xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision 1491eaf9)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37 
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t	*xfs_btree_cur_zone;
42 
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 	  XFS_FIBT_MAGIC },
49 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
51 };
52 #define xfs_btree_magic(cur) \
53 	xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
54 
55 STATIC int				/* error (0 or EFSCORRUPTED) */
56 xfs_btree_check_lblock(
57 	struct xfs_btree_cur	*cur,	/* btree cursor */
58 	struct xfs_btree_block	*block,	/* btree long form block pointer */
59 	int			level,	/* level of the btree block */
60 	struct xfs_buf		*bp)	/* buffer for block, if any */
61 {
62 	int			lblock_ok = 1; /* block passes checks */
63 	struct xfs_mount	*mp;	/* file system mount point */
64 
65 	mp = cur->bc_mp;
66 
67 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
68 		lblock_ok = lblock_ok &&
69 			uuid_equal(&block->bb_u.l.bb_uuid,
70 				   &mp->m_sb.sb_meta_uuid) &&
71 			block->bb_u.l.bb_blkno == cpu_to_be64(
72 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
73 	}
74 
75 	lblock_ok = lblock_ok &&
76 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
77 		be16_to_cpu(block->bb_level) == level &&
78 		be16_to_cpu(block->bb_numrecs) <=
79 			cur->bc_ops->get_maxrecs(cur, level) &&
80 		block->bb_u.l.bb_leftsib &&
81 		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
82 		 XFS_FSB_SANITY_CHECK(mp,
83 			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
84 		block->bb_u.l.bb_rightsib &&
85 		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
86 		 XFS_FSB_SANITY_CHECK(mp,
87 			be64_to_cpu(block->bb_u.l.bb_rightsib)));
88 
89 	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
90 			XFS_ERRTAG_BTREE_CHECK_LBLOCK,
91 			XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
92 		if (bp)
93 			trace_xfs_btree_corrupt(bp, _RET_IP_);
94 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
95 		return -EFSCORRUPTED;
96 	}
97 	return 0;
98 }
99 
100 STATIC int				/* error (0 or EFSCORRUPTED) */
101 xfs_btree_check_sblock(
102 	struct xfs_btree_cur	*cur,	/* btree cursor */
103 	struct xfs_btree_block	*block,	/* btree short form block pointer */
104 	int			level,	/* level of the btree block */
105 	struct xfs_buf		*bp)	/* buffer containing block */
106 {
107 	struct xfs_mount	*mp;	/* file system mount point */
108 	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
109 	struct xfs_agf		*agf;	/* ag. freespace structure */
110 	xfs_agblock_t		agflen;	/* native ag. freespace length */
111 	int			sblock_ok = 1; /* block passes checks */
112 
113 	mp = cur->bc_mp;
114 	agbp = cur->bc_private.a.agbp;
115 	agf = XFS_BUF_TO_AGF(agbp);
116 	agflen = be32_to_cpu(agf->agf_length);
117 
118 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
119 		sblock_ok = sblock_ok &&
120 			uuid_equal(&block->bb_u.s.bb_uuid,
121 				   &mp->m_sb.sb_meta_uuid) &&
122 			block->bb_u.s.bb_blkno == cpu_to_be64(
123 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
124 	}
125 
126 	sblock_ok = sblock_ok &&
127 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
128 		be16_to_cpu(block->bb_level) == level &&
129 		be16_to_cpu(block->bb_numrecs) <=
130 			cur->bc_ops->get_maxrecs(cur, level) &&
131 		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
132 		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
133 		block->bb_u.s.bb_leftsib &&
134 		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
135 		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
136 		block->bb_u.s.bb_rightsib;
137 
138 	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
139 			XFS_ERRTAG_BTREE_CHECK_SBLOCK,
140 			XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
141 		if (bp)
142 			trace_xfs_btree_corrupt(bp, _RET_IP_);
143 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
144 		return -EFSCORRUPTED;
145 	}
146 	return 0;
147 }
148 
149 /*
150  * Debug routine: check that block header is ok.
151  */
152 int
153 xfs_btree_check_block(
154 	struct xfs_btree_cur	*cur,	/* btree cursor */
155 	struct xfs_btree_block	*block,	/* generic btree block pointer */
156 	int			level,	/* level of the btree block */
157 	struct xfs_buf		*bp)	/* buffer containing block, if any */
158 {
159 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
160 		return xfs_btree_check_lblock(cur, block, level, bp);
161 	else
162 		return xfs_btree_check_sblock(cur, block, level, bp);
163 }
164 
165 /*
166  * Check that (long) pointer is ok.
167  */
168 int					/* error (0 or EFSCORRUPTED) */
169 xfs_btree_check_lptr(
170 	struct xfs_btree_cur	*cur,	/* btree cursor */
171 	xfs_fsblock_t		bno,	/* btree block disk address */
172 	int			level)	/* btree block level */
173 {
174 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
175 		level > 0 &&
176 		bno != NULLFSBLOCK &&
177 		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
178 	return 0;
179 }
180 
181 #ifdef DEBUG
182 /*
183  * Check that (short) pointer is ok.
184  */
185 STATIC int				/* error (0 or EFSCORRUPTED) */
186 xfs_btree_check_sptr(
187 	struct xfs_btree_cur	*cur,	/* btree cursor */
188 	xfs_agblock_t		bno,	/* btree block disk address */
189 	int			level)	/* btree block level */
190 {
191 	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
192 
193 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
194 		level > 0 &&
195 		bno != NULLAGBLOCK &&
196 		bno != 0 &&
197 		bno < agblocks);
198 	return 0;
199 }
200 
201 /*
202  * Check that block ptr is ok.
203  */
204 STATIC int				/* error (0 or EFSCORRUPTED) */
205 xfs_btree_check_ptr(
206 	struct xfs_btree_cur	*cur,	/* btree cursor */
207 	union xfs_btree_ptr	*ptr,	/* btree block disk address */
208 	int			index,	/* offset from ptr to check */
209 	int			level)	/* btree block level */
210 {
211 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
212 		return xfs_btree_check_lptr(cur,
213 				be64_to_cpu((&ptr->l)[index]), level);
214 	} else {
215 		return xfs_btree_check_sptr(cur,
216 				be32_to_cpu((&ptr->s)[index]), level);
217 	}
218 }
219 #endif
220 
221 /*
222  * Calculate CRC on the whole btree block and stuff it into the
223  * long-form btree header.
224  *
225  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
226  * it into the buffer so recovery knows what the last modification was that made
227  * it to disk.
228  */
229 void
230 xfs_btree_lblock_calc_crc(
231 	struct xfs_buf		*bp)
232 {
233 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
234 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
235 
236 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
237 		return;
238 	if (bip)
239 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
240 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
241 }
242 
243 bool
244 xfs_btree_lblock_verify_crc(
245 	struct xfs_buf		*bp)
246 {
247 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
248 	struct xfs_mount	*mp = bp->b_target->bt_mount;
249 
250 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
251 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
252 			return false;
253 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
254 	}
255 
256 	return true;
257 }
258 
259 /*
260  * Calculate CRC on the whole btree block and stuff it into the
261  * short-form btree header.
262  *
263  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264  * it into the buffer so recovery knows what the last modification was that made
265  * it to disk.
266  */
267 void
268 xfs_btree_sblock_calc_crc(
269 	struct xfs_buf		*bp)
270 {
271 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
272 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
273 
274 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275 		return;
276 	if (bip)
277 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
279 }
280 
281 bool
282 xfs_btree_sblock_verify_crc(
283 	struct xfs_buf		*bp)
284 {
285 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
286 	struct xfs_mount	*mp = bp->b_target->bt_mount;
287 
288 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
289 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
290 			return false;
291 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
292 	}
293 
294 	return true;
295 }
296 
297 static int
298 xfs_btree_free_block(
299 	struct xfs_btree_cur	*cur,
300 	struct xfs_buf		*bp)
301 {
302 	int			error;
303 
304 	error = cur->bc_ops->free_block(cur, bp);
305 	if (!error) {
306 		xfs_trans_binval(cur->bc_tp, bp);
307 		XFS_BTREE_STATS_INC(cur, free);
308 	}
309 	return error;
310 }
311 
312 /*
313  * Delete the btree cursor.
314  */
315 void
316 xfs_btree_del_cursor(
317 	xfs_btree_cur_t	*cur,		/* btree cursor */
318 	int		error)		/* del because of error */
319 {
320 	int		i;		/* btree level */
321 
322 	/*
323 	 * Clear the buffer pointers, and release the buffers.
324 	 * If we're doing this in the face of an error, we
325 	 * need to make sure to inspect all of the entries
326 	 * in the bc_bufs array for buffers to be unlocked.
327 	 * This is because some of the btree code works from
328 	 * level n down to 0, and if we get an error along
329 	 * the way we won't have initialized all the entries
330 	 * down to 0.
331 	 */
332 	for (i = 0; i < cur->bc_nlevels; i++) {
333 		if (cur->bc_bufs[i])
334 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
335 		else if (!error)
336 			break;
337 	}
338 	/*
339 	 * Can't free a bmap cursor without having dealt with the
340 	 * allocated indirect blocks' accounting.
341 	 */
342 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
343 	       cur->bc_private.b.allocated == 0);
344 	/*
345 	 * Free the cursor.
346 	 */
347 	kmem_zone_free(xfs_btree_cur_zone, cur);
348 }
349 
350 /*
351  * Duplicate the btree cursor.
352  * Allocate a new one, copy the record, re-get the buffers.
353  */
354 int					/* error */
355 xfs_btree_dup_cursor(
356 	xfs_btree_cur_t	*cur,		/* input cursor */
357 	xfs_btree_cur_t	**ncur)		/* output cursor */
358 {
359 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
360 	int		error;		/* error return value */
361 	int		i;		/* level number of btree block */
362 	xfs_mount_t	*mp;		/* mount structure for filesystem */
363 	xfs_btree_cur_t	*new;		/* new cursor value */
364 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
365 
366 	tp = cur->bc_tp;
367 	mp = cur->bc_mp;
368 
369 	/*
370 	 * Allocate a new cursor like the old one.
371 	 */
372 	new = cur->bc_ops->dup_cursor(cur);
373 
374 	/*
375 	 * Copy the record currently in the cursor.
376 	 */
377 	new->bc_rec = cur->bc_rec;
378 
379 	/*
380 	 * For each level current, re-get the buffer and copy the ptr value.
381 	 */
382 	for (i = 0; i < new->bc_nlevels; i++) {
383 		new->bc_ptrs[i] = cur->bc_ptrs[i];
384 		new->bc_ra[i] = cur->bc_ra[i];
385 		bp = cur->bc_bufs[i];
386 		if (bp) {
387 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
388 						   XFS_BUF_ADDR(bp), mp->m_bsize,
389 						   0, &bp,
390 						   cur->bc_ops->buf_ops);
391 			if (error) {
392 				xfs_btree_del_cursor(new, error);
393 				*ncur = NULL;
394 				return error;
395 			}
396 		}
397 		new->bc_bufs[i] = bp;
398 	}
399 	*ncur = new;
400 	return 0;
401 }
402 
403 /*
404  * XFS btree block layout and addressing:
405  *
406  * There are two types of blocks in the btree: leaf and non-leaf blocks.
407  *
408  * The leaf record start with a header then followed by records containing
409  * the values.  A non-leaf block also starts with the same header, and
410  * then first contains lookup keys followed by an equal number of pointers
411  * to the btree blocks at the previous level.
412  *
413  *		+--------+-------+-------+-------+-------+-------+-------+
414  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
415  *		+--------+-------+-------+-------+-------+-------+-------+
416  *
417  *		+--------+-------+-------+-------+-------+-------+-------+
418  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
419  *		+--------+-------+-------+-------+-------+-------+-------+
420  *
421  * The header is called struct xfs_btree_block for reasons better left unknown
422  * and comes in different versions for short (32bit) and long (64bit) block
423  * pointers.  The record and key structures are defined by the btree instances
424  * and opaque to the btree core.  The block pointers are simple disk endian
425  * integers, available in a short (32bit) and long (64bit) variant.
426  *
427  * The helpers below calculate the offset of a given record, key or pointer
428  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
429  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
430  * inside the btree block is done using indices starting at one, not zero!
431  *
432  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
433  * overlapping intervals.  In such a tree, records are still sorted lowest to
434  * highest and indexed by the smallest key value that refers to the record.
435  * However, nodes are different: each pointer has two associated keys -- one
436  * indexing the lowest key available in the block(s) below (the same behavior
437  * as the key in a regular btree) and another indexing the highest key
438  * available in the block(s) below.  Because records are /not/ sorted by the
439  * highest key, all leaf block updates require us to compute the highest key
440  * that matches any record in the leaf and to recursively update the high keys
441  * in the nodes going further up in the tree, if necessary.  Nodes look like
442  * this:
443  *
444  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
445  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
446  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
447  *
448  * To perform an interval query on an overlapped tree, perform the usual
449  * depth-first search and use the low and high keys to decide if we can skip
450  * that particular node.  If a leaf node is reached, return the records that
451  * intersect the interval.  Note that an interval query may return numerous
452  * entries.  For a non-overlapped tree, simply search for the record associated
453  * with the lowest key and iterate forward until a non-matching record is
454  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
455  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
456  * more detail.
457  *
458  * Why do we care about overlapping intervals?  Let's say you have a bunch of
459  * reverse mapping records on a reflink filesystem:
460  *
461  * 1: +- file A startblock B offset C length D -----------+
462  * 2:      +- file E startblock F offset G length H --------------+
463  * 3:      +- file I startblock F offset J length K --+
464  * 4:                                                        +- file L... --+
465  *
466  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
467  * we'd simply increment the length of record 1.  But how do we find the record
468  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
469  * record 3 because the keys are ordered first by startblock.  An interval
470  * query would return records 1 and 2 because they both overlap (B+D-1), and
471  * from that we can pick out record 1 as the appropriate left neighbor.
472  *
473  * In the non-overlapped case you can do a LE lookup and decrement the cursor
474  * because a record's interval must end before the next record.
475  */
476 
477 /*
478  * Return size of the btree block header for this btree instance.
479  */
480 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
481 {
482 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
483 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
484 			return XFS_BTREE_LBLOCK_CRC_LEN;
485 		return XFS_BTREE_LBLOCK_LEN;
486 	}
487 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
488 		return XFS_BTREE_SBLOCK_CRC_LEN;
489 	return XFS_BTREE_SBLOCK_LEN;
490 }
491 
492 /*
493  * Return size of btree block pointers for this btree instance.
494  */
495 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
496 {
497 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
498 		sizeof(__be64) : sizeof(__be32);
499 }
500 
501 /*
502  * Calculate offset of the n-th record in a btree block.
503  */
504 STATIC size_t
505 xfs_btree_rec_offset(
506 	struct xfs_btree_cur	*cur,
507 	int			n)
508 {
509 	return xfs_btree_block_len(cur) +
510 		(n - 1) * cur->bc_ops->rec_len;
511 }
512 
513 /*
514  * Calculate offset of the n-th key in a btree block.
515  */
516 STATIC size_t
517 xfs_btree_key_offset(
518 	struct xfs_btree_cur	*cur,
519 	int			n)
520 {
521 	return xfs_btree_block_len(cur) +
522 		(n - 1) * cur->bc_ops->key_len;
523 }
524 
525 /*
526  * Calculate offset of the n-th high key in a btree block.
527  */
528 STATIC size_t
529 xfs_btree_high_key_offset(
530 	struct xfs_btree_cur	*cur,
531 	int			n)
532 {
533 	return xfs_btree_block_len(cur) +
534 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
535 }
536 
537 /*
538  * Calculate offset of the n-th block pointer in a btree block.
539  */
540 STATIC size_t
541 xfs_btree_ptr_offset(
542 	struct xfs_btree_cur	*cur,
543 	int			n,
544 	int			level)
545 {
546 	return xfs_btree_block_len(cur) +
547 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
548 		(n - 1) * xfs_btree_ptr_len(cur);
549 }
550 
551 /*
552  * Return a pointer to the n-th record in the btree block.
553  */
554 STATIC union xfs_btree_rec *
555 xfs_btree_rec_addr(
556 	struct xfs_btree_cur	*cur,
557 	int			n,
558 	struct xfs_btree_block	*block)
559 {
560 	return (union xfs_btree_rec *)
561 		((char *)block + xfs_btree_rec_offset(cur, n));
562 }
563 
564 /*
565  * Return a pointer to the n-th key in the btree block.
566  */
567 STATIC union xfs_btree_key *
568 xfs_btree_key_addr(
569 	struct xfs_btree_cur	*cur,
570 	int			n,
571 	struct xfs_btree_block	*block)
572 {
573 	return (union xfs_btree_key *)
574 		((char *)block + xfs_btree_key_offset(cur, n));
575 }
576 
577 /*
578  * Return a pointer to the n-th high key in the btree block.
579  */
580 STATIC union xfs_btree_key *
581 xfs_btree_high_key_addr(
582 	struct xfs_btree_cur	*cur,
583 	int			n,
584 	struct xfs_btree_block	*block)
585 {
586 	return (union xfs_btree_key *)
587 		((char *)block + xfs_btree_high_key_offset(cur, n));
588 }
589 
590 /*
591  * Return a pointer to the n-th block pointer in the btree block.
592  */
593 STATIC union xfs_btree_ptr *
594 xfs_btree_ptr_addr(
595 	struct xfs_btree_cur	*cur,
596 	int			n,
597 	struct xfs_btree_block	*block)
598 {
599 	int			level = xfs_btree_get_level(block);
600 
601 	ASSERT(block->bb_level != 0);
602 
603 	return (union xfs_btree_ptr *)
604 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
605 }
606 
607 /*
608  * Get the root block which is stored in the inode.
609  *
610  * For now this btree implementation assumes the btree root is always
611  * stored in the if_broot field of an inode fork.
