1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30
31 /*
32 * Btree magic numbers.
33 */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 XFS_FIBT_MAGIC, 0 },
37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 XFS_REFC_CRC_MAGIC }
40 };
41
42 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)43 xfs_btree_magic(
44 int crc,
45 xfs_btnum_t btnum)
46 {
47 uint32_t magic = xfs_magics[crc][btnum];
48
49 /* Ensure we asked for crc for crc-only magics. */
50 ASSERT(magic != 0);
51 return magic;
52 }
53
54 /*
55 * These sibling pointer checks are optimised for null sibling pointers. This
56 * happens a lot, and we don't need to byte swap at runtime if the sibling
57 * pointer is NULL.
58 *
59 * These are explicitly marked at inline because the cost of calling them as
60 * functions instead of inlining them is about 36 bytes extra code per call site
61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62 * two sibling check functions reduces the compiled code size by over 300
63 * bytes.
64 */
65 static inline xfs_failaddr_t
xfs_btree_check_lblock_siblings(struct xfs_mount * mp,struct xfs_btree_cur * cur,int level,xfs_fsblock_t fsb,__be64 dsibling)66 xfs_btree_check_lblock_siblings(
67 struct xfs_mount *mp,
68 struct xfs_btree_cur *cur,
69 int level,
70 xfs_fsblock_t fsb,
71 __be64 dsibling)
72 {
73 xfs_fsblock_t sibling;
74
75 if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 return NULL;
77
78 sibling = be64_to_cpu(dsibling);
79 if (sibling == fsb)
80 return __this_address;
81 if (level >= 0) {
82 if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 return __this_address;
84 } else {
85 if (!xfs_verify_fsbno(mp, sibling))
86 return __this_address;
87 }
88
89 return NULL;
90 }
91
92 static inline xfs_failaddr_t
xfs_btree_check_sblock_siblings(struct xfs_perag * pag,struct xfs_btree_cur * cur,int level,xfs_agblock_t agbno,__be32 dsibling)93 xfs_btree_check_sblock_siblings(
94 struct xfs_perag *pag,
95 struct xfs_btree_cur *cur,
96 int level,
97 xfs_agblock_t agbno,
98 __be32 dsibling)
99 {
100 xfs_agblock_t sibling;
101
102 if (dsibling == cpu_to_be32(NULLAGBLOCK))
103 return NULL;
104
105 sibling = be32_to_cpu(dsibling);
106 if (sibling == agbno)
107 return __this_address;
108 if (level >= 0) {
109 if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110 return __this_address;
111 } else {
112 if (!xfs_verify_agbno(pag, sibling))
113 return __this_address;
114 }
115 return NULL;
116 }
117
118 /*
119 * Check a long btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_lblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_has_crc(mp);
132 xfs_failaddr_t fa;
133 xfs_fsblock_t fsb = NULLFSBLOCK;
134
135 if (crc) {
136 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137 return __this_address;
138 if (block->bb_u.l.bb_blkno !=
139 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140 return __this_address;
141 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142 return __this_address;
143 }
144
145 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146 return __this_address;
147 if (be16_to_cpu(block->bb_level) != level)
148 return __this_address;
149 if (be16_to_cpu(block->bb_numrecs) >
150 cur->bc_ops->get_maxrecs(cur, level))
151 return __this_address;
152
153 if (bp)
154 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155
156 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157 block->bb_u.l.bb_leftsib);
158 if (!fa)
159 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160 block->bb_u.l.bb_rightsib);
161 return fa;
162 }
163
164 /* Check a long btree block header. */
165 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)166 xfs_btree_check_lblock(
167 struct xfs_btree_cur *cur,
168 struct xfs_btree_block *block,
169 int level,
170 struct xfs_buf *bp)
171 {
172 struct xfs_mount *mp = cur->bc_mp;
173 xfs_failaddr_t fa;
174
175 fa = __xfs_btree_check_lblock(cur, block, level, bp);
176 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178 if (bp)
179 trace_xfs_btree_corrupt(bp, _RET_IP_);
180 return -EFSCORRUPTED;
181 }
182 return 0;
183 }
184
185 /*
186 * Check a short btree block header. Return the address of the failing check,
187 * or NULL if everything is ok.
188 */
189 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)190 __xfs_btree_check_sblock(
191 struct xfs_btree_cur *cur,
192 struct xfs_btree_block *block,
193 int level,
194 struct xfs_buf *bp)
195 {
196 struct xfs_mount *mp = cur->bc_mp;
197 struct xfs_perag *pag = cur->bc_ag.pag;
198 xfs_btnum_t btnum = cur->bc_btnum;
199 int crc = xfs_has_crc(mp);
200 xfs_failaddr_t fa;
201 xfs_agblock_t agbno = NULLAGBLOCK;
202
203 if (crc) {
204 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205 return __this_address;
206 if (block->bb_u.s.bb_blkno !=
207 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208 return __this_address;
209 }
210
211 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212 return __this_address;
213 if (be16_to_cpu(block->bb_level) != level)
214 return __this_address;
215 if (be16_to_cpu(block->bb_numrecs) >
216 cur->bc_ops->get_maxrecs(cur, level))
217 return __this_address;
218
219 if (bp)
220 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221
222 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223 block->bb_u.s.bb_leftsib);
224 if (!fa)
225 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226 block->bb_u.s.bb_rightsib);
227 return fa;
228 }
229
230 /* Check a short btree block header. */
231 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)232 xfs_btree_check_sblock(
233 struct xfs_btree_cur *cur,
234 struct xfs_btree_block *block,
235 int level,
236 struct xfs_buf *bp)
237 {
238 struct xfs_mount *mp = cur->bc_mp;
239 xfs_failaddr_t fa;
240
241 fa = __xfs_btree_check_sblock(cur, block, level, bp);
242 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244 if (bp)
245 trace_xfs_btree_corrupt(bp, _RET_IP_);
246 return -EFSCORRUPTED;
247 }
248 return 0;
249 }
250
251 /*
252 * Debug routine: check that block header is ok.
253 */
254 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)255 xfs_btree_check_block(
256 struct xfs_btree_cur *cur, /* btree cursor */
257 struct xfs_btree_block *block, /* generic btree block pointer */
258 int level, /* level of the btree block */
259 struct xfs_buf *bp) /* buffer containing block, if any */
260 {
261 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262 return xfs_btree_check_lblock(cur, block, level, bp);
263 else
264 return xfs_btree_check_sblock(cur, block, level, bp);
265 }
266
267 /* Check that this long pointer is valid and points within the fs. */
268 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)269 xfs_btree_check_lptr(
270 struct xfs_btree_cur *cur,
271 xfs_fsblock_t fsbno,
272 int level)
273 {
274 if (level <= 0)
275 return false;
276 return xfs_verify_fsbno(cur->bc_mp, fsbno);
277 }
278
279 /* Check that this short pointer is valid and points within the AG. */
280 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)281 xfs_btree_check_sptr(
282 struct xfs_btree_cur *cur,
283 xfs_agblock_t agbno,
284 int level)
285 {
286 if (level <= 0)
287 return false;
288 return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289 }
290
291 /*
292 * Check that a given (indexed) btree pointer at a certain level of a
293 * btree is valid and doesn't point past where it should.
294 */
295 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)296 xfs_btree_check_ptr(
297 struct xfs_btree_cur *cur,
298 const union xfs_btree_ptr *ptr,
299 int index,
300 int level)
301 {
302 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304 level))
305 return 0;
306 xfs_err(cur->bc_mp,
307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308 cur->bc_ino.ip->i_ino,
309 cur->bc_ino.whichfork, cur->bc_btnum,
310 level, index);
311 } else {
312 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313 level))
314 return 0;
315 xfs_err(cur->bc_mp,
316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
317 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318 level, index);
319 }
320
321 return -EFSCORRUPTED;
322 }
323
324 #ifdef DEBUG
325 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
326 #else
327 # define xfs_btree_debug_check_ptr(...) (0)
328 #endif
329
330 /*
331 * Calculate CRC on the whole btree block and stuff it into the
332 * long-form btree header.
333 *
334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335 * it into the buffer so recovery knows what the last modification was that made
336 * it to disk.
337 */
338 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)339 xfs_btree_lblock_calc_crc(
340 struct xfs_buf *bp)
341 {
342 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
343 struct xfs_buf_log_item *bip = bp->b_log_item;
344
345 if (!xfs_has_crc(bp->b_mount))
346 return;
347 if (bip)
348 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350 }
351
352 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)353 xfs_btree_lblock_verify_crc(
354 struct xfs_buf *bp)
355 {
356 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
357 struct xfs_mount *mp = bp->b_mount;
358
359 if (xfs_has_crc(mp)) {
360 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361 return false;
362 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363 }
364
365 return true;
366 }
367
368 /*
369 * Calculate CRC on the whole btree block and stuff it into the
370 * short-form btree header.
371 *
372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373 * it into the buffer so recovery knows what the last modification was that made
374 * it to disk.
375 */
376 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)377 xfs_btree_sblock_calc_crc(
378 struct xfs_buf *bp)
379 {
380 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
381 struct xfs_buf_log_item *bip = bp->b_log_item;
382
383 if (!xfs_has_crc(bp->b_mount))
384 return;
385 if (bip)
386 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388 }
389
390 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)391 xfs_btree_sblock_verify_crc(
392 struct xfs_buf *bp)
393 {
394 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
395 struct xfs_mount *mp = bp->b_mount;
396
397 if (xfs_has_crc(mp)) {
398 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399 return false;
400 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401 }
402
403 return true;
404 }
405
406 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)407 xfs_btree_free_block(
408 struct xfs_btree_cur *cur,
409 struct xfs_buf *bp)
410 {
411 int error;
412
413 error = cur->bc_ops->free_block(cur, bp);
414 if (!error) {
415 xfs_trans_binval(cur->bc_tp, bp);
416 XFS_BTREE_STATS_INC(cur, free);
417 }
418 return error;
419 }
420
421 /*
422 * Delete the btree cursor.
423 */
424 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)425 xfs_btree_del_cursor(
426 struct xfs_btree_cur *cur, /* btree cursor */
427 int error) /* del because of error */
428 {
429 int i; /* btree level */
430
431 /*
432 * Clear the buffer pointers and release the buffers. If we're doing
433 * this because of an error, inspect all of the entries in the bc_bufs
434 * array for buffers to be unlocked. This is because some of the btree
435 * code works from level n down to 0, and if we get an error along the
436 * way we won't have initialized all the entries down to 0.
437 */
438 for (i = 0; i < cur->bc_nlevels; i++) {
439 if (cur->bc_levels[i].bp)
440 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441 else if (!error)
442 break;
443 }
444
445 /*
446 * If we are doing a BMBT update, the number of unaccounted blocks
447 * allocated during this cursor life time should be zero. If it's not
448 * zero, then we should be shut down or on our way to shutdown due to
449 * cancelling a dirty transaction on error.
450 */
451 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452 xfs_is_shutdown(cur->bc_mp) || error != 0);
453 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454 kmem_free(cur->bc_ops);
455 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456 xfs_perag_put(cur->bc_ag.pag);
457 kmem_cache_free(cur->bc_cache, cur);
458 }
459
460 /*
461 * Duplicate the btree cursor.
462 * Allocate a new one, copy the record, re-get the buffers.
463 */
464 int /* error */
xfs_btree_dup_cursor(struct xfs_btree_cur * cur,struct xfs_btree_cur ** ncur)465 xfs_btree_dup_cursor(
466 struct xfs_btree_cur *cur, /* input cursor */
467 struct xfs_btree_cur **ncur) /* output cursor */
468 {
469 struct xfs_buf *bp; /* btree block's buffer pointer */
470 int error; /* error return value */
471 int i; /* level number of btree block */
472 xfs_mount_t *mp; /* mount structure for filesystem */
473 struct xfs_btree_cur *new; /* new cursor value */
474 xfs_trans_t *tp; /* transaction pointer, can be NULL */
475
476 tp = cur->bc_tp;
477 mp = cur->bc_mp;
478
479 /*
480 * Allocate a new cursor like the old one.
481 */
482 new = cur->bc_ops->dup_cursor(cur);
483
484 /*
485 * Copy the record currently in the cursor.
486 */
487 new->bc_rec = cur->bc_rec;
488
489 /*
490 * For each level current, re-get the buffer and copy the ptr value.
491 */
492 for (i = 0; i < new->bc_nlevels; i++) {
493 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494 new->bc_levels[i].ra = cur->bc_levels[i].ra;
495 bp = cur->bc_levels[i].bp;
496 if (bp) {
497 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498 xfs_buf_daddr(bp), mp->m_bsize,
499 0, &bp,
500 cur->bc_ops->buf_ops);
501 if (error) {
502 xfs_btree_del_cursor(new, error);
503 *ncur = NULL;
504 return error;
505 }
506 }
507 new->bc_levels[i].bp = bp;
508 }
509 *ncur = new;
510 return 0;
511 }
512
513 /*
514 * XFS btree block layout and addressing:
515 *
516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
517 *
518 * The leaf record start with a header then followed by records containing
519 * the values. A non-leaf block also starts with the same header, and
520 * then first contains lookup keys followed by an equal number of pointers
521 * to the btree blocks at the previous level.
522 *
523 * +--------+-------+-------+-------+-------+-------+-------+
524 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525 * +--------+-------+-------+-------+-------+-------+-------+
526 *
527 * +--------+-------+-------+-------+-------+-------+-------+
528 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529 * +--------+-------+-------+-------+-------+-------+-------+
530 *
531 * The header is called struct xfs_btree_block for reasons better left unknown
532 * and comes in different versions for short (32bit) and long (64bit) block
533 * pointers. The record and key structures are defined by the btree instances
534 * and opaque to the btree core. The block pointers are simple disk endian
535 * integers, available in a short (32bit) and long (64bit) variant.
536 *
537 * The helpers below calculate the offset of a given record, key or pointer
538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
540 * inside the btree block is done using indices starting at one, not zero!
541 *
542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543 * overlapping intervals. In such a tree, records are still sorted lowest to
544 * highest and indexed by the smallest key value that refers to the record.
545 * However, nodes are different: each pointer has two associated keys -- one
546 * indexing the lowest key available in the block(s) below (the same behavior
547 * as the key in a regular btree) and another indexing the highest key
548 * available in the block(s) below. Because records are /not/ sorted by the
549 * highest key, all leaf block updates require us to compute the highest key
550 * that matches any record in the leaf and to recursively update the high keys
551 * in the nodes going further up in the tree, if necessary. Nodes look like
552 * this:
553 *
554 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
555 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
557 *
558 * To perform an interval query on an overlapped tree, perform the usual
559 * depth-first search and use the low and high keys to decide if we can skip
560 * that particular node. If a leaf node is reached, return the records that
561 * intersect the interval. Note that an interval query may return numerous
562 * entries. For a non-overlapped tree, simply search for the record associated
563 * with the lowest key and iterate forward until a non-matching record is
564 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566 * more detail.
567 *
568 * Why do we care about overlapping intervals? Let's say you have a bunch of
569 * reverse mapping records on a reflink filesystem:
570 *
571 * 1: +- file A startblock B offset C length D -----------+
572 * 2: +- file E startblock F offset G length H --------------+
573 * 3: +- file I startblock F offset J length K --+
574 * 4: +- file L... --+
575 *
576 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
577 * we'd simply increment the length of record 1. But how do we find the record
578 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
579 * record 3 because the keys are ordered first by startblock. An interval
580 * query would return records 1 and 2 because they both overlap (B+D-1), and
581 * from that we can pick out record 1 as the appropriate left neighbor.
582 *
583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
584 * because a record's interval must end before the next record.
585 */
586
587 /*
588 * Return size of the btree block header for this btree instance.
589 */
xfs_btree_block_len(struct xfs_btree_cur * cur)590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591 {
592 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594 return XFS_BTREE_LBLOCK_CRC_LEN;
595 return XFS_BTREE_LBLOCK_LEN;
596 }
597 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598 return XFS_BTREE_SBLOCK_CRC_LEN;
599 return XFS_BTREE_SBLOCK_LEN;
600 }
601
602 /*
603 * Return size of btree block pointers for this btree instance.
604 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606 {
607 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608 sizeof(__be64) : sizeof(__be32);
609 }
610
611 /*
612 * Calculate offset of the n-th record in a btree block.
613 */
614 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)615 xfs_btree_rec_offset(
616 struct xfs_btree_cur *cur,
617 int n)
618 {
619 return xfs_btree_block_len(cur) +
620 (n - 1) * cur->bc_ops->rec_len;
621 }
622
623 /*
624 * Calculate offset of the n-th key in a btree block.
625 */
626 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)627 xfs_btree_key_offset(
628 struct xfs_btree_cur *cur,
629 int n)
630 {
631 return xfs_btree_block_len(cur) +
632 (n - 1) * cur->bc_ops->key_len;
633 }
634
635 /*
636 * Calculate offset of the n-th high key in a btree block.
637 */
638 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)639 xfs_btree_high_key_offset(
640 struct xfs_btree_cur *cur,
641 int n)
642 {
643 return xfs_btree_block_len(cur) +
644 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645 }
646
647 /*
648 * Calculate offset of the n-th block pointer in a btree block.
649 */
650 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)651 xfs_btree_ptr_offset(
652 struct xfs_btree_cur *cur,
653 int n,
654 int level)
655 {
656 return xfs_btree_block_len(cur) +
657 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658 (n - 1) * xfs_btree_ptr_len(cur);
659 }
660
661 /*
662 * Return a pointer to the n-th record in the btree block.
663 */
664 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)665 xfs_btree_rec_addr(
666 struct xfs_btree_cur *cur,
667 int n,
668 struct xfs_btree_block *block)
669 {
670 return (union xfs_btree_rec *)
671 ((char *)block + xfs_btree_rec_offset(cur, n));
672 }
673
674 /*
675 * Return a pointer to the n-th key in the btree block.
676 */
677 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)678 xfs_btree_key_addr(
679 struct xfs_btree_cur *cur,
680 int n,
681 struct xfs_btree_block *block)
682 {
683 return (union xfs_btree_key *)
684 ((char *)block + xfs_btree_key_offset(cur, n));
685 }
686
687 /*
688 * Return a pointer to the n-th high key in the btree block.
689 */
690 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)691 xfs_btree_high_key_addr(
692 struct xfs_btree_cur *cur,
693 int n,
694 struct xfs_btree_block *block)
695 {
696 return (union xfs_btree_key *)
697 ((char *)block + xfs_btree_high_key_offset(cur, n));
698 }
699
700 /*
701 * Return a pointer to the n-th block pointer in the btree block.
