1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_alloc.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_quota.h" 22 #include "xfs_trace.h" 23 #include "xfs_rmap.h" 24 #include "xfs_ag.h" 25 26 static struct kmem_cache *xfs_bmbt_cur_cache; 27 28 /* 29 * Convert on-disk form of btree root to in-memory form. 30 */ 31 void 32 xfs_bmdr_to_bmbt( 33 struct xfs_inode *ip, 34 xfs_bmdr_block_t *dblock, 35 int dblocklen, 36 struct xfs_btree_block *rblock, 37 int rblocklen) 38 { 39 struct xfs_mount *mp = ip->i_mount; 40 int dmxr; 41 xfs_bmbt_key_t *fkp; 42 __be64 *fpp; 43 xfs_bmbt_key_t *tkp; 44 __be64 *tpp; 45 46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 48 XFS_BTREE_LONG_PTRS); 49 rblock->bb_level = dblock->bb_level; 50 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 51 rblock->bb_numrecs = dblock->bb_numrecs; 52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 57 dmxr = be16_to_cpu(dblock->bb_numrecs); 58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 60 } 61 62 void 63 xfs_bmbt_disk_get_all( 64 const struct xfs_bmbt_rec *rec, 65 struct xfs_bmbt_irec *irec) 66 { 67 uint64_t l0 = get_unaligned_be64(&rec->l0); 68 uint64_t l1 = get_unaligned_be64(&rec->l1); 69 70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 72 irec->br_blockcount = l1 & xfs_mask64lo(21); 73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 74 irec->br_state = XFS_EXT_UNWRITTEN; 75 else 76 irec->br_state = XFS_EXT_NORM; 77 } 78 79 /* 80 * Extract the blockcount field from an on disk bmap extent record. 81 */ 82 xfs_filblks_t 83 xfs_bmbt_disk_get_blockcount( 84 const struct xfs_bmbt_rec *r) 85 { 86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 87 } 88 89 /* 90 * Extract the startoff field from a disk format bmap extent record. 91 */ 92 xfs_fileoff_t 93 xfs_bmbt_disk_get_startoff( 94 const struct xfs_bmbt_rec *r) 95 { 96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 98 } 99 100 /* 101 * Set all the fields in a bmap extent record from the uncompressed form. 102 */ 103 void 104 xfs_bmbt_disk_set_all( 105 struct xfs_bmbt_rec *r, 106 struct xfs_bmbt_irec *s) 107 { 108 int extent_flag = (s->br_state != XFS_EXT_NORM); 109 110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 114 115 put_unaligned_be64( 116 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 119 put_unaligned_be64( 120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 121 ((xfs_bmbt_rec_base_t)s->br_blockcount & 122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 123 } 124 125 /* 126 * Convert in-memory form of btree root to on-disk form. 127 */ 128 void 129 xfs_bmbt_to_bmdr( 130 struct xfs_mount *mp, 131 struct xfs_btree_block *rblock, 132 int rblocklen, 133 xfs_bmdr_block_t *dblock, 134 int dblocklen) 135 { 136 int dmxr; 137 xfs_bmbt_key_t *fkp; 138 __be64 *fpp; 139 xfs_bmbt_key_t *tkp; 140 __be64 *tpp; 141 142 if (xfs_has_crc(mp)) { 143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 145 &mp->m_sb.sb_meta_uuid)); 146 ASSERT(rblock->bb_u.l.bb_blkno == 147 cpu_to_be64(XFS_BUF_DADDR_NULL)); 148 } else 149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 152 ASSERT(rblock->bb_level != 0); 153 dblock->bb_level = rblock->bb_level; 154 dblock->bb_numrecs = rblock->bb_numrecs; 155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 160 dmxr = be16_to_cpu(dblock->bb_numrecs); 161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 163 } 164 165 STATIC struct xfs_btree_cur * 166 xfs_bmbt_dup_cursor( 167 struct xfs_btree_cur *cur) 168 { 169 struct xfs_btree_cur *new; 170 171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 172 cur->bc_ino.ip, cur->bc_ino.whichfork); 173 174 /* 175 * Copy the firstblock, dfops, and flags values, 176 * since init cursor doesn't get them. 177 */ 178 new->bc_ino.flags = cur->bc_ino.flags; 