612  */
613 STATIC struct xfs_btree_block *
614 xfs_btree_get_iroot(
615 	struct xfs_btree_cur	*cur)
616 {
617 	struct xfs_ifork	*ifp;
618 
619 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
620 	return (struct xfs_btree_block *)ifp->if_broot;
621 }
622 
623 /*
624  * Retrieve the block pointer from the cursor at the given level.
625  * This may be an inode btree root or from a buffer.
626  */
627 STATIC struct xfs_btree_block *		/* generic btree block pointer */
628 xfs_btree_get_block(
629 	struct xfs_btree_cur	*cur,	/* btree cursor */
630 	int			level,	/* level in btree */
631 	struct xfs_buf		**bpp)	/* buffer containing the block */
632 {
633 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
634 	    (level == cur->bc_nlevels - 1)) {
635 		*bpp = NULL;
636 		return xfs_btree_get_iroot(cur);
637 	}
638 
639 	*bpp = cur->bc_bufs[level];
640 	return XFS_BUF_TO_BLOCK(*bpp);
641 }
642 
643 /*
644  * Get a buffer for the block, return it with no data read.
645  * Long-form addressing.
646  */
647 xfs_buf_t *				/* buffer for fsbno */
648 xfs_btree_get_bufl(
649 	xfs_mount_t	*mp,		/* file system mount point */
650 	xfs_trans_t	*tp,		/* transaction pointer */
651 	xfs_fsblock_t	fsbno,		/* file system block number */
652 	uint		lock)		/* lock flags for get_buf */
653 {
654 	xfs_daddr_t		d;		/* real disk block address */
655 
656 	ASSERT(fsbno != NULLFSBLOCK);
657 	d = XFS_FSB_TO_DADDR(mp, fsbno);
658 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
659 }
660 
661 /*
662  * Get a buffer for the block, return it with no data read.
663  * Short-form addressing.
664  */
665 xfs_buf_t *				/* buffer for agno/agbno */
666 xfs_btree_get_bufs(
667 	xfs_mount_t	*mp,		/* file system mount point */
668 	xfs_trans_t	*tp,		/* transaction pointer */
669 	xfs_agnumber_t	agno,		/* allocation group number */
670 	xfs_agblock_t	agbno,		/* allocation group block number */
671 	uint		lock)		/* lock flags for get_buf */
672 {
673 	xfs_daddr_t		d;		/* real disk block address */
674 
675 	ASSERT(agno != NULLAGNUMBER);
676 	ASSERT(agbno != NULLAGBLOCK);
677 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
678 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
679 }
680 
681 /*
682  * Check for the cursor referring to the last block at the given level.
683  */
684 int					/* 1=is last block, 0=not last block */
685 xfs_btree_islastblock(
686 	xfs_btree_cur_t		*cur,	/* btree cursor */
687 	int			level)	/* level to check */
688 {
689 	struct xfs_btree_block	*block;	/* generic btree block pointer */
690 	xfs_buf_t		*bp;	/* buffer containing block */
691 
692 	block = xfs_btree_get_block(cur, level, &bp);
693 	xfs_btree_check_block(cur, block, level, bp);
694 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
695 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
696 	else
697 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
698 }
699 
700 /*
701  * Change the cursor to point to the first record at the given level.
702  * Other levels are unaffected.
703  */
704 STATIC int				/* success=1, failure=0 */
705 xfs_btree_firstrec(
706 	xfs_btree_cur_t		*cur,	/* btree cursor */
707 	int			level)	/* level to change */
708 {
709 	struct xfs_btree_block	*block;	/* generic btree block pointer */
710 	xfs_buf_t		*bp;	/* buffer containing block */
711 
712 	/*
713 	 * Get the block pointer for this level.
714 	 */
715 	block = xfs_btree_get_block(cur, level, &bp);
716 	xfs_btree_check_block(cur, block, level, bp);
717 	/*
718 	 * It's empty, there is no such record.
719 	 */
720 	if (!block->bb_numrecs)
721 		return 0;
722 	/*
723 	 * Set the ptr value to 1, that's the first record/key.
724 	 */
725 	cur->bc_ptrs[level] = 1;
726 	return 1;
727 }
728 
729 /*
730  * Change the cursor to point to the last record in the current block
731  * at the given level.  Other levels are unaffected.
732  */
733 STATIC int				/* success=1, failure=0 */
734 xfs_btree_lastrec(
735 	xfs_btree_cur_t		*cur,	/* btree cursor */
736 	int			level)	/* level to change */
737 {
738 	struct xfs_btree_block	*block;	/* generic btree block pointer */
739 	xfs_buf_t		*bp;	/* buffer containing block */
740 
741 	/*
742 	 * Get the block pointer for this level.
743 	 */
744 	block = xfs_btree_get_block(cur, level, &bp);
745 	xfs_btree_check_block(cur, block, level, bp);
746 	/*
747 	 * It's empty, there is no such record.
748 	 */
749 	if (!block->bb_numrecs)
750 		return 0;
751 	/*
752 	 * Set the ptr value to numrecs, that's the last record/key.
753 	 */
754 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
755 	return 1;
756 }
757 
758 /*
759  * Compute first and last byte offsets for the fields given.
760  * Interprets the offsets table, which contains struct field offsets.
761  */
762 void
763 xfs_btree_offsets(
764 	__int64_t	fields,		/* bitmask of fields */
765 	const short	*offsets,	/* table of field offsets */
766 	int		nbits,		/* number of bits to inspect */
767 	int		*first,		/* output: first byte offset */
768 	int		*last)		/* output: last byte offset */
769 {
770 	int		i;		/* current bit number */
771 	__int64_t	imask;		/* mask for current bit number */
772 
773 	ASSERT(fields != 0);
774 	/*
775 	 * Find the lowest bit, so the first byte offset.
776 	 */
777 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
778 		if (imask & fields) {
779 			*first = offsets[i];
780 			break;
781 		}
782 	}
783 	/*
784 	 * Find the highest bit, so the last byte offset.
785 	 */
786 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
787 		if (imask & fields) {
788 			*last = offsets[i + 1] - 1;
789 			break;
790 		}
791 	}
792 }
793 
794 /*
795  * Get a buffer for the block, return it read in.
796  * Long-form addressing.
797  */
798 int
799 xfs_btree_read_bufl(
800 	struct xfs_mount	*mp,		/* file system mount point */
801 	struct xfs_trans	*tp,		/* transaction pointer */
802 	xfs_fsblock_t		fsbno,		/* file system block number */
803 	uint			lock,		/* lock flags for read_buf */
804 	struct xfs_buf		**bpp,		/* buffer for fsbno */
805 	int			refval,		/* ref count value for buffer */
806 	const struct xfs_buf_ops *ops)
807 {
808 	struct xfs_buf		*bp;		/* return value */
809 	xfs_daddr_t		d;		/* real disk block address */
810 	int			error;
811 
812 	ASSERT(fsbno != NULLFSBLOCK);
813 	d = XFS_FSB_TO_DADDR(mp, fsbno);
814 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
815 				   mp->m_bsize, lock, &bp, ops);
816 	if (error)
817 		return error;
818 	if (bp)
819 		xfs_buf_set_ref(bp, refval);
820 	*bpp = bp;
821 	return 0;
822 }
823 
824 /*
825  * Read-ahead the block, don't wait for it, don't return a buffer.
826  * Long-form addressing.
827  */
828 /* ARGSUSED */
829 void
830 xfs_btree_reada_bufl(
831 	struct xfs_mount	*mp,		/* file system mount point */
832 	xfs_fsblock_t		fsbno,		/* file system block number */
833 	xfs_extlen_t		count,		/* count of filesystem blocks */
834 	const struct xfs_buf_ops *ops)
835 {
836 	xfs_daddr_t		d;
837 
838 	ASSERT(fsbno != NULLFSBLOCK);
839 	d = XFS_FSB_TO_DADDR(mp, fsbno);
840 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
841 }
842 
843 /*
844  * Read-ahead the block, don't wait for it, don't return a buffer.
845  * Short-form addressing.
846  */
847 /* ARGSUSED */
848 void
849 xfs_btree_reada_bufs(
850 	struct xfs_mount	*mp,		/* file system mount point */
851 	xfs_agnumber_t		agno,		/* allocation group number */
852 	xfs_agblock_t		agbno,		/* allocation group block number */
853 	xfs_extlen_t		count,		/* count of filesystem blocks */
854 	const struct xfs_buf_ops *ops)
855 {
856 	xfs_daddr_t		d;
857 
858 	ASSERT(agno != NULLAGNUMBER);
859 	ASSERT(agbno != NULLAGBLOCK);
860 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
861 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
862 }
863 
864 STATIC int
865 xfs_btree_readahead_lblock(
866 	struct xfs_btree_cur	*cur,
867 	int			lr,
868 	struct xfs_btree_block	*block)
869 {
870 	int			rval = 0;
871 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
872 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
873 
874 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
875 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
876 				     cur->bc_ops->buf_ops);
877 		rval++;
878 	}
879 
880 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
881 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
882 				     cur->bc_ops->buf_ops);
883 		rval++;
884 	}
885 
886 	return rval;
887 }
888 
889 STATIC int
890 xfs_btree_readahead_sblock(
891 	struct xfs_btree_cur	*cur,
892 	int			lr,
893 	struct xfs_btree_block *block)
894 {
895 	int			rval = 0;
896 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
897 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
898 
899 
900 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
901 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
902 				     left, 1, cur->bc_ops->buf_ops);
903 		rval++;
904 	}
905 
906 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
907 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
908 				     right, 1, cur->bc_ops->buf_ops);
909 		rval++;
910 	}
911 
912 	return rval;
913 }
914 
915 /*
916  * Read-ahead btree blocks, at the given level.
917  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
918  */
919 STATIC int
920 xfs_btree_readahead(
921 	struct xfs_btree_cur	*cur,		/* btree cursor */
922 	int			lev,		/* level in btree */
923 	int			lr)		/* left/right bits */
924 {
925 	struct xfs_btree_block	*block;
926 
927 	/*
928 	 * No readahead needed if we are at the root level and the
929 	 * btree root is stored in the inode.
930 	 */
931 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
932 	    (lev == cur->bc_nlevels - 1))
933 		return 0;
934 
935 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
936 		return 0;
937 
938 	cur->bc_ra[lev] |= lr;
939 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
940 
941 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
942 		return xfs_btree_readahead_lblock(cur, lr, block);
943 	return xfs_btree_readahead_sblock(cur, lr, block);
944 }
945 
946 STATIC xfs_daddr_t
947 xfs_btree_ptr_to_daddr(
948 	struct xfs_btree_cur	*cur,
949 	union xfs_btree_ptr	*ptr)
950 {
951 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
952 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
953 
954 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
955 	} else {
956 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
957 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
958 
959 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
960 					be32_to_cpu(ptr->s));
961 	}
962 }
963 
964 /*
965  * Readahead @count btree blocks at the given @ptr location.
966  *
967  * We don't need to care about long or short form btrees here as we have a
968  * method of converting the ptr directly to a daddr available to us.
969  */
970 STATIC void
971 xfs_btree_readahead_ptr(
972 	struct xfs_btree_cur	*cur,
973 	union xfs_btree_ptr	*ptr,
974 	xfs_extlen_t		count)
975 {
976 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
977 			  xfs_btree_ptr_to_daddr(cur, ptr),
978 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
979 }
980 
981 /*
982  * Set the buffer for level "lev" in the cursor to bp, releasing
983  * any previous buffer.
984  */
985 STATIC void
986 xfs_btree_setbuf(
987 	xfs_btree_cur_t		*cur,	/* btree cursor */
988 	int			lev,	/* level in btree */
989 	xfs_buf_t		*bp)	/* new buffer to set */
990 {
991 	struct xfs_btree_block	*b;	/* btree block */
992 
993 	if (cur->bc_bufs[lev])
994 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
995 	cur->bc_bufs[lev] = bp;
996 	cur->bc_ra[lev] = 0;
997 
998 	b = XFS_BUF_TO_BLOCK(bp);
999 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1000 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1001 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1002 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1003 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1004 	} else {
1005 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1006 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1007 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1008 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1009 	}
1010 }
1011 
1012 STATIC int
1013 xfs_btree_ptr_is_null(
1014 	struct xfs_btree_cur	*cur,
1015 	union xfs_btree_ptr	*ptr)
1016 {
1017 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1018 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1019 	else
1020 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1021 }
1022 
1023 STATIC void
1024 xfs_btree_set_ptr_null(
1025 	struct xfs_btree_cur	*cur,
1026 	union xfs_btree_ptr	*ptr)
1027 {
1028 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1029 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1030 	else
1031 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1032 }
1033 
1034 /*
1035  * Get/set/init sibling pointers
1036  */
1037 STATIC void
1038 xfs_btree_get_sibling(
1039 	struct xfs_btree_cur	*cur,
1040 	struct xfs_btree_block	*block,
1041 	union xfs_btree_ptr	*ptr,
1042 	int			lr)
1043 {
1044 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1045 
1046 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1047 		if (lr == XFS_BB_RIGHTSIB)
1048 			ptr->l = block->bb_u.l.bb_rightsib;
1049 		else
1050 			ptr->l = block->bb_u.l.bb_leftsib;
1051 	} else {
1052 		if (lr == XFS_BB_RIGHTSIB)
1053 			ptr->s = block->bb_u.s.bb_rightsib;
1054 		else
1055 			ptr->s = block->bb_u.s.bb_leftsib;
1056 	}
1057 }
1058 
1059 STATIC void
1060 xfs_btree_set_sibling(
1061 	struct xfs_btree_cur	*cur,
1062 	struct xfs_btree_block	*block,
1063 	union xfs_btree_ptr	*ptr,
1064 	int			lr)
1065 {
1066 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1067 
1068 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1069 		if (lr == XFS_BB_RIGHTSIB)
1070 			block->bb_u.l.bb_rightsib = ptr->l;
1071 		else
1072 			block->bb_u.l.bb_leftsib = ptr->l;
1073 	} else {
1074 		if (lr == XFS_BB_RIGHTSIB)
1075 			block->bb_u.s.bb_rightsib = ptr->s;
1076 		else
1077 			block->bb_u.s.bb_leftsib = ptr->s;
1078 	}
1079 }
1080 
1081 void
1082 xfs_btree_init_block_int(
1083 	struct xfs_mount	*mp,
1084 	struct xfs_btree_block	*buf,
1085 	xfs_daddr_t		blkno,
1086 	__u32			magic,
1087 	__u16			level,
1088 	__u16			numrecs,
1089 	__u64			owner,
1090 	unsigned int		flags)
1091 {
1092 	buf->bb_magic = cpu_to_be32(magic);
1093 	buf->bb_level = cpu_to_be16(level);
1094 	buf->bb_numrecs = cpu_to_be16(numrecs);
1095 
1096 	if (flags & XFS_BTREE_LONG_PTRS) {
1097 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1098 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1099 		if (flags & XFS_BTREE_CRC_BLOCKS) {
1100 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1101 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1102 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1103 			buf->bb_u.l.bb_pad = 0;
1104 			buf->bb_u.l.bb_lsn = 0;
1105 		}
1106 	} else {
1107 		/* owner is a 32 bit value on short blocks */
1108 		__u32 __owner = (__u32)owner;
1109 
1110 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1111 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1112 		if (flags & XFS_BTREE_CRC_BLOCKS) {
1113 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1114 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1115 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1116 			buf->bb_u.s.bb_lsn = 0;
1117 		}
1118 	}
1119 }
1120 
1121 void
1122 xfs_btree_init_block(
1123 	struct xfs_mount *mp,
1124 	struct xfs_buf	*bp,
1125 	__u32		magic,
1126 	__u16		level,
1127 	__u16		numrecs,
1128 	__u64		owner,
1129 	unsigned int	flags)
1130 {
1131 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1132 				 magic, level, numrecs, owner, flags);
1133 }
1134 
1135 STATIC void
1136 xfs_btree_init_block_cur(
1137 	struct xfs_btree_cur	*cur,
1138 	struct xfs_buf		*bp,
1139 	int			level,
1140 	int			numrecs)
1141 {
1142 	__u64 owner;
1143 
1144 	/*
1145 	 * we can pull the owner from the cursor right now as the different
1146 	 * owners align directly with the pointer size of the btree. This may
1147 	 * change in future, but is safe for current users of the generic btree
1148 	 * code.
1149 	 */
1150 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1151 		owner = cur->bc_private.b.ip->i_ino;
1152 	else
1153 		owner = cur->bc_private.a.agno;
1154 
1155 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1156 				 xfs_btree_magic(cur), level, numrecs,
1157 				 owner, cur->bc_flags);
1158 }
1159 
1160 /*
1161  * Return true if ptr is the last record in the btree and
1162  * we need to track updates to this record.  The decision
1163  * will be further refined in the update_lastrec method.
1164  */
1165 STATIC int
1166 xfs_btree_is_lastrec(
1167 	struct xfs_btree_cur	*cur,
1168 	struct xfs_btree_block	*block,
1169 	int			level)
1170 {
1171 	union xfs_btree_ptr	ptr;
1172 
1173 	if (level > 0)
1174 		return 0;
1175 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1176 		return 0;
1177 
1178 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1179 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1180 		return 0;
1181 	return 1;
1182 }
1183 
1184 STATIC void
1185 xfs_btree_buf_to_ptr(
1186 	struct xfs_btree_cur	*cur,
1187 	struct xfs_buf		*bp,
1188 	union xfs_btree_ptr	*ptr)
1189 {
1190 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1191 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1192 					XFS_BUF_ADDR(bp)));
1193 	else {
1194 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1195 					XFS_BUF_ADDR(bp)));
1196 	}
1197 }
1198 
1199 STATIC void
1200 xfs_btree_set_refs(
1201 	struct xfs_btree_cur	*cur,
1202 	struct xfs_buf		*bp)
1203 {
1204 	switch (cur->bc_btnum) {
1205 	case XFS_BTNUM_BNO:
1206 	case XFS_BTNUM_CNT:
1207 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1208 		break;
1209 	case XFS_BTNUM_INO:
1210 	case XFS_BTNUM_FINO:
1211 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1212 		break;
1213 	case XFS_BTNUM_BMAP:
1214 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1215 		break;
1216 	case XFS_BTNUM_RMAP:
1217 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1218 		break;
1219 	default:
1220 		ASSERT(0);
1221 	}
1222 }
1223 
1224 STATIC int
1225 xfs_btree_get_buf_block(
1226 	struct xfs_btree_cur	*cur,
1227 	union xfs_btree_ptr	*ptr,
1228 	int			flags,
1229 	struct xfs_btree_block	**block,
1230 	struct xfs_buf		**bpp)
1231 {
1232 	struct xfs_mount	*mp = cur->bc_mp;
1233 	xfs_daddr_t		d;
1234 
1235 	/* need to sort out how callers deal with failures first */
1236 	ASSERT(!(flags & XBF_TRYLOCK));
1237 
1238 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1239 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1240 				 mp->m_bsize, flags);
1241 
1242 	if (!*bpp)
1243 		return -ENOMEM;
1244 
1245 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1246 	*block = XFS_BUF_TO_BLOCK(*bpp);
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Read in the buffer at the given ptr and return the buffer and
1252  * the block pointer within the buffer.
