1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_alloc.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_quota.h" 22 #include "xfs_trace.h" 23 #include "xfs_rmap.h" 24 #include "xfs_ag.h" 25 26 static struct kmem_cache *xfs_bmbt_cur_cache; 27 28 /* 29 * Convert on-disk form of btree root to in-memory form. 30 */ 31 void 32 xfs_bmdr_to_bmbt( 33 struct xfs_inode *ip, 34 xfs_bmdr_block_t *dblock, 35 int dblocklen, 36 struct xfs_btree_block *rblock, 37 int rblocklen) 38 { 39 struct xfs_mount *mp = ip->i_mount; 40 int dmxr; 41 xfs_bmbt_key_t *fkp; 42 __be64 *fpp; 43 xfs_bmbt_key_t *tkp; 44 __be64 *tpp; 45 46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 48 XFS_BTREE_LONG_PTRS); 49 rblock->bb_level = dblock->bb_level; 50 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 51 rblock->bb_numrecs = dblock->bb_numrecs; 52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 57 dmxr = be16_to_cpu(dblock->bb_numrecs); 58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 60 } 61 62 void 63 xfs_bmbt_disk_get_all( 64 const struct xfs_bmbt_rec *rec, 65 struct xfs_bmbt_irec *irec) 66 { 67 uint64_t l0 = get_unaligned_be64(&rec->l0); 68 uint64_t l1 = get_unaligned_be64(&rec->l1); 69 70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 72 irec->br_blockcount = l1 & xfs_mask64lo(21); 73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 74 irec->br_state = XFS_EXT_UNWRITTEN; 75 else 76 irec->br_state = XFS_EXT_NORM; 77 } 78 79 /* 80 * Extract the blockcount field from an on disk bmap extent record. 81 */ 82 xfs_filblks_t 83 xfs_bmbt_disk_get_blockcount( 84 const struct xfs_bmbt_rec *r) 85 { 86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 87 } 88 89 /* 90 * Extract the startoff field from a disk format bmap extent record. 91 */ 92 xfs_fileoff_t 93 xfs_bmbt_disk_get_startoff( 94 const struct xfs_bmbt_rec *r) 95 { 96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 98 } 99 100 /* 101 * Set all the fields in a bmap extent record from the uncompressed form. 102 */ 103 void 104 xfs_bmbt_disk_set_all( 105 struct xfs_bmbt_rec *r, 106 struct xfs_bmbt_irec *s) 107 { 108 int extent_flag = (s->br_state != XFS_EXT_NORM); 109 110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 114 115 put_unaligned_be64( 116 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 119 put_unaligned_be64( 120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 121 ((xfs_bmbt_rec_base_t)s->br_blockcount & 122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 123 } 124 125 /* 126 * Convert in-memory form of btree root to on-disk form. 127 */ 128 void 129 xfs_bmbt_to_bmdr( 130 struct xfs_mount *mp, 131 struct xfs_btree_block *rblock, 132 int rblocklen, 133 xfs_bmdr_block_t *dblock, 134 int dblocklen) 135 { 136 int dmxr; 137 xfs_bmbt_key_t *fkp; 138 __be64 *fpp; 139 xfs_bmbt_key_t *tkp; 140 __be64 *tpp; 141 142 if (xfs_has_crc(mp)) { 143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 145 &mp->m_sb.sb_meta_uuid)); 146 ASSERT(rblock->bb_u.l.bb_blkno == 147 cpu_to_be64(XFS_BUF_DADDR_NULL)); 148 } else 149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 152 ASSERT(rblock->bb_level != 0); 153 dblock->bb_level = rblock->bb_level; 154 dblock->bb_numrecs = rblock->bb_numrecs; 155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 160 dmxr = be16_to_cpu(dblock->bb_numrecs); 161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 163 } 164 165 STATIC struct xfs_btree_cur * 166 xfs_bmbt_dup_cursor( 167 struct xfs_btree_cur *cur) 168 { 169 struct xfs_btree_cur *new; 170 171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 172 cur->bc_ino.ip, cur->bc_ino.whichfork); 173 174 /* 175 * Copy the firstblock, dfops, and flags values, 176 * since init cursor doesn't get them. 177 */ 178 new->bc_ino.flags = cur->bc_ino.flags; 179 180 return new; 181 } 182 183 STATIC void 184 xfs_bmbt_update_cursor( 185 struct xfs_btree_cur *src, 186 struct xfs_btree_cur *dst) 187 { 188 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) || 189 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); 190 191 dst->bc_ino.allocated += src->bc_ino.allocated; 192 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno; 193 194 src->bc_ino.allocated = 0; 195 } 196 197 STATIC int 198 xfs_bmbt_alloc_block( 199 struct xfs_btree_cur *cur, 200 const union xfs_btree_ptr *start, 201 union xfs_btree_ptr *new, 202 int *stat) 203 { 204 struct xfs_alloc_arg args; 205 int error; 206 207 memset(&args, 0, sizeof(args)); 208 args.tp = cur->bc_tp; 209 args.mp = cur->bc_mp; 210 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, 211 cur->bc_ino.whichfork); 212 args.minlen = args.maxlen = args.prod = 1; 213 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL; 214 if (!args.wasdel && args.tp->t_blk_res == 0) 215 return -ENOSPC; 216 217 /* 218 * If we are coming here from something like unwritten extent 219 * conversion, there has been no data extent allocation already done, so 220 * we have to ensure that we attempt to locate the entire set of bmbt 221 * allocations in the same AG, as xfs_bmapi_write() would have reserved. 222 */ 223 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER) 224 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip, 225 cur->bc_ino.whichfork); 226 227 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l)); 228 if (error) 229 return error; 230 231 if (args.fsbno == NULLFSBLOCK && args.minleft) { 232 /* 233 * Could not find an AG with enough free space to satisfy 234 * a full btree split. Try again and if 235 * successful activate the lowspace algorithm. 236 */ 237 args.minleft = 0; 238 error = xfs_alloc_vextent_start_ag(&args, 0); 239 if (error) 240 return error; 241 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; 242 } 243 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 244 *stat = 0; 245 return 0; 246 } 247 248 ASSERT(args.len == 1); 249 cur->bc_ino.allocated++; 250 cur->bc_ino.ip->i_nblocks++; 251 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); 252 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, 253 XFS_TRANS_DQ_BCOUNT, 1L); 254 255 new->l = cpu_to_be64(args.fsbno); 256 257 *stat = 1; 258 return 0; 259 } 260 261 STATIC int 262 xfs_bmbt_free_block( 263 struct xfs_btree_cur *cur, 264 struct xfs_buf *bp) 265 { 266 struct xfs_mount *mp = cur->bc_mp; 267 struct xfs_inode *ip = cur->bc_ino.ip; 268 struct xfs_trans *tp = cur->bc_tp; 269 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 270 struct xfs_owner_info oinfo; 271 272 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); 273 xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo); 274 ip->i_nblocks--; 275 276 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 277 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 278 return 0; 279 } 280 281 STATIC int 282 xfs_bmbt_get_minrecs( 283 struct xfs_btree_cur *cur, 284 int level) 285 { 286 if (level == cur->bc_nlevels - 1) { 287 struct xfs_ifork *ifp; 288 289 ifp = xfs_ifork_ptr(cur->bc_ino.ip, 290 cur->bc_ino.whichfork); 291 292 return xfs_bmbt_maxrecs(cur->bc_mp, 293 ifp->if_broot_bytes, level == 0) / 2; 294 } 295 296 return cur->bc_mp->m_bmap_dmnr[level != 0]; 297 } 298 299 int 300 xfs_bmbt_get_maxrecs( 301 struct xfs_btree_cur *cur, 302 int level) 303 { 304 if (level == cur->bc_nlevels - 1) { 305 struct xfs_ifork *ifp; 306 307 ifp = xfs_ifork_ptr(cur->bc_ino.ip, 308 cur->bc_ino.whichfork); 309 310 return xfs_bmbt_maxrecs(cur->bc_mp, 311 ifp->if_broot_bytes, level == 0); 312 } 313 314 return cur->bc_mp->m_bmap_dmxr[level != 0]; 315 316 } 317 318 /* 319 * Get the maximum records we could store in the on-disk format. 