179 180 return new; 181 } 182 183 STATIC void 184 xfs_bmbt_update_cursor( 185 struct xfs_btree_cur *src, 186 struct xfs_btree_cur *dst) 187 { 188 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) || 189 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); 190 191 dst->bc_ino.allocated += src->bc_ino.allocated; 192 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno; 193 194 src->bc_ino.allocated = 0; 195 } 196 197 STATIC int 198 xfs_bmbt_alloc_block( 199 struct xfs_btree_cur *cur, 200 const union xfs_btree_ptr *start, 201 union xfs_btree_ptr *new, 202 int *stat) 203 { 204 struct xfs_alloc_arg args; 205 int error; 206 207 memset(&args, 0, sizeof(args)); 208 args.tp = cur->bc_tp; 209 args.mp = cur->bc_mp; 210 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, 211 cur->bc_ino.whichfork); 212 args.minlen = args.maxlen = args.prod = 1; 213 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL; 214 if (!args.wasdel && args.tp->t_blk_res == 0) 215 return -ENOSPC; 216 217 /* 218 * If we are coming here from something like unwritten extent 219 * conversion, there has been no data extent allocation already done, so 220 * we have to ensure that we attempt to locate the entire set of bmbt 221 * allocations in the same AG, as xfs_bmapi_write() would have reserved. 222 */ 223 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER) 224 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip, 225 cur->bc_ino.whichfork); 226 227 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l)); 228 if (error) 229 return error; 230 231 if (args.fsbno == NULLFSBLOCK && args.minleft) { 232 /* 233 * Could not find an AG with enough free space to satisfy 234 * a full btree split. Try again and if 235 * successful activate the lowspace algorithm. 236 */ 237 args.minleft = 0; 238 error = xfs_alloc_vextent_start_ag(&args, 0); 239 if (error) 240 return error; 241 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; 242 } 243 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 244 *stat = 0; 245 return 0; 246 } 247 248 ASSERT(args.len == 1); 249 cur->bc_ino.allocated++; 250 cur->bc_ino.ip->i_nblocks++; 251 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); 252 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, 253 XFS_TRANS_DQ_BCOUNT, 1L); 254 255 new->l = cpu_to_be64(args.fsbno); 256 257 *stat = 1; 258 return 0; 259 } 260 261 STATIC int 262 xfs_bmbt_free_block( 263 struct xfs_btree_cur *cur, 264 struct xfs_buf *bp) 265 { 266 struct xfs_mount *mp = cur->bc_mp; 267 struct xfs_inode *ip = cur->bc_ino.ip; 268 struct xfs_trans *tp = cur->bc_tp; 269 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 270 struct xfs_owner_info oinfo; 271 int error; 272 273 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); 274 error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo, 275 XFS_AG_RESV_NONE); 276 if (error) 277 return error; 278 279 ip->i_nblocks--; 280 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 281 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 282 return 0; 283 } 284 285 STATIC int 286 xfs_bmbt_get_minrecs( 287 struct xfs_btree_cur *cur, 288 int level) 289 { 290 if (level == cur->bc_nlevels - 1) { 291 struct xfs_ifork *ifp; 292 293 ifp = xfs_ifork_ptr(cur->bc_ino.ip, 294 cur->bc_ino.whichfork); 295 296 return xfs_bmbt_maxrecs(cur->bc_mp, 297 ifp->if_broot_bytes, level == 0) / 2; 298 } 299 300 return cur->bc_mp->m_bmap_dmnr[level != 0]; 301 } 302 303 int 304 xfs_bmbt_get_maxrecs( 305 struct xfs_btree_cur *cur, 306 int level) 307 { 308 if (level == cur->bc_nlevels - 1) { 309 struct xfs_ifork *ifp; 310 311 ifp = xfs_ifork_ptr(cur->bc_ino.ip, 312 cur->bc_ino.whichfork); 313 314 return xfs_bmbt_maxrecs(cur->bc_mp, 315 ifp->if_broot_bytes, level == 0); 316 } 317 318 return cur->bc_mp->m_bmap_dmxr[level != 0]; 319 320 } 321 322 /* 323 * Get the maximum records we could store in the on-disk format. 