1253  */
1254 STATIC int
1255 xfs_btree_read_buf_block(
1256 	struct xfs_btree_cur	*cur,
1257 	union xfs_btree_ptr	*ptr,
1258 	int			flags,
1259 	struct xfs_btree_block	**block,
1260 	struct xfs_buf		**bpp)
1261 {
1262 	struct xfs_mount	*mp = cur->bc_mp;
1263 	xfs_daddr_t		d;
1264 	int			error;
1265 
1266 	/* need to sort out how callers deal with failures first */
1267 	ASSERT(!(flags & XBF_TRYLOCK));
1268 
1269 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1270 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1271 				   mp->m_bsize, flags, bpp,
1272 				   cur->bc_ops->buf_ops);
1273 	if (error)
1274 		return error;
1275 
1276 	xfs_btree_set_refs(cur, *bpp);
1277 	*block = XFS_BUF_TO_BLOCK(*bpp);
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Copy keys from one btree block to another.
1283  */
1284 STATIC void
1285 xfs_btree_copy_keys(
1286 	struct xfs_btree_cur	*cur,
1287 	union xfs_btree_key	*dst_key,
1288 	union xfs_btree_key	*src_key,
1289 	int			numkeys)
1290 {
1291 	ASSERT(numkeys >= 0);
1292 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1293 }
1294 
1295 /*
1296  * Copy records from one btree block to another.
1297  */
1298 STATIC void
1299 xfs_btree_copy_recs(
1300 	struct xfs_btree_cur	*cur,
1301 	union xfs_btree_rec	*dst_rec,
1302 	union xfs_btree_rec	*src_rec,
1303 	int			numrecs)
1304 {
1305 	ASSERT(numrecs >= 0);
1306 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1307 }
1308 
1309 /*
1310  * Copy block pointers from one btree block to another.
1311  */
1312 STATIC void
1313 xfs_btree_copy_ptrs(
1314 	struct xfs_btree_cur	*cur,
1315 	union xfs_btree_ptr	*dst_ptr,
1316 	union xfs_btree_ptr	*src_ptr,
1317 	int			numptrs)
1318 {
1319 	ASSERT(numptrs >= 0);
1320 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1321 }
1322 
1323 /*
1324  * Shift keys one index left/right inside a single btree block.
1325  */
1326 STATIC void
1327 xfs_btree_shift_keys(
1328 	struct xfs_btree_cur	*cur,
1329 	union xfs_btree_key	*key,
1330 	int			dir,
1331 	int			numkeys)
1332 {
1333 	char			*dst_key;
1334 
1335 	ASSERT(numkeys >= 0);
1336 	ASSERT(dir == 1 || dir == -1);
1337 
1338 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1339 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1340 }
1341 
1342 /*
1343  * Shift records one index left/right inside a single btree block.
1344  */
1345 STATIC void
1346 xfs_btree_shift_recs(
1347 	struct xfs_btree_cur	*cur,
1348 	union xfs_btree_rec	*rec,
1349 	int			dir,
1350 	int			numrecs)
1351 {
1352 	char			*dst_rec;
1353 
1354 	ASSERT(numrecs >= 0);
1355 	ASSERT(dir == 1 || dir == -1);
1356 
1357 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1358 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1359 }
1360 
1361 /*
1362  * Shift block pointers one index left/right inside a single btree block.
1363  */
1364 STATIC void
1365 xfs_btree_shift_ptrs(
1366 	struct xfs_btree_cur	*cur,
1367 	union xfs_btree_ptr	*ptr,
1368 	int			dir,
1369 	int			numptrs)
1370 {
1371 	char			*dst_ptr;
1372 
1373 	ASSERT(numptrs >= 0);
1374 	ASSERT(dir == 1 || dir == -1);
1375 
1376 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1377 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379 
1380 /*
1381  * Log key values from the btree block.
1382  */
1383 STATIC void
1384 xfs_btree_log_keys(
1385 	struct xfs_btree_cur	*cur,
1386 	struct xfs_buf		*bp,
1387 	int			first,
1388 	int			last)
1389 {
1390 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1391 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1392 
1393 	if (bp) {
1394 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1395 		xfs_trans_log_buf(cur->bc_tp, bp,
1396 				  xfs_btree_key_offset(cur, first),
1397 				  xfs_btree_key_offset(cur, last + 1) - 1);
1398 	} else {
1399 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1400 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1401 	}
1402 
1403 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1404 }
1405 
1406 /*
1407  * Log record values from the btree block.
1408  */
1409 void
1410 xfs_btree_log_recs(
1411 	struct xfs_btree_cur	*cur,
1412 	struct xfs_buf		*bp,
1413 	int			first,
1414 	int			last)
1415 {
1416 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1417 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1418 
1419 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 	xfs_trans_log_buf(cur->bc_tp, bp,
1421 			  xfs_btree_rec_offset(cur, first),
1422 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1423 
1424 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1425 }
1426 
1427 /*
1428  * Log block pointer fields from a btree block (nonleaf).
1429  */
1430 STATIC void
1431 xfs_btree_log_ptrs(
1432 	struct xfs_btree_cur	*cur,	/* btree cursor */
1433 	struct xfs_buf		*bp,	/* buffer containing btree block */
1434 	int			first,	/* index of first pointer to log */
1435 	int			last)	/* index of last pointer to log */
1436 {
1437 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1438 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1439 
1440 	if (bp) {
1441 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1442 		int			level = xfs_btree_get_level(block);
1443 
1444 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445 		xfs_trans_log_buf(cur->bc_tp, bp,
1446 				xfs_btree_ptr_offset(cur, first, level),
1447 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448 	} else {
1449 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1450 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1451 	}
1452 
1453 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1454 }
1455 
1456 /*
1457  * Log fields from a btree block header.
1458  */
1459 void
1460 xfs_btree_log_block(
1461 	struct xfs_btree_cur	*cur,	/* btree cursor */
1462 	struct xfs_buf		*bp,	/* buffer containing btree block */
1463 	int			fields)	/* mask of fields: XFS_BB_... */
1464 {
1465 	int			first;	/* first byte offset logged */
1466 	int			last;	/* last byte offset logged */
1467 	static const short	soffsets[] = {	/* table of offsets (short) */
1468 		offsetof(struct xfs_btree_block, bb_magic),
1469 		offsetof(struct xfs_btree_block, bb_level),
1470 		offsetof(struct xfs_btree_block, bb_numrecs),
1471 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1472 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1473 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1474 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1475 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1476 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1477 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1478 		XFS_BTREE_SBLOCK_CRC_LEN
1479 	};
1480 	static const short	loffsets[] = {	/* table of offsets (long) */
1481 		offsetof(struct xfs_btree_block, bb_magic),
1482 		offsetof(struct xfs_btree_block, bb_level),
1483 		offsetof(struct xfs_btree_block, bb_numrecs),
1484 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1485 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1486 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1487 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1488 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1489 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1490 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1491 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1492 		XFS_BTREE_LBLOCK_CRC_LEN
1493 	};
1494 
1495 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1496 	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1497 
1498 	if (bp) {
1499 		int nbits;
1500 
1501 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1502 			/*
1503 			 * We don't log the CRC when updating a btree
1504 			 * block but instead recreate it during log
1505 			 * recovery.  As the log buffers have checksums
1506 			 * of their own this is safe and avoids logging a crc
1507 			 * update in a lot of places.
1508 			 */
1509 			if (fields == XFS_BB_ALL_BITS)
1510 				fields = XFS_BB_ALL_BITS_CRC;
1511 			nbits = XFS_BB_NUM_BITS_CRC;
1512 		} else {
1513 			nbits = XFS_BB_NUM_BITS;
1514 		}
1515 		xfs_btree_offsets(fields,
1516 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1517 					loffsets : soffsets,
1518 				  nbits, &first, &last);
1519 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1521 	} else {
1522 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1523 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1524 	}
1525 
1526 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1527 }
1528 
1529 /*
1530  * Increment cursor by one record at the level.
1531  * For nonzero levels the leaf-ward information is untouched.
1532  */
1533 int						/* error */
1534 xfs_btree_increment(
1535 	struct xfs_btree_cur	*cur,
1536 	int			level,
1537 	int			*stat)		/* success/failure */
1538 {
1539 	struct xfs_btree_block	*block;
1540 	union xfs_btree_ptr	ptr;
1541 	struct xfs_buf		*bp;
1542 	int			error;		/* error return value */
1543 	int			lev;
1544 
1545 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1546 	XFS_BTREE_TRACE_ARGI(cur, level);
1547 
1548 	ASSERT(level < cur->bc_nlevels);
1549 
1550 	/* Read-ahead to the right at this level. */
1551 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1552 
1553 	/* Get a pointer to the btree block. */
1554 	block = xfs_btree_get_block(cur, level, &bp);
1555 
1556 #ifdef DEBUG
1557 	error = xfs_btree_check_block(cur, block, level, bp);
1558 	if (error)
1559 		goto error0;
1560 #endif
1561 
1562 	/* We're done if we remain in the block after the increment. */
1563 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1564 		goto out1;
1565 
1566 	/* Fail if we just went off the right edge of the tree. */
1567 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1568 	if (xfs_btree_ptr_is_null(cur, &ptr))
1569 		goto out0;
1570 
1571 	XFS_BTREE_STATS_INC(cur, increment);
1572 
1573 	/*
1574 	 * March up the tree incrementing pointers.
1575 	 * Stop when we don't go off the right edge of a block.
1576 	 */
1577 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1578 		block = xfs_btree_get_block(cur, lev, &bp);
1579 
1580 #ifdef DEBUG
1581 		error = xfs_btree_check_block(cur, block, lev, bp);
1582 		if (error)
1583 			goto error0;
1584 #endif
1585 
1586 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1587 			break;
1588 
1589 		/* Read-ahead the right block for the next loop. */
1590 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1591 	}
1592 
1593 	/*
1594 	 * If we went off the root then we are either seriously
1595 	 * confused or have the tree root in an inode.
1596 	 */
1597 	if (lev == cur->bc_nlevels) {
1598 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1599 			goto out0;
1600 		ASSERT(0);
1601 		error = -EFSCORRUPTED;
1602 		goto error0;
1603 	}
1604 	ASSERT(lev < cur->bc_nlevels);
1605 
1606 	/*
1607 	 * Now walk back down the tree, fixing up the cursor's buffer
1608 	 * pointers and key numbers.
1609 	 */
1610 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1611 		union xfs_btree_ptr	*ptrp;
1612 
1613 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1614 		--lev;
1615 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1616 		if (error)
1617 			goto error0;
1618 
1619 		xfs_btree_setbuf(cur, lev, bp);
1620 		cur->bc_ptrs[lev] = 1;
1621 	}
1622 out1:
1623 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1624 	*stat = 1;
1625 	return 0;
1626 
1627 out0:
1628 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1629 	*stat = 0;
1630 	return 0;
1631 
1632 error0:
1633 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1634 	return error;
1635 }
1636 
1637 /*
1638  * Decrement cursor by one record at the level.
1639  * For nonzero levels the leaf-ward information is untouched.
1640  */
1641 int						/* error */
1642 xfs_btree_decrement(
1643 	struct xfs_btree_cur	*cur,
1644 	int			level,
1645 	int			*stat)		/* success/failure */
1646 {
1647 	struct xfs_btree_block	*block;
1648 	xfs_buf_t		*bp;
1649 	int			error;		/* error return value */
1650 	int			lev;
1651 	union xfs_btree_ptr	ptr;
1652 
1653 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1654 	XFS_BTREE_TRACE_ARGI(cur, level);
1655 
1656 	ASSERT(level < cur->bc_nlevels);
1657 
1658 	/* Read-ahead to the left at this level. */
1659 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1660 
1661 	/* We're done if we remain in the block after the decrement. */
1662 	if (--cur->bc_ptrs[level] > 0)
1663 		goto out1;
1664 
1665 	/* Get a pointer to the btree block. */
1666 	block = xfs_btree_get_block(cur, level, &bp);
1667 
1668 #ifdef DEBUG
1669 	error = xfs_btree_check_block(cur, block, level, bp);
1670 	if (error)
1671 		goto error0;
1672 #endif
1673 
1674 	/* Fail if we just went off the left edge of the tree. */
1675 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1676 	if (xfs_btree_ptr_is_null(cur, &ptr))
1677 		goto out0;
1678 
1679 	XFS_BTREE_STATS_INC(cur, decrement);
1680 
1681 	/*
1682 	 * March up the tree decrementing pointers.
1683 	 * Stop when we don't go off the left edge of a block.
1684 	 */
1685 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1686 		if (--cur->bc_ptrs[lev] > 0)
1687 			break;
1688 		/* Read-ahead the left block for the next loop. */
1689 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1690 	}
1691 
1692 	/*
1693 	 * If we went off the root then we are seriously confused.
1694 	 * or the root of the tree is in an inode.
1695 	 */
1696 	if (lev == cur->bc_nlevels) {
1697 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1698 			goto out0;
1699 		ASSERT(0);
1700 		error = -EFSCORRUPTED;
1701 		goto error0;
1702 	}
1703 	ASSERT(lev < cur->bc_nlevels);
1704 
1705 	/*
1706 	 * Now walk back down the tree, fixing up the cursor's buffer
1707 	 * pointers and key numbers.
1708 	 */
1709 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1710 		union xfs_btree_ptr	*ptrp;
1711 
1712 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1713 		--lev;
1714 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1715 		if (error)
1716 			goto error0;
1717 		xfs_btree_setbuf(cur, lev, bp);
1718 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1719 	}
1720 out1:
1721 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1722 	*stat = 1;
1723 	return 0;
1724 
1725 out0:
1726 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1727 	*stat = 0;
1728 	return 0;
1729 
1730 error0:
1731 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1732 	return error;
1733 }
1734 
1735 STATIC int
1736 xfs_btree_lookup_get_block(
1737 	struct xfs_btree_cur	*cur,	/* btree cursor */
1738 	int			level,	/* level in the btree */
1739 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1740 	struct xfs_btree_block	**blkp) /* return btree block */
1741 {
1742 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1743 	int			error = 0;
1744 
1745 	/* special case the root block if in an inode */
1746 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1747 	    (level == cur->bc_nlevels - 1)) {
1748 		*blkp = xfs_btree_get_iroot(cur);
1749 		return 0;
1750 	}
1751 
1752 	/*
1753 	 * If the old buffer at this level for the disk address we are
1754 	 * looking for re-use it.
1755 	 *
1756 	 * Otherwise throw it away and get a new one.
1757 	 */
1758 	bp = cur->bc_bufs[level];
1759 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1760 		*blkp = XFS_BUF_TO_BLOCK(bp);
1761 		return 0;
1762 	}
1763 
1764 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1765 	if (error)
1766 		return error;
1767 
1768 	xfs_btree_setbuf(cur, level, bp);
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Get current search key.  For level 0 we don't actually have a key
1774  * structure so we make one up from the record.  For all other levels
1775  * we just return the right key.
1776  */
1777 STATIC union xfs_btree_key *
1778 xfs_lookup_get_search_key(
1779 	struct xfs_btree_cur	*cur,
1780 	int			level,
1781 	int			keyno,
1782 	struct xfs_btree_block	*block,
1783 	union xfs_btree_key	*kp)
1784 {
1785 	if (level == 0) {
1786 		cur->bc_ops->init_key_from_rec(kp,
1787 				xfs_btree_rec_addr(cur, keyno, block));
1788 		return kp;
1789 	}
1790 
1791 	return xfs_btree_key_addr(cur, keyno, block);
1792 }
1793 
1794 /*
1795  * Lookup the record.  The cursor is made to point to it, based on dir.
1796  * stat is set to 0 if can't find any such record, 1 for success.
1797  */
1798 int					/* error */
1799 xfs_btree_lookup(
1800 	struct xfs_btree_cur	*cur,	/* btree cursor */
1801 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1802 	int			*stat)	/* success/failure */
1803 {
1804 	struct xfs_btree_block	*block;	/* current btree block */
1805 	__int64_t		diff;	/* difference for the current key */
1806 	int			error;	/* error return value */
1807 	int			keyno;	/* current key number */
1808 	int			level;	/* level in the btree */
1809 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1810 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1811 
1812 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1813 	XFS_BTREE_TRACE_ARGI(cur, dir);
1814 
1815 	XFS_BTREE_STATS_INC(cur, lookup);
1816 
1817 	/* No such thing as a zero-level tree. */
1818 	if (cur->bc_nlevels == 0)
1819 		return -EFSCORRUPTED;
1820 
1821 	block = NULL;
1822 	keyno = 0;
1823 
1824 	/* initialise start pointer from cursor */
1825 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1826 	pp = &ptr;
1827 
1828 	/*
1829 	 * Iterate over each level in the btree, starting at the root.
