1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_alloc.h" 19 #include "xfs_btree.h" 20 #include "xfs_bmap_btree.h" 21 #include "xfs_bmap.h" 22 #include "xfs_error.h" 23 #include "xfs_quota.h" 24 #include "xfs_trace.h" 25 #include "xfs_cksum.h" 26 #include "xfs_rmap.h" 27 28 /* 29 * Convert on-disk form of btree root to in-memory form. 30 */ 31 void 32 xfs_bmdr_to_bmbt( 33 struct xfs_inode *ip, 34 xfs_bmdr_block_t *dblock, 35 int dblocklen, 36 struct xfs_btree_block *rblock, 37 int rblocklen) 38 { 39 struct xfs_mount *mp = ip->i_mount; 40 int dmxr; 41 xfs_bmbt_key_t *fkp; 42 __be64 *fpp; 43 xfs_bmbt_key_t *tkp; 44 __be64 *tpp; 45 46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 48 XFS_BTREE_LONG_PTRS); 49 rblock->bb_level = dblock->bb_level; 50 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 51 rblock->bb_numrecs = dblock->bb_numrecs; 52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 57 dmxr = be16_to_cpu(dblock->bb_numrecs); 58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 60 } 61 62 void 63 xfs_bmbt_disk_get_all( 64 struct xfs_bmbt_rec *rec, 65 struct xfs_bmbt_irec *irec) 66 { 67 uint64_t l0 = get_unaligned_be64(&rec->l0); 68 uint64_t l1 = get_unaligned_be64(&rec->l1); 69 70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 72 irec->br_blockcount = l1 & xfs_mask64lo(21); 73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 74 irec->br_state = XFS_EXT_UNWRITTEN; 75 else 76 irec->br_state = XFS_EXT_NORM; 77 } 78 79 /* 80 * Extract the blockcount field from an on disk bmap extent record. 81 */ 82 xfs_filblks_t 83 xfs_bmbt_disk_get_blockcount( 84 xfs_bmbt_rec_t *r) 85 { 86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 87 } 88 89 /* 90 * Extract the startoff field from a disk format bmap extent record. 91 */ 92 xfs_fileoff_t 93 xfs_bmbt_disk_get_startoff( 94 xfs_bmbt_rec_t *r) 95 { 96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 98 } 99 100 /* 101 * Set all the fields in a bmap extent record from the uncompressed form. 102 */ 103 void 104 xfs_bmbt_disk_set_all( 105 struct xfs_bmbt_rec *r, 106 struct xfs_bmbt_irec *s) 107 { 108 int extent_flag = (s->br_state != XFS_EXT_NORM); 109 110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 114 115 put_unaligned_be64( 116 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 119 put_unaligned_be64( 120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 121 ((xfs_bmbt_rec_base_t)s->br_blockcount & 122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 123 } 124 125 /* 126 * Convert in-memory form of btree root to on-disk form. 127 */ 128 void 129 xfs_bmbt_to_bmdr( 130 struct xfs_mount *mp, 131 struct xfs_btree_block *rblock, 132 int rblocklen, 133 xfs_bmdr_block_t *dblock, 134 int dblocklen) 135 { 136 int dmxr; 137 xfs_bmbt_key_t *fkp; 138 __be64 *fpp; 139 xfs_bmbt_key_t *tkp; 140 __be64 *tpp; 141 142 if (xfs_sb_version_hascrc(&mp->m_sb)) { 143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 145 &mp->m_sb.sb_meta_uuid)); 146 ASSERT(rblock->bb_u.l.bb_blkno == 147 cpu_to_be64(XFS_BUF_DADDR_NULL)); 148 } else 149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 152 ASSERT(rblock->bb_level != 0); 153 dblock->bb_level = rblock->bb_level; 154 dblock->bb_numrecs = rblock->bb_numrecs; 155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 160 dmxr = be16_to_cpu(dblock->bb_numrecs); 161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 163 } 164 165 STATIC struct xfs_btree_cur * 166 xfs_bmbt_dup_cursor( 167 struct xfs_btree_cur *cur) 168 { 169 struct xfs_btree_cur *new; 