320 * 321 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 322 * for the root node this checks the available space in the dinode fork 323 * so that we can resize the in-memory buffer to match it. After a 324 * resize to the maximum size this function returns the same value 325 * as xfs_bmbt_get_maxrecs for the root node, too. 326 */ 327 STATIC int 328 xfs_bmbt_get_dmaxrecs( 329 struct xfs_btree_cur *cur, 330 int level) 331 { 332 if (level != cur->bc_nlevels - 1) 333 return cur->bc_mp->m_bmap_dmxr[level != 0]; 334 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); 335 } 336 337 STATIC void 338 xfs_bmbt_init_key_from_rec( 339 union xfs_btree_key *key, 340 const union xfs_btree_rec *rec) 341 { 342 key->bmbt.br_startoff = 343 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 344 } 345 346 STATIC void 347 xfs_bmbt_init_high_key_from_rec( 348 union xfs_btree_key *key, 349 const union xfs_btree_rec *rec) 350 { 351 key->bmbt.br_startoff = cpu_to_be64( 352 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 353 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 354 } 355 356 STATIC void 357 xfs_bmbt_init_rec_from_cur( 358 struct xfs_btree_cur *cur, 359 union xfs_btree_rec *rec) 360 { 361 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 362 } 363 364 STATIC void 365 xfs_bmbt_init_ptr_from_cur( 366 struct xfs_btree_cur *cur, 367 union xfs_btree_ptr *ptr) 368 { 369 ptr->l = 0; 370 } 371 372 STATIC int64_t 373 xfs_bmbt_key_diff( 374 struct xfs_btree_cur *cur, 375 const union xfs_btree_key *key) 376 { 377 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 378 cur->bc_rec.b.br_startoff; 379 } 380 381 STATIC int64_t 382 xfs_bmbt_diff_two_keys( 383 struct xfs_btree_cur *cur, 384 const union xfs_btree_key *k1, 385 const union xfs_btree_key *k2, 386 const union xfs_btree_key *mask) 387 { 388 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); 389 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); 390 391 ASSERT(!mask || mask->bmbt.br_startoff); 392 393 /* 394 * Note: This routine previously casted a and b to int64 and subtracted 395 * them to generate a result. This lead to problems if b was the 396 * "maximum" key value (all ones) being signed incorrectly, hence this 397 * somewhat less efficient version. 398 */ 399 if (a > b) 400 return 1; 401 if (b > a) 402 return -1; 403 return 0; 404 } 405 406 static xfs_failaddr_t 407 xfs_bmbt_verify( 408 struct xfs_buf *bp) 409 { 410 struct xfs_mount *mp = bp->b_mount; 411 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 412 xfs_failaddr_t fa; 413 unsigned int level; 414 415 if (!xfs_verify_magic(bp, block->bb_magic)) 416 return __this_address; 417 418 if (xfs_has_crc(mp)) { 419 /* 420 * XXX: need a better way of verifying the owner here. Right now 421 * just make sure there has been one set. 422 */ 423 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 424 if (fa) 425 return fa; 426 } 427 428 /* 429 * numrecs and level verification. 430 * 431 * We don't know what fork we belong to, so just verify that the level 432 * is less than the maximum of the two. Later checks will be more 433 * precise. 434 */ 435 level = be16_to_cpu(block->bb_level); 436 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 437 return __this_address; 438 439 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 440 } 441 442 static void 443 xfs_bmbt_read_verify( 444 struct xfs_buf *bp) 445 { 446 xfs_failaddr_t fa; 447 448 if (!xfs_btree_lblock_verify_crc(bp)) 449 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 450 else { 451 fa = xfs_bmbt_verify(bp); 452 if (fa) 453 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 454 } 455 456 if (bp->b_error) 457 trace_xfs_btree_corrupt(bp, _RET_IP_); 458 } 459 460 static void 461 xfs_bmbt_write_verify( 462 struct xfs_buf *bp) 463 { 464 xfs_failaddr_t fa; 465 466 fa = xfs_bmbt_verify(bp); 467 if (fa) { 468 trace_xfs_btree_corrupt(bp, _RET_IP_); 469 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 470 return; 471 } 472 xfs_btree_lblock_calc_crc(bp); 473 } 474 475 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 476 .name = "xfs_bmbt", 477 .magic = { cpu_to_be32(XFS_BMAP_MAGIC), 478 cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, 479 .verify_read = xfs_bmbt_read_verify, 480 .verify_write = xfs_bmbt_write_verify, 481 .verify_struct = xfs_bmbt_verify, 482 }; 483 484 485 STATIC int 486 xfs_bmbt_keys_inorder( 487 struct xfs_btree_cur *cur, 488 const union xfs_btree_key *k1, 489 const union xfs_btree_key *k2) 490 { 491 return be64_to_cpu(k1->bmbt.br_startoff) < 492 be64_to_cpu(k2->bmbt.br_startoff); 493 } 494 495 STATIC int 496 xfs_bmbt_recs_inorder( 497 struct xfs_btree_cur *cur, 498 const union xfs_btree_rec *r1, 499 const union xfs_btree_rec *r2) 500 { 501 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 502 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 503 xfs_bmbt_disk_get_startoff(&r2->bmbt); 504 } 505 506 STATIC enum xbtree_key_contig 507 xfs_bmbt_keys_contiguous( 508 struct xfs_btree_cur *cur, 509 const union xfs_btree_key *key1, 510 const union xfs_btree_key *key2, 511 const union xfs_btree_key *mask) 512 { 513 ASSERT(!mask || mask->bmbt.br_startoff); 514 515 return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff), 516 be64_to_cpu(key2->bmbt.br_startoff)); 517 } 518 519 static const struct xfs_btree_ops xfs_bmbt_ops = { 520 .rec_len = sizeof(xfs_bmbt_rec_t), 521 .key_len = sizeof(xfs_bmbt_key_t), 522 523 .dup_cursor = xfs_bmbt_dup_cursor, 524 .update_cursor = xfs_bmbt_update_cursor, 525 .alloc_block = xfs_bmbt_alloc_block, 526 .free_block = xfs_bmbt_free_block, 527 .get_maxrecs = xfs_bmbt_get_maxrecs, 528 .get_minrecs = xfs_bmbt_get_minrecs, 529 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 530 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 531 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 532 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 533 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 534 .key_diff = xfs_bmbt_key_diff, 535 .diff_two_keys = xfs_bmbt_diff_two_keys, 536 .buf_ops = &xfs_bmbt_buf_ops, 537 .keys_inorder = xfs_bmbt_keys_inorder, 538 .recs_inorder = xfs_bmbt_recs_inorder, 539 .keys_contiguous = xfs_bmbt_keys_contiguous, 540 }; 541 542 /* 543 * Allocate a new bmap btree cursor. 544 */ 545 struct xfs_btree_cur * /* new bmap btree cursor */ 546 xfs_bmbt_init_cursor( 547 struct xfs_mount *mp, /* file system mount point */ 548 struct xfs_trans *tp, /* transaction pointer */ 549 struct xfs_inode *ip, /* inode owning the btree */ 550 int whichfork) /* data or attr fork */ 551 { 552 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 553 struct xfs_btree_cur *cur; 554 ASSERT(whichfork != XFS_COW_FORK); 555 556 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP, 557 mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache); 558 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 559 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 560 561 cur->bc_ops = &xfs_bmbt_ops; 562 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 563 if (xfs_has_crc(mp)) 564 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 565 566 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork); 567 cur->bc_ino.ip = ip; 568 cur->bc_ino.allocated = 0; 569 cur->bc_ino.flags = 0; 570 cur->bc_ino.whichfork = whichfork; 571 572 return cur; 573 } 574 575 /* Calculate number of records in a block mapping btree block. */ 576 static inline unsigned int 577 xfs_bmbt_block_maxrecs( 578 unsigned int blocklen, 579 bool leaf) 580 { 581 if (leaf) 582 return blocklen / sizeof(xfs_bmbt_rec_t); 583 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 584 } 585 586 /* 587 * Calculate number of records in a bmap btree block. 