1830 	 * For each level above the leaves, find the key we need, based
1831 	 * on the lookup record, then follow the corresponding block
1832 	 * pointer down to the next level.
1833 	 */
1834 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1835 		/* Get the block we need to do the lookup on. */
1836 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1837 		if (error)
1838 			goto error0;
1839 
1840 		if (diff == 0) {
1841 			/*
1842 			 * If we already had a key match at a higher level, we
1843 			 * know we need to use the first entry in this block.
1844 			 */
1845 			keyno = 1;
1846 		} else {
1847 			/* Otherwise search this block. Do a binary search. */
1848 
1849 			int	high;	/* high entry number */
1850 			int	low;	/* low entry number */
1851 
1852 			/* Set low and high entry numbers, 1-based. */
1853 			low = 1;
1854 			high = xfs_btree_get_numrecs(block);
1855 			if (!high) {
1856 				/* Block is empty, must be an empty leaf. */
1857 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1858 
1859 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1860 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1861 				*stat = 0;
1862 				return 0;
1863 			}
1864 
1865 			/* Binary search the block. */
1866 			while (low <= high) {
1867 				union xfs_btree_key	key;
1868 				union xfs_btree_key	*kp;
1869 
1870 				XFS_BTREE_STATS_INC(cur, compare);
1871 
1872 				/* keyno is average of low and high. */
1873 				keyno = (low + high) >> 1;
1874 
1875 				/* Get current search key */
1876 				kp = xfs_lookup_get_search_key(cur, level,
1877 						keyno, block, &key);
1878 
1879 				/*
1880 				 * Compute difference to get next direction:
1881 				 *  - less than, move right
1882 				 *  - greater than, move left
1883 				 *  - equal, we're done
1884 				 */
1885 				diff = cur->bc_ops->key_diff(cur, kp);
1886 				if (diff < 0)
1887 					low = keyno + 1;
1888 				else if (diff > 0)
1889 					high = keyno - 1;
1890 				else
1891 					break;
1892 			}
1893 		}
1894 
1895 		/*
1896 		 * If there are more levels, set up for the next level
1897 		 * by getting the block number and filling in the cursor.
1898 		 */
1899 		if (level > 0) {
1900 			/*
1901 			 * If we moved left, need the previous key number,
1902 			 * unless there isn't one.
1903 			 */
1904 			if (diff > 0 && --keyno < 1)
1905 				keyno = 1;
1906 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1907 
1908 #ifdef DEBUG
1909 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1910 			if (error)
1911 				goto error0;
1912 #endif
1913 			cur->bc_ptrs[level] = keyno;
1914 		}
1915 	}
1916 
1917 	/* Done with the search. See if we need to adjust the results. */
1918 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1919 		keyno++;
1920 		/*
1921 		 * If ge search and we went off the end of the block, but it's
1922 		 * not the last block, we're in the wrong block.
1923 		 */
1924 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1925 		if (dir == XFS_LOOKUP_GE &&
1926 		    keyno > xfs_btree_get_numrecs(block) &&
1927 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1928 			int	i;
1929 
1930 			cur->bc_ptrs[0] = keyno;
1931 			error = xfs_btree_increment(cur, 0, &i);
1932 			if (error)
1933 				goto error0;
1934 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1935 			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1936 			*stat = 1;
1937 			return 0;
1938 		}
1939 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1940 		keyno--;
1941 	cur->bc_ptrs[0] = keyno;
1942 
1943 	/* Return if we succeeded or not. */
1944 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1945 		*stat = 0;
1946 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1947 		*stat = 1;
1948 	else
1949 		*stat = 0;
1950 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1951 	return 0;
1952 
1953 error0:
1954 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1955 	return error;
1956 }
1957 
1958 /* Find the high key storage area from a regular key. */
1959 STATIC union xfs_btree_key *
1960 xfs_btree_high_key_from_key(
1961 	struct xfs_btree_cur	*cur,
1962 	union xfs_btree_key	*key)
1963 {
1964 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1965 	return (union xfs_btree_key *)((char *)key +
1966 			(cur->bc_ops->key_len / 2));
1967 }
1968 
1969 /* Determine the low (and high if overlapped) keys of a leaf block */
1970 STATIC void
1971 xfs_btree_get_leaf_keys(
1972 	struct xfs_btree_cur	*cur,
1973 	struct xfs_btree_block	*block,
1974 	union xfs_btree_key	*key)
1975 {
1976 	union xfs_btree_key	max_hkey;
1977 	union xfs_btree_key	hkey;
1978 	union xfs_btree_rec	*rec;
1979 	union xfs_btree_key	*high;
1980 	int			n;
1981 
1982 	rec = xfs_btree_rec_addr(cur, 1, block);
1983 	cur->bc_ops->init_key_from_rec(key, rec);
1984 
1985 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1986 
1987 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1988 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1989 			rec = xfs_btree_rec_addr(cur, n, block);
1990 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1991 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1992 					> 0)
1993 				max_hkey = hkey;
1994 		}
1995 
1996 		high = xfs_btree_high_key_from_key(cur, key);
1997 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1998 	}
1999 }
2000 
2001 /* Determine the low (and high if overlapped) keys of a node block */
2002 STATIC void
2003 xfs_btree_get_node_keys(
2004 	struct xfs_btree_cur	*cur,
2005 	struct xfs_btree_block	*block,
2006 	union xfs_btree_key	*key)
2007 {
2008 	union xfs_btree_key	*hkey;
2009 	union xfs_btree_key	*max_hkey;
2010 	union xfs_btree_key	*high;
2011 	int			n;
2012 
2013 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2014 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2015 				cur->bc_ops->key_len / 2);
2016 
2017 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2018 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2019 			hkey = xfs_btree_high_key_addr(cur, n, block);
2020 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2021 				max_hkey = hkey;
2022 		}
2023 
2024 		high = xfs_btree_high_key_from_key(cur, key);
2025 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2026 	} else {
2027 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2028 				cur->bc_ops->key_len);
2029 	}
2030 }
2031 
2032 /* Derive the keys for any btree block. */
2033 STATIC void
2034 xfs_btree_get_keys(
2035 	struct xfs_btree_cur	*cur,
2036 	struct xfs_btree_block	*block,
2037 	union xfs_btree_key	*key)
2038 {
2039 	if (be16_to_cpu(block->bb_level) == 0)
2040 		xfs_btree_get_leaf_keys(cur, block, key);
2041 	else
2042 		xfs_btree_get_node_keys(cur, block, key);
2043 }
2044 
2045 /*
2046  * Decide if we need to update the parent keys of a btree block.  For
2047  * a standard btree this is only necessary if we're updating the first
2048  * record/key.  For an overlapping btree, we must always update the
2049  * keys because the highest key can be in any of the records or keys
2050  * in the block.
2051  */
2052 static inline bool
2053 xfs_btree_needs_key_update(
2054 	struct xfs_btree_cur	*cur,
2055 	int			ptr)
2056 {
2057 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2058 }
2059 
2060 /*
2061  * Update the low and high parent keys of the given level, progressing
2062  * towards the root.  If force_all is false, stop if the keys for a given
2063  * level do not need updating.
2064  */
2065 STATIC int
2066 __xfs_btree_updkeys(
2067 	struct xfs_btree_cur	*cur,
2068 	int			level,
2069 	struct xfs_btree_block	*block,
2070 	struct xfs_buf		*bp0,
2071 	bool			force_all)
2072 {
2073 	union xfs_btree_bigkey	key;	/* keys from current level */
2074 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2075 	union xfs_btree_key	*hkey;
2076 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2077 	union xfs_btree_key	*nhkey;
2078 	struct xfs_buf		*bp;
2079 	int			ptr;
2080 
2081 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2082 
2083 	/* Exit if there aren't any parent levels to update. */
2084 	if (level + 1 >= cur->bc_nlevels)
2085 		return 0;
2086 
2087 	trace_xfs_btree_updkeys(cur, level, bp0);
2088 
2089 	lkey = (union xfs_btree_key *)&key;
2090 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2091 	xfs_btree_get_keys(cur, block, lkey);
2092 	for (level++; level < cur->bc_nlevels; level++) {
2093 #ifdef DEBUG
2094 		int		error;
2095 #endif
2096 		block = xfs_btree_get_block(cur, level, &bp);
2097 		trace_xfs_btree_updkeys(cur, level, bp);
2098 #ifdef DEBUG
2099 		error = xfs_btree_check_block(cur, block, level, bp);
2100 		if (error) {
2101 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2102 			return error;
2103 		}
2104 #endif
2105 		ptr = cur->bc_ptrs[level];
2106 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2107 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2108 		if (!force_all &&
2109 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2110 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2111 			break;
2112 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2113 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2114 		if (level + 1 >= cur->bc_nlevels)
2115 			break;
2116 		xfs_btree_get_node_keys(cur, block, lkey);
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /* Update all the keys from some level in cursor back to the root. */
2123 STATIC int
2124 xfs_btree_updkeys_force(
2125 	struct xfs_btree_cur	*cur,
2126 	int			level)
2127 {
2128 	struct xfs_buf		*bp;
2129 	struct xfs_btree_block	*block;
2130 
2131 	block = xfs_btree_get_block(cur, level, &bp);
2132 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2133 }
2134 
2135 /*
2136  * Update the parent keys of the given level, progressing towards the root.
2137  */
2138 STATIC int
2139 xfs_btree_update_keys(
2140 	struct xfs_btree_cur	*cur,
2141 	int			level)
2142 {
2143 	struct xfs_btree_block	*block;
2144 	struct xfs_buf		*bp;
2145 	union xfs_btree_key	*kp;
2146 	union xfs_btree_key	key;
2147 	int			ptr;
2148 
2149 	ASSERT(level >= 0);
2150 
2151 	block = xfs_btree_get_block(cur, level, &bp);
2152 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2153 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2154 
2155 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2156 	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2157 
2158 	/*
2159 	 * Go up the tree from this level toward the root.
2160 	 * At each level, update the key value to the value input.
2161 	 * Stop when we reach a level where the cursor isn't pointing
2162 	 * at the first entry in the block.
2163 	 */
2164 	xfs_btree_get_keys(cur, block, &key);
2165 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2166 #ifdef DEBUG
2167 		int		error;
2168 #endif
2169 		block = xfs_btree_get_block(cur, level, &bp);
2170 #ifdef DEBUG
2171 		error = xfs_btree_check_block(cur, block, level, bp);
2172 		if (error) {
2173 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2174 			return error;
2175 		}
2176 #endif
2177 		ptr = cur->bc_ptrs[level];
2178 		kp = xfs_btree_key_addr(cur, ptr, block);
2179 		xfs_btree_copy_keys(cur, kp, &key, 1);
2180 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2181 	}
2182 
2183 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Update the record referred to by cur to the value in the
2189  * given record. This either works (return 0) or gets an
2190  * EFSCORRUPTED error.
2191  */
2192 int
2193 xfs_btree_update(
2194 	struct xfs_btree_cur	*cur,
2195 	union xfs_btree_rec	*rec)
2196 {
2197 	struct xfs_btree_block	*block;
2198 	struct xfs_buf		*bp;
2199 	int			error;
2200 	int			ptr;
2201 	union xfs_btree_rec	*rp;
2202 
2203 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2204 	XFS_BTREE_TRACE_ARGR(cur, rec);
2205 
2206 	/* Pick up the current block. */
2207 	block = xfs_btree_get_block(cur, 0, &bp);
2208 
2209 #ifdef DEBUG
2210 	error = xfs_btree_check_block(cur, block, 0, bp);
2211 	if (error)
2212 		goto error0;
2213 #endif
2214 	/* Get the address of the rec to be updated. */
2215 	ptr = cur->bc_ptrs[0];
2216 	rp = xfs_btree_rec_addr(cur, ptr, block);
2217 
2218 	/* Fill in the new contents and log them. */
2219 	xfs_btree_copy_recs(cur, rp, rec, 1);
2220 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2221 
2222 	/*
2223 	 * If we are tracking the last record in the tree and
2224 	 * we are at the far right edge of the tree, update it.
2225 	 */
2226 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2227 		cur->bc_ops->update_lastrec(cur, block, rec,
2228 					    ptr, LASTREC_UPDATE);
2229 	}
2230 
2231 	/* Pass new key value up to our parent. */
2232 	if (xfs_btree_needs_key_update(cur, ptr)) {
2233 		error = xfs_btree_update_keys(cur, 0);
2234 		if (error)
2235 			goto error0;
2236 	}
2237 
2238 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2239 	return 0;
2240 
2241 error0:
2242 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2243 	return error;
2244 }
2245 
2246 /*
2247  * Move 1 record left from cur/level if possible.
2248  * Update cur to reflect the new path.
2249  */
2250 STATIC int					/* error */
2251 xfs_btree_lshift(
2252 	struct xfs_btree_cur	*cur,
2253 	int			level,
2254 	int			*stat)		/* success/failure */
2255 {
2256 	struct xfs_buf		*lbp;		/* left buffer pointer */
2257 	struct xfs_btree_block	*left;		/* left btree block */
2258 	int			lrecs;		/* left record count */
2259 	struct xfs_buf		*rbp;		/* right buffer pointer */
2260 	struct xfs_btree_block	*right;		/* right btree block */
2261 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2262 	int			rrecs;		/* right record count */
2263 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2264 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2265 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2266 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2267 	int			error;		/* error return value */
2268 	int			i;
2269 
2270 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2271 	XFS_BTREE_TRACE_ARGI(cur, level);
2272 
2273 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2274 	    level == cur->bc_nlevels - 1)
2275 		goto out0;
2276 
2277 	/* Set up variables for this block as "right". */
2278 	right = xfs_btree_get_block(cur, level, &rbp);
2279 
2280 #ifdef DEBUG
2281 	error = xfs_btree_check_block(cur, right, level, rbp);
2282 	if (error)
2283 		goto error0;
2284 #endif
2285 
2286 	/* If we've got no left sibling then we can't shift an entry left. */
2287 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2288 	if (xfs_btree_ptr_is_null(cur, &lptr))
2289 		goto out0;
2290 
2291 	/*
2292 	 * If the cursor entry is the one that would be moved, don't
2293 	 * do it... it's too complicated.
2294 	 */
2295 	if (cur->bc_ptrs[level] <= 1)
2296 		goto out0;
2297 
2298 	/* Set up the left neighbor as "left". */
2299 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2300 	if (error)
2301 		goto error0;
2302 
2303 	/* If it's full, it can't take another entry. */
2304 	lrecs = xfs_btree_get_numrecs(left);
2305 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2306 		goto out0;
2307 
2308 	rrecs = xfs_btree_get_numrecs(right);
2309 
2310 	/*
2311 	 * We add one entry to the left side and remove one for the right side.
2312 	 * Account for it here, the changes will be updated on disk and logged
2313 	 * later.
2314 	 */
2315 	lrecs++;
2316 	rrecs--;
2317 
2318 	XFS_BTREE_STATS_INC(cur, lshift);
2319 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2320 
2321 	/*
2322 	 * If non-leaf, copy a key and a ptr to the left block.
2323 	 * Log the changes to the left block.
2324 	 */
2325 	if (level > 0) {
2326 		/* It's a non-leaf.  Move keys and pointers. */
2327 		union xfs_btree_key	*lkp;	/* left btree key */
2328 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2329 
2330 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2331 		rkp = xfs_btree_key_addr(cur, 1, right);
2332 
2333 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2334 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2335 #ifdef DEBUG
2336 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2337 		if (error)
2338 			goto error0;
2339 #endif
2340 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2341 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2342 
2343 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2344 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2345 
2346 		ASSERT(cur->bc_ops->keys_inorder(cur,
2347 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2348 	} else {
2349 		/* It's a leaf.  Move records.  */
2350 		union xfs_btree_rec	*lrp;	/* left record pointer */
2351 
2352 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2353 		rrp = xfs_btree_rec_addr(cur, 1, right);
2354 
2355 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2356 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2357 
2358 		ASSERT(cur->bc_ops->recs_inorder(cur,
2359 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2360 	}
2361 
2362 	xfs_btree_set_numrecs(left, lrecs);
2363 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2364 
2365 	xfs_btree_set_numrecs(right, rrecs);
2366 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2367 
2368 	/*
2369 	 * Slide the contents of right down one entry.
2370 	 */
2371 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2372 	if (level > 0) {
2373 		/* It's a nonleaf. operate on keys and ptrs */
2374 #ifdef DEBUG
2375 		int			i;		/* loop index */
2376 
2377 		for (i = 0; i < rrecs; i++) {
2378 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2379 			if (error)
2380 				goto error0;
2381 		}
2382 #endif
2383 		xfs_btree_shift_keys(cur,
2384 				xfs_btree_key_addr(cur, 2, right),
2385 				-1, rrecs);
2386 		xfs_btree_shift_ptrs(cur,
2387 				xfs_btree_ptr_addr(cur, 2, right),
2388 				-1, rrecs);
2389 
2390 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2391 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2392 	} else {
2393 		/* It's a leaf. operate on records */
2394 		xfs_btree_shift_recs(cur,
2395 			xfs_btree_rec_addr(cur, 2, right),
2396 			-1, rrecs);
2397 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2398 	}
2399 
2400 	/*
2401 	 * Using a temporary cursor, update the parent key values of the
2402 	 * block on the left.
2403 	 */
2404 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2405 		error = xfs_btree_dup_cursor(cur, &tcur);
2406 		if (error)
2407 			goto error0;
2408 		i = xfs_btree_firstrec(tcur, level);
2409 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2410 
2411 		error = xfs_btree_decrement(tcur, level, &i);
2412 		if (error)
2413 			goto error1;
2414 
2415 		/* Update the parent high keys of the left block, if needed. */
2416 		error = xfs_btree_update_keys(tcur, level);
2417 		if (error)
2418 			goto error1;
2419 
2420 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2421 	}
2422 
2423 	/* Update the parent keys of the right block. */
2424 	error = xfs_btree_update_keys(cur, level);
2425 	if (error)
2426 		goto error0;
2427 
2428 	/* Slide the cursor value left one. */
2429 	cur->bc_ptrs[level]--;
2430 
2431 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2432 	*stat = 1;
2433 	return 0;
2434 
2435 out0:
2436 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2437 	*stat = 0;
2438 	return 0;
2439 
2440 error0:
2441 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2442 	return error;
2443 
2444 error1:
2445 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2446 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2447 	return error;
2448 }
2449 
2450 /*
2451  * Move 1 record right from cur/level if possible.