170 171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 172 cur->bc_private.b.ip, cur->bc_private.b.whichfork); 173 174 /* 175 * Copy the firstblock, dfops, and flags values, 176 * since init cursor doesn't get them. 177 */ 178 new->bc_private.b.firstblock = cur->bc_private.b.firstblock; 179 new->bc_private.b.dfops = cur->bc_private.b.dfops; 180 new->bc_private.b.flags = cur->bc_private.b.flags; 181 182 return new; 183 } 184 185 STATIC void 186 xfs_bmbt_update_cursor( 187 struct xfs_btree_cur *src, 188 struct xfs_btree_cur *dst) 189 { 190 ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) || 191 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME)); 192 ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops); 193 194 dst->bc_private.b.allocated += src->bc_private.b.allocated; 195 dst->bc_private.b.firstblock = src->bc_private.b.firstblock; 196 197 src->bc_private.b.allocated = 0; 198 } 199 200 STATIC int 201 xfs_bmbt_alloc_block( 202 struct xfs_btree_cur *cur, 203 union xfs_btree_ptr *start, 204 union xfs_btree_ptr *new, 205 int *stat) 206 { 207 xfs_alloc_arg_t args; /* block allocation args */ 208 int error; /* error return value */ 209 210 memset(&args, 0, sizeof(args)); 211 args.tp = cur->bc_tp; 212 args.mp = cur->bc_mp; 213 args.fsbno = cur->bc_private.b.firstblock; 214 args.firstblock = args.fsbno; 215 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino, 216 cur->bc_private.b.whichfork); 217 218 if (args.fsbno == NULLFSBLOCK) { 219 args.fsbno = be64_to_cpu(start->l); 220 args.type = XFS_ALLOCTYPE_START_BNO; 221 /* 222 * Make sure there is sufficient room left in the AG to 223 * complete a full tree split for an extent insert. If 224 * we are converting the middle part of an extent then 225 * we may need space for two tree splits. 226 * 227 * We are relying on the caller to make the correct block 228 * reservation for this operation to succeed. If the 229 * reservation amount is insufficient then we may fail a 230 * block allocation here and corrupt the filesystem. 231 */ 232 args.minleft = args.tp->t_blk_res; 233 } else if (cur->bc_private.b.dfops->dop_low) { 234 args.type = XFS_ALLOCTYPE_START_BNO; 235 } else { 236 args.type = XFS_ALLOCTYPE_NEAR_BNO; 237 } 238 239 args.minlen = args.maxlen = args.prod = 1; 240 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL; 241 if (!args.wasdel && args.tp->t_blk_res == 0) { 242 error = -ENOSPC; 243 goto error0; 244 } 245 error = xfs_alloc_vextent(&args); 246 if (error) 247 goto error0; 248 249 if (args.fsbno == NULLFSBLOCK && args.minleft) { 250 /* 251 * Could not find an AG with enough free space to satisfy 252 * a full btree split. Try again and if 253 * successful activate the lowspace algorithm. 254 */ 255 args.fsbno = 0; 256 args.type = XFS_ALLOCTYPE_FIRST_AG; 257 error = xfs_alloc_vextent(&args); 258 if (error) 259 goto error0; 260 cur->bc_private.b.dfops->dop_low = true; 261 } 262 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 263 *stat = 0; 264 return 0; 265 } 266 267 ASSERT(args.len == 1); 268 cur->bc_private.b.firstblock = args.fsbno; 269 cur->bc_private.b.allocated++; 270 cur->bc_private.b.ip->i_d.di_nblocks++; 271 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE); 272 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip, 273 XFS_TRANS_DQ_BCOUNT, 1L); 274 275 new->l = cpu_to_be64(args.fsbno); 276 277 *stat = 1; 278 return 0; 279 280 error0: 281 return error; 282 } 283 284 STATIC int 285 xfs_bmbt_free_block( 286 struct xfs_btree_cur *cur, 287 struct xfs_buf *bp) 288 { 289 struct