702 */
703 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)704 xfs_btree_ptr_addr(
705 struct xfs_btree_cur *cur,
706 int n,
707 struct xfs_btree_block *block)
708 {
709 int level = xfs_btree_get_level(block);
710
711 ASSERT(block->bb_level != 0);
712
713 return (union xfs_btree_ptr *)
714 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
715 }
716
717 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)718 xfs_btree_ifork_ptr(
719 struct xfs_btree_cur *cur)
720 {
721 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722
723 if (cur->bc_flags & XFS_BTREE_STAGING)
724 return cur->bc_ino.ifake->if_fork;
725 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726 }
727
728 /*
729 * Get the root block which is stored in the inode.
730 *
731 * For now this btree implementation assumes the btree root is always
732 * stored in the if_broot field of an inode fork.
733 */
734 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)735 xfs_btree_get_iroot(
736 struct xfs_btree_cur *cur)
737 {
738 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
739
740 return (struct xfs_btree_block *)ifp->if_broot;
741 }
742
743 /*
744 * Retrieve the block pointer from the cursor at the given level.
745 * This may be an inode btree root or from a buffer.
746 */
747 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)748 xfs_btree_get_block(
749 struct xfs_btree_cur *cur, /* btree cursor */
750 int level, /* level in btree */
751 struct xfs_buf **bpp) /* buffer containing the block */
752 {
753 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754 (level == cur->bc_nlevels - 1)) {
755 *bpp = NULL;
756 return xfs_btree_get_iroot(cur);
757 }
758
759 *bpp = cur->bc_levels[level].bp;
760 return XFS_BUF_TO_BLOCK(*bpp);
761 }
762
763 /*
764 * Change the cursor to point to the first record at the given level.
765 * Other levels are unaffected.
766 */
767 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(struct xfs_btree_cur * cur,int level)768 xfs_btree_firstrec(
769 struct xfs_btree_cur *cur, /* btree cursor */
770 int level) /* level to change */
771 {
772 struct xfs_btree_block *block; /* generic btree block pointer */
773 struct xfs_buf *bp; /* buffer containing block */
774
775 /*
776 * Get the block pointer for this level.
777 */
778 block = xfs_btree_get_block(cur, level, &bp);
779 if (xfs_btree_check_block(cur, block, level, bp))
780 return 0;
781 /*
782 * It's empty, there is no such record.
783 */
784 if (!block->bb_numrecs)
785 return 0;
786 /*
787 * Set the ptr value to 1, that's the first record/key.
788 */
789 cur->bc_levels[level].ptr = 1;
790 return 1;
791 }
792
793 /*
794 * Change the cursor to point to the last record in the current block
795 * at the given level. Other levels are unaffected.
796 */
797 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(struct xfs_btree_cur * cur,int level)798 xfs_btree_lastrec(
799 struct xfs_btree_cur *cur, /* btree cursor */
800 int level) /* level to change */
801 {
802 struct xfs_btree_block *block; /* generic btree block pointer */
803 struct xfs_buf *bp; /* buffer containing block */
804
805 /*
806 * Get the block pointer for this level.
807 */
808 block = xfs_btree_get_block(cur, level, &bp);
809 if (xfs_btree_check_block(cur, block, level, bp))
810 return 0;
811 /*
812 * It's empty, there is no such record.
813 */
814 if (!block->bb_numrecs)
815 return 0;
816 /*
817 * Set the ptr value to numrecs, that's the last record/key.
818 */
819 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820 return 1;
821 }
822
823 /*
824 * Compute first and last byte offsets for the fields given.
825 * Interprets the offsets table, which contains struct field offsets.
826 */
827 void
xfs_btree_offsets(uint32_t fields,const short * offsets,int nbits,int * first,int * last)828 xfs_btree_offsets(
829 uint32_t fields, /* bitmask of fields */
830 const short *offsets, /* table of field offsets */
831 int nbits, /* number of bits to inspect */
832 int *first, /* output: first byte offset */
833 int *last) /* output: last byte offset */
834 {
835 int i; /* current bit number */
836 uint32_t imask; /* mask for current bit number */
837
838 ASSERT(fields != 0);
839 /*
840 * Find the lowest bit, so the first byte offset.
841 */
842 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843 if (imask & fields) {
844 *first = offsets[i];
845 break;
846 }
847 }
848 /*
849 * Find the highest bit, so the last byte offset.
850 */
851 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852 if (imask & fields) {
853 *last = offsets[i + 1] - 1;
854 break;
855 }
856 }
857 }
858
859 /*
860 * Get a buffer for the block, return it read in.
861 * Long-form addressing.
862 */
863 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)864 xfs_btree_read_bufl(
865 struct xfs_mount *mp, /* file system mount point */
866 struct xfs_trans *tp, /* transaction pointer */
867 xfs_fsblock_t fsbno, /* file system block number */
868 struct xfs_buf **bpp, /* buffer for fsbno */
869 int refval, /* ref count value for buffer */
870 const struct xfs_buf_ops *ops)
871 {
872 struct xfs_buf *bp; /* return value */
873 xfs_daddr_t d; /* real disk block address */
874 int error;
875
876 if (!xfs_verify_fsbno(mp, fsbno))
877 return -EFSCORRUPTED;
878 d = XFS_FSB_TO_DADDR(mp, fsbno);
879 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880 mp->m_bsize, 0, &bp, ops);
881 if (error)
882 return error;
883 if (bp)
884 xfs_buf_set_ref(bp, refval);
885 *bpp = bp;
886 return 0;
887 }
888
889 /*
890 * Read-ahead the block, don't wait for it, don't return a buffer.
891 * Long-form addressing.
892 */
893 /* ARGSUSED */
894 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)895 xfs_btree_reada_bufl(
896 struct xfs_mount *mp, /* file system mount point */
897 xfs_fsblock_t fsbno, /* file system block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
899 const struct xfs_buf_ops *ops)
900 {
901 xfs_daddr_t d;
902
903 ASSERT(fsbno != NULLFSBLOCK);
904 d = XFS_FSB_TO_DADDR(mp, fsbno);
905 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906 }
907
908 /*
909 * Read-ahead the block, don't wait for it, don't return a buffer.
910 * Short-form addressing.
911 */
912 /* ARGSUSED */
913 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)914 xfs_btree_reada_bufs(
915 struct xfs_mount *mp, /* file system mount point */
916 xfs_agnumber_t agno, /* allocation group number */
917 xfs_agblock_t agbno, /* allocation group block number */
918 xfs_extlen_t count, /* count of filesystem blocks */
919 const struct xfs_buf_ops *ops)
920 {
921 xfs_daddr_t d;
922
923 ASSERT(agno != NULLAGNUMBER);
924 ASSERT(agbno != NULLAGBLOCK);
925 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927 }
928
929 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)930 xfs_btree_readahead_lblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934 {
935 int rval = 0;
936 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938
939 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941 cur->bc_ops->buf_ops);
942 rval++;
943 }
944
945 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947 cur->bc_ops->buf_ops);
948 rval++;
949 }
950
951 return rval;
952 }
953
954 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)955 xfs_btree_readahead_sblock(
956 struct xfs_btree_cur *cur,
957 int lr,
958 struct xfs_btree_block *block)
959 {
960 int rval = 0;
961 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963
964
965 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967 left, 1, cur->bc_ops->buf_ops);
968 rval++;
969 }
970
971 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973 right, 1, cur->bc_ops->buf_ops);
974 rval++;
975 }
976
977 return rval;
978 }
979
980 /*
981 * Read-ahead btree blocks, at the given level.
982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983 */
984 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)985 xfs_btree_readahead(
986 struct xfs_btree_cur *cur, /* btree cursor */
987 int lev, /* level in btree */
988 int lr) /* left/right bits */
989 {
990 struct xfs_btree_block *block;
991
992 /*
993 * No readahead needed if we are at the root level and the
994 * btree root is stored in the inode.
995 */
996 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997 (lev == cur->bc_nlevels - 1))
998 return 0;
999
1000 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001 return 0;
1002
1003 cur->bc_levels[lev].ra |= lr;
1004 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007 return xfs_btree_readahead_lblock(cur, lr, block);
1008 return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010
1011 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1012 xfs_btree_ptr_to_daddr(
1013 struct xfs_btree_cur *cur,
1014 const union xfs_btree_ptr *ptr,
1015 xfs_daddr_t *daddr)
1016 {
1017 xfs_fsblock_t fsbno;
1018 xfs_agblock_t agbno;
1019 int error;
1020
1021 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022 if (error)
1023 return error;
1024
1025 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026 fsbno = be64_to_cpu(ptr->l);
1027 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028 } else {
1029 agbno = be32_to_cpu(ptr->s);
1030 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031 agbno);
1032 }
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1044 xfs_btree_readahead_ptr(
1045 struct xfs_btree_cur *cur,
1046 union xfs_btree_ptr *ptr,
1047 xfs_extlen_t count)
1048 {
1049 xfs_daddr_t daddr;
1050
1051 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052 return;
1053 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056
1057 /*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061 STATIC void
xfs_btree_setbuf(struct xfs_btree_cur * cur,int lev,struct xfs_buf * bp)1062 xfs_btree_setbuf(
1063 struct xfs_btree_cur *cur, /* btree cursor */
1064 int lev, /* level in btree */
1065 struct xfs_buf *bp) /* new buffer to set */
1066 {
1067 struct xfs_btree_block *b; /* btree block */
1068
1069 if (cur->bc_levels[lev].bp)
1070 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071 cur->bc_levels[lev].bp = bp;
1072 cur->bc_levels[lev].ra = 0;
1073
1074 b = XFS_BUF_TO_BLOCK(bp);
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080 } else {
1081 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085 }
1086 }
1087
1088 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1089 xfs_btree_ptr_is_null(
1090 struct xfs_btree_cur *cur,
1091 const union xfs_btree_ptr *ptr)
1092 {
1093 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095 else
1096 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098
1099 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1100 xfs_btree_set_ptr_null(
1101 struct xfs_btree_cur *cur,
1102 union xfs_btree_ptr *ptr)
1103 {
1104 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105 ptr->l = cpu_to_be64(NULLFSBLOCK);
1106 else
1107 ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109
1110 /*
1111 * Get/set/init sibling pointers
1112 */
1113 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1114 xfs_btree_get_sibling(
1115 struct xfs_btree_cur *cur,
1116 struct xfs_btree_block *block,
1117 union xfs_btree_ptr *ptr,
1118 int lr)
1119 {
1120 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123 if (lr == XFS_BB_RIGHTSIB)
1124 ptr->l = block->bb_u.l.bb_rightsib;
1125 else
1126 ptr->l = block->bb_u.l.bb_leftsib;
1127 } else {
1128 if (lr == XFS_BB_RIGHTSIB)
1129 ptr->s = block->bb_u.s.bb_rightsib;
1130 else
1131 ptr->s = block->bb_u.s.bb_leftsib;
1132 }
1133 }
1134
1135 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1136 xfs_btree_set_sibling(
1137 struct xfs_btree_cur *cur,
1138 struct xfs_btree_block *block,
1139 const union xfs_btree_ptr *ptr,
1140 int lr)
1141 {
1142 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145 if (lr == XFS_BB_RIGHTSIB)
1146 block->bb_u.l.bb_rightsib = ptr->l;
1147 else
1148 block->bb_u.l.bb_leftsib = ptr->l;
1149 } else {
1150 if (lr == XFS_BB_RIGHTSIB)
1151 block->bb_u.s.bb_rightsib = ptr->s;
1152 else
1153 block->bb_u.s.bb_leftsib = ptr->s;
1154 }
1155 }
1156
1157 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1158 xfs_btree_init_block_int(
1159 struct xfs_mount *mp,
1160 struct xfs_btree_block *buf,
1161 xfs_daddr_t blkno,
1162 xfs_btnum_t btnum,
1163 __u16 level,
1164 __u16 numrecs,
1165 __u64 owner,
1166 unsigned int flags)
1167 {
1168 int crc = xfs_has_crc(mp);
1169 __u32 magic = xfs_btree_magic(crc, btnum);
1170
1171 buf->bb_magic = cpu_to_be32(magic);
1172 buf->bb_level = cpu_to_be16(level);
1173 buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175 if (flags & XFS_BTREE_LONG_PTRS) {
1176 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178 if (crc) {
1179 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182 buf->bb_u.l.bb_pad = 0;
1183 buf->bb_u.l.bb_lsn = 0;
1184 }
1185 } else {
1186 /* owner is a 32 bit value on short blocks */
1187 __u32 __owner = (__u32)owner;
1188
1189 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 if (crc) {
1192 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195 buf->bb_u.s.bb_lsn = 0;
1196 }
1197 }
1198 }
1199
1200 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1201 xfs_btree_init_block(
1202 struct xfs_mount *mp,
1203 struct xfs_buf *bp,
1204 xfs_btnum_t btnum,
1205 __u16 level,
1206 __u16 numrecs,
1207 __u64 owner)
1208 {
1209 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210 btnum, level, numrecs, owner, 0);
1211 }
1212
1213 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1214 xfs_btree_init_block_cur(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_buf *bp,
1217 int level,
1218 int numrecs)
1219 {
1220 __u64 owner;
1221
1222 /*
1223 * we can pull the owner from the cursor right now as the different
1224 * owners align directly with the pointer size of the btree. This may
1225 * change in future, but is safe for current users of the generic btree
1226 * code.
1227 */
1228 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229 owner = cur->bc_ino.ip->i_ino;
1230 else
1231 owner = cur->bc_ag.pag->pag_agno;
1232
1233 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234 xfs_buf_daddr(bp), cur->bc_btnum, level,
1235 numrecs, owner, cur->bc_flags);
1236 }
1237
1238 /*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record. The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1244 xfs_btree_is_lastrec(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_btree_block *block,
1247 int level)
1248 {
1249 union xfs_btree_ptr ptr;
1250
1251 if (level > 0)
1252 return 0;
1253 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254 return 0;
1255
1256 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257 if (!xfs_btree_ptr_is_null(cur, &ptr))
1258 return 0;
1259 return 1;
1260 }
1261
1262 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1263 xfs_btree_buf_to_ptr(
1264 struct xfs_btree_cur *cur,
1265 struct xfs_buf *bp,
1266 union xfs_btree_ptr *ptr)
1267 {
1268 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270 xfs_buf_daddr(bp)));
1271 else {
1272 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273 xfs_buf_daddr(bp)));
1274 }
1275 }
1276
1277 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1278 xfs_btree_set_refs(
1279 struct xfs_btree_cur *cur,
1280 struct xfs_buf *bp)
1281 {
1282 switch (cur->bc_btnum) {
1283 case XFS_BTNUM_BNO:
1284 case XFS_BTNUM_CNT:
1285 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286 break;
1287 case XFS_BTNUM_INO:
1288 case XFS_BTNUM_FINO:
1289 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290 break;
1291 case XFS_BTNUM_BMAP:
1292 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293 break;
1294 case XFS_BTNUM_RMAP:
1295 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296 break;
1297 case XFS_BTNUM_REFC:
1298 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299 break;
1300 default:
1301 ASSERT(0);
1302 }
1303 }
1304
1305 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1306 xfs_btree_get_buf_block(
1307 struct xfs_btree_cur *cur,
1308 const union xfs_btree_ptr *ptr,
1309 struct xfs_btree_block **block,
1310 struct xfs_buf **bpp)
1311 {
1312 struct xfs_mount *mp = cur->bc_mp;
1313 xfs_daddr_t d;
1314 int error;
1315
1316 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 if (error)
1318 return error;
1319 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320 0, bpp);
1321 if (error)
1322 return error;
1323
1324 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1325 *block = XFS_BUF_TO_BLOCK(*bpp);
1326 return 0;
1327 }
1328
1329 /*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1334 xfs_btree_read_buf_block(
1335 struct xfs_btree_cur *cur,
1336 const union xfs_btree_ptr *ptr,
1337 int flags,
1338 struct xfs_btree_block **block,
1339 struct xfs_buf **bpp)
1340 {
1341 struct xfs_mount *mp = cur->bc_mp;
1342 xfs_daddr_t d;
1343 int error;
1344
1345 /* need to sort out how callers deal with failures first */
1346 ASSERT(!(flags & XBF_TRYLOCK));
1347
1348 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349 if (error)
1350 return error;
1351 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352 mp->m_bsize, flags, bpp,
1353 cur->bc_ops->buf_ops);
1354 if (error)
1355 return error;
1356
1357 xfs_btree_set_refs(cur, *bpp);
1358 *block = XFS_BUF_TO_BLOCK(*bpp);
1359 return 0;
1360 }
1361
1362 /*
1363 * Copy keys from one btree block to another.
1364 */
1365 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1366 xfs_btree_copy_keys(
1367 struct xfs_btree_cur *cur,
1368 union xfs_btree_key *dst_key,
1369 const union xfs_btree_key *src_key,
1370 int numkeys)
1371 {
1372 ASSERT(numkeys >= 0);
1373 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375
1376 /*
1377 * Copy records from one btree block to another.
1378 */
1379 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1380 xfs_btree_copy_recs(
1381 struct xfs_btree_cur *cur,
1382 union xfs_btree_rec *dst_rec,
1383 union xfs_btree_rec *src_rec,
1384 int numrecs)
1385 {
1386 ASSERT(numrecs >= 0);
1387 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389
1390 /*
1391 * Copy block pointers from one btree block to another.
1392 */
1393 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1394 xfs_btree_copy_ptrs(
1395 struct xfs_btree_cur *cur,
1396 union xfs_btree_ptr *dst_ptr,
1397 const union xfs_btree_ptr *src_ptr,
1398 int numptrs)
1399 {
1400 ASSERT(numptrs >= 0);
1401 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403
1404 /*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1408 xfs_btree_shift_keys(
1409 struct xfs_btree_cur *cur,
1410 union xfs_btree_key *key,
1411 int dir,
1412 int numkeys)
1413 {
1414 char *dst_key;
1415
1416 ASSERT(numkeys >= 0);
1417 ASSERT(dir == 1 || dir == -1);
1418
1419 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422
1423 /*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1427 xfs_btree_shift_recs(
1428 struct xfs_btree_cur *cur,
1429 union xfs_btree_rec *rec,
1430 int dir,
1431 int numrecs)
1432 {
1433 char *dst_rec;
1434
1435 ASSERT(numrecs >= 0);
1436 ASSERT(dir == 1 || dir == -1);
1437
1438 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441
1442 /*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1446 xfs_btree_shift_ptrs(
1447 struct xfs_btree_cur *cur,
1448 union xfs_btree_ptr *ptr,
1449 int dir,
1450 int numptrs)
1451 {
1452 char *dst_ptr;
1453
1454 ASSERT(numptrs >= 0);
1455 ASSERT(dir == 1 || dir == -1);
1456
1457 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460
1461 /*
1462 * Log key values from the btree block.