2452  * Update cur to reflect the new path.
2453  */
2454 STATIC int					/* error */
2455 xfs_btree_rshift(
2456 	struct xfs_btree_cur	*cur,
2457 	int			level,
2458 	int			*stat)		/* success/failure */
2459 {
2460 	struct xfs_buf		*lbp;		/* left buffer pointer */
2461 	struct xfs_btree_block	*left;		/* left btree block */
2462 	struct xfs_buf		*rbp;		/* right buffer pointer */
2463 	struct xfs_btree_block	*right;		/* right btree block */
2464 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2465 	union xfs_btree_ptr	rptr;		/* right block pointer */
2466 	union xfs_btree_key	*rkp;		/* right btree key */
2467 	int			rrecs;		/* right record count */
2468 	int			lrecs;		/* left record count */
2469 	int			error;		/* error return value */
2470 	int			i;		/* loop counter */
2471 
2472 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2473 	XFS_BTREE_TRACE_ARGI(cur, level);
2474 
2475 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2476 	    (level == cur->bc_nlevels - 1))
2477 		goto out0;
2478 
2479 	/* Set up variables for this block as "left". */
2480 	left = xfs_btree_get_block(cur, level, &lbp);
2481 
2482 #ifdef DEBUG
2483 	error = xfs_btree_check_block(cur, left, level, lbp);
2484 	if (error)
2485 		goto error0;
2486 #endif
2487 
2488 	/* If we've got no right sibling then we can't shift an entry right. */
2489 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2490 	if (xfs_btree_ptr_is_null(cur, &rptr))
2491 		goto out0;
2492 
2493 	/*
2494 	 * If the cursor entry is the one that would be moved, don't
2495 	 * do it... it's too complicated.
2496 	 */
2497 	lrecs = xfs_btree_get_numrecs(left);
2498 	if (cur->bc_ptrs[level] >= lrecs)
2499 		goto out0;
2500 
2501 	/* Set up the right neighbor as "right". */
2502 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2503 	if (error)
2504 		goto error0;
2505 
2506 	/* If it's full, it can't take another entry. */
2507 	rrecs = xfs_btree_get_numrecs(right);
2508 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2509 		goto out0;
2510 
2511 	XFS_BTREE_STATS_INC(cur, rshift);
2512 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2513 
2514 	/*
2515 	 * Make a hole at the start of the right neighbor block, then
2516 	 * copy the last left block entry to the hole.
2517 	 */
2518 	if (level > 0) {
2519 		/* It's a nonleaf. make a hole in the keys and ptrs */
2520 		union xfs_btree_key	*lkp;
2521 		union xfs_btree_ptr	*lpp;
2522 		union xfs_btree_ptr	*rpp;
2523 
2524 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2525 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2526 		rkp = xfs_btree_key_addr(cur, 1, right);
2527 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2528 
2529 #ifdef DEBUG
2530 		for (i = rrecs - 1; i >= 0; i--) {
2531 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2532 			if (error)
2533 				goto error0;
2534 		}
2535 #endif
2536 
2537 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2538 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2539 
2540 #ifdef DEBUG
2541 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2542 		if (error)
2543 			goto error0;
2544 #endif
2545 
2546 		/* Now put the new data in, and log it. */
2547 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2548 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2549 
2550 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2551 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2552 
2553 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2554 			xfs_btree_key_addr(cur, 2, right)));
2555 	} else {
2556 		/* It's a leaf. make a hole in the records */
2557 		union xfs_btree_rec	*lrp;
2558 		union xfs_btree_rec	*rrp;
2559 
2560 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2561 		rrp = xfs_btree_rec_addr(cur, 1, right);
2562 
2563 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2564 
2565 		/* Now put the new data in, and log it. */
2566 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2567 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2568 	}
2569 
2570 	/*
2571 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2572 	 */
2573 	xfs_btree_set_numrecs(left, --lrecs);
2574 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2575 
2576 	xfs_btree_set_numrecs(right, ++rrecs);
2577 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2578 
2579 	/*
2580 	 * Using a temporary cursor, update the parent key values of the
2581 	 * block on the right.
2582 	 */
2583 	error = xfs_btree_dup_cursor(cur, &tcur);
2584 	if (error)
2585 		goto error0;
2586 	i = xfs_btree_lastrec(tcur, level);
2587 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2588 
2589 	error = xfs_btree_increment(tcur, level, &i);
2590 	if (error)
2591 		goto error1;
2592 
2593 	/* Update the parent high keys of the left block, if needed. */
2594 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2595 		error = xfs_btree_update_keys(cur, level);
2596 		if (error)
2597 			goto error1;
2598 	}
2599 
2600 	/* Update the parent keys of the right block. */
2601 	error = xfs_btree_update_keys(tcur, level);
2602 	if (error)
2603 		goto error1;
2604 
2605 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2606 
2607 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2608 	*stat = 1;
2609 	return 0;
2610 
2611 out0:
2612 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2613 	*stat = 0;
2614 	return 0;
2615 
2616 error0:
2617 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2618 	return error;
2619 
2620 error1:
2621 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2622 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2623 	return error;
2624 }
2625 
2626 /*
2627  * Split cur/level block in half.
2628  * Return new block number and the key to its first
2629  * record (to be inserted into parent).
2630  */
2631 STATIC int					/* error */
2632 __xfs_btree_split(
2633 	struct xfs_btree_cur	*cur,
2634 	int			level,
2635 	union xfs_btree_ptr	*ptrp,
2636 	union xfs_btree_key	*key,
2637 	struct xfs_btree_cur	**curp,
2638 	int			*stat)		/* success/failure */
2639 {
2640 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2641 	struct xfs_buf		*lbp;		/* left buffer pointer */
2642 	struct xfs_btree_block	*left;		/* left btree block */
2643 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2644 	struct xfs_buf		*rbp;		/* right buffer pointer */
2645 	struct xfs_btree_block	*right;		/* right btree block */
2646 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2647 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2648 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2649 	int			lrecs;
2650 	int			rrecs;
2651 	int			src_index;
2652 	int			error;		/* error return value */
2653 #ifdef DEBUG
2654 	int			i;
2655 #endif
2656 
2657 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2658 	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2659 
2660 	XFS_BTREE_STATS_INC(cur, split);
2661 
2662 	/* Set up left block (current one). */
2663 	left = xfs_btree_get_block(cur, level, &lbp);
2664 
2665 #ifdef DEBUG
2666 	error = xfs_btree_check_block(cur, left, level, lbp);
2667 	if (error)
2668 		goto error0;
2669 #endif
2670 
2671 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2672 
2673 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2674 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2675 	if (error)
2676 		goto error0;
2677 	if (*stat == 0)
2678 		goto out0;
2679 	XFS_BTREE_STATS_INC(cur, alloc);
2680 
2681 	/* Set up the new block as "right". */
2682 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2683 	if (error)
2684 		goto error0;
2685 
2686 	/* Fill in the btree header for the new right block. */
2687 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2688 
2689 	/*
2690 	 * Split the entries between the old and the new block evenly.
2691 	 * Make sure that if there's an odd number of entries now, that
2692 	 * each new block will have the same number of entries.
2693 	 */
2694 	lrecs = xfs_btree_get_numrecs(left);
2695 	rrecs = lrecs / 2;
2696 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2697 		rrecs++;
2698 	src_index = (lrecs - rrecs + 1);
2699 
2700 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701 
2702 	/* Adjust numrecs for the later get_*_keys() calls. */
2703 	lrecs -= rrecs;
2704 	xfs_btree_set_numrecs(left, lrecs);
2705 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2706 
2707 	/*
2708 	 * Copy btree block entries from the left block over to the
2709 	 * new block, the right. Update the right block and log the
2710 	 * changes.
2711 	 */
2712 	if (level > 0) {
2713 		/* It's a non-leaf.  Move keys and pointers. */
2714 		union xfs_btree_key	*lkp;	/* left btree key */
2715 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2716 		union xfs_btree_key	*rkp;	/* right btree key */
2717 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2718 
2719 		lkp = xfs_btree_key_addr(cur, src_index, left);
2720 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2721 		rkp = xfs_btree_key_addr(cur, 1, right);
2722 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2723 
2724 #ifdef DEBUG
2725 		for (i = src_index; i < rrecs; i++) {
2726 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2727 			if (error)
2728 				goto error0;
2729 		}
2730 #endif
2731 
2732 		/* Copy the keys & pointers to the new block. */
2733 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2734 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2735 
2736 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2737 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2738 
2739 		/* Stash the keys of the new block for later insertion. */
2740 		xfs_btree_get_node_keys(cur, right, key);
2741 	} else {
2742 		/* It's a leaf.  Move records.  */
2743 		union xfs_btree_rec	*lrp;	/* left record pointer */
2744 		union xfs_btree_rec	*rrp;	/* right record pointer */
2745 
2746 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2747 		rrp = xfs_btree_rec_addr(cur, 1, right);
2748 
2749 		/* Copy records to the new block. */
2750 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2751 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2752 
2753 		/* Stash the keys of the new block for later insertion. */
2754 		xfs_btree_get_leaf_keys(cur, right, key);
2755 	}
2756 
2757 	/*
2758 	 * Find the left block number by looking in the buffer.
2759 	 * Adjust sibling pointers.
2760 	 */
2761 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2762 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2763 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2764 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2765 
2766 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2767 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2768 
2769 	/*
2770 	 * If there's a block to the new block's right, make that block
2771 	 * point back to right instead of to left.
2772 	 */
2773 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2774 		error = xfs_btree_read_buf_block(cur, &rrptr,
2775 							0, &rrblock, &rrbp);
2776 		if (error)
2777 			goto error0;
2778 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2779 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2780 	}
2781 
2782 	/* Update the parent high keys of the left block, if needed. */
2783 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2784 		error = xfs_btree_update_keys(cur, level);
2785 		if (error)
2786 			goto error0;
2787 	}
2788 
2789 	/*
2790 	 * If the cursor is really in the right block, move it there.
2791 	 * If it's just pointing past the last entry in left, then we'll
2792 	 * insert there, so don't change anything in that case.
2793 	 */
2794 	if (cur->bc_ptrs[level] > lrecs + 1) {
2795 		xfs_btree_setbuf(cur, level, rbp);
2796 		cur->bc_ptrs[level] -= lrecs;
2797 	}
2798 	/*
2799 	 * If there are more levels, we'll need another cursor which refers
2800 	 * the right block, no matter where this cursor was.
2801 	 */
2802 	if (level + 1 < cur->bc_nlevels) {
2803 		error = xfs_btree_dup_cursor(cur, curp);
2804 		if (error)
2805 			goto error0;
2806 		(*curp)->bc_ptrs[level + 1]++;
2807 	}
2808 	*ptrp = rptr;
2809 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2810 	*stat = 1;
2811 	return 0;
2812 out0:
2813 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2814 	*stat = 0;
2815 	return 0;
2816 
2817 error0:
2818 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2819 	return error;
2820 }
2821 
2822 struct xfs_btree_split_args {
2823 	struct xfs_btree_cur	*cur;
2824 	int			level;
2825 	union xfs_btree_ptr	*ptrp;
2826 	union xfs_btree_key	*key;
2827 	struct xfs_btree_cur	**curp;
2828 	int			*stat;		/* success/failure */
2829 	int			result;
2830 	bool			kswapd;	/* allocation in kswapd context */
2831 	struct completion	*done;
2832 	struct work_struct	work;
2833 };
2834 
2835 /*
2836  * Stack switching interfaces for allocation
2837  */
2838 static void
2839 xfs_btree_split_worker(
2840 	struct work_struct	*work)
2841 {
2842 	struct xfs_btree_split_args	*args = container_of(work,
2843 						struct xfs_btree_split_args, work);
2844 	unsigned long		pflags;
2845 	unsigned long		new_pflags = PF_FSTRANS;
2846 
2847 	/*
2848 	 * we are in a transaction context here, but may also be doing work
2849 	 * in kswapd context, and hence we may need to inherit that state
2850 	 * temporarily to ensure that we don't block waiting for memory reclaim
2851 	 * in any way.
2852 	 */
2853 	if (args->kswapd)
2854 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2855 
2856 	current_set_flags_nested(&pflags, new_pflags);
2857 
2858 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2859 					 args->key, args->curp, args->stat);
2860 	complete(args->done);
2861 
2862 	current_restore_flags_nested(&pflags, new_pflags);
2863 }
2864 
2865 /*
2866  * BMBT split requests often come in with little stack to work on. Push
2867  * them off to a worker thread so there is lots of stack to use. For the other
2868  * btree types, just call directly to avoid the context switch overhead here.
2869  */
2870 STATIC int					/* error */
2871 xfs_btree_split(
2872 	struct xfs_btree_cur	*cur,
2873 	int			level,
2874 	union xfs_btree_ptr	*ptrp,
2875 	union xfs_btree_key	*key,
2876 	struct xfs_btree_cur	**curp,
2877 	int			*stat)		/* success/failure */
2878 {
2879 	struct xfs_btree_split_args	args;
2880 	DECLARE_COMPLETION_ONSTACK(done);
2881 
2882 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2883 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2884 
2885 	args.cur = cur;
2886 	args.level = level;
2887 	args.ptrp = ptrp;
2888 	args.key = key;
2889 	args.curp = curp;
2890 	args.stat = stat;
2891 	args.done = &done;
2892 	args.kswapd = current_is_kswapd();
2893 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2894 	queue_work(xfs_alloc_wq, &args.work);
2895 	wait_for_completion(&done);
2896 	destroy_work_on_stack(&args.work);
2897 	return args.result;
2898 }
2899 
2900 
2901 /*
2902  * Copy the old inode root contents into a real block and make the
2903  * broot point to it.
2904  */
2905 int						/* error */
2906 xfs_btree_new_iroot(
2907 	struct xfs_btree_cur	*cur,		/* btree cursor */
2908 	int			*logflags,	/* logging flags for inode */
2909 	int			*stat)		/* return status - 0 fail */
2910 {
2911 	struct xfs_buf		*cbp;		/* buffer for cblock */
2912 	struct xfs_btree_block	*block;		/* btree block */
2913 	struct xfs_btree_block	*cblock;	/* child btree block */
2914 	union xfs_btree_key	*ckp;		/* child key pointer */
2915 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2916 	union xfs_btree_key	*kp;		/* pointer to btree key */
2917 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2918 	union xfs_btree_ptr	nptr;		/* new block addr */
2919 	int			level;		/* btree level */
2920 	int			error;		/* error return code */
2921 #ifdef DEBUG
2922 	int			i;		/* loop counter */
2923 #endif
2924 
2925 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2926 	XFS_BTREE_STATS_INC(cur, newroot);
2927 
2928 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2929 
2930 	level = cur->bc_nlevels - 1;
2931 
2932 	block = xfs_btree_get_iroot(cur);
2933 	pp = xfs_btree_ptr_addr(cur, 1, block);
2934 
2935 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2936 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2937 	if (error)
2938 		goto error0;
2939 	if (*stat == 0) {
2940 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2941 		return 0;
2942 	}
2943 	XFS_BTREE_STATS_INC(cur, alloc);
2944 
2945 	/* Copy the root into a real block. */
2946 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2947 	if (error)
2948 		goto error0;
2949 
2950 	/*
2951 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2952 	 * In that case have to also ensure the blkno remains correct
2953 	 */
2954 	memcpy(cblock, block, xfs_btree_block_len(cur));
2955 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2956 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2957 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2958 		else
2959 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2960 	}
2961 
2962 	be16_add_cpu(&block->bb_level, 1);
2963 	xfs_btree_set_numrecs(block, 1);
2964 	cur->bc_nlevels++;
2965 	cur->bc_ptrs[level + 1] = 1;
2966 
2967 	kp = xfs_btree_key_addr(cur, 1, block);
2968 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2969 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2970 
2971 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2972 #ifdef DEBUG
2973 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2974 		error = xfs_btree_check_ptr(cur, pp, i, level);
2975 		if (error)
2976 			goto error0;
2977 	}
2978 #endif
2979 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2980 
2981 #ifdef DEBUG
2982 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2983 	if (error)
2984 		goto error0;
2985 #endif
2986 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2987 
2988 	xfs_iroot_realloc(cur->bc_private.b.ip,
2989 			  1 - xfs_btree_get_numrecs(cblock),
2990 			  cur->bc_private.b.whichfork);
2991 
2992 	xfs_btree_setbuf(cur, level, cbp);
2993 
2994 	/*
2995 	 * Do all this logging at the end so that
2996 	 * the root is at the right level.
2997 	 */
2998 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2999 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3000 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3001 
3002 	*logflags |=
3003 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3004 	*stat = 1;
3005 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3006 	return 0;
3007 error0:
3008 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3009 	return error;
3010 }
3011 
3012 /*
3013  * Allocate a new root block, fill it in.