xfs_mount *mp = cur->bc_mp; 290 struct xfs_inode *ip = cur->bc_private.b.ip; 291 struct xfs_trans *tp = cur->bc_tp; 292 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); 293 struct xfs_owner_info oinfo; 294 295 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork); 296 xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo); 297 ip->i_d.di_nblocks--; 298 299 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 300 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 301 return 0; 302 } 303 304 STATIC int 305 xfs_bmbt_get_minrecs( 306 struct xfs_btree_cur *cur, 307 int level) 308 { 309 if (level == cur->bc_nlevels - 1) { 310 struct xfs_ifork *ifp; 311 312 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 313 cur->bc_private.b.whichfork); 314 315 return xfs_bmbt_maxrecs(cur->bc_mp, 316 ifp->if_broot_bytes, level == 0) / 2; 317 } 318 319 return cur->bc_mp->m_bmap_dmnr[level != 0]; 320 } 321 322 int 323 xfs_bmbt_get_maxrecs( 324 struct xfs_btree_cur *cur, 325 int level) 326 { 327 if (level == cur->bc_nlevels - 1) { 328 struct xfs_ifork *ifp; 329 330 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 331 cur->bc_private.b.whichfork); 332 333 return xfs_bmbt_maxrecs(cur->bc_mp, 334 ifp->if_broot_bytes, level == 0); 335 } 336 337 return cur->bc_mp->m_bmap_dmxr[level != 0]; 338 339 } 340 341 /* 342 * Get the maximum records we could store in the on-disk format. 343 * 344 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 345 * for the root node this checks the available space in the dinode fork 346 * so that we can resize the in-memory buffer to match it. After a 347 * resize to the maximum size this function returns the same value 348 * as xfs_bmbt_get_maxrecs for the root node, too. 349 */ 350 STATIC int 351 xfs_bmbt_get_dmaxrecs( 352 struct xfs_btree_cur *cur, 353 int level) 354 { 355 if (level != cur->bc_nlevels - 1) 356 return cur->bc_mp->m_bmap_dmxr[level != 0]; 357 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0); 358 } 359 360 STATIC void 361 xfs_bmbt_init_key_from_rec( 362 union xfs_btree_key *key, 363 union xfs_btree_rec *rec) 364 { 365 key->bmbt.br_startoff = 366 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 367 } 368 369 STATIC void 370 xfs_bmbt_init_high_key_from_rec( 371 union xfs_btree_key *key, 372 union xfs_btree_rec *rec) 373 { 374 key->bmbt.br_startoff = cpu_to_be64( 375 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 376 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 377 } 378 379 STATIC void 380 xfs_bmbt_init_rec_from_cur( 381 struct xfs_btree_cur *cur, 382 union xfs_btree_rec *rec) 383 { 384 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 385 } 386 387 STATIC void 388 xfs_bmbt_init_ptr_from_cur( 389 struct xfs_btree_cur *cur, 390 union xfs_btree_ptr *ptr) 391 { 392 ptr->l = 0; 393 } 394 395 STATIC int64_t 396 xfs_bmbt_key_diff( 397 struct xfs_btree_cur *cur, 398 union xfs_btree_key *key) 399 { 400 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 401 cur->bc_rec.b.br_startoff; 402 } 403 404 STATIC int64_t 405 xfs_bmbt_diff_two_keys( 406 struct xfs_btree_cur *cur, 407 union xfs_btree_key *k1, 408 union xfs_btree_key *k2) 409 { 410 return (int64_t)be64_to_cpu(k1->bmbt.br_startoff) - 411 be64_to_cpu(k2->bmbt.br_startoff); 412 } 413 414 static xfs_failaddr_t 415 xfs_bmbt_verify( 416 struct xfs_buf *bp) 417 { 418 struct xfs_mount *mp = bp->b_target->bt_mount; 419 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 420 xfs_failaddr_t fa; 421 unsigned int level; 422 423 switch (block->bb_magic) { 424 case cpu_to_be32(XFS_BMAP_CRC_MAGIC): 425 /* 426 * XXX: need a better way of verifying the owner here. Right now 427 * just make sure there has been one set. 428 */ 429 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 430 if (fa) 431 return fa; 432 /* fall through */ 433 case cpu_to_be32(XFS_BMAP_MAGIC): 434 break; 435 default: 436 return __this_address; 437 } 438 439 /* 440 * numrecs and level verification. 