1463 */
1464 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1465 xfs_btree_log_keys(
1466 struct xfs_btree_cur *cur,
1467 struct xfs_buf *bp,
1468 int first,
1469 int last)
1470 {
1471
1472 if (bp) {
1473 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474 xfs_trans_log_buf(cur->bc_tp, bp,
1475 xfs_btree_key_offset(cur, first),
1476 xfs_btree_key_offset(cur, last + 1) - 1);
1477 } else {
1478 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480 }
1481 }
1482
1483 /*
1484 * Log record values from the btree block.
1485 */
1486 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1487 xfs_btree_log_recs(
1488 struct xfs_btree_cur *cur,
1489 struct xfs_buf *bp,
1490 int first,
1491 int last)
1492 {
1493
1494 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495 xfs_trans_log_buf(cur->bc_tp, bp,
1496 xfs_btree_rec_offset(cur, first),
1497 xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499 }
1500
1501 /*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1505 xfs_btree_log_ptrs(
1506 struct xfs_btree_cur *cur, /* btree cursor */
1507 struct xfs_buf *bp, /* buffer containing btree block */
1508 int first, /* index of first pointer to log */
1509 int last) /* index of last pointer to log */
1510 {
1511
1512 if (bp) {
1513 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1514 int level = xfs_btree_get_level(block);
1515
1516 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517 xfs_trans_log_buf(cur->bc_tp, bp,
1518 xfs_btree_ptr_offset(cur, first, level),
1519 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524
1525 }
1526
1527 /*
1528 * Log fields from a btree block header.
1529 */
1530 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,uint32_t fields)1531 xfs_btree_log_block(
1532 struct xfs_btree_cur *cur, /* btree cursor */
1533 struct xfs_buf *bp, /* buffer containing btree block */
1534 uint32_t fields) /* mask of fields: XFS_BB_... */
1535 {
1536 int first; /* first byte offset logged */
1537 int last; /* last byte offset logged */
1538 static const short soffsets[] = { /* table of offsets (short) */
1539 offsetof(struct xfs_btree_block, bb_magic),
1540 offsetof(struct xfs_btree_block, bb_level),
1541 offsetof(struct xfs_btree_block, bb_numrecs),
1542 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549 XFS_BTREE_SBLOCK_CRC_LEN
1550 };
1551 static const short loffsets[] = { /* table of offsets (long) */
1552 offsetof(struct xfs_btree_block, bb_magic),
1553 offsetof(struct xfs_btree_block, bb_level),
1554 offsetof(struct xfs_btree_block, bb_numrecs),
1555 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563 XFS_BTREE_LBLOCK_CRC_LEN
1564 };
1565
1566 if (bp) {
1567 int nbits;
1568
1569 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570 /*
1571 * We don't log the CRC when updating a btree
1572 * block but instead recreate it during log
1573 * recovery. As the log buffers have checksums
1574 * of their own this is safe and avoids logging a crc
1575 * update in a lot of places.
1576 */
1577 if (fields == XFS_BB_ALL_BITS)
1578 fields = XFS_BB_ALL_BITS_CRC;
1579 nbits = XFS_BB_NUM_BITS_CRC;
1580 } else {
1581 nbits = XFS_BB_NUM_BITS;
1582 }
1583 xfs_btree_offsets(fields,
1584 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585 loffsets : soffsets,
1586 nbits, &first, &last);
1587 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589 } else {
1590 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592 }
1593 }
1594
1595 /*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1600 xfs_btree_increment(
1601 struct xfs_btree_cur *cur,
1602 int level,
1603 int *stat) /* success/failure */
1604 {
1605 struct xfs_btree_block *block;
1606 union xfs_btree_ptr ptr;
1607 struct xfs_buf *bp;
1608 int error; /* error return value */
1609 int lev;
1610
1611 ASSERT(level < cur->bc_nlevels);
1612
1613 /* Read-ahead to the right at this level. */
1614 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616 /* Get a pointer to the btree block. */
1617 block = xfs_btree_get_block(cur, level, &bp);
1618
1619 #ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, level, bp);
1621 if (error)
1622 goto error0;
1623 #endif
1624
1625 /* We're done if we remain in the block after the increment. */
1626 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627 goto out1;
1628
1629 /* Fail if we just went off the right edge of the tree. */
1630 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631 if (xfs_btree_ptr_is_null(cur, &ptr))
1632 goto out0;
1633
1634 XFS_BTREE_STATS_INC(cur, increment);
1635
1636 /*
1637 * March up the tree incrementing pointers.
1638 * Stop when we don't go off the right edge of a block.
1639 */
1640 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641 block = xfs_btree_get_block(cur, lev, &bp);
1642
1643 #ifdef DEBUG
1644 error = xfs_btree_check_block(cur, block, lev, bp);
1645 if (error)
1646 goto error0;
1647 #endif
1648
1649 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650 break;
1651
1652 /* Read-ahead the right block for the next loop. */
1653 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654 }
1655
1656 /*
1657 * If we went off the root then we are either seriously
1658 * confused or have the tree root in an inode.
1659 */
1660 if (lev == cur->bc_nlevels) {
1661 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662 goto out0;
1663 ASSERT(0);
1664 error = -EFSCORRUPTED;
1665 goto error0;
1666 }
1667 ASSERT(lev < cur->bc_nlevels);
1668
1669 /*
1670 * Now walk back down the tree, fixing up the cursor's buffer
1671 * pointers and key numbers.
1672 */
1673 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674 union xfs_btree_ptr *ptrp;
1675
1676 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677 --lev;
1678 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679 if (error)
1680 goto error0;
1681
1682 xfs_btree_setbuf(cur, lev, bp);
1683 cur->bc_levels[lev].ptr = 1;
1684 }
1685 out1:
1686 *stat = 1;
1687 return 0;
1688
1689 out0:
1690 *stat = 0;
1691 return 0;
1692
1693 error0:
1694 return error;
1695 }
1696
1697 /*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1702 xfs_btree_decrement(
1703 struct xfs_btree_cur *cur,
1704 int level,
1705 int *stat) /* success/failure */
1706 {
1707 struct xfs_btree_block *block;
1708 struct xfs_buf *bp;
1709 int error; /* error return value */
1710 int lev;
1711 union xfs_btree_ptr ptr;
1712
1713 ASSERT(level < cur->bc_nlevels);
1714
1715 /* Read-ahead to the left at this level. */
1716 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718 /* We're done if we remain in the block after the decrement. */
1719 if (--cur->bc_levels[level].ptr > 0)
1720 goto out1;
1721
1722 /* Get a pointer to the btree block. */
1723 block = xfs_btree_get_block(cur, level, &bp);
1724
1725 #ifdef DEBUG
1726 error = xfs_btree_check_block(cur, block, level, bp);
1727 if (error)
1728 goto error0;
1729 #endif
1730
1731 /* Fail if we just went off the left edge of the tree. */
1732 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733 if (xfs_btree_ptr_is_null(cur, &ptr))
1734 goto out0;
1735
1736 XFS_BTREE_STATS_INC(cur, decrement);
1737
1738 /*
1739 * March up the tree decrementing pointers.
1740 * Stop when we don't go off the left edge of a block.
1741 */
1742 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743 if (--cur->bc_levels[lev].ptr > 0)
1744 break;
1745 /* Read-ahead the left block for the next loop. */
1746 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747 }
1748
1749 /*
1750 * If we went off the root then we are seriously confused.
1751 * or the root of the tree is in an inode.
1752 */
1753 if (lev == cur->bc_nlevels) {
1754 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755 goto out0;
1756 ASSERT(0);
1757 error = -EFSCORRUPTED;
1758 goto error0;
1759 }
1760 ASSERT(lev < cur->bc_nlevels);
1761
1762 /*
1763 * Now walk back down the tree, fixing up the cursor's buffer
1764 * pointers and key numbers.
1765 */
1766 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767 union xfs_btree_ptr *ptrp;
1768
1769 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770 --lev;
1771 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772 if (error)
1773 goto error0;
1774 xfs_btree_setbuf(cur, lev, bp);
1775 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776 }
1777 out1:
1778 *stat = 1;
1779 return 0;
1780
1781 out0:
1782 *stat = 0;
1783 return 0;
1784
1785 error0:
1786 return error;
1787 }
1788
1789 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1790 xfs_btree_lookup_get_block(
1791 struct xfs_btree_cur *cur, /* btree cursor */
1792 int level, /* level in the btree */
1793 const union xfs_btree_ptr *pp, /* ptr to btree block */
1794 struct xfs_btree_block **blkp) /* return btree block */
1795 {
1796 struct xfs_buf *bp; /* buffer pointer for btree block */
1797 xfs_daddr_t daddr;
1798 int error = 0;
1799
1800 /* special case the root block if in an inode */
1801 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802 (level == cur->bc_nlevels - 1)) {
1803 *blkp = xfs_btree_get_iroot(cur);
1804 return 0;
1805 }
1806
1807 /*
1808 * If the old buffer at this level for the disk address we are
1809 * looking for re-use it.
1810 *
1811 * Otherwise throw it away and get a new one.
1812 */
1813 bp = cur->bc_levels[level].bp;
1814 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815 if (error)
1816 return error;
1817 if (bp && xfs_buf_daddr(bp) == daddr) {
1818 *blkp = XFS_BUF_TO_BLOCK(bp);
1819 return 0;
1820 }
1821
1822 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823 if (error)
1824 return error;
1825
1826 /* Check the inode owner since the verifiers don't. */
1827 if (xfs_has_crc(cur->bc_mp) &&
1828 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831 cur->bc_ino.ip->i_ino)
1832 goto out_bad;
1833
1834 /* Did we get the level we were looking for? */
1835 if (be16_to_cpu((*blkp)->bb_level) != level)
1836 goto out_bad;
1837
1838 /* Check that internal nodes have at least one record. */
1839 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840 goto out_bad;
1841
1842 xfs_btree_setbuf(cur, level, bp);
1843 return 0;
1844
1845 out_bad:
1846 *blkp = NULL;
1847 xfs_buf_mark_corrupt(bp);
1848 xfs_trans_brelse(cur->bc_tp, bp);
1849 return -EFSCORRUPTED;
1850 }
1851
1852 /*
1853 * Get current search key. For level 0 we don't actually have a key
1854 * structure so we make one up from the record. For all other levels
1855 * we just return the right key.
1856 */
1857 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1858 xfs_lookup_get_search_key(
1859 struct xfs_btree_cur *cur,
1860 int level,
1861 int keyno,
1862 struct xfs_btree_block *block,
1863 union xfs_btree_key *kp)
1864 {
1865 if (level == 0) {
1866 cur->bc_ops->init_key_from_rec(kp,
1867 xfs_btree_rec_addr(cur, keyno, block));
1868 return kp;
1869 }
1870
1871 return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873
1874 /*
1875 * Lookup the record. The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1879 xfs_btree_lookup(
1880 struct xfs_btree_cur *cur, /* btree cursor */
1881 xfs_lookup_t dir, /* <=, ==, or >= */
1882 int *stat) /* success/failure */
1883 {
1884 struct xfs_btree_block *block; /* current btree block */
1885 int64_t diff; /* difference for the current key */
1886 int error; /* error return value */
1887 int keyno; /* current key number */
1888 int level; /* level in the btree */
1889 union xfs_btree_ptr *pp; /* ptr to btree block */
1890 union xfs_btree_ptr ptr; /* ptr to btree block */
1891
1892 XFS_BTREE_STATS_INC(cur, lookup);
1893
1894 /* No such thing as a zero-level tree. */
1895 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896 return -EFSCORRUPTED;
1897
1898 block = NULL;
1899 keyno = 0;
1900
1901 /* initialise start pointer from cursor */
1902 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903 pp = &ptr;
1904
1905 /*
1906 * Iterate over each level in the btree, starting at the root.
1907 * For each level above the leaves, find the key we need, based
1908 * on the lookup record, then follow the corresponding block
1909 * pointer down to the next level.
1910 */
1911 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912 /* Get the block we need to do the lookup on. */
1913 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914 if (error)
1915 goto error0;
1916
1917 if (diff == 0) {
1918 /*
1919 * If we already had a key match at a higher level, we
1920 * know we need to use the first entry in this block.
1921 */
1922 keyno = 1;
1923 } else {
1924 /* Otherwise search this block. Do a binary search. */
1925
1926 int high; /* high entry number */
1927 int low; /* low entry number */
1928
1929 /* Set low and high entry numbers, 1-based. */
1930 low = 1;
1931 high = xfs_btree_get_numrecs(block);
1932 if (!high) {
1933 /* Block is empty, must be an empty leaf. */
1934 if (level != 0 || cur->bc_nlevels != 1) {
1935 XFS_CORRUPTION_ERROR(__func__,
1936 XFS_ERRLEVEL_LOW,
1937 cur->bc_mp, block,
1938 sizeof(*block));
1939 return -EFSCORRUPTED;
1940 }
1941
1942 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943 *stat = 0;
1944 return 0;
1945 }
1946
1947 /* Binary search the block. */
1948 while (low <= high) {
1949 union xfs_btree_key key;
1950 union xfs_btree_key *kp;
1951
1952 XFS_BTREE_STATS_INC(cur, compare);
1953
1954 /* keyno is average of low and high. */
1955 keyno = (low + high) >> 1;
1956
1957 /* Get current search key */
1958 kp = xfs_lookup_get_search_key(cur, level,
1959 keyno, block, &key);
1960
1961 /*
1962 * Compute difference to get next direction:
1963 * - less than, move right
1964 * - greater than, move left
1965 * - equal, we're done
1966 */
1967 diff = cur->bc_ops->key_diff(cur, kp);
1968 if (diff < 0)
1969 low = keyno + 1;
1970 else if (diff > 0)
1971 high = keyno - 1;
1972 else
1973 break;
1974 }
1975 }
1976
1977 /*
1978 * If there are more levels, set up for the next level
1979 * by getting the block number and filling in the cursor.
1980 */
1981 if (level > 0) {
1982 /*
1983 * If we moved left, need the previous key number,
1984 * unless there isn't one.
1985 */
1986 if (diff > 0 && --keyno < 1)
1987 keyno = 1;
1988 pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991 if (error)
1992 goto error0;
1993
1994 cur->bc_levels[level].ptr = keyno;
1995 }
1996 }
1997
1998 /* Done with the search. See if we need to adjust the results. */
1999 if (dir != XFS_LOOKUP_LE && diff < 0) {
2000 keyno++;
2001 /*
2002 * If ge search and we went off the end of the block, but it's
2003 * not the last block, we're in the wrong block.
2004 */
2005 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006 if (dir == XFS_LOOKUP_GE &&
2007 keyno > xfs_btree_get_numrecs(block) &&
2008 !xfs_btree_ptr_is_null(cur, &ptr)) {
2009 int i;
2010
2011 cur->bc_levels[0].ptr = keyno;
2012 error = xfs_btree_increment(cur, 0, &i);
2013 if (error)
2014 goto error0;
2015 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016 return -EFSCORRUPTED;
2017 *stat = 1;
2018 return 0;
2019 }
2020 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2021 keyno--;
2022 cur->bc_levels[0].ptr = keyno;
2023
2024 /* Return if we succeeded or not. */
2025 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026 *stat = 0;
2027 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028 *stat = 1;
2029 else
2030 *stat = 0;
2031 return 0;
2032
2033 error0:
2034 return error;
2035 }
2036
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2039 xfs_btree_high_key_from_key(
2040 struct xfs_btree_cur *cur,
2041 union xfs_btree_key *key)
2042 {
2043 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044 return (union xfs_btree_key *)((char *)key +
2045 (cur->bc_ops->key_len / 2));
2046 }
2047
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2050 xfs_btree_get_leaf_keys(
2051 struct xfs_btree_cur *cur,
2052 struct xfs_btree_block *block,
2053 union xfs_btree_key *key)
2054 {
2055 union xfs_btree_key max_hkey;
2056 union xfs_btree_key hkey;
2057 union xfs_btree_rec *rec;
2058 union xfs_btree_key *high;
2059 int n;
2060
2061 rec = xfs_btree_rec_addr(cur, 1, block);
2062 cur->bc_ops->init_key_from_rec(key, rec);
2063
2064 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068 rec = xfs_btree_rec_addr(cur, n, block);
2069 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2071 max_hkey = hkey;
2072 }
2073
2074 high = xfs_btree_high_key_from_key(cur, key);
2075 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2076 }
2077 }
2078
2079 /* Determine the low (and high if overlapped) keys of a node block */
2080 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2081 xfs_btree_get_node_keys(
2082 struct xfs_btree_cur *cur,
2083 struct xfs_btree_block *block,
2084 union xfs_btree_key *key)
2085 {
2086 union xfs_btree_key *hkey;
2087 union xfs_btree_key *max_hkey;
2088 union xfs_btree_key *high;
2089 int n;
2090
2091 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2092 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2093 cur->bc_ops->key_len / 2);
2094
2095 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2096 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2097 hkey = xfs_btree_high_key_addr(cur, n, block);
2098 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2099 max_hkey = hkey;
2100 }
2101
2102 high = xfs_btree_high_key_from_key(cur, key);
2103 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2104 } else {
2105 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2106 cur->bc_ops->key_len);
2107 }
2108 }
2109
2110 /* Derive the keys for any btree block. */
2111 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2112 xfs_btree_get_keys(
2113 struct xfs_btree_cur *cur,
2114 struct xfs_btree_block *block,
2115 union xfs_btree_key *key)
2116 {
2117 if (be16_to_cpu(block->bb_level) == 0)
2118 xfs_btree_get_leaf_keys(cur, block, key);
2119 else
2120 xfs_btree_get_node_keys(cur, block, key);
2121 }
2122
2123 /*
2124 * Decide if we need to update the parent keys of a btree block. For
2125 * a standard btree this is only necessary if we're updating the first
2126 * record/key. For an overlapping btree, we must always update the
2127 * keys because the highest key can be in any of the records or keys
2128 * in the block.
2129 */
2130 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2131 xfs_btree_needs_key_update(
2132 struct xfs_btree_cur *cur,
2133 int ptr)
2134 {
2135 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2136 }
2137
2138 /*
2139 * Update the low and high parent keys of the given level, progressing
2140 * towards the root. If force_all is false, stop if the keys for a given
2141 * level do not need updating.