324 * 325 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 326 * for the root node this checks the available space in the dinode fork 327 * so that we can resize the in-memory buffer to match it. After a 328 * resize to the maximum size this function returns the same value 329 * as xfs_bmbt_get_maxrecs for the root node, too. 330 */ 331 STATIC int 332 xfs_bmbt_get_dmaxrecs( 333 struct xfs_btree_cur *cur, 334 int level) 335 { 336 if (level != cur->bc_nlevels - 1) 337 return cur->bc_mp->m_bmap_dmxr[level != 0]; 338 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); 339 } 340 341 STATIC void 342 xfs_bmbt_init_key_from_rec( 343 union xfs_btree_key *key, 344 const union xfs_btree_rec *rec) 345 { 346 key->bmbt.br_startoff = 347 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 348 } 349 350 STATIC void 351 xfs_bmbt_init_high_key_from_rec( 352 union xfs_btree_key *key, 353 const union xfs_btree_rec *rec) 354 { 355 key->bmbt.br_startoff = cpu_to_be64( 356 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 357 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 358 } 359 360 STATIC void 361 xfs_bmbt_init_rec_from_cur( 362 struct xfs_btree_cur *cur, 363 union xfs_btree_rec *rec) 364 { 365 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 366 } 367 368 STATIC void 369 xfs_bmbt_init_ptr_from_cur( 370 struct xfs_btree_cur *cur, 371 union xfs_btree_ptr *ptr) 372 { 373 ptr->l = 0; 374 } 375 376 STATIC int64_t 377 xfs_bmbt_key_diff( 378 struct xfs_btree_cur *cur, 379 const union xfs_btree_key *key) 380 { 381 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 382 cur->bc_rec.b.br_startoff; 383 } 384 385 STATIC int64_t 386 xfs_bmbt_diff_two_keys( 387 struct xfs_btree_cur *cur, 388 const union xfs_btree_key *k1, 389 const union xfs_btree_key *k2, 390 const union xfs_btree_key *mask) 391 { 392 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); 393 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); 394 395 ASSERT(!mask || mask->bmbt.br_startoff); 396 397 /* 398 * Note: This routine previously casted a and b to int64 and subtracted 399 * them to generate a result. This lead to problems if b was the 400 * "maximum" key value (all ones) being signed incorrectly, hence this 401 * somewhat less efficient version. 402 */ 403 if (a > b) 404 return 1; 405 if (b > a) 406 return -1; 407 return 0; 408 } 409 410 static xfs_failaddr_t 411 xfs_bmbt_verify( 412 struct xfs_buf *bp) 413 { 414 struct xfs_mount *mp = bp->b_mount; 415 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 416 xfs_failaddr_t fa; 417 unsigned int level; 418 419 if (!xfs_verify_magic(bp, block->bb_magic)) 420 return __this_address; 421 422 if (xfs_has_crc(mp)) { 423 /* 424 * XXX: need a better way of verifying the owner here. Right now 425 * just make sure there has been one set. 426 */ 427 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 428 if (fa) 429 return fa; 430 } 431 432 /* 433 * numrecs and level verification. 434 * 435 * We don't know what fork we belong to, so just verify that the level 436 * is less than the maximum of the two. Later checks will be more 437 * precise. 