441 * 442 * We don't know what fork we belong to, so just verify that the level 443 * is less than the maximum of the two. Later checks will be more 444 * precise. 445 */ 446 level = be16_to_cpu(block->bb_level); 447 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 448 return __this_address; 449 450 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 451 } 452 453 static void 454 xfs_bmbt_read_verify( 455 struct xfs_buf *bp) 456 { 457 xfs_failaddr_t fa; 458 459 if (!xfs_btree_lblock_verify_crc(bp)) 460 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 461 else { 462 fa = xfs_bmbt_verify(bp); 463 if (fa) 464 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 465 } 466 467 if (bp->b_error) 468 trace_xfs_btree_corrupt(bp, _RET_IP_); 469 } 470 471 static void 472 xfs_bmbt_write_verify( 473 struct xfs_buf *bp) 474 { 475 xfs_failaddr_t fa; 476 477 fa = xfs_bmbt_verify(bp); 478 if (fa) { 479 trace_xfs_btree_corrupt(bp, _RET_IP_); 480 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 481 return; 482 } 483 xfs_btree_lblock_calc_crc(bp); 484 } 485 486 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 487 .name = "xfs_bmbt", 488 .verify_read = xfs_bmbt_read_verify, 489 .verify_write = xfs_bmbt_write_verify, 490 .verify_struct = xfs_bmbt_verify, 491 }; 492 493 494 STATIC int 495 xfs_bmbt_keys_inorder( 496 struct xfs_btree_cur *cur, 497 union xfs_btree_key *k1, 498 union xfs_btree_key *k2) 499 { 500 return be64_to_cpu(k1->bmbt.br_startoff) < 501 be64_to_cpu(k2->bmbt.br_startoff); 502 } 503 504 STATIC int 505 xfs_bmbt_recs_inorder( 506 struct xfs_btree_cur *cur, 507 union xfs_btree_rec *r1, 508 union xfs_btree_rec *r2) 509 { 510 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 511 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 512 xfs_bmbt_disk_get_startoff(&r2->bmbt); 513 } 514 515 static const struct xfs_btree_ops xfs_bmbt_ops = { 516 .rec_len = sizeof(xfs_bmbt_rec_t), 517 .key_len = sizeof(xfs_bmbt_key_t), 518 519 .dup_cursor = xfs_bmbt_dup_cursor, 520 .update_cursor = xfs_bmbt_update_cursor, 521 .alloc_block = xfs_bmbt_alloc_block, 522 .free_block = xfs_bmbt_free_block, 523 .get_maxrecs = xfs_bmbt_get_maxrecs, 524 .get_minrecs = xfs_bmbt_get_minrecs, 525 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 526 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 527 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 528 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 529 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 530 .key_diff = xfs_bmbt_key_diff, 531 .diff_two_keys = xfs_bmbt_diff_two_keys, 532 .buf_ops = &xfs_bmbt_buf_ops, 533 .keys_inorder = xfs_bmbt_keys_inorder, 534 .recs_inorder = xfs_bmbt_recs_inorder, 535 }; 536 537 /* 538 * Allocate a new bmap btree cursor. 