2142 */
2143 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2144 __xfs_btree_updkeys(
2145 struct xfs_btree_cur *cur,
2146 int level,
2147 struct xfs_btree_block *block,
2148 struct xfs_buf *bp0,
2149 bool force_all)
2150 {
2151 union xfs_btree_key key; /* keys from current level */
2152 union xfs_btree_key *lkey; /* keys from the next level up */
2153 union xfs_btree_key *hkey;
2154 union xfs_btree_key *nlkey; /* keys from the next level up */
2155 union xfs_btree_key *nhkey;
2156 struct xfs_buf *bp;
2157 int ptr;
2158
2159 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2160
2161 /* Exit if there aren't any parent levels to update. */
2162 if (level + 1 >= cur->bc_nlevels)
2163 return 0;
2164
2165 trace_xfs_btree_updkeys(cur, level, bp0);
2166
2167 lkey = &key;
2168 hkey = xfs_btree_high_key_from_key(cur, lkey);
2169 xfs_btree_get_keys(cur, block, lkey);
2170 for (level++; level < cur->bc_nlevels; level++) {
2171 #ifdef DEBUG
2172 int error;
2173 #endif
2174 block = xfs_btree_get_block(cur, level, &bp);
2175 trace_xfs_btree_updkeys(cur, level, bp);
2176 #ifdef DEBUG
2177 error = xfs_btree_check_block(cur, block, level, bp);
2178 if (error)
2179 return error;
2180 #endif
2181 ptr = cur->bc_levels[level].ptr;
2182 nlkey = xfs_btree_key_addr(cur, ptr, block);
2183 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2184 if (!force_all &&
2185 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2186 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2187 break;
2188 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2189 xfs_btree_log_keys(cur, bp, ptr, ptr);
2190 if (level + 1 >= cur->bc_nlevels)
2191 break;
2192 xfs_btree_get_node_keys(cur, block, lkey);
2193 }
2194
2195 return 0;
2196 }
2197
2198 /* Update all the keys from some level in cursor back to the root. */
2199 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2200 xfs_btree_updkeys_force(
2201 struct xfs_btree_cur *cur,
2202 int level)
2203 {
2204 struct xfs_buf *bp;
2205 struct xfs_btree_block *block;
2206
2207 block = xfs_btree_get_block(cur, level, &bp);
2208 return __xfs_btree_updkeys(cur, level, block, bp, true);
2209 }
2210
2211 /*
2212 * Update the parent keys of the given level, progressing towards the root.
2213 */
2214 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2215 xfs_btree_update_keys(
2216 struct xfs_btree_cur *cur,
2217 int level)
2218 {
2219 struct xfs_btree_block *block;
2220 struct xfs_buf *bp;
2221 union xfs_btree_key *kp;
2222 union xfs_btree_key key;
2223 int ptr;
2224
2225 ASSERT(level >= 0);
2226
2227 block = xfs_btree_get_block(cur, level, &bp);
2228 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2229 return __xfs_btree_updkeys(cur, level, block, bp, false);
2230
2231 /*
2232 * Go up the tree from this level toward the root.
2233 * At each level, update the key value to the value input.
2234 * Stop when we reach a level where the cursor isn't pointing
2235 * at the first entry in the block.
2236 */
2237 xfs_btree_get_keys(cur, block, &key);
2238 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2239 #ifdef DEBUG
2240 int error;
2241 #endif
2242 block = xfs_btree_get_block(cur, level, &bp);
2243 #ifdef DEBUG
2244 error = xfs_btree_check_block(cur, block, level, bp);
2245 if (error)
2246 return error;
2247 #endif
2248 ptr = cur->bc_levels[level].ptr;
2249 kp = xfs_btree_key_addr(cur, ptr, block);
2250 xfs_btree_copy_keys(cur, kp, &key, 1);
2251 xfs_btree_log_keys(cur, bp, ptr, ptr);
2252 }
2253
2254 return 0;
2255 }
2256
2257 /*
2258 * Update the record referred to by cur to the value in the
2259 * given record. This either works (return 0) or gets an
2260 * EFSCORRUPTED error.
2261 */
2262 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2263 xfs_btree_update(
2264 struct xfs_btree_cur *cur,
2265 union xfs_btree_rec *rec)
2266 {
2267 struct xfs_btree_block *block;
2268 struct xfs_buf *bp;
2269 int error;
2270 int ptr;
2271 union xfs_btree_rec *rp;
2272
2273 /* Pick up the current block. */
2274 block = xfs_btree_get_block(cur, 0, &bp);
2275
2276 #ifdef DEBUG
2277 error = xfs_btree_check_block(cur, block, 0, bp);
2278 if (error)
2279 goto error0;
2280 #endif
2281 /* Get the address of the rec to be updated. */
2282 ptr = cur->bc_levels[0].ptr;
2283 rp = xfs_btree_rec_addr(cur, ptr, block);
2284
2285 /* Fill in the new contents and log them. */
2286 xfs_btree_copy_recs(cur, rp, rec, 1);
2287 xfs_btree_log_recs(cur, bp, ptr, ptr);
2288
2289 /*
2290 * If we are tracking the last record in the tree and
2291 * we are at the far right edge of the tree, update it.
2292 */
2293 if (xfs_btree_is_lastrec(cur, block, 0)) {
2294 cur->bc_ops->update_lastrec(cur, block, rec,
2295 ptr, LASTREC_UPDATE);
2296 }
2297
2298 /* Pass new key value up to our parent. */
2299 if (xfs_btree_needs_key_update(cur, ptr)) {
2300 error = xfs_btree_update_keys(cur, 0);
2301 if (error)
2302 goto error0;
2303 }
2304
2305 return 0;
2306
2307 error0:
2308 return error;
2309 }
2310
2311 /*
2312 * Move 1 record left from cur/level if possible.
2313 * Update cur to reflect the new path.
2314 */
2315 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2316 xfs_btree_lshift(
2317 struct xfs_btree_cur *cur,
2318 int level,
2319 int *stat) /* success/failure */
2320 {
2321 struct xfs_buf *lbp; /* left buffer pointer */
2322 struct xfs_btree_block *left; /* left btree block */
2323 int lrecs; /* left record count */
2324 struct xfs_buf *rbp; /* right buffer pointer */
2325 struct xfs_btree_block *right; /* right btree block */
2326 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2327 int rrecs; /* right record count */
2328 union xfs_btree_ptr lptr; /* left btree pointer */
2329 union xfs_btree_key *rkp = NULL; /* right btree key */
2330 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2331 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2332 int error; /* error return value */
2333 int i;
2334
2335 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2336 level == cur->bc_nlevels - 1)
2337 goto out0;
2338
2339 /* Set up variables for this block as "right". */
2340 right = xfs_btree_get_block(cur, level, &rbp);
2341
2342 #ifdef DEBUG
2343 error = xfs_btree_check_block(cur, right, level, rbp);
2344 if (error)
2345 goto error0;
2346 #endif
2347
2348 /* If we've got no left sibling then we can't shift an entry left. */
2349 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2350 if (xfs_btree_ptr_is_null(cur, &lptr))
2351 goto out0;
2352
2353 /*
2354 * If the cursor entry is the one that would be moved, don't
2355 * do it... it's too complicated.
2356 */
2357 if (cur->bc_levels[level].ptr <= 1)
2358 goto out0;
2359
2360 /* Set up the left neighbor as "left". */
2361 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2362 if (error)
2363 goto error0;
2364
2365 /* If it's full, it can't take another entry. */
2366 lrecs = xfs_btree_get_numrecs(left);
2367 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2368 goto out0;
2369
2370 rrecs = xfs_btree_get_numrecs(right);
2371
2372 /*
2373 * We add one entry to the left side and remove one for the right side.
2374 * Account for it here, the changes will be updated on disk and logged
2375 * later.
2376 */
2377 lrecs++;
2378 rrecs--;
2379
2380 XFS_BTREE_STATS_INC(cur, lshift);
2381 XFS_BTREE_STATS_ADD(cur, moves, 1);
2382
2383 /*
2384 * If non-leaf, copy a key and a ptr to the left block.
2385 * Log the changes to the left block.
2386 */
2387 if (level > 0) {
2388 /* It's a non-leaf. Move keys and pointers. */
2389 union xfs_btree_key *lkp; /* left btree key */
2390 union xfs_btree_ptr *lpp; /* left address pointer */
2391
2392 lkp = xfs_btree_key_addr(cur, lrecs, left);
2393 rkp = xfs_btree_key_addr(cur, 1, right);
2394
2395 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2396 rpp = xfs_btree_ptr_addr(cur, 1, right);
2397
2398 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2399 if (error)
2400 goto error0;
2401
2402 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2403 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2404
2405 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2406 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2407
2408 ASSERT(cur->bc_ops->keys_inorder(cur,
2409 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2410 } else {
2411 /* It's a leaf. Move records. */
2412 union xfs_btree_rec *lrp; /* left record pointer */
2413
2414 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2415 rrp = xfs_btree_rec_addr(cur, 1, right);
2416
2417 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2418 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2419
2420 ASSERT(cur->bc_ops->recs_inorder(cur,
2421 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2422 }
2423
2424 xfs_btree_set_numrecs(left, lrecs);
2425 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2426
2427 xfs_btree_set_numrecs(right, rrecs);
2428 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2429
2430 /*
2431 * Slide the contents of right down one entry.
2432 */
2433 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2434 if (level > 0) {
2435 /* It's a nonleaf. operate on keys and ptrs */
2436 for (i = 0; i < rrecs; i++) {
2437 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2438 if (error)
2439 goto error0;
2440 }
2441
2442 xfs_btree_shift_keys(cur,
2443 xfs_btree_key_addr(cur, 2, right),
2444 -1, rrecs);
2445 xfs_btree_shift_ptrs(cur,
2446 xfs_btree_ptr_addr(cur, 2, right),
2447 -1, rrecs);
2448
2449 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2450 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2451 } else {
2452 /* It's a leaf. operate on records */
2453 xfs_btree_shift_recs(cur,
2454 xfs_btree_rec_addr(cur, 2, right),
2455 -1, rrecs);
2456 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2457 }
2458
2459 /*
2460 * Using a temporary cursor, update the parent key values of the
2461 * block on the left.
2462 */
2463 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2464 error = xfs_btree_dup_cursor(cur, &tcur);
2465 if (error)
2466 goto error0;
2467 i = xfs_btree_firstrec(tcur, level);
2468 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2469 error = -EFSCORRUPTED;
2470 goto error0;
2471 }
2472
2473 error = xfs_btree_decrement(tcur, level, &i);
2474 if (error)
2475 goto error1;
2476
2477 /* Update the parent high keys of the left block, if needed. */
2478 error = xfs_btree_update_keys(tcur, level);
2479 if (error)
2480 goto error1;
2481
2482 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2483 }
2484
2485 /* Update the parent keys of the right block. */
2486 error = xfs_btree_update_keys(cur, level);
2487 if (error)
2488 goto error0;
2489
2490 /* Slide the cursor value left one. */
2491 cur->bc_levels[level].ptr--;
2492
2493 *stat = 1;
2494 return 0;
2495
2496 out0:
2497 *stat = 0;
2498 return 0;
2499
2500 error0:
2501 return error;
2502
2503 error1:
2504 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2505 return error;
2506 }
2507
2508 /*
2509 * Move 1 record right from cur/level if possible.
2510 * Update cur to reflect the new path.
2511 */
2512 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2513 xfs_btree_rshift(
2514 struct xfs_btree_cur *cur,
2515 int level,
2516 int *stat) /* success/failure */
2517 {
2518 struct xfs_buf *lbp; /* left buffer pointer */
2519 struct xfs_btree_block *left; /* left btree block */
2520 struct xfs_buf *rbp; /* right buffer pointer */
2521 struct xfs_btree_block *right; /* right btree block */
2522 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2523 union xfs_btree_ptr rptr; /* right block pointer */
2524 union xfs_btree_key *rkp; /* right btree key */
2525 int rrecs; /* right record count */
2526 int lrecs; /* left record count */
2527 int error; /* error return value */
2528 int i; /* loop counter */
2529
2530 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2531 (level == cur->bc_nlevels - 1))
2532 goto out0;
2533
2534 /* Set up variables for this block as "left". */
2535 left = xfs_btree_get_block(cur, level, &lbp);
2536
2537 #ifdef DEBUG
2538 error = xfs_btree_check_block(cur, left, level, lbp);
2539 if (error)
2540 goto error0;
2541 #endif
2542
2543 /* If we've got no right sibling then we can't shift an entry right. */
2544 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2545 if (xfs_btree_ptr_is_null(cur, &rptr))
2546 goto out0;
2547
2548 /*
2549 * If the cursor entry is the one that would be moved, don't
2550 * do it... it's too complicated.
2551 */
2552 lrecs = xfs_btree_get_numrecs(left);
2553 if (cur->bc_levels[level].ptr >= lrecs)
2554 goto out0;
2555
2556 /* Set up the right neighbor as "right". */
2557 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2558 if (error)
2559 goto error0;
2560
2561 /* If it's full, it can't take another entry. */
2562 rrecs = xfs_btree_get_numrecs(right);
2563 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2564 goto out0;
2565
2566 XFS_BTREE_STATS_INC(cur, rshift);
2567 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2568
2569 /*
2570 * Make a hole at the start of the right neighbor block, then
2571 * copy the last left block entry to the hole.
2572 */
2573 if (level > 0) {
2574 /* It's a nonleaf. make a hole in the keys and ptrs */
2575 union xfs_btree_key *lkp;
2576 union xfs_btree_ptr *lpp;
2577 union xfs_btree_ptr *rpp;
2578
2579 lkp = xfs_btree_key_addr(cur, lrecs, left);
2580 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2581 rkp = xfs_btree_key_addr(cur, 1, right);
2582 rpp = xfs_btree_ptr_addr(cur, 1, right);
2583
2584 for (i = rrecs - 1; i >= 0; i--) {
2585 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2586 if (error)
2587 goto error0;
2588 }
2589
2590 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2591 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2592
2593 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2594 if (error)
2595 goto error0;
2596
2597 /* Now put the new data in, and log it. */
2598 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2599 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2600
2601 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2602 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2603
2604 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2605 xfs_btree_key_addr(cur, 2, right)));
2606 } else {
2607 /* It's a leaf. make a hole in the records */
2608 union xfs_btree_rec *lrp;
2609 union xfs_btree_rec *rrp;
2610
2611 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2612 rrp = xfs_btree_rec_addr(cur, 1, right);
2613
2614 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2615
2616 /* Now put the new data in, and log it. */
2617 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2618 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2619 }
2620
2621 /*
2622 * Decrement and log left's numrecs, bump and log right's numrecs.
2623 */
2624 xfs_btree_set_numrecs(left, --lrecs);
2625 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2626
2627 xfs_btree_set_numrecs(right, ++rrecs);
2628 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2629
2630 /*
2631 * Using a temporary cursor, update the parent key values of the
2632 * block on the right.
2633 */
2634 error = xfs_btree_dup_cursor(cur, &tcur);
2635 if (error)
2636 goto error0;
2637 i = xfs_btree_lastrec(tcur, level);
2638 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2639 error = -EFSCORRUPTED;
2640 goto error0;
2641 }
2642
2643 error = xfs_btree_increment(tcur, level, &i);
2644 if (error)
2645 goto error1;
2646
2647 /* Update the parent high keys of the left block, if needed. */
2648 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2649 error = xfs_btree_update_keys(cur, level);
2650 if (error)
2651 goto error1;
2652 }
2653
2654 /* Update the parent keys of the right block. */
2655 error = xfs_btree_update_keys(tcur, level);
2656 if (error)
2657 goto error1;
2658
2659 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2660
2661 *stat = 1;
2662 return 0;
2663
2664 out0:
2665 *stat = 0;
2666 return 0;
2667
2668 error0:
2669 return error;
2670
2671 error1:
2672 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2673 return error;
2674 }
2675
2676 /*
2677 * Split cur/level block in half.
2678 * Return new block number and the key to its first
2679 * record (to be inserted into parent).
2680 */
2681 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2682 __xfs_btree_split(
2683 struct xfs_btree_cur *cur,
2684 int level,
2685 union xfs_btree_ptr *ptrp,
2686 union xfs_btree_key *key,
2687 struct xfs_btree_cur **curp,
2688 int *stat) /* success/failure */
2689 {
2690 union xfs_btree_ptr lptr; /* left sibling block ptr */
2691 struct xfs_buf *lbp; /* left buffer pointer */
2692 struct xfs_btree_block *left; /* left btree block */
2693 union xfs_btree_ptr rptr; /* right sibling block ptr */
2694 struct xfs_buf *rbp; /* right buffer pointer */
2695 struct xfs_btree_block *right; /* right btree block */
2696 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2697 struct xfs_buf *rrbp; /* right-right buffer pointer */
2698 struct xfs_btree_block *rrblock; /* right-right btree block */
2699 int lrecs;
2700 int rrecs;
2701 int src_index;
2702 int error; /* error return value */
2703 int i;
2704
2705 XFS_BTREE_STATS_INC(cur, split);
2706
2707 /* Set up left block (current one). */
2708 left = xfs_btree_get_block(cur, level, &lbp);
2709
2710 #ifdef DEBUG
2711 error = xfs_btree_check_block(cur, left, level, lbp);
2712 if (error)
2713 goto error0;
2714 #endif
2715
2716 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2717
2718 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2719 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2720 if (error)
2721 goto error0;
2722 if (*stat == 0)
2723 goto out0;
2724 XFS_BTREE_STATS_INC(cur, alloc);
2725
2726 /* Set up the new block as "right". */
2727 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2728 if (error)
2729 goto error0;
2730
2731 /* Fill in the btree header for the new right block. */
2732 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2733
2734 /*
2735 * Split the entries between the old and the new block evenly.
2736 * Make sure that if there's an odd number of entries now, that
2737 * each new block will have the same number of entries.
2738 */
2739 lrecs = xfs_btree_get_numrecs(left);
2740 rrecs = lrecs / 2;
2741 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2742 rrecs++;
2743 src_index = (lrecs - rrecs + 1);
2744
2745 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2746
2747 /* Adjust numrecs for the later get_*_keys() calls. */
2748 lrecs -= rrecs;
2749 xfs_btree_set_numrecs(left, lrecs);
2750 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2751
2752 /*
2753 * Copy btree block entries from the left block over to the
2754 * new block, the right. Update the right block and log the
2755 * changes.