3014  */
3015 STATIC int				/* error */
3016 xfs_btree_new_root(
3017 	struct xfs_btree_cur	*cur,	/* btree cursor */
3018 	int			*stat)	/* success/failure */
3019 {
3020 	struct xfs_btree_block	*block;	/* one half of the old root block */
3021 	struct xfs_buf		*bp;	/* buffer containing block */
3022 	int			error;	/* error return value */
3023 	struct xfs_buf		*lbp;	/* left buffer pointer */
3024 	struct xfs_btree_block	*left;	/* left btree block */
3025 	struct xfs_buf		*nbp;	/* new (root) buffer */
3026 	struct xfs_btree_block	*new;	/* new (root) btree block */
3027 	int			nptr;	/* new value for key index, 1 or 2 */
3028 	struct xfs_buf		*rbp;	/* right buffer pointer */
3029 	struct xfs_btree_block	*right;	/* right btree block */
3030 	union xfs_btree_ptr	rptr;
3031 	union xfs_btree_ptr	lptr;
3032 
3033 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3034 	XFS_BTREE_STATS_INC(cur, newroot);
3035 
3036 	/* initialise our start point from the cursor */
3037 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038 
3039 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3040 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041 	if (error)
3042 		goto error0;
3043 	if (*stat == 0)
3044 		goto out0;
3045 	XFS_BTREE_STATS_INC(cur, alloc);
3046 
3047 	/* Set up the new block. */
3048 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049 	if (error)
3050 		goto error0;
3051 
3052 	/* Set the root in the holding structure  increasing the level by 1. */
3053 	cur->bc_ops->set_root(cur, &lptr, 1);
3054 
3055 	/*
3056 	 * At the previous root level there are now two blocks: the old root,
3057 	 * and the new block generated when it was split.  We don't know which
3058 	 * one the cursor is pointing at, so we set up variables "left" and
3059 	 * "right" for each case.
3060 	 */
3061 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062 
3063 #ifdef DEBUG
3064 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065 	if (error)
3066 		goto error0;
3067 #endif
3068 
3069 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071 		/* Our block is left, pick up the right block. */
3072 		lbp = bp;
3073 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074 		left = block;
3075 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076 		if (error)
3077 			goto error0;
3078 		bp = rbp;
3079 		nptr = 1;
3080 	} else {
3081 		/* Our block is right, pick up the left block. */
3082 		rbp = bp;
3083 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084 		right = block;
3085 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087 		if (error)
3088 			goto error0;
3089 		bp = lbp;
3090 		nptr = 2;
3091 	}
3092 
3093 	/* Fill in the new block's btree header and log it. */
3094 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097 			!xfs_btree_ptr_is_null(cur, &rptr));
3098 
3099 	/* Fill in the key data in the new root. */
3100 	if (xfs_btree_get_level(left) > 0) {
3101 		/*
3102 		 * Get the keys for the left block's keys and put them directly
3103 		 * in the parent block.  Do the same for the right block.
3104 		 */
3105 		xfs_btree_get_node_keys(cur, left,
3106 				xfs_btree_key_addr(cur, 1, new));
3107 		xfs_btree_get_node_keys(cur, right,
3108 				xfs_btree_key_addr(cur, 2, new));
3109 	} else {
3110 		/*
3111 		 * Get the keys for the left block's records and put them
3112 		 * directly in the parent block.  Do the same for the right
3113 		 * block.
3114 		 */
3115 		xfs_btree_get_leaf_keys(cur, left,
3116 			xfs_btree_key_addr(cur, 1, new));
3117 		xfs_btree_get_leaf_keys(cur, right,
3118 			xfs_btree_key_addr(cur, 2, new));
3119 	}
3120 	xfs_btree_log_keys(cur, nbp, 1, 2);
3121 
3122 	/* Fill in the pointer data in the new root. */
3123 	xfs_btree_copy_ptrs(cur,
3124 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125 	xfs_btree_copy_ptrs(cur,
3126 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128 
3129 	/* Fix up the cursor. */
3130 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132 	cur->bc_nlevels++;
3133 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3134 	*stat = 1;
3135 	return 0;
3136 error0:
3137 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3138 	return error;
3139 out0:
3140 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3141 	*stat = 0;
3142 	return 0;
3143 }
3144 
3145 STATIC int
3146 xfs_btree_make_block_unfull(
3147 	struct xfs_btree_cur	*cur,	/* btree cursor */
3148 	int			level,	/* btree level */
3149 	int			numrecs,/* # of recs in block */
3150 	int			*oindex,/* old tree index */
3151 	int			*index,	/* new tree index */
3152 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3153 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3154 	union xfs_btree_key	*key,	/* key of new block */
3155 	int			*stat)
3156 {
3157 	int			error = 0;
3158 
3159 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3160 	    level == cur->bc_nlevels - 1) {
3161 	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3162 
3163 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3164 			/* A root block that can be made bigger. */
3165 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3166 			*stat = 1;
3167 		} else {
3168 			/* A root block that needs replacing */
3169 			int	logflags = 0;
3170 
3171 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3172 			if (error || *stat == 0)
3173 				return error;
3174 
3175 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3176 		}
3177 
3178 		return 0;
3179 	}
3180 
3181 	/* First, try shifting an entry to the right neighbor. */
3182 	error = xfs_btree_rshift(cur, level, stat);
3183 	if (error || *stat)
3184 		return error;
3185 
3186 	/* Next, try shifting an entry to the left neighbor. */
3187 	error = xfs_btree_lshift(cur, level, stat);
3188 	if (error)
3189 		return error;
3190 
3191 	if (*stat) {
3192 		*oindex = *index = cur->bc_ptrs[level];
3193 		return 0;
3194 	}
3195 
3196 	/*
3197 	 * Next, try splitting the current block in half.
3198 	 *
3199 	 * If this works we have to re-set our variables because we
3200 	 * could be in a different block now.
3201 	 */
3202 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3203 	if (error || *stat == 0)
3204 		return error;
3205 
3206 
3207 	*index = cur->bc_ptrs[level];
3208 	return 0;
3209 }
3210 
3211 /*
3212  * Insert one record/level.  Return information to the caller
3213  * allowing the next level up to proceed if necessary.
3214  */
3215 STATIC int
3216 xfs_btree_insrec(
3217 	struct xfs_btree_cur	*cur,	/* btree cursor */
3218 	int			level,	/* level to insert record at */
3219 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3220 	union xfs_btree_rec	*rec,	/* record to insert */
3221 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3222 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3223 	int			*stat)	/* success/failure */
3224 {
3225 	struct xfs_btree_block	*block;	/* btree block */
3226 	struct xfs_buf		*bp;	/* buffer for block */
3227 	union xfs_btree_ptr	nptr;	/* new block ptr */
3228 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3229 	union xfs_btree_bigkey	nkey;	/* new block key */
3230 	union xfs_btree_key	*lkey;
3231 	int			optr;	/* old key/record index */
3232 	int			ptr;	/* key/record index */
3233 	int			numrecs;/* number of records */
3234 	int			error;	/* error return value */
3235 #ifdef DEBUG
3236 	int			i;
3237 #endif
3238 	xfs_daddr_t		old_bn;
3239 
3240 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3241 	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3242 
3243 	ncur = NULL;
3244 	lkey = (union xfs_btree_key *)&nkey;
3245 
3246 	/*
3247 	 * If we have an external root pointer, and we've made it to the
3248 	 * root level, allocate a new root block and we're done.
3249 	 */
3250 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3251 	    (level >= cur->bc_nlevels)) {
3252 		error = xfs_btree_new_root(cur, stat);
3253 		xfs_btree_set_ptr_null(cur, ptrp);
3254 
3255 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3256 		return error;
3257 	}
3258 
3259 	/* If we're off the left edge, return failure. */
3260 	ptr = cur->bc_ptrs[level];
3261 	if (ptr == 0) {
3262 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3263 		*stat = 0;
3264 		return 0;
3265 	}
3266 
3267 	optr = ptr;
3268 
3269 	XFS_BTREE_STATS_INC(cur, insrec);
3270 
3271 	/* Get pointers to the btree buffer and block. */
3272 	block = xfs_btree_get_block(cur, level, &bp);
3273 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3274 	numrecs = xfs_btree_get_numrecs(block);
3275 
3276 #ifdef DEBUG
3277 	error = xfs_btree_check_block(cur, block, level, bp);
3278 	if (error)
3279 		goto error0;
3280 
3281 	/* Check that the new entry is being inserted in the right place. */
3282 	if (ptr <= numrecs) {
3283 		if (level == 0) {
3284 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3285 				xfs_btree_rec_addr(cur, ptr, block)));
3286 		} else {
3287 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3288 				xfs_btree_key_addr(cur, ptr, block)));
3289 		}
3290 	}
3291 #endif
3292 
3293 	/*
3294 	 * If the block is full, we can't insert the new entry until we
3295 	 * make the block un-full.
3296 	 */
3297 	xfs_btree_set_ptr_null(cur, &nptr);
3298 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3299 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3300 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3301 		if (error || *stat == 0)
3302 			goto error0;
3303 	}
3304 
3305 	/*
3306 	 * The current block may have changed if the block was
3307 	 * previously full and we have just made space in it.
3308 	 */
3309 	block = xfs_btree_get_block(cur, level, &bp);
3310 	numrecs = xfs_btree_get_numrecs(block);
3311 
3312 #ifdef DEBUG
3313 	error = xfs_btree_check_block(cur, block, level, bp);
3314 	if (error)
3315 		return error;
3316 #endif
3317 
3318 	/*
3319 	 * At this point we know there's room for our new entry in the block
3320 	 * we're pointing at.
3321 	 */
3322 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3323 
3324 	if (level > 0) {
3325 		/* It's a nonleaf. make a hole in the keys and ptrs */
3326 		union xfs_btree_key	*kp;
3327 		union xfs_btree_ptr	*pp;
3328 
3329 		kp = xfs_btree_key_addr(cur, ptr, block);
3330 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3331 
3332 #ifdef DEBUG
3333 		for (i = numrecs - ptr; i >= 0; i--) {
3334 			error = xfs_btree_check_ptr(cur, pp, i, level);
3335 			if (error)
3336 				return error;
3337 		}
3338 #endif
3339 
3340 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3341 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3342 
3343 #ifdef DEBUG
3344 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3345 		if (error)
3346 			goto error0;
3347 #endif
3348 
3349 		/* Now put the new data in, bump numrecs and log it. */
3350 		xfs_btree_copy_keys(cur, kp, key, 1);
3351 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3352 		numrecs++;
3353 		xfs_btree_set_numrecs(block, numrecs);
3354 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3355 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3356 #ifdef DEBUG
3357 		if (ptr < numrecs) {
3358 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3359 				xfs_btree_key_addr(cur, ptr + 1, block)));
3360 		}
3361 #endif
3362 	} else {
3363 		/* It's a leaf. make a hole in the records */
3364 		union xfs_btree_rec             *rp;
3365 
3366 		rp = xfs_btree_rec_addr(cur, ptr, block);
3367 
3368 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3369 
3370 		/* Now put the new data in, bump numrecs and log it. */
3371 		xfs_btree_copy_recs(cur, rp, rec, 1);
3372 		xfs_btree_set_numrecs(block, ++numrecs);
3373 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3374 #ifdef DEBUG
3375 		if (ptr < numrecs) {
3376 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3377 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3378 		}
3379 #endif
3380 	}
3381 
3382 	/* Log the new number of records in the btree header. */
3383 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3384 
3385 	/*
3386 	 * If we just inserted into a new tree block, we have to
3387 	 * recalculate nkey here because nkey is out of date.
3388 	 *
3389 	 * Otherwise we're just updating an existing block (having shoved
3390 	 * some records into the new tree block), so use the regular key
3391 	 * update mechanism.
3392 	 */
3393 	if (bp && bp->b_bn != old_bn) {
3394 		xfs_btree_get_keys(cur, block, lkey);
3395 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3396 		error = xfs_btree_update_keys(cur, level);
3397 		if (error)
3398 			goto error0;
3399 	}
3400 
3401 	/*
3402 	 * If we are tracking the last record in the tree and
3403 	 * we are at the far right edge of the tree, update it.
3404 	 */
3405 	if (xfs_btree_is_lastrec(cur, block, level)) {
3406 		cur->bc_ops->update_lastrec(cur, block, rec,
3407 					    ptr, LASTREC_INSREC);
3408 	}
3409 
3410 	/*
3411 	 * Return the new block number, if any.
3412 	 * If there is one, give back a record value and a cursor too.
3413 	 */
3414 	*ptrp = nptr;
3415 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3416 		xfs_btree_copy_keys(cur, key, lkey, 1);
3417 		*curp = ncur;
3418 	}
3419 
3420 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3421 	*stat = 1;
3422 	return 0;
3423 
3424 error0:
3425 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3426 	return error;
3427 }
3428 
3429 /*
3430  * Insert the record at the point referenced by cur.
3431  *
3432  * A multi-level split of the tree on insert will invalidate the original
3433  * cursor.  All callers of this function should assume that the cursor is
3434  * no longer valid and revalidate it.
3435  */
3436 int
3437 xfs_btree_insert(
3438 	struct xfs_btree_cur	*cur,
3439 	int			*stat)
3440 {
3441 	int			error;	/* error return value */
3442 	int			i;	/* result value, 0 for failure */
3443 	int			level;	/* current level number in btree */
3444 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3445 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3446 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3447 	union xfs_btree_bigkey	bkey;	/* key of block to insert */
3448 	union xfs_btree_key	*key;
3449 	union xfs_btree_rec	rec;	/* record to insert */
3450 
3451 	level = 0;
3452 	ncur = NULL;
3453 	pcur = cur;
3454 	key = (union xfs_btree_key *)&bkey;
3455 
3456 	xfs_btree_set_ptr_null(cur, &nptr);
3457 
3458 	/* Make a key out of the record data to be inserted, and save it. */
3459 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3460 	cur->bc_ops->init_key_from_rec(key, &rec);
3461 
3462 	/*
3463 	 * Loop going up the tree, starting at the leaf level.
3464 	 * Stop when we don't get a split block, that must mean that
3465 	 * the insert is finished with this level.
3466 	 */
3467 	do {
3468 		/*
3469 		 * Insert nrec/nptr into this level of the tree.
3470 		 * Note if we fail, nptr will be null.
3471 		 */
3472 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3473 				&ncur, &i);
3474 		if (error) {
3475 			if (pcur != cur)
3476 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3477 			goto error0;
3478 		}
3479 
3480 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3481 		level++;
3482 
3483 		/*
3484 		 * See if the cursor we just used is trash.
3485 		 * Can't trash the caller's cursor, but otherwise we should
3486 		 * if ncur is a new cursor or we're about to be done.
3487 		 */
3488 		if (pcur != cur &&
3489 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3490 			/* Save the state from the cursor before we trash it */
3491 			if (cur->bc_ops->update_cursor)
3492 				cur->bc_ops->update_cursor(pcur, cur);
3493 			cur->bc_nlevels = pcur->bc_nlevels;
3494 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3495 		}
3496 		/* If we got a new cursor, switch to it. */
3497 		if (ncur) {
3498 			pcur = ncur;
3499 			ncur = NULL;
3500 		}
3501 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3502 
3503 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3504 	*stat = i;
3505 	return 0;
3506 error0:
3507 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3508 	return error;
3509 }
3510 
3511 /*
3512  * Try to merge a non-leaf block back into the inode root.
3513  *
3514  * Note: the killroot names comes from the fact that we're effectively
3515  * killing the old root block.  But because we can't just delete the
3516  * inode we have to copy the single block it was pointing to into the
3517  * inode.
3518  */
3519 STATIC int
3520 xfs_btree_kill_iroot(
3521 	struct xfs_btree_cur	*cur)
3522 {
3523 	int			whichfork = cur->bc_private.b.whichfork;
3524 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3525 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3526 	struct xfs_btree_block	*block;
3527 	struct xfs_btree_block	*cblock;
3528 	union xfs_btree_key	*kp;
3529 	union xfs_btree_key	*ckp;
3530 	union xfs_btree_ptr	*pp;
3531 	union xfs_btree_ptr	*cpp;
3532 	struct xfs_buf		*cbp;
3533 	int			level;
3534 	int			index;
3535 	int			numrecs;
3536 	int			error;
3537 #ifdef DEBUG
3538 	union xfs_btree_ptr	ptr;
3539 	int			i;
3540 #endif
3541 
3542 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3543 
3544 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3545 	ASSERT(cur->bc_nlevels > 1);
3546 
3547 	/*
3548 	 * Don't deal with the root block needs to be a leaf case.
3549 	 * We're just going to turn the thing back into extents anyway.
3550 	 */
3551 	level = cur->bc_nlevels - 1;
3552 	if (level == 1)
3553 		goto out0;
3554 
3555 	/*
3556 	 * Give up if the root has multiple children.
3557 	 */
3558 	block = xfs_btree_get_iroot(cur);
3559 	if (xfs_btree_get_numrecs(block) != 1)
3560 		goto out0;
3561 
3562 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3563 	numrecs = xfs_btree_get_numrecs(cblock);
3564 
3565 	/*
3566 	 * Only do this if the next level will fit.
3567 	 * Then the data must be copied up to the inode,
3568 	 * instead of freeing the root you free the next level.
3569 	 */
3570 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3571 		goto out0;
3572 
3573 	XFS_BTREE_STATS_INC(cur, killroot);
3574 
3575 #ifdef DEBUG
3576 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3577 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3578 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3579 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3580 #endif
3581 
3582 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3583 	if (index) {
3584 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3585 				  cur->bc_private.b.whichfork);
3586 		block = ifp->if_broot;
3587 	}
3588 
3589 	be16_add_cpu(&block->bb_numrecs, index);
3590 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3591 
3592 	kp = xfs_btree_key_addr(cur, 1, block);
3593 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3594 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3595 
3596 	pp = xfs_btree_ptr_addr(cur, 1, block);
3597 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3598 #ifdef DEBUG
3599 	for (i = 0; i < numrecs; i++) {
3600 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3601 		if (error) {
3602 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3603 			return error;
3604 		}
3605 	}
3606 #endif
3607 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3608 
3609 	error = xfs_btree_free_block(cur, cbp);
3610 	if (error) {
3611 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3612 		return error;
3613 	}
3614 
3615 	cur->bc_bufs[level - 1] = NULL;
3616 	be16_add_cpu(&block->bb_level, -1);
3617 	xfs_trans_log_inode(cur->bc_tp, ip,
3618 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3619 	cur->bc_nlevels--;
3620 out0:
3621 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3622 	return 0;
3623 }
3624 
3625 /*
3626  * Kill the current root node, and replace it with it's only child node.