588 */ 589 int 590 xfs_bmbt_maxrecs( 591 struct xfs_mount *mp, 592 int blocklen, 593 int leaf) 594 { 595 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 596 return xfs_bmbt_block_maxrecs(blocklen, leaf); 597 } 598 599 /* 600 * Calculate the maximum possible height of the btree that the on-disk format 601 * supports. This is used for sizing structures large enough to support every 602 * possible configuration of a filesystem that might get mounted. 603 */ 604 unsigned int 605 xfs_bmbt_maxlevels_ondisk(void) 606 { 607 unsigned int minrecs[2]; 608 unsigned int blocklen; 609 610 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, 611 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); 612 613 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2; 614 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2; 615 616 /* One extra level for the inode root. */ 617 return xfs_btree_compute_maxlevels(minrecs, 618 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1; 619 } 620 621 /* 622 * Calculate number of records in a bmap btree inode root. 623 */ 624 int 625 xfs_bmdr_maxrecs( 626 int blocklen, 627 int leaf) 628 { 629 blocklen -= sizeof(xfs_bmdr_block_t); 630 631 if (leaf) 632 return blocklen / sizeof(xfs_bmdr_rec_t); 633 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 634 } 635 636 /* 637 * Change the owner of a btree format fork fo the inode passed in. Change it to 638 * the owner of that is passed in so that we can change owners before or after 639 * we switch forks between inodes. The operation that the caller is doing will 640 * determine whether is needs to change owner before or after the switch. 641 * 642 * For demand paged transactional modification, the fork switch should be done 643 * after reading in all the blocks, modifying them and pinning them in the 644 * transaction. For modification when the buffers are already pinned in memory, 645 * the fork switch can be done before changing the owner as we won't need to 646 * validate the owner until the btree buffers are unpinned and writes can occur 647 * again. 648 * 649 * For recovery based ownership change, there is no transactional context and 650 * so a buffer list must be supplied so that we can record the buffers that we 651 * modified for the caller to issue IO on. 652 */ 653 int 654 xfs_bmbt_change_owner( 655 struct xfs_trans *tp, 656 struct xfs_inode *ip, 657 int whichfork, 658 xfs_ino_t new_owner, 659 struct list_head *buffer_list) 660 { 661 struct xfs_btree_cur *cur; 662 int error; 663 664 ASSERT(tp || buffer_list); 665 ASSERT(!(tp && buffer_list)); 666 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); 667 668 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 669 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER; 670 671 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 672 xfs_btree_del_cursor(cur, error); 673 return error; 674 } 675 676 /* Calculate the bmap btree size for some records. */ 677 unsigned long long 678 xfs_bmbt_calc_size( 679 struct xfs_mount *mp, 680 unsigned long long len) 681 { 682 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 683 } 684 685 int __init 686 xfs_bmbt_init_cur_cache(void) 687 { 688 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur", 689 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()), 690 0, 0, NULL); 691 692 if (!xfs_bmbt_cur_cache) 693 return -ENOMEM; 694 return 0; 695 } 696 697 void 698 xfs_bmbt_destroy_cur_cache(void) 699 { 700 kmem_cache_destroy(xfs_bmbt_cur_cache); 701 xfs_bmbt_cur_cache = NULL; 702 } 703