2756 */
2757 if (level > 0) {
2758 /* It's a non-leaf. Move keys and pointers. */
2759 union xfs_btree_key *lkp; /* left btree key */
2760 union xfs_btree_ptr *lpp; /* left address pointer */
2761 union xfs_btree_key *rkp; /* right btree key */
2762 union xfs_btree_ptr *rpp; /* right address pointer */
2763
2764 lkp = xfs_btree_key_addr(cur, src_index, left);
2765 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2766 rkp = xfs_btree_key_addr(cur, 1, right);
2767 rpp = xfs_btree_ptr_addr(cur, 1, right);
2768
2769 for (i = src_index; i < rrecs; i++) {
2770 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2771 if (error)
2772 goto error0;
2773 }
2774
2775 /* Copy the keys & pointers to the new block. */
2776 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2777 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2778
2779 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2780 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2781
2782 /* Stash the keys of the new block for later insertion. */
2783 xfs_btree_get_node_keys(cur, right, key);
2784 } else {
2785 /* It's a leaf. Move records. */
2786 union xfs_btree_rec *lrp; /* left record pointer */
2787 union xfs_btree_rec *rrp; /* right record pointer */
2788
2789 lrp = xfs_btree_rec_addr(cur, src_index, left);
2790 rrp = xfs_btree_rec_addr(cur, 1, right);
2791
2792 /* Copy records to the new block. */
2793 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2794 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2795
2796 /* Stash the keys of the new block for later insertion. */
2797 xfs_btree_get_leaf_keys(cur, right, key);
2798 }
2799
2800 /*
2801 * Find the left block number by looking in the buffer.
2802 * Adjust sibling pointers.
2803 */
2804 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2805 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2806 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2807 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2808
2809 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2810 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2811
2812 /*
2813 * If there's a block to the new block's right, make that block
2814 * point back to right instead of to left.
2815 */
2816 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2817 error = xfs_btree_read_buf_block(cur, &rrptr,
2818 0, &rrblock, &rrbp);
2819 if (error)
2820 goto error0;
2821 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2822 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2823 }
2824
2825 /* Update the parent high keys of the left block, if needed. */
2826 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2827 error = xfs_btree_update_keys(cur, level);
2828 if (error)
2829 goto error0;
2830 }
2831
2832 /*
2833 * If the cursor is really in the right block, move it there.
2834 * If it's just pointing past the last entry in left, then we'll
2835 * insert there, so don't change anything in that case.
2836 */
2837 if (cur->bc_levels[level].ptr > lrecs + 1) {
2838 xfs_btree_setbuf(cur, level, rbp);
2839 cur->bc_levels[level].ptr -= lrecs;
2840 }
2841 /*
2842 * If there are more levels, we'll need another cursor which refers
2843 * the right block, no matter where this cursor was.
2844 */
2845 if (level + 1 < cur->bc_nlevels) {
2846 error = xfs_btree_dup_cursor(cur, curp);
2847 if (error)
2848 goto error0;
2849 (*curp)->bc_levels[level + 1].ptr++;
2850 }
2851 *ptrp = rptr;
2852 *stat = 1;
2853 return 0;
2854 out0:
2855 *stat = 0;
2856 return 0;
2857
2858 error0:
2859 return error;
2860 }
2861
2862 #ifdef __KERNEL__
2863 struct xfs_btree_split_args {
2864 struct xfs_btree_cur *cur;
2865 int level;
2866 union xfs_btree_ptr *ptrp;
2867 union xfs_btree_key *key;
2868 struct xfs_btree_cur **curp;
2869 int *stat; /* success/failure */
2870 int result;
2871 bool kswapd; /* allocation in kswapd context */
2872 struct completion *done;
2873 struct work_struct work;
2874 };
2875
2876 /*
2877 * Stack switching interfaces for allocation
2878 */
2879 static void
xfs_btree_split_worker(struct work_struct * work)2880 xfs_btree_split_worker(
2881 struct work_struct *work)
2882 {
2883 struct xfs_btree_split_args *args = container_of(work,
2884 struct xfs_btree_split_args, work);
2885 unsigned long pflags;
2886 unsigned long new_pflags = 0;
2887
2888 /*
2889 * we are in a transaction context here, but may also be doing work
2890 * in kswapd context, and hence we may need to inherit that state
2891 * temporarily to ensure that we don't block waiting for memory reclaim
2892 * in any way.
2893 */
2894 if (args->kswapd)
2895 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2896
2897 current_set_flags_nested(&pflags, new_pflags);
2898 xfs_trans_set_context(args->cur->bc_tp);
2899
2900 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2901 args->key, args->curp, args->stat);
2902
2903 xfs_trans_clear_context(args->cur->bc_tp);
2904 current_restore_flags_nested(&pflags, new_pflags);
2905
2906 /*
2907 * Do not access args after complete() has run here. We don't own args
2908 * and the owner may run and free args before we return here.
2909 */
2910 complete(args->done);
2911
2912 }
2913
2914 /*
2915 * BMBT split requests often come in with little stack to work on so we push
2916 * them off to a worker thread so there is lots of stack to use. For the other
2917 * btree types, just call directly to avoid the context switch overhead here.
2918 *
2919 * Care must be taken here - the work queue rescuer thread introduces potential
2920 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2921 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2922 * lock an AGF that is already locked by a task queued to run by the rescuer,
2923 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2924 * release it until the current thread it is running gains the lock.
2925 *
2926 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2927 * already locked to allocate from. The only place that doesn't hold an AGF
2928 * locked is unwritten extent conversion at IO completion, but that has already
2929 * been offloaded to a worker thread and hence has no stack consumption issues
2930 * we have to worry about.
2931 */
2932 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2933 xfs_btree_split(
2934 struct xfs_btree_cur *cur,
2935 int level,
2936 union xfs_btree_ptr *ptrp,
2937 union xfs_btree_key *key,
2938 struct xfs_btree_cur **curp,
2939 int *stat) /* success/failure */
2940 {
2941 struct xfs_btree_split_args args;
2942 DECLARE_COMPLETION_ONSTACK(done);
2943
2944 if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2945 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2946 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2947
2948 args.cur = cur;
2949 args.level = level;
2950 args.ptrp = ptrp;
2951 args.key = key;
2952 args.curp = curp;
2953 args.stat = stat;
2954 args.done = &done;
2955 args.kswapd = current_is_kswapd();
2956 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2957 queue_work(xfs_alloc_wq, &args.work);
2958 wait_for_completion(&done);
2959 destroy_work_on_stack(&args.work);
2960 return args.result;
2961 }
2962 #else
2963 #define xfs_btree_split __xfs_btree_split
2964 #endif /* __KERNEL__ */
2965
2966
2967 /*
2968 * Copy the old inode root contents into a real block and make the
2969 * broot point to it.
2970 */
2971 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2972 xfs_btree_new_iroot(
2973 struct xfs_btree_cur *cur, /* btree cursor */
2974 int *logflags, /* logging flags for inode */
2975 int *stat) /* return status - 0 fail */
2976 {
2977 struct xfs_buf *cbp; /* buffer for cblock */
2978 struct xfs_btree_block *block; /* btree block */
2979 struct xfs_btree_block *cblock; /* child btree block */
2980 union xfs_btree_key *ckp; /* child key pointer */
2981 union xfs_btree_ptr *cpp; /* child ptr pointer */
2982 union xfs_btree_key *kp; /* pointer to btree key */
2983 union xfs_btree_ptr *pp; /* pointer to block addr */
2984 union xfs_btree_ptr nptr; /* new block addr */
2985 int level; /* btree level */
2986 int error; /* error return code */
2987 int i; /* loop counter */
2988
2989 XFS_BTREE_STATS_INC(cur, newroot);
2990
2991 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2992
2993 level = cur->bc_nlevels - 1;
2994
2995 block = xfs_btree_get_iroot(cur);
2996 pp = xfs_btree_ptr_addr(cur, 1, block);
2997
2998 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2999 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3000 if (error)
3001 goto error0;
3002 if (*stat == 0)
3003 return 0;
3004
3005 XFS_BTREE_STATS_INC(cur, alloc);
3006
3007 /* Copy the root into a real block. */
3008 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3009 if (error)
3010 goto error0;
3011
3012 /*
3013 * we can't just memcpy() the root in for CRC enabled btree blocks.
3014 * In that case have to also ensure the blkno remains correct
3015 */
3016 memcpy(cblock, block, xfs_btree_block_len(cur));
3017 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3018 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3019 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3020 cblock->bb_u.l.bb_blkno = bno;
3021 else
3022 cblock->bb_u.s.bb_blkno = bno;
3023 }
3024
3025 be16_add_cpu(&block->bb_level, 1);
3026 xfs_btree_set_numrecs(block, 1);
3027 cur->bc_nlevels++;
3028 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3029 cur->bc_levels[level + 1].ptr = 1;
3030
3031 kp = xfs_btree_key_addr(cur, 1, block);
3032 ckp = xfs_btree_key_addr(cur, 1, cblock);
3033 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3034
3035 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3036 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3037 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3038 if (error)
3039 goto error0;
3040 }
3041
3042 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3043
3044 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3045 if (error)
3046 goto error0;
3047
3048 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3049
3050 xfs_iroot_realloc(cur->bc_ino.ip,
3051 1 - xfs_btree_get_numrecs(cblock),
3052 cur->bc_ino.whichfork);
3053
3054 xfs_btree_setbuf(cur, level, cbp);
3055
3056 /*
3057 * Do all this logging at the end so that
3058 * the root is at the right level.
3059 */
3060 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3061 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3062 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063
3064 *logflags |=
3065 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3066 *stat = 1;
3067 return 0;
3068 error0:
3069 return error;
3070 }
3071
3072 /*
3073 * Allocate a new root block, fill it in.
3074 */
3075 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3076 xfs_btree_new_root(
3077 struct xfs_btree_cur *cur, /* btree cursor */
3078 int *stat) /* success/failure */
3079 {
3080 struct xfs_btree_block *block; /* one half of the old root block */
3081 struct xfs_buf *bp; /* buffer containing block */
3082 int error; /* error return value */
3083 struct xfs_buf *lbp; /* left buffer pointer */
3084 struct xfs_btree_block *left; /* left btree block */
3085 struct xfs_buf *nbp; /* new (root) buffer */
3086 struct xfs_btree_block *new; /* new (root) btree block */
3087 int nptr; /* new value for key index, 1 or 2 */
3088 struct xfs_buf *rbp; /* right buffer pointer */
3089 struct xfs_btree_block *right; /* right btree block */
3090 union xfs_btree_ptr rptr;
3091 union xfs_btree_ptr lptr;
3092
3093 XFS_BTREE_STATS_INC(cur, newroot);
3094
3095 /* initialise our start point from the cursor */
3096 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3097
3098 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3099 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3100 if (error)
3101 goto error0;
3102 if (*stat == 0)
3103 goto out0;
3104 XFS_BTREE_STATS_INC(cur, alloc);
3105
3106 /* Set up the new block. */
3107 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3108 if (error)
3109 goto error0;
3110
3111 /* Set the root in the holding structure increasing the level by 1. */
3112 cur->bc_ops->set_root(cur, &lptr, 1);
3113
3114 /*
3115 * At the previous root level there are now two blocks: the old root,
3116 * and the new block generated when it was split. We don't know which
3117 * one the cursor is pointing at, so we set up variables "left" and
3118 * "right" for each case.
3119 */
3120 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3121
3122 #ifdef DEBUG
3123 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3124 if (error)
3125 goto error0;
3126 #endif
3127
3128 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3129 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3130 /* Our block is left, pick up the right block. */
3131 lbp = bp;
3132 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3133 left = block;
3134 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3135 if (error)
3136 goto error0;
3137 bp = rbp;
3138 nptr = 1;
3139 } else {
3140 /* Our block is right, pick up the left block. */
3141 rbp = bp;
3142 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3143 right = block;
3144 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3145 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3146 if (error)
3147 goto error0;
3148 bp = lbp;
3149 nptr = 2;
3150 }
3151
3152 /* Fill in the new block's btree header and log it. */
3153 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3154 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3155 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3156 !xfs_btree_ptr_is_null(cur, &rptr));
3157
3158 /* Fill in the key data in the new root. */
3159 if (xfs_btree_get_level(left) > 0) {
3160 /*
3161 * Get the keys for the left block's keys and put them directly
3162 * in the parent block. Do the same for the right block.
3163 */
3164 xfs_btree_get_node_keys(cur, left,
3165 xfs_btree_key_addr(cur, 1, new));
3166 xfs_btree_get_node_keys(cur, right,
3167 xfs_btree_key_addr(cur, 2, new));
3168 } else {
3169 /*
3170 * Get the keys for the left block's records and put them
3171 * directly in the parent block. Do the same for the right
3172 * block.
3173 */
3174 xfs_btree_get_leaf_keys(cur, left,
3175 xfs_btree_key_addr(cur, 1, new));
3176 xfs_btree_get_leaf_keys(cur, right,
3177 xfs_btree_key_addr(cur, 2, new));
3178 }
3179 xfs_btree_log_keys(cur, nbp, 1, 2);
3180
3181 /* Fill in the pointer data in the new root. */
3182 xfs_btree_copy_ptrs(cur,
3183 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3184 xfs_btree_copy_ptrs(cur,
3185 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3186 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3187
3188 /* Fix up the cursor. */
3189 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3190 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3191 cur->bc_nlevels++;
3192 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3193 *stat = 1;
3194 return 0;
3195 error0:
3196 return error;
3197 out0:
3198 *stat = 0;
3199 return 0;
3200 }
3201
3202 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3203 xfs_btree_make_block_unfull(
3204 struct xfs_btree_cur *cur, /* btree cursor */
3205 int level, /* btree level */
3206 int numrecs,/* # of recs in block */
3207 int *oindex,/* old tree index */
3208 int *index, /* new tree index */
3209 union xfs_btree_ptr *nptr, /* new btree ptr */
3210 struct xfs_btree_cur **ncur, /* new btree cursor */
3211 union xfs_btree_key *key, /* key of new block */
3212 int *stat)
3213 {
3214 int error = 0;
3215
3216 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3217 level == cur->bc_nlevels - 1) {
3218 struct xfs_inode *ip = cur->bc_ino.ip;
3219
3220 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3221 /* A root block that can be made bigger. */
3222 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3223 *stat = 1;
3224 } else {
3225 /* A root block that needs replacing */
3226 int logflags = 0;
3227
3228 error = xfs_btree_new_iroot(cur, &logflags, stat);
3229 if (error || *stat == 0)
3230 return error;
3231
3232 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3233 }
3234
3235 return 0;
3236 }
3237
3238 /* First, try shifting an entry to the right neighbor. */
3239 error = xfs_btree_rshift(cur, level, stat);
3240 if (error || *stat)
3241 return error;
3242
3243 /* Next, try shifting an entry to the left neighbor. */
3244 error = xfs_btree_lshift(cur, level, stat);
3245 if (error)
3246 return error;
3247
3248 if (*stat) {
3249 *oindex = *index = cur->bc_levels[level].ptr;
3250 return 0;
3251 }
3252
3253 /*
3254 * Next, try splitting the current block in half.
3255 *
3256 * If this works we have to re-set our variables because we
3257 * could be in a different block now.
3258 */
3259 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3260 if (error || *stat == 0)
3261 return error;
3262
3263
3264 *index = cur->bc_levels[level].ptr;
3265 return 0;
3266 }
3267
3268 /*
3269 * Insert one record/level. Return information to the caller
3270 * allowing the next level up to proceed if necessary.
3271 */
3272 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3273 xfs_btree_insrec(
3274 struct xfs_btree_cur *cur, /* btree cursor */
3275 int level, /* level to insert record at */
3276 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3277 union xfs_btree_rec *rec, /* record to insert */
3278 union xfs_btree_key *key, /* i/o: block key for ptrp */
3279 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3280 int *stat) /* success/failure */
3281 {
3282 struct xfs_btree_block *block; /* btree block */
3283 struct xfs_buf *bp; /* buffer for block */
3284 union xfs_btree_ptr nptr; /* new block ptr */
3285 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3286 union xfs_btree_key nkey; /* new block key */
3287 union xfs_btree_key *lkey;
3288 int optr; /* old key/record index */
3289 int ptr; /* key/record index */
3290 int numrecs;/* number of records */
3291 int error; /* error return value */
3292 int i;
3293 xfs_daddr_t old_bn;
3294
3295 ncur = NULL;
3296 lkey = &nkey;
3297
3298 /*
3299 * If we have an external root pointer, and we've made it to the
3300 * root level, allocate a new root block and we're done.
3301 */
3302 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3303 (level >= cur->bc_nlevels)) {
3304 error = xfs_btree_new_root(cur, stat);
3305 xfs_btree_set_ptr_null(cur, ptrp);
3306
3307 return error;
3308 }
3309
3310 /* If we're off the left edge, return failure. */
3311 ptr = cur->bc_levels[level].ptr;
3312 if (ptr == 0) {
3313 *stat = 0;
3314 return 0;
3315 }
3316
3317 optr = ptr;
3318
3319 XFS_BTREE_STATS_INC(cur, insrec);
3320
3321 /* Get pointers to the btree buffer and block. */
3322 block = xfs_btree_get_block(cur, level, &bp);
3323 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3324 numrecs = xfs_btree_get_numrecs(block);
3325
3326 #ifdef DEBUG
3327 error = xfs_btree_check_block(cur, block, level, bp);
3328 if (error)
3329 goto error0;
3330
3331 /* Check that the new entry is being inserted in the right place. */
3332 if (ptr <= numrecs) {
3333 if (level == 0) {
3334 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3335 xfs_btree_rec_addr(cur, ptr, block)));
3336 } else {
3337 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3338 xfs_btree_key_addr(cur, ptr, block)));
3339 }
3340 }
3341 #endif
3342
3343 /*
3344 * If the block is full, we can't insert the new entry until we
3345 * make the block un-full.
3346 */
3347 xfs_btree_set_ptr_null(cur, &nptr);
3348 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3349 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3350 &optr, &ptr, &nptr, &ncur, lkey, stat);
3351 if (error || *stat == 0)
3352 goto error0;
3353 }
3354
3355 /*
3356 * The current block may have changed if the block was
3357 * previously full and we have just made space in it.