539 */ 540 struct xfs_btree_cur * /* new bmap btree cursor */ 541 xfs_bmbt_init_cursor( 542 struct xfs_mount *mp, /* file system mount point */ 543 struct xfs_trans *tp, /* transaction pointer */ 544 struct xfs_inode *ip, /* inode owning the btree */ 545 int whichfork) /* data or attr fork */ 546 { 547 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 548 struct xfs_btree_cur *cur; 549 ASSERT(whichfork != XFS_COW_FORK); 550 551 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 552 553 cur->bc_tp = tp; 554 cur->bc_mp = mp; 555 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 556 cur->bc_btnum = XFS_BTNUM_BMAP; 557 cur->bc_blocklog = mp->m_sb.sb_blocklog; 558 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 559 560 cur->bc_ops = &xfs_bmbt_ops; 561 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 562 if (xfs_sb_version_hascrc(&mp->m_sb)) 563 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 564 565 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork); 566 cur->bc_private.b.ip = ip; 567 cur->bc_private.b.firstblock = NULLFSBLOCK; 568 cur->bc_private.b.dfops = NULL; 569 cur->bc_private.b.allocated = 0; 570 cur->bc_private.b.flags = 0; 571 cur->bc_private.b.whichfork = whichfork; 572 573 return cur; 574 } 575 576 /* 577 * Calculate number of records in a bmap btree block. 578 */ 579 int 580 xfs_bmbt_maxrecs( 581 struct xfs_mount *mp, 582 int blocklen, 583 int leaf) 584 { 585 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 586 587 if (leaf) 588 return blocklen / sizeof(xfs_bmbt_rec_t); 589 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 590 } 591 592 /* 593 * Calculate number of records in a bmap btree inode root. 594 */ 595 int 596 xfs_bmdr_maxrecs( 597 int blocklen, 598 int leaf) 599 { 600 blocklen -= sizeof(xfs_bmdr_block_t); 601 602 if (leaf) 603 return blocklen / sizeof(xfs_bmdr_rec_t); 604 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 605 } 606 607 /* 608 * Change the owner of a btree format fork fo the inode passed in. Change it to 609 * the owner of that is passed in so that we can change owners before or after 610 * we switch forks between inodes. The operation that the caller is doing will 611 * determine whether is needs to change owner before or after the switch. 612 * 613 * For demand paged transactional modification, the fork switch should be done 614 * after reading in all the blocks, modifying them and pinning them in the 615 * transaction. For modification when the buffers are already pinned in memory, 616 * the fork switch can be done before changing the owner as we won't need to 617 * validate the owner until the btree buffers are unpinned and writes can occur 618 * again. 619 * 620 * For recovery based ownership change, there is no transactional context and 621 * so a buffer list must be supplied so that we can record the buffers that we 622 * modified for the caller to issue IO on. 623 */ 624 int 625 xfs_bmbt_change_owner( 626 struct xfs_trans *tp, 627 struct xfs_inode *ip, 628 int whichfork, 629 xfs_ino_t new_owner, 630 struct list_head *buffer_list) 631 { 632 struct xfs_btree_cur *cur; 633 int error; 634 635 ASSERT(tp || buffer_list); 636 ASSERT(!(tp && buffer_list)); 637 if (whichfork == XFS_DATA_FORK) 638 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE); 639 else 640 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE); 641 642 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 643 if (!cur) 644 return -ENOMEM; 645 cur->bc_private.b.flags |= XFS_BTCUR_BPRV_INVALID_OWNER; 646 647 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 648 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 649 return error; 650 } 651 652 /* Calculate the bmap btree size for some records. */ 653 unsigned long long 654 xfs_bmbt_calc_size( 655 struct xfs_mount *mp, 656 unsigned long long len) 657 { 658 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 659 } 660