(cur, level, &bp);
4742 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4743 #ifdef DEBUG
4744 			error = xfs_btree_check_block(cur, block, level, bp);
4745 			if (error)
4746 				goto out;
4747 #endif
4748 			cur->bc_ptrs[level] = 1;
4749 			continue;
4750 		} else if (hdiff < 0) {
4751 			/* The low key is larger than the upper range; pop. */
4752 			goto pop_up;
4753 		}
4754 		cur->bc_ptrs[level]++;
4755 	}
4756 
4757 out:
4758 	/*
4759 	 * If we don't end this function with the cursor pointing at a record
4760 	 * block, a subsequent non-error cursor deletion will not release
4761 	 * node-level buffers, causing a buffer leak.  This is quite possible
4762 	 * with a zero-results range query, so release the buffers if we
4763 	 * failed to return any results.
4764 	 */
4765 	if (cur->bc_bufs[0] == NULL) {
4766 		for (i = 0; i < cur->bc_nlevels; i++) {
4767 			if (cur->bc_bufs[i]) {
4768 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4769 				cur->bc_bufs[i] = NULL;
4770 				cur->bc_ptrs[i] = 0;
4771 				cur->bc_ra[i] = 0;
4772 			}
4773 		}
4774 	}
4775 
4776 	return error;
4777 }
4778 
4779 /*
4780  * Query a btree for all records overlapping a given interval of keys.  The
4781  * supplied function will be called with each record found; return one of the
4782  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4783  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4784  * negative error code.
4785  */
4786 int
4787 xfs_btree_query_range(
4788 	struct xfs_btree_cur		*cur,
4789 	union xfs_btree_irec		*low_rec,
4790 	union xfs_btree_irec		*high_rec,
4791 	xfs_btree_query_range_fn	fn,
4792 	void				*priv)
4793 {
4794 	union xfs_btree_rec		rec;
4795 	union xfs_btree_key		low_key;
4796 	union xfs_btree_key		high_key;
4797 
4798 	/* Find the keys of both ends of the interval. */
4799 	cur->bc_rec = *high_rec;
4800 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4801 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4802 
4803 	cur->bc_rec = *low_rec;
4804 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4805 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4806 
4807 	/* Enforce low key < high key. */
4808 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4809 		return -EINVAL;
4810 
4811 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4812 		return xfs_btree_simple_query_range(cur, &low_key,
4813 				&high_key, fn, priv);
4814 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4815 			fn, priv);
4816 }
4817 
4818 /* Query a btree for all records. */
4819 int
4820 xfs_btree_query_all(
4821 	struct xfs_btree_cur		*cur,
4822 	xfs_btree_query_range_fn	fn,
4823 	void				*priv)
4824 {
4825 	union xfs_btree_key		low_key;
4826 	union xfs_btree_key		high_key;
4827 
4828 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4829 	memset(&low_key, 0, sizeof(low_key));
4830 	memset(&high_key, 0xFF, sizeof(high_key));
4831 
4832 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4833 }
4834 
4835 /*
4836  * Calculate the number of blocks needed to store a given number of records
4837  * in a short-format (per-AG metadata) btree.
4838  */
4839 xfs_extlen_t
4840 xfs_btree_calc_size(
4841 	uint			*limits,
4842 	unsigned long long	len)
4843 {
4844 	int			level;
4845 	int			maxrecs;
4846 	xfs_extlen_t		rval;
4847 
4848 	maxrecs = limits[0];
4849 	for (level = 0, rval = 0; len > 1; level++) {
4850 		len += maxrecs - 1;
4851 		do_div(len, maxrecs);
4852 		maxrecs = limits[1];
4853 		rval += len;
4854 	}
4855 	return rval;
4856 }
4857 
4858 static int
4859 xfs_btree_count_blocks_helper(
4860 	struct xfs_btree_cur	*cur,
4861 	int			level,
4862 	void			*data)
4863 {
4864 	xfs_extlen_t		*blocks = data;
4865 	(*blocks)++;
4866 
4867 	return 0;
4868 }
4869 
4870 /* Count the blocks in a btree and return the result in *blocks. */
4871 int
4872 xfs_btree_count_blocks(
4873 	struct xfs_btree_cur	*cur,
4874 	xfs_extlen_t		*blocks)
4875 {
4876 	*blocks = 0;
4877 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4878 			blocks);
4879 }
4880 
4881 /* Compare two btree pointers. */
4882 int64_t
4883 xfs_btree_diff_two_ptrs(
4884 	struct xfs_btree_cur		*cur,
4885 	const union xfs_btree_ptr	*a,
4886 	const union xfs_btree_ptr	*b)
4887 {
4888 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4889 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4890 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4891 }
4892 
4893 /* If there's an extent, we're done. */
4894 STATIC int
4895 xfs_btree_has_record_helper(
4896 	struct xfs_btree_cur		*cur,
4897 	union xfs_btree_rec		*rec,
4898 	void				*priv)
4899 {
4900 	return XFS_BTREE_QUERY_RANGE_ABORT;
4901 }
4902 
4903 /* Is there a record covering a given range of keys? */
4904 int
4905 xfs_btree_has_record(
4906 	struct xfs_btree_cur	*cur,
4907 	union xfs_btree_irec	*low,
4908 	union xfs_btree_irec	*high,
4909 	bool			*exists)
4910 {
4911 	int			error;
4912 
4913 	error = xfs_btree_query_range(cur, low, high,
4914 			&xfs_btree_has_record_helper, NULL);
4915 	if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4916 		*exists = true;
4917 		return 0;
4918 	}
4919 	*exists = false;
4920 	return error;
4921 }
4922