3358 */
3359 block = xfs_btree_get_block(cur, level, &bp);
3360 numrecs = xfs_btree_get_numrecs(block);
3361
3362 #ifdef DEBUG
3363 error = xfs_btree_check_block(cur, block, level, bp);
3364 if (error)
3365 goto error0;
3366 #endif
3367
3368 /*
3369 * At this point we know there's room for our new entry in the block
3370 * we're pointing at.
3371 */
3372 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3373
3374 if (level > 0) {
3375 /* It's a nonleaf. make a hole in the keys and ptrs */
3376 union xfs_btree_key *kp;
3377 union xfs_btree_ptr *pp;
3378
3379 kp = xfs_btree_key_addr(cur, ptr, block);
3380 pp = xfs_btree_ptr_addr(cur, ptr, block);
3381
3382 for (i = numrecs - ptr; i >= 0; i--) {
3383 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3384 if (error)
3385 goto error0;
3386 }
3387
3388 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3389 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3390
3391 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3392 if (error)
3393 goto error0;
3394
3395 /* Now put the new data in, bump numrecs and log it. */
3396 xfs_btree_copy_keys(cur, kp, key, 1);
3397 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3398 numrecs++;
3399 xfs_btree_set_numrecs(block, numrecs);
3400 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3401 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3402 #ifdef DEBUG
3403 if (ptr < numrecs) {
3404 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3405 xfs_btree_key_addr(cur, ptr + 1, block)));
3406 }
3407 #endif
3408 } else {
3409 /* It's a leaf. make a hole in the records */
3410 union xfs_btree_rec *rp;
3411
3412 rp = xfs_btree_rec_addr(cur, ptr, block);
3413
3414 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3415
3416 /* Now put the new data in, bump numrecs and log it. */
3417 xfs_btree_copy_recs(cur, rp, rec, 1);
3418 xfs_btree_set_numrecs(block, ++numrecs);
3419 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3420 #ifdef DEBUG
3421 if (ptr < numrecs) {
3422 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3423 xfs_btree_rec_addr(cur, ptr + 1, block)));
3424 }
3425 #endif
3426 }
3427
3428 /* Log the new number of records in the btree header. */
3429 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3430
3431 /*
3432 * If we just inserted into a new tree block, we have to
3433 * recalculate nkey here because nkey is out of date.
3434 *
3435 * Otherwise we're just updating an existing block (having shoved
3436 * some records into the new tree block), so use the regular key
3437 * update mechanism.
3438 */
3439 if (bp && xfs_buf_daddr(bp) != old_bn) {
3440 xfs_btree_get_keys(cur, block, lkey);
3441 } else if (xfs_btree_needs_key_update(cur, optr)) {
3442 error = xfs_btree_update_keys(cur, level);
3443 if (error)
3444 goto error0;
3445 }
3446
3447 /*
3448 * If we are tracking the last record in the tree and
3449 * we are at the far right edge of the tree, update it.
3450 */
3451 if (xfs_btree_is_lastrec(cur, block, level)) {
3452 cur->bc_ops->update_lastrec(cur, block, rec,
3453 ptr, LASTREC_INSREC);
3454 }
3455
3456 /*
3457 * Return the new block number, if any.
3458 * If there is one, give back a record value and a cursor too.
3459 */
3460 *ptrp = nptr;
3461 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3462 xfs_btree_copy_keys(cur, key, lkey, 1);
3463 *curp = ncur;
3464 }
3465
3466 *stat = 1;
3467 return 0;
3468
3469 error0:
3470 if (ncur)
3471 xfs_btree_del_cursor(ncur, error);
3472 return error;
3473 }
3474
3475 /*
3476 * Insert the record at the point referenced by cur.
3477 *
3478 * A multi-level split of the tree on insert will invalidate the original
3479 * cursor. All callers of this function should assume that the cursor is
3480 * no longer valid and revalidate it.
3481 */
3482 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3483 xfs_btree_insert(
3484 struct xfs_btree_cur *cur,
3485 int *stat)
3486 {
3487 int error; /* error return value */
3488 int i; /* result value, 0 for failure */
3489 int level; /* current level number in btree */
3490 union xfs_btree_ptr nptr; /* new block number (split result) */
3491 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3492 struct xfs_btree_cur *pcur; /* previous level's cursor */
3493 union xfs_btree_key bkey; /* key of block to insert */
3494 union xfs_btree_key *key;
3495 union xfs_btree_rec rec; /* record to insert */
3496
3497 level = 0;
3498 ncur = NULL;
3499 pcur = cur;
3500 key = &bkey;
3501
3502 xfs_btree_set_ptr_null(cur, &nptr);
3503
3504 /* Make a key out of the record data to be inserted, and save it. */
3505 cur->bc_ops->init_rec_from_cur(cur, &rec);
3506 cur->bc_ops->init_key_from_rec(key, &rec);
3507
3508 /*
3509 * Loop going up the tree, starting at the leaf level.
3510 * Stop when we don't get a split block, that must mean that
3511 * the insert is finished with this level.
3512 */
3513 do {
3514 /*
3515 * Insert nrec/nptr into this level of the tree.
3516 * Note if we fail, nptr will be null.
3517 */
3518 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3519 &ncur, &i);
3520 if (error) {
3521 if (pcur != cur)
3522 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3523 goto error0;
3524 }
3525
3526 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3527 error = -EFSCORRUPTED;
3528 goto error0;
3529 }
3530 level++;
3531
3532 /*
3533 * See if the cursor we just used is trash.
3534 * Can't trash the caller's cursor, but otherwise we should
3535 * if ncur is a new cursor or we're about to be done.
3536 */
3537 if (pcur != cur &&
3538 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3539 /* Save the state from the cursor before we trash it */
3540 if (cur->bc_ops->update_cursor)
3541 cur->bc_ops->update_cursor(pcur, cur);
3542 cur->bc_nlevels = pcur->bc_nlevels;
3543 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3544 }
3545 /* If we got a new cursor, switch to it. */
3546 if (ncur) {
3547 pcur = ncur;
3548 ncur = NULL;
3549 }
3550 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3551
3552 *stat = i;
3553 return 0;
3554 error0:
3555 return error;
3556 }
3557
3558 /*
3559 * Try to merge a non-leaf block back into the inode root.
3560 *
3561 * Note: the killroot names comes from the fact that we're effectively
3562 * killing the old root block. But because we can't just delete the
3563 * inode we have to copy the single block it was pointing to into the
3564 * inode.
3565 */
3566 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3567 xfs_btree_kill_iroot(
3568 struct xfs_btree_cur *cur)
3569 {
3570 int whichfork = cur->bc_ino.whichfork;
3571 struct xfs_inode *ip = cur->bc_ino.ip;
3572 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3573 struct xfs_btree_block *block;
3574 struct xfs_btree_block *cblock;
3575 union xfs_btree_key *kp;
3576 union xfs_btree_key *ckp;
3577 union xfs_btree_ptr *pp;
3578 union xfs_btree_ptr *cpp;
3579 struct xfs_buf *cbp;
3580 int level;
3581 int index;
3582 int numrecs;
3583 int error;
3584 #ifdef DEBUG
3585 union xfs_btree_ptr ptr;
3586 #endif
3587 int i;
3588
3589 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3590 ASSERT(cur->bc_nlevels > 1);
3591
3592 /*
3593 * Don't deal with the root block needs to be a leaf case.
3594 * We're just going to turn the thing back into extents anyway.
3595 */
3596 level = cur->bc_nlevels - 1;
3597 if (level == 1)
3598 goto out0;
3599
3600 /*
3601 * Give up if the root has multiple children.
3602 */
3603 block = xfs_btree_get_iroot(cur);
3604 if (xfs_btree_get_numrecs(block) != 1)
3605 goto out0;
3606
3607 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3608 numrecs = xfs_btree_get_numrecs(cblock);
3609
3610 /*
3611 * Only do this if the next level will fit.
3612 * Then the data must be copied up to the inode,
3613 * instead of freeing the root you free the next level.
3614 */
3615 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3616 goto out0;
3617
3618 XFS_BTREE_STATS_INC(cur, killroot);
3619
3620 #ifdef DEBUG
3621 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3622 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3623 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3624 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3625 #endif
3626
3627 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3628 if (index) {
3629 xfs_iroot_realloc(cur->bc_ino.ip, index,
3630 cur->bc_ino.whichfork);
3631 block = ifp->if_broot;
3632 }
3633
3634 be16_add_cpu(&block->bb_numrecs, index);
3635 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3636
3637 kp = xfs_btree_key_addr(cur, 1, block);
3638 ckp = xfs_btree_key_addr(cur, 1, cblock);
3639 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3640
3641 pp = xfs_btree_ptr_addr(cur, 1, block);
3642 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3643
3644 for (i = 0; i < numrecs; i++) {
3645 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3646 if (error)
3647 return error;
3648 }
3649
3650 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3651
3652 error = xfs_btree_free_block(cur, cbp);
3653 if (error)
3654 return error;
3655
3656 cur->bc_levels[level - 1].bp = NULL;
3657 be16_add_cpu(&block->bb_level, -1);
3658 xfs_trans_log_inode(cur->bc_tp, ip,
3659 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3660 cur->bc_nlevels--;
3661 out0:
3662 return 0;
3663 }
3664
3665 /*
3666 * Kill the current root node, and replace it with it's only child node.
3667 */
3668 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3669 xfs_btree_kill_root(
3670 struct xfs_btree_cur *cur,
3671 struct xfs_buf *bp,
3672 int level,
3673 union xfs_btree_ptr *newroot)
3674 {
3675 int error;
3676
3677 XFS_BTREE_STATS_INC(cur, killroot);
3678
3679 /*
3680 * Update the root pointer, decreasing the level by 1 and then
3681 * free the old root.
3682 */
3683 cur->bc_ops->set_root(cur, newroot, -1);
3684
3685 error = xfs_btree_free_block(cur, bp);
3686 if (error)
3687 return error;
3688
3689 cur->bc_levels[level].bp = NULL;
3690 cur->bc_levels[level].ra = 0;
3691 cur->bc_nlevels--;
3692
3693 return 0;
3694 }
3695
3696 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3697 xfs_btree_dec_cursor(
3698 struct xfs_btree_cur *cur,
3699 int level,
3700 int *stat)
3701 {
3702 int error;
3703 int i;
3704
3705 if (level > 0) {
3706 error = xfs_btree_decrement(cur, level, &i);
3707 if (error)
3708 return error;
3709 }
3710
3711 *stat = 1;
3712 return 0;
3713 }
3714
3715 /*
3716 * Single level of the btree record deletion routine.
3717 * Delete record pointed to by cur/level.
3718 * Remove the record from its block then rebalance the tree.
3719 * Return 0 for error, 1 for done, 2 to go on to the next level.
3720 */
3721 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3722 xfs_btree_delrec(
3723 struct xfs_btree_cur *cur, /* btree cursor */
3724 int level, /* level removing record from */
3725 int *stat) /* fail/done/go-on */
3726 {
3727 struct xfs_btree_block *block; /* btree block */
3728 union xfs_btree_ptr cptr; /* current block ptr */
3729 struct xfs_buf *bp; /* buffer for block */
3730 int error; /* error return value */
3731 int i; /* loop counter */
3732 union xfs_btree_ptr lptr; /* left sibling block ptr */
3733 struct xfs_buf *lbp; /* left buffer pointer */
3734 struct xfs_btree_block *left; /* left btree block */
3735 int lrecs = 0; /* left record count */
3736 int ptr; /* key/record index */
3737 union xfs_btree_ptr rptr; /* right sibling block ptr */
3738 struct xfs_buf *rbp; /* right buffer pointer */
3739 struct xfs_btree_block *right; /* right btree block */
3740 struct xfs_btree_block *rrblock; /* right-right btree block */
3741 struct xfs_buf *rrbp; /* right-right buffer pointer */
3742 int rrecs = 0; /* right record count */
3743 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3744 int numrecs; /* temporary numrec count */
3745
3746 tcur = NULL;
3747
3748 /* Get the index of the entry being deleted, check for nothing there. */
3749 ptr = cur->bc_levels[level].ptr;
3750 if (ptr == 0) {
3751 *stat = 0;
3752 return 0;
3753 }
3754
3755 /* Get the buffer & block containing the record or key/ptr. */
3756 block = xfs_btree_get_block(cur, level, &bp);
3757 numrecs = xfs_btree_get_numrecs(block);
3758
3759 #ifdef DEBUG
3760 error = xfs_btree_check_block(cur, block, level, bp);
3761 if (error)
3762 goto error0;
3763 #endif
3764
3765 /* Fail if we're off the end of the block. */
3766 if (ptr > numrecs) {
3767 *stat = 0;
3768 return 0;
3769 }
3770
3771 XFS_BTREE_STATS_INC(cur, delrec);
3772 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3773
3774 /* Excise the entries being deleted. */
3775 if (level > 0) {
3776 /* It's a nonleaf. operate on keys and ptrs */
3777 union xfs_btree_key *lkp;
3778 union xfs_btree_ptr *lpp;
3779
3780 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3781 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3782
3783 for (i = 0; i < numrecs - ptr; i++) {
3784 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3785 if (error)
3786 goto error0;
3787 }
3788
3789 if (ptr < numrecs) {
3790 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3791 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3792 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3793 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3794 }
3795 } else {
3796 /* It's a leaf. operate on records */
3797 if (ptr < numrecs) {
3798 xfs_btree_shift_recs(cur,
3799 xfs_btree_rec_addr(cur, ptr + 1, block),
3800 -1, numrecs - ptr);
3801 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3802 }
3803 }
3804
3805 /*
3806 * Decrement and log the number of entries in the block.
3807 */
3808 xfs_btree_set_numrecs(block, --numrecs);
3809 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3810
3811 /*
3812 * If we are tracking the last record in the tree and
3813 * we are at the far right edge of the tree, update it.
3814 */
3815 if (xfs_btree_is_lastrec(cur, block, level)) {
3816 cur->bc_ops->update_lastrec(cur, block, NULL,
3817 ptr, LASTREC_DELREC);
3818 }
3819
3820 /*
3821 * We're at the root level. First, shrink the root block in-memory.
3822 * Try to get rid of the next level down. If we can't then there's
3823 * nothing left to do.
3824 */
3825 if (level == cur->bc_nlevels - 1) {
3826 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3828 cur->bc_ino.whichfork);
3829
3830 error = xfs_btree_kill_iroot(cur);
3831 if (error)
3832 goto error0;
3833
3834 error = xfs_btree_dec_cursor(cur, level, stat);
3835 if (error)
3836 goto error0;
3837 *stat = 1;
3838 return 0;
3839 }
3840
3841 /*
3842 * If this is the root level, and there's only one entry left,
3843 * and it's NOT the leaf level, then we can get rid of this
3844 * level.
3845 */
3846 if (numrecs == 1 && level > 0) {
3847 union xfs_btree_ptr *pp;
3848 /*
3849 * pp is still set to the first pointer in the block.
3850 * Make it the new root of the btree.
3851 */
3852 pp = xfs_btree_ptr_addr(cur, 1, block);
3853 error = xfs_btree_kill_root(cur, bp, level, pp);
3854 if (error)
3855 goto error0;
3856 } else if (level > 0) {
3857 error = xfs_btree_dec_cursor(cur, level, stat);
3858 if (error)
3859 goto error0;
3860 }
3861 *stat = 1;
3862 return 0;
3863 }
3864
3865 /*
3866 * If we deleted the leftmost entry in the block, update the
3867 * key values above us in the tree.
3868 */
3869 if (xfs_btree_needs_key_update(cur, ptr)) {
3870 error = xfs_btree_update_keys(cur, level);
3871 if (error)
3872 goto error0;
3873 }
3874
3875 /*
3876 * If the number of records remaining in the block is at least
3877 * the minimum, we're done.
3878 */
3879 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3880 error = xfs_btree_dec_cursor(cur, level, stat);
3881 if (error)
3882 goto error0;
3883 return 0;
3884 }
3885
3886 /*
3887 * Otherwise, we have to move some records around to keep the
3888 * tree balanced. Look at the left and right sibling blocks to
3889 * see if we can re-balance by moving only one record.
3890 */
3891 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3892 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3893
3894 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3895 /*
3896 * One child of root, need to get a chance to copy its contents
3897 * into the root and delete it. Can't go up to next level,
3898 * there's nothing to delete there.
3899 */
3900 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3901 xfs_btree_ptr_is_null(cur, &lptr) &&
3902 level == cur->bc_nlevels - 2) {
3903 error = xfs_btree_kill_iroot(cur);
3904 if (!error)
3905 error = xfs_btree_dec_cursor(cur, level, stat);
3906 if (error)
3907 goto error0;
3908 return 0;
3909 }
3910 }
3911
3912 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3913 !xfs_btree_ptr_is_null(cur, &lptr));
3914
3915 /*
3916 * Duplicate the cursor so our btree manipulations here won't
3917 * disrupt the next level up.
3918 */
3919 error = xfs_btree_dup_cursor(cur, &tcur);
3920 if (error)
3921 goto error0;
3922
3923 /*
3924 * If there's a right sibling, see if it's ok to shift an entry
3925 * out of it.
3926 */
3927 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3928 /*
3929 * Move the temp cursor to the last entry in the next block.
3930 * Actually any entry but the first would suffice.
3931 */
3932 i = xfs_btree_lastrec(tcur, level);
3933 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3934 error = -EFSCORRUPTED;
3935 goto error0;
3936 }
3937
3938 error = xfs_btree_increment(tcur, level, &i);
3939 if (error)
3940 goto error0;
3941 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3942 error = -EFSCORRUPTED;
3943 goto error0;
3944 }
3945
3946 i = xfs_btree_lastrec(tcur, level);
3947 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3948 error = -EFSCORRUPTED;
3949 goto error0;
3950 }
3951
3952 /* Grab a pointer to the block. */
3953 right = xfs_btree_get_block(tcur, level, &rbp);
3954 #ifdef DEBUG
3955 error = xfs_btree_check_block(tcur, right, level, rbp);
3956 if (error)
3957 goto error0;
3958 #endif
3959 /* Grab the current block number, for future use. */
3960 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3961
3962 /*
3963 * If right block is full enough so that removing one entry
3964 * won't make it too empty, and left-shifting an entry out
3965 * of right to us works, we're done.
3966 */
3967 if (xfs_btree_get_numrecs(right) - 1 >=
3968 cur->bc_ops->get_minrecs(tcur, level)) {
3969 error = xfs_btree_lshift(tcur, level, &i);
3970 if (error)
3971 goto error0;
3972 if (i) {
3973 ASSERT(xfs_btree_get_numrecs(block) >=
3974 cur->bc_ops->get_minrecs(tcur, level));
3975
3976 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3977 tcur = NULL;
3978
3979 error = xfs_btree_dec_cursor(cur, level, stat);
3980 if (error)
3981 goto error0;
3982 return 0;
3983 }
3984 }
3985
3986 /*
3987 * Otherwise, grab the number of records in right for
3988 * future reference, and fix up the temp cursor to point
3989 * to our block again (last record).