438 */ 439 level = be16_to_cpu(block->bb_level); 440 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 441 return __this_address; 442 443 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 444 } 445 446 static void 447 xfs_bmbt_read_verify( 448 struct xfs_buf *bp) 449 { 450 xfs_failaddr_t fa; 451 452 if (!xfs_btree_lblock_verify_crc(bp)) 453 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 454 else { 455 fa = xfs_bmbt_verify(bp); 456 if (fa) 457 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 458 } 459 460 if (bp->b_error) 461 trace_xfs_btree_corrupt(bp, _RET_IP_); 462 } 463 464 static void 465 xfs_bmbt_write_verify( 466 struct xfs_buf *bp) 467 { 468 xfs_failaddr_t fa; 469 470 fa = xfs_bmbt_verify(bp); 471 if (fa) { 472 trace_xfs_btree_corrupt(bp, _RET_IP_); 473 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 474 return; 475 } 476 xfs_btree_lblock_calc_crc(bp); 477 } 478 479 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 480 .name = "xfs_bmbt", 481 .magic = { cpu_to_be32(XFS_BMAP_MAGIC), 482 cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, 483 .verify_read = xfs_bmbt_read_verify, 484 .verify_write = xfs_bmbt_write_verify, 485 .verify_struct = xfs_bmbt_verify, 486 }; 487 488 489 STATIC int 490 xfs_bmbt_keys_inorder( 491 struct xfs_btree_cur *cur, 492 const union xfs_btree_key *k1, 493 const union xfs_btree_key *k2) 494 { 495 return be64_to_cpu(k1->bmbt.br_startoff) < 496 be64_to_cpu(k2->bmbt.br_startoff); 497 } 498 499 STATIC int 500 xfs_bmbt_recs_inorder( 501 struct xfs_btree_cur *cur, 502 const union xfs_btree_rec *r1, 503 const union xfs_btree_rec *r2) 504 { 505 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 506 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 507 xfs_bmbt_disk_get_startoff(&r2->bmbt); 508 } 509 510 STATIC enum xbtree_key_contig 511 xfs_bmbt_keys_contiguous( 512 struct xfs_btree_cur *cur, 513 const union xfs_btree_key *key1, 514 const union xfs_btree_key *key2, 515 const union xfs_btree_key *mask) 516 { 517 ASSERT(!mask || mask->bmbt.br_startoff); 518 519 return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff), 520 be64_to_cpu(key2->bmbt.br_startoff)); 521 } 522 523 static const struct xfs_btree_ops xfs_bmbt_ops = { 524 .rec_len = sizeof(xfs_bmbt_rec_t), 525 .key_len = sizeof(xfs_bmbt_key_t), 526 527 .dup_cursor = xfs_bmbt_dup_cursor, 528 .update_cursor = xfs_bmbt_update_cursor, 529 .alloc_block = xfs_bmbt_alloc_block, 530 .free_block = xfs_bmbt_free_block, 531 .get_maxrecs = xfs_bmbt_get_maxrecs, 532 .get_minrecs = xfs_bmbt_get_minrecs, 533 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 534 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 535 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 536 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 537 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 538 .key_diff = xfs_bmbt_key_diff, 539 .diff_two_keys = xfs_bmbt_diff_two_keys, 540 .buf_ops = &xfs_bmbt_buf_ops, 541 .keys_inorder = xfs_bmbt_keys_inorder, 542 .recs_inorder = xfs_bmbt_recs_inorder, 543 .keys_contiguous = xfs_bmbt_keys_contiguous, 544 }; 545 546 /* 547 * Allocate a new bmap btree cursor. 548 */ 549 struct xfs_btree_cur * /* new bmap btree cursor */ 550 xfs_bmbt_init_cursor( 551 struct xfs_mount *mp, /* file system mount point */ 552 struct xfs_trans *tp, /* transaction pointer */ 553 struct xfs_inode *ip, /* inode owning the btree */ 554 int whichfork) /* data or attr fork */ 555 { 556 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 557 struct xfs_btree_cur *cur; 558 ASSERT(whichfork != XFS_COW_FORK); 559 560 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP, 561 mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache); 562 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 563 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 564 565 cur->bc_ops = &xfs_bmbt_ops; 566 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 567 if (xfs_has_crc(mp)) 568 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 569 570 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork); 571 cur->bc_ino.ip = ip; 572 cur->bc_ino.allocated = 0; 573 cur->bc_ino.flags = 0; 574 cur->bc_ino.whichfork = whichfork; 575 576 return cur; 577 } 578 579 /* Calculate number of records in a block mapping btree block. */ 580 static inline unsigned int 581 xfs_bmbt_block_maxrecs( 582 unsigned int blocklen, 583 bool leaf) 584 { 585 if (leaf) 586 return blocklen / sizeof(xfs_bmbt_rec_t); 587 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 588 } 589 590 /* 591 * Calculate number of records in a bmap btree block. 