3627  */
3628 STATIC int
3629 xfs_btree_kill_root(
3630 	struct xfs_btree_cur	*cur,
3631 	struct xfs_buf		*bp,
3632 	int			level,
3633 	union xfs_btree_ptr	*newroot)
3634 {
3635 	int			error;
3636 
3637 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3638 	XFS_BTREE_STATS_INC(cur, killroot);
3639 
3640 	/*
3641 	 * Update the root pointer, decreasing the level by 1 and then
3642 	 * free the old root.
3643 	 */
3644 	cur->bc_ops->set_root(cur, newroot, -1);
3645 
3646 	error = xfs_btree_free_block(cur, bp);
3647 	if (error) {
3648 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3649 		return error;
3650 	}
3651 
3652 	cur->bc_bufs[level] = NULL;
3653 	cur->bc_ra[level] = 0;
3654 	cur->bc_nlevels--;
3655 
3656 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3657 	return 0;
3658 }
3659 
3660 STATIC int
3661 xfs_btree_dec_cursor(
3662 	struct xfs_btree_cur	*cur,
3663 	int			level,
3664 	int			*stat)
3665 {
3666 	int			error;
3667 	int			i;
3668 
3669 	if (level > 0) {
3670 		error = xfs_btree_decrement(cur, level, &i);
3671 		if (error)
3672 			return error;
3673 	}
3674 
3675 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3676 	*stat = 1;
3677 	return 0;
3678 }
3679 
3680 /*
3681  * Single level of the btree record deletion routine.
3682  * Delete record pointed to by cur/level.
3683  * Remove the record from its block then rebalance the tree.
3684  * Return 0 for error, 1 for done, 2 to go on to the next level.
3685  */
3686 STATIC int					/* error */
3687 xfs_btree_delrec(
3688 	struct xfs_btree_cur	*cur,		/* btree cursor */
3689 	int			level,		/* level removing record from */
3690 	int			*stat)		/* fail/done/go-on */
3691 {
3692 	struct xfs_btree_block	*block;		/* btree block */
3693 	union xfs_btree_ptr	cptr;		/* current block ptr */
3694 	struct xfs_buf		*bp;		/* buffer for block */
3695 	int			error;		/* error return value */
3696 	int			i;		/* loop counter */
3697 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3698 	struct xfs_buf		*lbp;		/* left buffer pointer */
3699 	struct xfs_btree_block	*left;		/* left btree block */
3700 	int			lrecs = 0;	/* left record count */
3701 	int			ptr;		/* key/record index */
3702 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3703 	struct xfs_buf		*rbp;		/* right buffer pointer */
3704 	struct xfs_btree_block	*right;		/* right btree block */
3705 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3706 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3707 	int			rrecs = 0;	/* right record count */
3708 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3709 	int			numrecs;	/* temporary numrec count */
3710 
3711 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3712 	XFS_BTREE_TRACE_ARGI(cur, level);
3713 
3714 	tcur = NULL;
3715 
3716 	/* Get the index of the entry being deleted, check for nothing there. */
3717 	ptr = cur->bc_ptrs[level];
3718 	if (ptr == 0) {
3719 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3720 		*stat = 0;
3721 		return 0;
3722 	}
3723 
3724 	/* Get the buffer & block containing the record or key/ptr. */
3725 	block = xfs_btree_get_block(cur, level, &bp);
3726 	numrecs = xfs_btree_get_numrecs(block);
3727 
3728 #ifdef DEBUG
3729 	error = xfs_btree_check_block(cur, block, level, bp);
3730 	if (error)
3731 		goto error0;
3732 #endif
3733 
3734 	/* Fail if we're off the end of the block. */
3735 	if (ptr > numrecs) {
3736 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3737 		*stat = 0;
3738 		return 0;
3739 	}
3740 
3741 	XFS_BTREE_STATS_INC(cur, delrec);
3742 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3743 
3744 	/* Excise the entries being deleted. */
3745 	if (level > 0) {
3746 		/* It's a nonleaf. operate on keys and ptrs */
3747 		union xfs_btree_key	*lkp;
3748 		union xfs_btree_ptr	*lpp;
3749 
3750 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3751 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3752 
3753 #ifdef DEBUG
3754 		for (i = 0; i < numrecs - ptr; i++) {
3755 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3756 			if (error)
3757 				goto error0;
3758 		}
3759 #endif
3760 
3761 		if (ptr < numrecs) {
3762 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3763 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3764 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3765 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3766 		}
3767 	} else {
3768 		/* It's a leaf. operate on records */
3769 		if (ptr < numrecs) {
3770 			xfs_btree_shift_recs(cur,
3771 				xfs_btree_rec_addr(cur, ptr + 1, block),
3772 				-1, numrecs - ptr);
3773 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3774 		}
3775 	}
3776 
3777 	/*
3778 	 * Decrement and log the number of entries in the block.
3779 	 */
3780 	xfs_btree_set_numrecs(block, --numrecs);
3781 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3782 
3783 	/*
3784 	 * If we are tracking the last record in the tree and
3785 	 * we are at the far right edge of the tree, update it.
3786 	 */
3787 	if (xfs_btree_is_lastrec(cur, block, level)) {
3788 		cur->bc_ops->update_lastrec(cur, block, NULL,
3789 					    ptr, LASTREC_DELREC);
3790 	}
3791 
3792 	/*
3793 	 * We're at the root level.  First, shrink the root block in-memory.
3794 	 * Try to get rid of the next level down.  If we can't then there's
3795 	 * nothing left to do.
3796 	 */
3797 	if (level == cur->bc_nlevels - 1) {
3798 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3799 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3800 					  cur->bc_private.b.whichfork);
3801 
3802 			error = xfs_btree_kill_iroot(cur);
3803 			if (error)
3804 				goto error0;
3805 
3806 			error = xfs_btree_dec_cursor(cur, level, stat);
3807 			if (error)
3808 				goto error0;
3809 			*stat = 1;
3810 			return 0;
3811 		}
3812 
3813 		/*
3814 		 * If this is the root level, and there's only one entry left,
3815 		 * and it's NOT the leaf level, then we can get rid of this
3816 		 * level.
3817 		 */
3818 		if (numrecs == 1 && level > 0) {
3819 			union xfs_btree_ptr	*pp;
3820 			/*
3821 			 * pp is still set to the first pointer in the block.
3822 			 * Make it the new root of the btree.
3823 			 */
3824 			pp = xfs_btree_ptr_addr(cur, 1, block);
3825 			error = xfs_btree_kill_root(cur, bp, level, pp);
3826 			if (error)
3827 				goto error0;
3828 		} else if (level > 0) {
3829 			error = xfs_btree_dec_cursor(cur, level, stat);
3830 			if (error)
3831 				goto error0;
3832 		}
3833 		*stat = 1;
3834 		return 0;
3835 	}
3836 
3837 	/*
3838 	 * If we deleted the leftmost entry in the block, update the
3839 	 * key values above us in the tree.
3840 	 */
3841 	if (xfs_btree_needs_key_update(cur, ptr)) {
3842 		error = xfs_btree_update_keys(cur, level);
3843 		if (error)
3844 			goto error0;
3845 	}
3846 
3847 	/*
3848 	 * If the number of records remaining in the block is at least
3849 	 * the minimum, we're done.
3850 	 */
3851 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3852 		error = xfs_btree_dec_cursor(cur, level, stat);
3853 		if (error)
3854 			goto error0;
3855 		return 0;
3856 	}
3857 
3858 	/*
3859 	 * Otherwise, we have to move some records around to keep the
3860 	 * tree balanced.  Look at the left and right sibling blocks to
3861 	 * see if we can re-balance by moving only one record.
3862 	 */
3863 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3864 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3865 
3866 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3867 		/*
3868 		 * One child of root, need to get a chance to copy its contents
3869 		 * into the root and delete it. Can't go up to next level,
3870 		 * there's nothing to delete there.
3871 		 */
3872 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3873 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3874 		    level == cur->bc_nlevels - 2) {
3875 			error = xfs_btree_kill_iroot(cur);
3876 			if (!error)
3877 				error = xfs_btree_dec_cursor(cur, level, stat);
3878 			if (error)
3879 				goto error0;
3880 			return 0;
3881 		}
3882 	}
3883 
3884 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3885 	       !xfs_btree_ptr_is_null(cur, &lptr));
3886 
3887 	/*
3888 	 * Duplicate the cursor so our btree manipulations here won't
3889 	 * disrupt the next level up.
3890 	 */
3891 	error = xfs_btree_dup_cursor(cur, &tcur);
3892 	if (error)
3893 		goto error0;
3894 
3895 	/*
3896 	 * If there's a right sibling, see if it's ok to shift an entry
3897 	 * out of it.
3898 	 */
3899 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3900 		/*
3901 		 * Move the temp cursor to the last entry in the next block.
3902 		 * Actually any entry but the first would suffice.
3903 		 */
3904 		i = xfs_btree_lastrec(tcur, level);
3905 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3906 
3907 		error = xfs_btree_increment(tcur, level, &i);
3908 		if (error)
3909 			goto error0;
3910 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3911 
3912 		i = xfs_btree_lastrec(tcur, level);
3913 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3914 
3915 		/* Grab a pointer to the block. */
3916 		right = xfs_btree_get_block(tcur, level, &rbp);
3917 #ifdef DEBUG
3918 		error = xfs_btree_check_block(tcur, right, level, rbp);
3919 		if (error)
3920 			goto error0;
3921 #endif
3922 		/* Grab the current block number, for future use. */
3923 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3924 
3925 		/*
3926 		 * If right block is full enough so that removing one entry
3927 		 * won't make it too empty, and left-shifting an entry out
3928 		 * of right to us works, we're done.
3929 		 */
3930 		if (xfs_btree_get_numrecs(right) - 1 >=
3931 		    cur->bc_ops->get_minrecs(tcur, level)) {
3932 			error = xfs_btree_lshift(tcur, level, &i);
3933 			if (error)
3934 				goto error0;
3935 			if (i) {
3936 				ASSERT(xfs_btree_get_numrecs(block) >=
3937 				       cur->bc_ops->get_minrecs(tcur, level));
3938 
3939 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3940 				tcur = NULL;
3941 
3942 				error = xfs_btree_dec_cursor(cur, level, stat);
3943 				if (error)
3944 					goto error0;
3945 				return 0;
3946 			}
3947 		}
3948 
3949 		/*
3950 		 * Otherwise, grab the number of records in right for
3951 		 * future reference, and fix up the temp cursor to point
3952 		 * to our block again (last record).
3953 		 */
3954 		rrecs = xfs_btree_get_numrecs(right);
3955 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3956 			i = xfs_btree_firstrec(tcur, level);
3957 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3958 
3959 			error = xfs_btree_decrement(tcur, level, &i);
3960 			if (error)
3961 				goto error0;
3962 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3963 		}
3964 	}
3965 
3966 	/*
3967 	 * If there's a left sibling, see if it's ok to shift an entry
3968 	 * out of it.
3969 	 */
3970 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3971 		/*
3972 		 * Move the temp cursor to the first entry in the
3973 		 * previous block.
3974 		 */
3975 		i = xfs_btree_firstrec(tcur, level);
3976 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3977 
3978 		error = xfs_btree_decrement(tcur, level, &i);
3979 		if (error)
3980 			goto error0;
3981 		i = xfs_btree_firstrec(tcur, level);
3982 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3983 
3984 		/* Grab a pointer to the block. */
3985 		left = xfs_btree_get_block(tcur, level, &lbp);
3986 #ifdef DEBUG
3987 		error = xfs_btree_check_block(cur, left, level, lbp);
3988 		if (error)
3989 			goto error0;
3990 #endif
3991 		/* Grab the current block number, for future use. */
3992 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3993 
3994 		/*
3995 		 * If left block is full enough so that removing one entry
3996 		 * won't make it too empty, and right-shifting an entry out
3997 		 * of left to us works, we're done.
3998 		 */
3999 		if (xfs_btree_get_numrecs(left) - 1 >=
4000 		    cur->bc_ops->get_minrecs(tcur, level)) {
4001 			error = xfs_btree_rshift(tcur, level, &i);
4002 			if (error)
4003 				goto error0;
4004 			if (i) {
4005 				ASSERT(xfs_btree_get_numrecs(block) >=
4006 				       cur->bc_ops->get_minrecs(tcur, level));
4007 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4008 				tcur = NULL;
4009 				if (level == 0)
4010 					cur->bc_ptrs[0]++;
4011 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4012 				*stat = 1;
4013 				return 0;
4014 			}
4015 		}
4016 
4017 		/*
4018 		 * Otherwise, grab the number of records in right for
4019 		 * future reference.
4020 		 */
4021 		lrecs = xfs_btree_get_numrecs(left);
4022 	}
4023 
4024 	/* Delete the temp cursor, we're done with it. */
4025 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4026 	tcur = NULL;
4027 
4028 	/* If here, we need to do a join to keep the tree balanced. */
4029 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4030 
4031 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4032 	    lrecs + xfs_btree_get_numrecs(block) <=
4033 			cur->bc_ops->get_maxrecs(cur, level)) {
4034 		/*
4035 		 * Set "right" to be the starting block,
4036 		 * "left" to be the left neighbor.
4037 		 */
4038 		rptr = cptr;
4039 		right = block;
4040 		rbp = bp;
4041 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4042 		if (error)
4043 			goto error0;
4044 
4045 	/*
4046 	 * If that won't work, see if we can join with the right neighbor block.
4047 	 */
4048 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4049 		   rrecs + xfs_btree_get_numrecs(block) <=
4050 			cur->bc_ops->get_maxrecs(cur, level)) {
4051 		/*
4052 		 * Set "left" to be the starting block,
4053 		 * "right" to be the right neighbor.
4054 		 */
4055 		lptr = cptr;
4056 		left = block;
4057 		lbp = bp;
4058 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4059 		if (error)
4060 			goto error0;
4061 
4062 	/*
4063 	 * Otherwise, we can't fix the imbalance.
4064 	 * Just return.  This is probably a logic error, but it's not fatal.
4065 	 */
4066 	} else {
4067 		error = xfs_btree_dec_cursor(cur, level, stat);
4068 		if (error)
4069 			goto error0;
4070 		return 0;
4071 	}
4072 
4073 	rrecs = xfs_btree_get_numrecs(right);
4074 	lrecs = xfs_btree_get_numrecs(left);
4075 
4076 	/*
4077 	 * We're now going to join "left" and "right" by moving all the stuff
4078 	 * in "right" to "left" and deleting "right".
4079 	 */
4080 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4081 	if (level > 0) {
4082 		/* It's a non-leaf.  Move keys and pointers. */
4083 		union xfs_btree_key	*lkp;	/* left btree key */
4084 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4085 		union xfs_btree_key	*rkp;	/* right btree key */
4086 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4087 
4088 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4089 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4090 		rkp = xfs_btree_key_addr(cur, 1, right);
4091 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4092 #ifdef DEBUG
4093 		for (i = 1; i < rrecs; i++) {
4094 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4095 			if (error)
4096 				goto error0;
4097 		}
4098 #endif
4099 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4100 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4101 
4102 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4103 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4104 	} else {
4105 		/* It's a leaf.  Move records.  */
4106 		union xfs_btree_rec	*lrp;	/* left record pointer */
4107 		union xfs_btree_rec	*rrp;	/* right record pointer */
4108 
4109 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4110 		rrp = xfs_btree_rec_addr(cur, 1, right);
4111 
4112 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4113 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4114 	}
4115 
4116 	XFS_BTREE_STATS_INC(cur, join);
4117 
4118 	/*
4119 	 * Fix up the number of records and right block pointer in the
4120 	 * surviving block, and log it.
4121 	 */
4122 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4123 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4124 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4125 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4126 
4127 	/* If there is a right sibling, point it to the remaining block. */
4128 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4129 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4130 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4131 		if (error)
4132 			goto error0;
4133 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4134 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4135 	}
4136 
4137 	/* Free the deleted block. */
4138 	error = xfs_btree_free_block(cur, rbp);
4139 	if (error)
4140 		goto error0;
4141 
4142 	/*
4143 	 * If we joined with the left neighbor, set the buffer in the
4144 	 * cursor to the left block, and fix up the index.
4145 	 */
4146 	if (bp != lbp) {
4147 		cur->bc_bufs[level] = lbp;
4148 		cur->bc_ptrs[level] += lrecs;
4149 		cur->bc_ra[level] = 0;
4150 	}
4151 	/*
4152 	 * If we joined with the right neighbor and there's a level above
4153 	 * us, increment the cursor at that level.
4154 	 */
4155 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4156 		   (level + 1 < cur->bc_nlevels)) {
4157 		error = xfs_btree_increment(cur, level + 1, &i);
4158 		if (error)
4159 			goto error0;
4160 	}
4161 
4162 	/*
4163 	 * Readjust the ptr at this level if it's not a leaf, since it's
4164 	 * still pointing at the deletion point, which makes the cursor
4165 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4166 	 * We can't use decrement because it would change the next level up.
4167 	 */
4168 	if (level > 0)
4169 		cur->bc_ptrs[level]--;
4170 
4171 	/*
4172 	 * We combined blocks, so we have to update the parent keys if the
4173 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4174 	 * points to the old block so that the caller knows which record to
4175 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4176 	 * for us if we return stat == 2.  The other exit points from this
4177 	 * function don't require deletions further up the tree, so they can
4178 	 * call updkeys directly.
4179 	 */
4180 
4181 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4182 	/* Return value means the next level up has something to do. */
4183 	*stat = 2;
4184 	return 0;
4185 
4186 error0:
4187 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4188 	if (tcur)
4189 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4190 	return error;
4191 }
4192 
4193 /*
4194  * Delete the record pointed to by cur.
4195  * The cursor refers to the place where the record was (could be inserted)
4196  * when the operation returns.