3990 */
3991 rrecs = xfs_btree_get_numrecs(right);
3992 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3993 i = xfs_btree_firstrec(tcur, level);
3994 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3995 error = -EFSCORRUPTED;
3996 goto error0;
3997 }
3998
3999 error = xfs_btree_decrement(tcur, level, &i);
4000 if (error)
4001 goto error0;
4002 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4003 error = -EFSCORRUPTED;
4004 goto error0;
4005 }
4006 }
4007 }
4008
4009 /*
4010 * If there's a left sibling, see if it's ok to shift an entry
4011 * out of it.
4012 */
4013 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4014 /*
4015 * Move the temp cursor to the first entry in the
4016 * previous block.
4017 */
4018 i = xfs_btree_firstrec(tcur, level);
4019 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4020 error = -EFSCORRUPTED;
4021 goto error0;
4022 }
4023
4024 error = xfs_btree_decrement(tcur, level, &i);
4025 if (error)
4026 goto error0;
4027 i = xfs_btree_firstrec(tcur, level);
4028 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4029 error = -EFSCORRUPTED;
4030 goto error0;
4031 }
4032
4033 /* Grab a pointer to the block. */
4034 left = xfs_btree_get_block(tcur, level, &lbp);
4035 #ifdef DEBUG
4036 error = xfs_btree_check_block(cur, left, level, lbp);
4037 if (error)
4038 goto error0;
4039 #endif
4040 /* Grab the current block number, for future use. */
4041 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4042
4043 /*
4044 * If left block is full enough so that removing one entry
4045 * won't make it too empty, and right-shifting an entry out
4046 * of left to us works, we're done.
4047 */
4048 if (xfs_btree_get_numrecs(left) - 1 >=
4049 cur->bc_ops->get_minrecs(tcur, level)) {
4050 error = xfs_btree_rshift(tcur, level, &i);
4051 if (error)
4052 goto error0;
4053 if (i) {
4054 ASSERT(xfs_btree_get_numrecs(block) >=
4055 cur->bc_ops->get_minrecs(tcur, level));
4056 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4057 tcur = NULL;
4058 if (level == 0)
4059 cur->bc_levels[0].ptr++;
4060
4061 *stat = 1;
4062 return 0;
4063 }
4064 }
4065
4066 /*
4067 * Otherwise, grab the number of records in right for
4068 * future reference.
4069 */
4070 lrecs = xfs_btree_get_numrecs(left);
4071 }
4072
4073 /* Delete the temp cursor, we're done with it. */
4074 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4075 tcur = NULL;
4076
4077 /* If here, we need to do a join to keep the tree balanced. */
4078 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4079
4080 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4081 lrecs + xfs_btree_get_numrecs(block) <=
4082 cur->bc_ops->get_maxrecs(cur, level)) {
4083 /*
4084 * Set "right" to be the starting block,
4085 * "left" to be the left neighbor.
4086 */
4087 rptr = cptr;
4088 right = block;
4089 rbp = bp;
4090 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4091 if (error)
4092 goto error0;
4093
4094 /*
4095 * If that won't work, see if we can join with the right neighbor block.
4096 */
4097 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4098 rrecs + xfs_btree_get_numrecs(block) <=
4099 cur->bc_ops->get_maxrecs(cur, level)) {
4100 /*
4101 * Set "left" to be the starting block,
4102 * "right" to be the right neighbor.
4103 */
4104 lptr = cptr;
4105 left = block;
4106 lbp = bp;
4107 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4108 if (error)
4109 goto error0;
4110
4111 /*
4112 * Otherwise, we can't fix the imbalance.
4113 * Just return. This is probably a logic error, but it's not fatal.
4114 */
4115 } else {
4116 error = xfs_btree_dec_cursor(cur, level, stat);
4117 if (error)
4118 goto error0;
4119 return 0;
4120 }
4121
4122 rrecs = xfs_btree_get_numrecs(right);
4123 lrecs = xfs_btree_get_numrecs(left);
4124
4125 /*
4126 * We're now going to join "left" and "right" by moving all the stuff
4127 * in "right" to "left" and deleting "right".
4128 */
4129 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4130 if (level > 0) {
4131 /* It's a non-leaf. Move keys and pointers. */
4132 union xfs_btree_key *lkp; /* left btree key */
4133 union xfs_btree_ptr *lpp; /* left address pointer */
4134 union xfs_btree_key *rkp; /* right btree key */
4135 union xfs_btree_ptr *rpp; /* right address pointer */
4136
4137 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4138 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4139 rkp = xfs_btree_key_addr(cur, 1, right);
4140 rpp = xfs_btree_ptr_addr(cur, 1, right);
4141
4142 for (i = 1; i < rrecs; i++) {
4143 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4144 if (error)
4145 goto error0;
4146 }
4147
4148 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4149 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4150
4151 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4152 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153 } else {
4154 /* It's a leaf. Move records. */
4155 union xfs_btree_rec *lrp; /* left record pointer */
4156 union xfs_btree_rec *rrp; /* right record pointer */
4157
4158 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4159 rrp = xfs_btree_rec_addr(cur, 1, right);
4160
4161 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4162 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4163 }
4164
4165 XFS_BTREE_STATS_INC(cur, join);
4166
4167 /*
4168 * Fix up the number of records and right block pointer in the
4169 * surviving block, and log it.
4170 */
4171 xfs_btree_set_numrecs(left, lrecs + rrecs);
4172 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4173 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4174 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4175
4176 /* If there is a right sibling, point it to the remaining block. */
4177 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4178 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4179 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4180 if (error)
4181 goto error0;
4182 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4183 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4184 }
4185
4186 /* Free the deleted block. */
4187 error = xfs_btree_free_block(cur, rbp);
4188 if (error)
4189 goto error0;
4190
4191 /*
4192 * If we joined with the left neighbor, set the buffer in the
4193 * cursor to the left block, and fix up the index.
4194 */
4195 if (bp != lbp) {
4196 cur->bc_levels[level].bp = lbp;
4197 cur->bc_levels[level].ptr += lrecs;
4198 cur->bc_levels[level].ra = 0;
4199 }
4200 /*
4201 * If we joined with the right neighbor and there's a level above
4202 * us, increment the cursor at that level.
4203 */
4204 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4205 (level + 1 < cur->bc_nlevels)) {
4206 error = xfs_btree_increment(cur, level + 1, &i);
4207 if (error)
4208 goto error0;
4209 }
4210
4211 /*
4212 * Readjust the ptr at this level if it's not a leaf, since it's
4213 * still pointing at the deletion point, which makes the cursor
4214 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4215 * We can't use decrement because it would change the next level up.
4216 */
4217 if (level > 0)
4218 cur->bc_levels[level].ptr--;
4219
4220 /*
4221 * We combined blocks, so we have to update the parent keys if the
4222 * btree supports overlapped intervals. However,
4223 * bc_levels[level + 1].ptr points to the old block so that the caller
4224 * knows which record to delete. Therefore, the caller must be savvy
4225 * enough to call updkeys for us if we return stat == 2. The other
4226 * exit points from this function don't require deletions further up
4227 * the tree, so they can call updkeys directly.
4228 */
4229
4230 /* Return value means the next level up has something to do. */
4231 *stat = 2;
4232 return 0;
4233
4234 error0:
4235 if (tcur)
4236 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4237 return error;
4238 }
4239
4240 /*
4241 * Delete the record pointed to by cur.
4242 * The cursor refers to the place where the record was (could be inserted)
4243 * when the operation returns.
4244 */
4245 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4246 xfs_btree_delete(
4247 struct xfs_btree_cur *cur,
4248 int *stat) /* success/failure */
4249 {
4250 int error; /* error return value */
4251 int level;
4252 int i;
4253 bool joined = false;
4254
4255 /*
4256 * Go up the tree, starting at leaf level.
4257 *
4258 * If 2 is returned then a join was done; go to the next level.
4259 * Otherwise we are done.
4260 */
4261 for (level = 0, i = 2; i == 2; level++) {
4262 error = xfs_btree_delrec(cur, level, &i);
4263 if (error)
4264 goto error0;
4265 if (i == 2)
4266 joined = true;
4267 }
4268
4269 /*
4270 * If we combined blocks as part of deleting the record, delrec won't
4271 * have updated the parent high keys so we have to do that here.
4272 */
4273 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4274 error = xfs_btree_updkeys_force(cur, 0);
4275 if (error)
4276 goto error0;
4277 }
4278
4279 if (i == 0) {
4280 for (level = 1; level < cur->bc_nlevels; level++) {
4281 if (cur->bc_levels[level].ptr == 0) {
4282 error = xfs_btree_decrement(cur, level, &i);
4283 if (error)
4284 goto error0;
4285 break;
4286 }
4287 }
4288 }
4289
4290 *stat = i;
4291 return 0;
4292 error0:
4293 return error;
4294 }
4295
4296 /*
4297 * Get the data from the pointed-to record.
4298 */
4299 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4300 xfs_btree_get_rec(
4301 struct xfs_btree_cur *cur, /* btree cursor */
4302 union xfs_btree_rec **recp, /* output: btree record */
4303 int *stat) /* output: success/failure */
4304 {
4305 struct xfs_btree_block *block; /* btree block */
4306 struct xfs_buf *bp; /* buffer pointer */
4307 int ptr; /* record number */
4308 #ifdef DEBUG
4309 int error; /* error return value */
4310 #endif
4311
4312 ptr = cur->bc_levels[0].ptr;
4313 block = xfs_btree_get_block(cur, 0, &bp);
4314
4315 #ifdef DEBUG
4316 error = xfs_btree_check_block(cur, block, 0, bp);
4317 if (error)
4318 return error;
4319 #endif
4320
4321 /*
4322 * Off the right end or left end, return failure.
4323 */
4324 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4325 *stat = 0;
4326 return 0;
4327 }
4328
4329 /*
4330 * Point to the record and extract its data.
4331 */
4332 *recp = xfs_btree_rec_addr(cur, ptr, block);
4333 *stat = 1;
4334 return 0;
4335 }
4336
4337 /* Visit a block in a btree. */
4338 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4339 xfs_btree_visit_block(
4340 struct xfs_btree_cur *cur,
4341 int level,
4342 xfs_btree_visit_blocks_fn fn,
4343 void *data)
4344 {
4345 struct xfs_btree_block *block;
4346 struct xfs_buf *bp;
4347 union xfs_btree_ptr rptr;
4348 int error;
4349
4350 /* do right sibling readahead */
4351 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4352 block = xfs_btree_get_block(cur, level, &bp);
4353
4354 /* process the block */
4355 error = fn(cur, level, data);
4356 if (error)
4357 return error;
4358
4359 /* now read rh sibling block for next iteration */
4360 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4361 if (xfs_btree_ptr_is_null(cur, &rptr))
4362 return -ENOENT;
4363
4364 /*
4365 * We only visit blocks once in this walk, so we have to avoid the
4366 * internal xfs_btree_lookup_get_block() optimisation where it will
4367 * return the same block without checking if the right sibling points
4368 * back to us and creates a cyclic reference in the btree.
4369 */
4370 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4371 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4372 xfs_buf_daddr(bp)))
4373 return -EFSCORRUPTED;
4374 } else {
4375 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4376 xfs_buf_daddr(bp)))
4377 return -EFSCORRUPTED;
4378 }
4379 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4380 }
4381
4382
4383 /* Visit every block in a btree. */
4384 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4385 xfs_btree_visit_blocks(
4386 struct xfs_btree_cur *cur,
4387 xfs_btree_visit_blocks_fn fn,
4388 unsigned int flags,
4389 void *data)
4390 {
4391 union xfs_btree_ptr lptr;
4392 int level;
4393 struct xfs_btree_block *block = NULL;
4394 int error = 0;
4395
4396 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4397
4398 /* for each level */
4399 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4400 /* grab the left hand block */
4401 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4402 if (error)
4403 return error;
4404
4405 /* readahead the left most block for the next level down */
4406 if (level > 0) {
4407 union xfs_btree_ptr *ptr;
4408
4409 ptr = xfs_btree_ptr_addr(cur, 1, block);
4410 xfs_btree_readahead_ptr(cur, ptr, 1);
4411
4412 /* save for the next iteration of the loop */
4413 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4414
4415 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4416 continue;
4417 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4418 continue;
4419 }
4420
4421 /* for each buffer in the level */
4422 do {
4423 error = xfs_btree_visit_block(cur, level, fn, data);
4424 } while (!error);
4425
4426 if (error != -ENOENT)
4427 return error;
4428 }
4429
4430 return 0;
4431 }
4432
4433 /*
4434 * Change the owner of a btree.
4435 *
4436 * The mechanism we use here is ordered buffer logging. Because we don't know
4437 * how many buffers were are going to need to modify, we don't really want to
4438 * have to make transaction reservations for the worst case of every buffer in a
4439 * full size btree as that may be more space that we can fit in the log....
4440 *
4441 * We do the btree walk in the most optimal manner possible - we have sibling
4442 * pointers so we can just walk all the blocks on each level from left to right
4443 * in a single pass, and then move to the next level and do the same. We can
4444 * also do readahead on the sibling pointers to get IO moving more quickly,
4445 * though for slow disks this is unlikely to make much difference to performance
4446 * as the amount of CPU work we have to do before moving to the next block is
4447 * relatively small.
4448 *
4449 * For each btree block that we load, modify the owner appropriately, set the
4450 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4451 * we mark the region we change dirty so that if the buffer is relogged in
4452 * a subsequent transaction the changes we make here as an ordered buffer are
4453 * correctly relogged in that transaction. If we are in recovery context, then
4454 * just queue the modified buffer as delayed write buffer so the transaction
4455 * recovery completion writes the changes to disk.
4456 */
4457 struct xfs_btree_block_change_owner_info {
4458 uint64_t new_owner;
4459 struct list_head *buffer_list;
4460 };
4461
4462 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4463 xfs_btree_block_change_owner(
4464 struct xfs_btree_cur *cur,
4465 int level,
4466 void *data)
4467 {
4468 struct xfs_btree_block_change_owner_info *bbcoi = data;
4469 struct xfs_btree_block *block;
4470 struct xfs_buf *bp;
4471
4472 /* modify the owner */
4473 block = xfs_btree_get_block(cur, level, &bp);
4474 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4475 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4476 return 0;
4477 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4478 } else {
4479 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4480 return 0;
4481 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4482 }
4483
4484 /*
4485 * If the block is a root block hosted in an inode, we might not have a
4486 * buffer pointer here and we shouldn't attempt to log the change as the
4487 * information is already held in the inode and discarded when the root
4488 * block is formatted into the on-disk inode fork. We still change it,
4489 * though, so everything is consistent in memory.
4490 */
4491 if (!bp) {
4492 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4493 ASSERT(level == cur->bc_nlevels - 1);
4494 return 0;
4495 }
4496
4497 if (cur->bc_tp) {
4498 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4499 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4500 return -EAGAIN;
4501 }
4502 } else {
4503 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4504 }
4505
4506 return 0;
4507 }
4508
4509 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4510 xfs_btree_change_owner(
4511 struct xfs_btree_cur *cur,
4512 uint64_t new_owner,
4513 struct list_head *buffer_list)
4514 {
4515 struct xfs_btree_block_change_owner_info bbcoi;
4516
4517 bbcoi.new_owner = new_owner;
4518 bbcoi.buffer_list = buffer_list;
4519
4520 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4521 XFS_BTREE_VISIT_ALL, &bbcoi);
4522 }
4523
4524 /* Verify the v5 fields of a long-format btree block. */
4525 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4526 xfs_btree_lblock_v5hdr_verify(
4527 struct xfs_buf *bp,
4528 uint64_t owner)
4529 {
4530 struct xfs_mount *mp = bp->b_mount;
4531 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4532
4533 if (!xfs_has_crc(mp))
4534 return __this_address;
4535 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4536 return __this_address;
4537 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4538 return __this_address;
4539 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4540 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4541 return __this_address;
4542 return NULL;
4543 }
4544
4545 /* Verify a long-format btree block. */
4546 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4547 xfs_btree_lblock_verify(
4548 struct xfs_buf *bp,
4549 unsigned int max_recs)
4550 {
4551 struct xfs_mount *mp = bp->b_mount;
4552 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4553 xfs_fsblock_t fsb;
4554 xfs_failaddr_t fa;
4555
4556 /* numrecs verification */
4557 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4558 return __this_address;
4559
4560 /* sibling pointer verification */
4561 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4562 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4563 block->bb_u.l.bb_leftsib);
4564 if (!fa)
4565 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4566 block->bb_u.l.bb_rightsib);
4567 return fa;
4568 }
4569
4570 /**
4571 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4572 * btree block
4573 *
4574 * @bp: buffer containing the btree block
4575 */
4576 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4577 xfs_btree_sblock_v5hdr_verify(
4578 struct xfs_buf *bp)
4579 {
4580 struct xfs_mount *mp = bp->b_mount;
4581 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4582 struct xfs_perag *pag = bp->b_pag;
4583
4584 if (!xfs_has_crc(mp))
4585 return __this_address;
4586 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4587 return __this_address;
4588 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4589 return __this_address;
4590 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4591 return __this_address;
4592 return NULL;
4593 }
4594
4595 /**
4596 * xfs_btree_sblock_verify() -- verify a short-format btree block
4597 *
4598 * @bp: buffer containing the btree block
4599 * @max_recs: maximum records allowed in this btree node
4600 */
4601 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4602 xfs_btree_sblock_verify(
4603 struct xfs_buf *bp,
4604 unsigned int max_recs)
4605 {
4606 struct xfs_mount *mp = bp->b_mount;
4607 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4608 xfs_agblock_t agbno;
4609 xfs_failaddr_t fa;
4610
4611 /* numrecs verification */
4612 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4613 return __this_address;
4614
4615 /* sibling pointer verification */
4616 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4617 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4618 block->bb_u.s.bb_leftsib);
4619 if (!fa)
4620 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4621 block->bb_u.s.bb_rightsib);
4622 return fa;
4623 }
4624
4625 /*
4626 * For the given limits on leaf and keyptr records per block, calculate the
4627 * height of the tree needed to index the number of leaf records.