592 */ 593 int 594 xfs_bmbt_maxrecs( 595 struct xfs_mount *mp, 596 int blocklen, 597 int leaf) 598 { 599 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 600 return xfs_bmbt_block_maxrecs(blocklen, leaf); 601 } 602 603 /* 604 * Calculate the maximum possible height of the btree that the on-disk format 605 * supports. This is used for sizing structures large enough to support every 606 * possible configuration of a filesystem that might get mounted. 607 */ 608 unsigned int 609 xfs_bmbt_maxlevels_ondisk(void) 610 { 611 unsigned int minrecs[2]; 612 unsigned int blocklen; 613 614 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, 615 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); 616 617 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2; 618 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2; 619 620 /* One extra level for the inode root. */ 621 return xfs_btree_compute_maxlevels(minrecs, 622 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1; 623 } 624 625 /* 626 * Calculate number of records in a bmap btree inode root. 627 */ 628 int 629 xfs_bmdr_maxrecs( 630 int blocklen, 631 int leaf) 632 { 633 blocklen -= sizeof(xfs_bmdr_block_t); 634 635 if (leaf) 636 return blocklen / sizeof(xfs_bmdr_rec_t); 637 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 638 } 639 640 /* 641 * Change the owner of a btree format fork fo the inode passed in. Change it to 642 * the owner of that is passed in so that we can change owners before or after 643 * we switch forks between inodes. The operation that the caller is doing will 644 * determine whether is needs to change owner before or after the switch. 645 * 646 * For demand paged transactional modification, the fork switch should be done 647 * after reading in all the blocks, modifying them and pinning them in the 648 * transaction. For modification when the buffers are already pinned in memory, 649 * the fork switch can be done before changing the owner as we won't need to 650 * validate the owner until the btree buffers are unpinned and writes can occur 651 * again. 652 * 653 * For recovery based ownership change, there is no transactional context and 654 * so a buffer list must be supplied so that we can record the buffers that we 655 * modified for the caller to issue IO on. 656 */ 657 int 658 xfs_bmbt_change_owner( 659 struct xfs_trans *tp, 660 struct xfs_inode *ip, 661 int whichfork, 662 xfs_ino_t new_owner, 663 struct list_head *buffer_list) 664 { 665 struct xfs_btree_cur *cur; 666 int error; 667 668 ASSERT(tp || buffer_list); 669 ASSERT(!(tp && buffer_list)); 670 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); 671 672 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 673 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER; 674 675 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 676 xfs_btree_del_cursor(cur, error); 677 return error; 678 } 679 680 /* Calculate the bmap btree size for some records. */ 681 unsigned long long 682 xfs_bmbt_calc_size( 683 struct xfs_mount *mp, 684 unsigned long long len) 685 { 686 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 687 } 688 689 int __init 690 xfs_bmbt_init_cur_cache(void) 691 { 692 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur", 693 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()), 694 0, 0, NULL); 695 696 if (!xfs_bmbt_cur_cache) 697 return -ENOMEM; 698 return 0; 699 } 700 701 void 702 xfs_bmbt_destroy_cur_cache(void) 703 { 704 kmem_cache_destroy(xfs_bmbt_cur_cache); 705 xfs_bmbt_cur_cache = NULL; 706 } 707