4197  */
4198 int					/* error */
4199 xfs_btree_delete(
4200 	struct xfs_btree_cur	*cur,
4201 	int			*stat)	/* success/failure */
4202 {
4203 	int			error;	/* error return value */
4204 	int			level;
4205 	int			i;
4206 	bool			joined = false;
4207 
4208 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4209 
4210 	/*
4211 	 * Go up the tree, starting at leaf level.
4212 	 *
4213 	 * If 2 is returned then a join was done; go to the next level.
4214 	 * Otherwise we are done.
4215 	 */
4216 	for (level = 0, i = 2; i == 2; level++) {
4217 		error = xfs_btree_delrec(cur, level, &i);
4218 		if (error)
4219 			goto error0;
4220 		if (i == 2)
4221 			joined = true;
4222 	}
4223 
4224 	/*
4225 	 * If we combined blocks as part of deleting the record, delrec won't
4226 	 * have updated the parent high keys so we have to do that here.
4227 	 */
4228 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4229 		error = xfs_btree_updkeys_force(cur, 0);
4230 		if (error)
4231 			goto error0;
4232 	}
4233 
4234 	if (i == 0) {
4235 		for (level = 1; level < cur->bc_nlevels; level++) {
4236 			if (cur->bc_ptrs[level] == 0) {
4237 				error = xfs_btree_decrement(cur, level, &i);
4238 				if (error)
4239 					goto error0;
4240 				break;
4241 			}
4242 		}
4243 	}
4244 
4245 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4246 	*stat = i;
4247 	return 0;
4248 error0:
4249 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4250 	return error;
4251 }
4252 
4253 /*
4254  * Get the data from the pointed-to record.
4255  */
4256 int					/* error */
4257 xfs_btree_get_rec(
4258 	struct xfs_btree_cur	*cur,	/* btree cursor */
4259 	union xfs_btree_rec	**recp,	/* output: btree record */
4260 	int			*stat)	/* output: success/failure */
4261 {
4262 	struct xfs_btree_block	*block;	/* btree block */
4263 	struct xfs_buf		*bp;	/* buffer pointer */
4264 	int			ptr;	/* record number */
4265 #ifdef DEBUG
4266 	int			error;	/* error return value */
4267 #endif
4268 
4269 	ptr = cur->bc_ptrs[0];
4270 	block = xfs_btree_get_block(cur, 0, &bp);
4271 
4272 #ifdef DEBUG
4273 	error = xfs_btree_check_block(cur, block, 0, bp);
4274 	if (error)
4275 		return error;
4276 #endif
4277 
4278 	/*
4279 	 * Off the right end or left end, return failure.
4280 	 */
4281 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4282 		*stat = 0;
4283 		return 0;
4284 	}
4285 
4286 	/*
4287 	 * Point to the record and extract its data.
4288 	 */
4289 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4290 	*stat = 1;
4291 	return 0;
4292 }
4293 
4294 /* Visit a block in a btree. */
4295 STATIC int
4296 xfs_btree_visit_block(
4297 	struct xfs_btree_cur		*cur,
4298 	int				level,
4299 	xfs_btree_visit_blocks_fn	fn,
4300 	void				*data)
4301 {
4302 	struct xfs_btree_block		*block;
4303 	struct xfs_buf			*bp;
4304 	union xfs_btree_ptr		rptr;
4305 	int				error;
4306 
4307 	/* do right sibling readahead */
4308 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4309 	block = xfs_btree_get_block(cur, level, &bp);
4310 
4311 	/* process the block */
4312 	error = fn(cur, level, data);
4313 	if (error)
4314 		return error;
4315 
4316 	/* now read rh sibling block for next iteration */
4317 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4318 	if (xfs_btree_ptr_is_null(cur, &rptr))
4319 		return -ENOENT;
4320 
4321 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4322 }
4323 
4324 
4325 /* Visit every block in a btree. */
4326 int
4327 xfs_btree_visit_blocks(
4328 	struct xfs_btree_cur		*cur,
4329 	xfs_btree_visit_blocks_fn	fn,
4330 	void				*data)
4331 {
4332 	union xfs_btree_ptr		lptr;
4333 	int				level;
4334 	struct xfs_btree_block		*block = NULL;
4335 	int				error = 0;
4336 
4337 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4338 
4339 	/* for each level */
4340 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4341 		/* grab the left hand block */
4342 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4343 		if (error)
4344 			return error;
4345 
4346 		/* readahead the left most block for the next level down */
4347 		if (level > 0) {
4348 			union xfs_btree_ptr     *ptr;
4349 
4350 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4351 			xfs_btree_readahead_ptr(cur, ptr, 1);
4352 
4353 			/* save for the next iteration of the loop */
4354 			lptr = *ptr;
4355 		}
4356 
4357 		/* for each buffer in the level */
4358 		do {
4359 			error = xfs_btree_visit_block(cur, level, fn, data);
4360 		} while (!error);
4361 
4362 		if (error != -ENOENT)
4363 			return error;
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 /*
4370  * Change the owner of a btree.
4371  *
4372  * The mechanism we use here is ordered buffer logging. Because we don't know
4373  * how many buffers were are going to need to modify, we don't really want to
4374  * have to make transaction reservations for the worst case of every buffer in a
4375  * full size btree as that may be more space that we can fit in the log....
4376  *
4377  * We do the btree walk in the most optimal manner possible - we have sibling
4378  * pointers so we can just walk all the blocks on each level from left to right
4379  * in a single pass, and then move to the next level and do the same. We can
4380  * also do readahead on the sibling pointers to get IO moving more quickly,
4381  * though for slow disks this is unlikely to make much difference to performance
4382  * as the amount of CPU work we have to do before moving to the next block is
4383  * relatively small.
4384  *
4385  * For each btree block that we load, modify the owner appropriately, set the
4386  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4387  * we mark the region we change dirty so that if the buffer is relogged in
4388  * a subsequent transaction the changes we make here as an ordered buffer are
4389  * correctly relogged in that transaction.  If we are in recovery context, then
4390  * just queue the modified buffer as delayed write buffer so the transaction
4391  * recovery completion writes the changes to disk.
4392  */
4393 struct xfs_btree_block_change_owner_info {
4394 	__uint64_t		new_owner;
4395 	struct list_head	*buffer_list;
4396 };
4397 
4398 static int
4399 xfs_btree_block_change_owner(
4400 	struct xfs_btree_cur	*cur,
4401 	int			level,
4402 	void			*data)
4403 {
4404 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4405 	struct xfs_btree_block	*block;
4406 	struct xfs_buf		*bp;
4407 
4408 	/* modify the owner */
4409 	block = xfs_btree_get_block(cur, level, &bp);
4410 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4411 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4412 	else
4413 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4414 
4415 	/*
4416 	 * If the block is a root block hosted in an inode, we might not have a
4417 	 * buffer pointer here and we shouldn't attempt to log the change as the
4418 	 * information is already held in the inode and discarded when the root
4419 	 * block is formatted into the on-disk inode fork. We still change it,
4420 	 * though, so everything is consistent in memory.
4421 	 */
4422 	if (bp) {
4423 		if (cur->bc_tp) {
4424 			xfs_trans_ordered_buf(cur->bc_tp, bp);
4425 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4426 		} else {
4427 			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4428 		}
4429 	} else {
4430 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4431 		ASSERT(level == cur->bc_nlevels - 1);
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 int
4438 xfs_btree_change_owner(
4439 	struct xfs_btree_cur	*cur,
4440 	__uint64_t		new_owner,
4441 	struct list_head	*buffer_list)
4442 {
4443 	struct xfs_btree_block_change_owner_info	bbcoi;
4444 
4445 	bbcoi.new_owner = new_owner;
4446 	bbcoi.buffer_list = buffer_list;
4447 
4448 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4449 			&bbcoi);
4450 }
4451 
4452 /**
4453  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4454  *				      btree block
4455  *
4456  * @bp: buffer containing the btree block
4457  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4458  * @pag_max_level: pointer to the per-ag max level field
4459  */
4460 bool
4461 xfs_btree_sblock_v5hdr_verify(
4462 	struct xfs_buf		*bp)
4463 {
4464 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4465 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4466 	struct xfs_perag	*pag = bp->b_pag;
4467 
4468 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4469 		return false;
4470 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4471 		return false;
4472 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4473 		return false;
4474 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4475 		return false;
4476 	return true;
4477 }
4478 
4479 /**
4480  * xfs_btree_sblock_verify() -- verify a short-format btree block
4481  *
4482  * @bp: buffer containing the btree block
4483  * @max_recs: maximum records allowed in this btree node
4484  */
4485 bool
4486 xfs_btree_sblock_verify(
4487 	struct xfs_buf		*bp,
4488 	unsigned int		max_recs)
4489 {
4490 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4491 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4492 
4493 	/* numrecs verification */
4494 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4495 		return false;
4496 
4497 	/* sibling pointer verification */
4498 	if (!block->bb_u.s.bb_leftsib ||
4499 	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4500 	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4501 		return false;
4502 	if (!block->bb_u.s.bb_rightsib ||
4503 	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4504 	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4505 		return false;
4506 
4507 	return true;
4508 }
4509 
4510 /*
4511  * Calculate the number of btree levels needed to store a given number of
4512  * records in a short-format btree.
4513  */
4514 uint
4515 xfs_btree_compute_maxlevels(
4516 	struct xfs_mount	*mp,
4517 	uint			*limits,
4518 	unsigned long		len)
4519 {
4520 	uint			level;
4521 	unsigned long		maxblocks;
4522 
4523 	maxblocks = (len + limits[0] - 1) / limits[0];
4524 	for (level = 1; maxblocks > 1; level++)
4525 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526 	return level;
4527 }
4528 
4529 /*
4530  * Query a regular btree for all records overlapping a given interval.
4531  * Start with a LE lookup of the key of low_rec and return all records
4532  * until we find a record with a key greater than the key of high_rec.
4533  */
4534 STATIC int
4535 xfs_btree_simple_query_range(
4536 	struct xfs_btree_cur		*cur,
4537 	union xfs_btree_key		*low_key,
4538 	union xfs_btree_key		*high_key,
4539 	xfs_btree_query_range_fn	fn,
4540 	void				*priv)
4541 {
4542 	union xfs_btree_rec		*recp;
4543 	union xfs_btree_key		rec_key;
4544 	__int64_t			diff;
4545 	int				stat;
4546 	bool				firstrec = true;
4547 	int				error;
4548 
4549 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4550 	ASSERT(cur->bc_ops->diff_two_keys);
4551 
4552 	/*
4553 	 * Find the leftmost record.  The btree cursor must be set
4554 	 * to the low record used to generate low_key.
4555 	 */
4556 	stat = 0;
4557 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558 	if (error)
4559 		goto out;
4560 
4561 	/* Nothing?  See if there's anything to the right. */
4562 	if (!stat) {
4563 		error = xfs_btree_increment(cur, 0, &stat);
4564 		if (error)
4565 			goto out;
4566 	}
4567 
4568 	while (stat) {
4569 		/* Find the record. */
4570 		error = xfs_btree_get_rec(cur, &recp, &stat);
4571 		if (error || !stat)
4572 			break;
4573 
4574 		/* Skip if high_key(rec) < low_key. */
4575 		if (firstrec) {
4576 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577 			firstrec = false;
4578 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579 					&rec_key);
4580 			if (diff > 0)
4581 				goto advloop;
4582 		}
4583 
4584 		/* Stop if high_key < low_key(rec). */
4585 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587 		if (diff > 0)
4588 			break;
4589 
4590 		/* Callback */
4591 		error = fn(cur, recp, priv);
4592 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4593 			break;
4594 
4595 advloop:
4596 		/* Move on to the next record. */
4597 		error = xfs_btree_increment(cur, 0, &stat);
4598 		if (error)
4599 			break;
4600 	}
4601 
4602 out:
4603 	return error;
4604 }
4605 
4606 /*
4607  * Query an overlapped interval btree for all records overlapping a given
4608  * interval.  This function roughly follows the algorithm given in
4609  * "Interval Trees" of _Introduction to Algorithms_, which is section
4610  * 14.3 in the 2nd and 3rd editions.
4611  *
4612  * First, generate keys for the low and high records passed in.
4613  *
4614  * For any leaf node, generate the high and low keys for the record.
4615  * If the record keys overlap with the query low/high keys, pass the
4616  * record to the function iterator.
4617  *
4618  * For any internal node, compare the low and high keys of each
4619  * pointer against the query low/high keys.  If there's an overlap,
4620  * follow the pointer.
4621  *
4622  * As an optimization, we stop scanning a block when we find a low key
4623  * that is greater than the query's high key.
4624  */
4625 STATIC int
4626 xfs_btree_overlapped_query_range(
4627 	struct xfs_btree_cur		*cur,
4628 	union xfs_btree_key		*low_key,
4629 	union xfs_btree_key		*high_key,
4630 	xfs_btree_query_range_fn	fn,
4631 	void				*priv)
4632 {
4633 	union xfs_btree_ptr		ptr;
4634 	union xfs_btree_ptr		*pp;
4635 	union xfs_btree_key		rec_key;
4636 	union xfs_btree_key		rec_hkey;
4637 	union xfs_btree_key		*lkp;
4638 	union xfs_btree_key		*hkp;
4639 	union xfs_btree_rec		*recp;
4640 	struct xfs_btree_block		*block;
4641 	__int64_t			ldiff;
4642 	__int64_t			hdiff;
4643 	int				level;
4644 	struct xfs_buf			*bp;
4645 	int				i;
4646 	int				error;
4647 
4648 	/* Load the root of the btree. */
4649 	level = cur->bc_nlevels - 1;
4650 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652 	if (error)
4653 		return error;
4654 	xfs_btree_get_block(cur, level, &bp);
4655 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656 #ifdef DEBUG
4657 	error = xfs_btree_check_block(cur, block, level, bp);
4658 	if (error)
4659 		goto out;
4660 #endif
4661 	cur->bc_ptrs[level] = 1;
4662 
4663 	while (level < cur->bc_nlevels) {
4664 		block = xfs_btree_get_block(cur, level, &bp);
4665 
4666 		/* End of node, pop back towards the root. */
4667 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668 pop_up:
4669 			if (level < cur->bc_nlevels - 1)
4670 				cur->bc_ptrs[level + 1]++;
4671 			level++;
4672 			continue;
4673 		}
4674 
4675 		if (level == 0) {
4676 			/* Handle a leaf node. */
4677 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678 
4679 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681 					low_key);
4682 
4683 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685 					&rec_key);
4686 
4687 			/*
4688 			 * If (record's high key >= query's low key) and
4689 			 *    (query's high key >= record's low key), then
4690 			 * this record overlaps the query range; callback.
4691 			 */
4692 			if (ldiff >= 0 && hdiff >= 0) {
4693 				error = fn(cur, recp, priv);
4694 				if (error < 0 ||
4695 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4696 					break;
4697 			} else if (hdiff < 0) {
4698 				/* Record is larger than high key; pop. */
4699 				goto pop_up;
4700 			}
4701 			cur->bc_ptrs[level]++;
4702 			continue;
4703 		}
4704 
4705 		/* Handle an internal node. */
4706 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4707 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4708 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4709 
4710 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4711 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4712 
4713 		/*
4714 		 * If (pointer's high key >= query's low key) and
4715 		 *    (query's high key >= pointer's low key), then
4716 		 * this record overlaps the query range; follow pointer.
4717 		 */
4718 		if (ldiff >= 0 && hdiff >= 0) {
4719 			level--;
4720 			error = xfs_btree_lookup_get_block(cur, level, pp,
4721 					&block);
4722 			if (error)
4723 				goto out;
4724 			xfs_btree_get_block(cur, level, &bp);
4725 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4726 #ifdef DEBUG
4727 			error = xfs_btree_check_block(cur, block, level, bp);
4728 			if (error)
4729 				goto out;
4730 #endif
4731 			cur->bc_ptrs[level] = 1;
4732 			continue;
4733 		} else if (hdiff < 0) {
4734 			/* The low key is larger than the upper range; pop. */
4735 			goto pop_up;
4736 		}
4737 		cur->bc_ptrs[level]++;
4738 	}
4739 
4740 out:
4741 	/*
4742 	 * If we don't end this function with the cursor pointing at a record
4743 	 * block, a subsequent non-error cursor deletion will not release
4744 	 * node-level buffers, causing a buffer leak.  This is quite possible
4745 	 * with a zero-results range query, so release the buffers if we
4746 	 * failed to return any results.
4747 	 */
4748 	if (cur->bc_bufs[0] == NULL) {
4749 		for (i = 0; i < cur->bc_nlevels; i++) {
4750 			if (cur->bc_bufs[i]) {
4751 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4752 				cur->bc_bufs[i] = NULL;
4753 				cur->bc_ptrs[i] = 0;
4754 				cur->bc_ra[i] = 0;
4755 			}
4756 		}
4757 	}
4758 
4759 	return error;
4760 }
4761 
4762 /*
4763  * Query a btree for all records overlapping a given interval of keys.  The
4764  * supplied function will be called with each record found; return one of the
4765  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4766  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4767  * negative error code.
4768  */
4769 int
4770 xfs_btree_query_range(
4771 	struct xfs_btree_cur		*cur,
4772 	union xfs_btree_irec		*low_rec,
4773 	union xfs_btree_irec		*high_rec,
4774 	xfs_btree_query_range_fn	fn,
4775 	void				*priv)
4776 {
4777 	union xfs_btree_rec		rec;
4778 	union xfs_btree_key		low_key;
4779 	union xfs_btree_key		high_key;
4780 
4781 	/* Find the keys of both ends of the interval. */
4782 	cur->bc_rec = *high_rec;
4783 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4784 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4785 
4786 	cur->bc_rec = *low_rec;
4787 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4788 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4789 
4790 	/* Enforce low key < high key. */
4791 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4792 		return -EINVAL;
4793 
4794 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4795 		return xfs_btree_simple_query_range(cur, &low_key,
4796 				&high_key, fn, priv);
4797 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4798 			fn, priv);
4799 }
4800