4628 */
4629 unsigned int
xfs_btree_compute_maxlevels(const unsigned int * limits,unsigned long long records)4630 xfs_btree_compute_maxlevels(
4631 const unsigned int *limits,
4632 unsigned long long records)
4633 {
4634 unsigned long long level_blocks = howmany_64(records, limits[0]);
4635 unsigned int height = 1;
4636
4637 while (level_blocks > 1) {
4638 level_blocks = howmany_64(level_blocks, limits[1]);
4639 height++;
4640 }
4641
4642 return height;
4643 }
4644
4645 /*
4646 * For the given limits on leaf and keyptr records per block, calculate the
4647 * number of blocks needed to index the given number of leaf records.
4648 */
4649 unsigned long long
xfs_btree_calc_size(const unsigned int * limits,unsigned long long records)4650 xfs_btree_calc_size(
4651 const unsigned int *limits,
4652 unsigned long long records)
4653 {
4654 unsigned long long level_blocks = howmany_64(records, limits[0]);
4655 unsigned long long blocks = level_blocks;
4656
4657 while (level_blocks > 1) {
4658 level_blocks = howmany_64(level_blocks, limits[1]);
4659 blocks += level_blocks;
4660 }
4661
4662 return blocks;
4663 }
4664
4665 /*
4666 * Given a number of available blocks for the btree to consume with records and
4667 * pointers, calculate the height of the tree needed to index all the records
4668 * that space can hold based on the number of pointers each interior node
4669 * holds.
4670 *
4671 * We start by assuming a single level tree consumes a single block, then track
4672 * the number of blocks each node level consumes until we no longer have space
4673 * to store the next node level. At this point, we are indexing all the leaf
4674 * blocks in the space, and there's no more free space to split the tree any
4675 * further. That's our maximum btree height.
4676 */
4677 unsigned int
xfs_btree_space_to_height(const unsigned int * limits,unsigned long long leaf_blocks)4678 xfs_btree_space_to_height(
4679 const unsigned int *limits,
4680 unsigned long long leaf_blocks)
4681 {
4682 /*
4683 * The root btree block can have fewer than minrecs pointers in it
4684 * because the tree might not be big enough to require that amount of
4685 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4686 */
4687 unsigned long long node_blocks = 2;
4688 unsigned long long blocks_left = leaf_blocks - 1;
4689 unsigned int height = 1;
4690
4691 if (leaf_blocks < 1)
4692 return 0;
4693
4694 while (node_blocks < blocks_left) {
4695 blocks_left -= node_blocks;
4696 node_blocks *= limits[1];
4697 height++;
4698 }
4699
4700 return height;
4701 }
4702
4703 /*
4704 * Query a regular btree for all records overlapping a given interval.
4705 * Start with a LE lookup of the key of low_rec and return all records
4706 * until we find a record with a key greater than the key of high_rec.
4707 */
4708 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4709 xfs_btree_simple_query_range(
4710 struct xfs_btree_cur *cur,
4711 const union xfs_btree_key *low_key,
4712 const union xfs_btree_key *high_key,
4713 xfs_btree_query_range_fn fn,
4714 void *priv)
4715 {
4716 union xfs_btree_rec *recp;
4717 union xfs_btree_key rec_key;
4718 int stat;
4719 bool firstrec = true;
4720 int error;
4721
4722 ASSERT(cur->bc_ops->init_high_key_from_rec);
4723 ASSERT(cur->bc_ops->diff_two_keys);
4724
4725 /*
4726 * Find the leftmost record. The btree cursor must be set
4727 * to the low record used to generate low_key.
4728 */
4729 stat = 0;
4730 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4731 if (error)
4732 goto out;
4733
4734 /* Nothing? See if there's anything to the right. */
4735 if (!stat) {
4736 error = xfs_btree_increment(cur, 0, &stat);
4737 if (error)
4738 goto out;
4739 }
4740
4741 while (stat) {
4742 /* Find the record. */
4743 error = xfs_btree_get_rec(cur, &recp, &stat);
4744 if (error || !stat)
4745 break;
4746
4747 /* Skip if low_key > high_key(rec). */
4748 if (firstrec) {
4749 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4750 firstrec = false;
4751 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4752 goto advloop;
4753 }
4754
4755 /* Stop if low_key(rec) > high_key. */
4756 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4757 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4758 break;
4759
4760 /* Callback */
4761 error = fn(cur, recp, priv);
4762 if (error)
4763 break;
4764
4765 advloop:
4766 /* Move on to the next record. */
4767 error = xfs_btree_increment(cur, 0, &stat);
4768 if (error)
4769 break;
4770 }
4771
4772 out:
4773 return error;
4774 }
4775
4776 /*
4777 * Query an overlapped interval btree for all records overlapping a given
4778 * interval. This function roughly follows the algorithm given in
4779 * "Interval Trees" of _Introduction to Algorithms_, which is section
4780 * 14.3 in the 2nd and 3rd editions.
4781 *
4782 * First, generate keys for the low and high records passed in.
4783 *
4784 * For any leaf node, generate the high and low keys for the record.
4785 * If the record keys overlap with the query low/high keys, pass the
4786 * record to the function iterator.
4787 *
4788 * For any internal node, compare the low and high keys of each
4789 * pointer against the query low/high keys. If there's an overlap,
4790 * follow the pointer.
4791 *
4792 * As an optimization, we stop scanning a block when we find a low key
4793 * that is greater than the query's high key.
4794 */
4795 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4796 xfs_btree_overlapped_query_range(
4797 struct xfs_btree_cur *cur,
4798 const union xfs_btree_key *low_key,
4799 const union xfs_btree_key *high_key,
4800 xfs_btree_query_range_fn fn,
4801 void *priv)
4802 {
4803 union xfs_btree_ptr ptr;
4804 union xfs_btree_ptr *pp;
4805 union xfs_btree_key rec_key;
4806 union xfs_btree_key rec_hkey;
4807 union xfs_btree_key *lkp;
4808 union xfs_btree_key *hkp;
4809 union xfs_btree_rec *recp;
4810 struct xfs_btree_block *block;
4811 int level;
4812 struct xfs_buf *bp;
4813 int i;
4814 int error;
4815
4816 /* Load the root of the btree. */
4817 level = cur->bc_nlevels - 1;
4818 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4819 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4820 if (error)
4821 return error;
4822 xfs_btree_get_block(cur, level, &bp);
4823 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4824 #ifdef DEBUG
4825 error = xfs_btree_check_block(cur, block, level, bp);
4826 if (error)
4827 goto out;
4828 #endif
4829 cur->bc_levels[level].ptr = 1;
4830
4831 while (level < cur->bc_nlevels) {
4832 block = xfs_btree_get_block(cur, level, &bp);
4833
4834 /* End of node, pop back towards the root. */
4835 if (cur->bc_levels[level].ptr >
4836 be16_to_cpu(block->bb_numrecs)) {
4837 pop_up:
4838 if (level < cur->bc_nlevels - 1)
4839 cur->bc_levels[level + 1].ptr++;
4840 level++;
4841 continue;
4842 }
4843
4844 if (level == 0) {
4845 /* Handle a leaf node. */
4846 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4847 block);
4848
4849 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4850 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4851
4852 /*
4853 * If (query's high key < record's low key), then there
4854 * are no more interesting records in this block. Pop
4855 * up to the leaf level to find more record blocks.
4856 *
4857 * If (record's high key >= query's low key) and
4858 * (query's high key >= record's low key), then
4859 * this record overlaps the query range; callback.
4860 */
4861 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
4862 goto pop_up;
4863 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
4864 error = fn(cur, recp, priv);
4865 if (error)
4866 break;
4867 }
4868 cur->bc_levels[level].ptr++;
4869 continue;
4870 }
4871
4872 /* Handle an internal node. */
4873 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4874 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4875 block);
4876 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4877
4878 /*
4879 * If (query's high key < pointer's low key), then there are no
4880 * more interesting keys in this block. Pop up one leaf level
4881 * to continue looking for records.
4882 *
4883 * If (pointer's high key >= query's low key) and
4884 * (query's high key >= pointer's low key), then
4885 * this record overlaps the query range; follow pointer.
4886 */
4887 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
4888 goto pop_up;
4889 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
4890 level--;
4891 error = xfs_btree_lookup_get_block(cur, level, pp,
4892 &block);
4893 if (error)
4894 goto out;
4895 xfs_btree_get_block(cur, level, &bp);
4896 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4897 #ifdef DEBUG
4898 error = xfs_btree_check_block(cur, block, level, bp);
4899 if (error)
4900 goto out;
4901 #endif
4902 cur->bc_levels[level].ptr = 1;
4903 continue;
4904 }
4905 cur->bc_levels[level].ptr++;
4906 }
4907
4908 out:
4909 /*
4910 * If we don't end this function with the cursor pointing at a record
4911 * block, a subsequent non-error cursor deletion will not release
4912 * node-level buffers, causing a buffer leak. This is quite possible
4913 * with a zero-results range query, so release the buffers if we
4914 * failed to return any results.
4915 */
4916 if (cur->bc_levels[0].bp == NULL) {
4917 for (i = 0; i < cur->bc_nlevels; i++) {
4918 if (cur->bc_levels[i].bp) {
4919 xfs_trans_brelse(cur->bc_tp,
4920 cur->bc_levels[i].bp);
4921 cur->bc_levels[i].bp = NULL;
4922 cur->bc_levels[i].ptr = 0;
4923 cur->bc_levels[i].ra = 0;
4924 }
4925 }
4926 }
4927
4928 return error;
4929 }
4930
4931 static inline void
xfs_btree_key_from_irec(struct xfs_btree_cur * cur,union xfs_btree_key * key,const union xfs_btree_irec * irec)4932 xfs_btree_key_from_irec(
4933 struct xfs_btree_cur *cur,
4934 union xfs_btree_key *key,
4935 const union xfs_btree_irec *irec)
4936 {
4937 union xfs_btree_rec rec;
4938
4939 cur->bc_rec = *irec;
4940 cur->bc_ops->init_rec_from_cur(cur, &rec);
4941 cur->bc_ops->init_key_from_rec(key, &rec);
4942 }
4943
4944 /*
4945 * Query a btree for all records overlapping a given interval of keys. The
4946 * supplied function will be called with each record found; return one of the
4947 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4948 * code. This function returns -ECANCELED, zero, or a negative error code.
4949 */
4950 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4951 xfs_btree_query_range(
4952 struct xfs_btree_cur *cur,
4953 const union xfs_btree_irec *low_rec,
4954 const union xfs_btree_irec *high_rec,
4955 xfs_btree_query_range_fn fn,
4956 void *priv)
4957 {
4958 union xfs_btree_key low_key;
4959 union xfs_btree_key high_key;
4960
4961 /* Find the keys of both ends of the interval. */
4962 xfs_btree_key_from_irec(cur, &high_key, high_rec);
4963 xfs_btree_key_from_irec(cur, &low_key, low_rec);
4964
4965 /* Enforce low key <= high key. */
4966 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
4967 return -EINVAL;
4968
4969 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4970 return xfs_btree_simple_query_range(cur, &low_key,
4971 &high_key, fn, priv);
4972 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4973 fn, priv);
4974 }
4975
4976 /* Query a btree for all records. */
4977 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4978 xfs_btree_query_all(
4979 struct xfs_btree_cur *cur,
4980 xfs_btree_query_range_fn fn,
4981 void *priv)
4982 {
4983 union xfs_btree_key low_key;
4984 union xfs_btree_key high_key;
4985
4986 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4987 memset(&low_key, 0, sizeof(low_key));
4988 memset(&high_key, 0xFF, sizeof(high_key));
4989
4990 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4991 }
4992
4993 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4994 xfs_btree_count_blocks_helper(
4995 struct xfs_btree_cur *cur,
4996 int level,
4997 void *data)
4998 {
4999 xfs_extlen_t *blocks = data;
5000 (*blocks)++;
5001
5002 return 0;
5003 }
5004
5005 /* Count the blocks in a btree and return the result in *blocks. */
5006 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)5007 xfs_btree_count_blocks(
5008 struct xfs_btree_cur *cur,
5009 xfs_extlen_t *blocks)
5010 {
5011 *blocks = 0;
5012 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5013 XFS_BTREE_VISIT_ALL, blocks);
5014 }
5015
5016 /* Compare two btree pointers. */
5017 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)5018 xfs_btree_diff_two_ptrs(
5019 struct xfs_btree_cur *cur,
5020 const union xfs_btree_ptr *a,
5021 const union xfs_btree_ptr *b)
5022 {
5023 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5024 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5025 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5026 }
5027
5028 struct xfs_btree_has_records {
5029 /* Keys for the start and end of the range we want to know about. */
5030 union xfs_btree_key start_key;
5031 union xfs_btree_key end_key;
5032
5033 /* Mask for key comparisons, if desired. */
5034 const union xfs_btree_key *key_mask;
5035
5036 /* Highest record key we've seen so far. */
5037 union xfs_btree_key high_key;
5038
5039 enum xbtree_recpacking outcome;
5040 };
5041
5042 STATIC int
xfs_btree_has_records_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)5043 xfs_btree_has_records_helper(
5044 struct xfs_btree_cur *cur,
5045 const union xfs_btree_rec *rec,
5046 void *priv)
5047 {
5048 union xfs_btree_key rec_key;
5049 union xfs_btree_key rec_high_key;
5050 struct xfs_btree_has_records *info = priv;
5051 enum xbtree_key_contig key_contig;
5052
5053 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5054
5055 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5056 info->outcome = XBTREE_RECPACKING_SPARSE;
5057
5058 /*
5059 * If the first record we find does not overlap the start key,
5060 * then there is a hole at the start of the search range.
5061 * Classify this as sparse and stop immediately.
5062 */
5063 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5064 info->key_mask))
5065 return -ECANCELED;
5066 } else {
5067 /*
5068 * If a subsequent record does not overlap with the any record
5069 * we've seen so far, there is a hole in the middle of the
5070 * search range. Classify this as sparse and stop.
5071 * If the keys overlap and this btree does not allow overlap,
5072 * signal corruption.
5073 */
5074 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5075 &rec_key, info->key_mask);
5076 if (key_contig == XBTREE_KEY_OVERLAP &&
5077 !(cur->bc_flags & XFS_BTREE_OVERLAPPING))
5078 return -EFSCORRUPTED;
5079 if (key_contig == XBTREE_KEY_GAP)
5080 return -ECANCELED;
5081 }
5082
5083 /*
5084 * If high_key(rec) is larger than any other high key we've seen,
5085 * remember it for later.
5086 */
5087 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5088 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5089 info->key_mask))
5090 info->high_key = rec_high_key; /* struct copy */
5091
5092 return 0;
5093 }
5094
5095 /*
5096 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5097 * map to any records; is fully mapped to records; or is partially mapped to
5098 * records. This is the btree record equivalent to determining if a file is
5099 * sparse.
5100 *
5101 * For most btree types, the record scan should use all available btree key
5102 * fields to compare the keys encountered. These callers should pass NULL for
5103 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5104 * want to ignore some part of the btree record keyspace when performing the
5105 * comparison. These callers should pass in a union xfs_btree_key object with
5106 * the fields that *should* be a part of the comparison set to any nonzero
5107 * value, and the rest zeroed.
5108 */
5109 int
xfs_btree_has_records(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,const union xfs_btree_key * mask,enum xbtree_recpacking * outcome)5110 xfs_btree_has_records(
5111 struct xfs_btree_cur *cur,
5112 const union xfs_btree_irec *low,
5113 const union xfs_btree_irec *high,
5114 const union xfs_btree_key *mask,
5115 enum xbtree_recpacking *outcome)
5116 {
5117 struct xfs_btree_has_records info = {
5118 .outcome = XBTREE_RECPACKING_EMPTY,
5119 .key_mask = mask,
5120 };
5121 int error;
5122
5123 /* Not all btrees support this operation. */
5124 if (!cur->bc_ops->keys_contiguous) {
5125 ASSERT(0);
5126 return -EOPNOTSUPP;
5127 }
5128
5129 xfs_btree_key_from_irec(cur, &info.start_key, low);
5130 xfs_btree_key_from_irec(cur, &info.end_key, high);
5131
5132 error = xfs_btree_query_range(cur, low, high,
5133 xfs_btree_has_records_helper, &info);
5134 if (error == -ECANCELED)
5135 goto out;
5136 if (error)
5137 return error;
5138
5139 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5140 goto out;
5141
5142 /*
5143 * If the largest high_key(rec) we saw during the walk is greater than
5144 * the end of the search range, classify this as full. Otherwise,
5145 * there is a hole at the end of the search range.
5146 */
5147 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5148 mask))
5149 info.outcome = XBTREE_RECPACKING_FULL;
5150
5151 out:
5152 *outcome = info.outcome;
5153 return 0;
5154 }
5155
5156 /* Are there more records in this btree? */
5157 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5158 xfs_btree_has_more_records(
5159 struct xfs_btree_cur *cur)
5160 {
5161 struct xfs_btree_block *block;
5162 struct xfs_buf *bp;
5163
5164 block = xfs_btree_get_block(cur, 0, &bp);
5165
5166 /* There are still records in this block. */
5167 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5168 return true;
5169
5170 /* There are more record blocks. */
5171 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5172 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5173 else
5174 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5175 }
5176
5177 /* Set up all the btree cursor caches. */
5178 int __init
xfs_btree_init_cur_caches(void)5179 xfs_btree_init_cur_caches(void)
5180 {
5181 int error;
5182
5183 error = xfs_allocbt_init_cur_cache();
5184 if (error)
5185 return error;
5186 error = xfs_inobt_init_cur_cache();
5187 if (error)
5188 goto err;
5189 error = xfs_bmbt_init_cur_cache();
5190 if (error)
5191 goto err;
5192 error = xfs_rmapbt_init_cur_cache();
5193 if (error)
5194 goto err;
5195 error = xfs_refcountbt_init_cur_cache();
5196 if (error)
5197 goto err;
5198
5199 return 0;
5200 err:
5201 xfs_btree_destroy_cur_caches();
5202 return error;
5203 }
5204
5205 /* Destroy all the btree cursor caches, if they've been allocated. */
5206 void
xfs_btree_destroy_cur_caches(void)5207 xfs_btree_destroy_cur_caches(void)
5208 {
5209 xfs_allocbt_destroy_cur_cache();
5210 xfs_inobt_destroy_cur_cache();
5211 xfs_bmbt_destroy_cur_cache();
5212 xfs_rmapbt_destroy_cur_cache();
5213 xfs_refcountbt_destroy_cur_cache();
5214 }
5215