1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_alloc.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_quota.h" 22 #include "xfs_trace.h" 23 #include "xfs_rmap.h" 24 25 /* 26 * Convert on-disk form of btree root to in-memory form. 27 */ 28 void 29 xfs_bmdr_to_bmbt( 30 struct xfs_inode *ip, 31 xfs_bmdr_block_t *dblock, 32 int dblocklen, 33 struct xfs_btree_block *rblock, 34 int rblocklen) 35 { 36 struct xfs_mount *mp = ip->i_mount; 37 int dmxr; 38 xfs_bmbt_key_t *fkp; 39 __be64 *fpp; 40 xfs_bmbt_key_t *tkp; 41 __be64 *tpp; 42 43 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 44 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 45 XFS_BTREE_LONG_PTRS); 46 rblock->bb_level = dblock->bb_level; 47 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 48 rblock->bb_numrecs = dblock->bb_numrecs; 49 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 50 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 51 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 52 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 53 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 54 dmxr = be16_to_cpu(dblock->bb_numrecs); 55 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 56 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 57 } 58 59 void 60 xfs_bmbt_disk_get_all( 61 struct xfs_bmbt_rec *rec, 62 struct xfs_bmbt_irec *irec) 63 { 64 uint64_t l0 = get_unaligned_be64(&rec->l0); 65 uint64_t l1 = get_unaligned_be64(&rec->l1); 66 67 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 68 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 69 irec->br_blockcount = l1 & xfs_mask64lo(21); 70 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 71 irec->br_state = XFS_EXT_UNWRITTEN; 72 else 73 irec->br_state = XFS_EXT_NORM; 74 } 75 76 /* 77 * Extract the blockcount field from an on disk bmap extent record. 78 */ 79 xfs_filblks_t 80 xfs_bmbt_disk_get_blockcount( 81 xfs_bmbt_rec_t *r) 82 { 83 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 84 } 85 86 /* 87 * Extract the startoff field from a disk format bmap extent record. 88 */ 89 xfs_fileoff_t 90 xfs_bmbt_disk_get_startoff( 91 xfs_bmbt_rec_t *r) 92 { 93 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 94 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 95 } 96 97 /* 98 * Set all the fields in a bmap extent record from the uncompressed form. 99 */ 100 void 101 xfs_bmbt_disk_set_all( 102 struct xfs_bmbt_rec *r, 103 struct xfs_bmbt_irec *s) 104 { 105 int extent_flag = (s->br_state != XFS_EXT_NORM); 106 107 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 108 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 109 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 110 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 111 112 put_unaligned_be64( 113 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 114 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 115 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 116 put_unaligned_be64( 117 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 118 ((xfs_bmbt_rec_base_t)s->br_blockcount & 119 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 120 } 121 122 /* 123 * Convert in-memory form of btree root to on-disk form. 124 */ 125 void 126 xfs_bmbt_to_bmdr( 127 struct xfs_mount *mp, 128 struct xfs_btree_block *rblock, 129 int rblocklen, 130 xfs_bmdr_block_t *dblock, 131 int dblocklen) 132 { 133 int dmxr; 134 xfs_bmbt_key_t *fkp; 135 __be64 *fpp; 136 xfs_bmbt_key_t *tkp; 137 __be64 *tpp; 138 139 if (xfs_sb_version_hascrc(&mp->m_sb)) { 140 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 141 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 142 &mp->m_sb.sb_meta_uuid)); 143 ASSERT(rblock->bb_u.l.bb_blkno == 144 cpu_to_be64(XFS_BUF_DADDR_NULL)); 145 } else 146 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 147 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 148 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 149 ASSERT(rblock->bb_level != 0); 150 dblock->bb_level = rblock->bb_level; 151 dblock->bb_numrecs = rblock->bb_numrecs; 152 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 153 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 154 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 155 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 156 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 157 dmxr = be16_to_cpu(dblock->bb_numrecs); 158 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 159 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 160 } 161 162 STATIC struct xfs_btree_cur * 163 xfs_bmbt_dup_cursor( 164 struct xfs_btree_cur *cur) 165 { 166 struct xfs_btree_cur *new; 167 168 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 169 cur->bc_ino.ip, cur->bc_ino.whichfork); 170 171 /* 172 * Copy the firstblock, dfops, and flags values, 173 * since init cursor doesn't get them. 174 */ 175 new->bc_ino.flags = cur->bc_ino.flags; 176 177 return new; 178 } 179 180 STATIC void 181 xfs_bmbt_update_cursor( 182 struct xfs_btree_cur *src, 183 struct xfs_btree_cur *dst) 184 { 185 ASSERT((dst->bc_tp->t_firstblock != NULLFSBLOCK) || 186 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); 187 188 dst->bc_ino.allocated += src->bc_ino.allocated; 189 dst->bc_tp->t_firstblock = src->bc_tp->t_firstblock; 190 191 src->bc_ino.allocated = 0; 192 } 193 194 STATIC int 195 xfs_bmbt_alloc_block( 196 struct xfs_btree_cur *cur, 197 union xfs_btree_ptr *start, 198 union xfs_btree_ptr *new, 199 int *stat) 200 { 201 xfs_alloc_arg_t args; /* block allocation args */ 202 int error; /* error return value */ 203 204 memset(&args, 0, sizeof(args)); 205 args.tp = cur->bc_tp; 206 args.mp = cur->bc_mp; 207 args.fsbno = cur->bc_tp->t_firstblock; 208 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, 209 cur->bc_ino.whichfork); 210 211 if (args.fsbno == NULLFSBLOCK) { 212 args.fsbno = be64_to_cpu(start->l); 213 args.type = XFS_ALLOCTYPE_START_BNO; 214 /* 215 * Make sure there is sufficient room left in the AG to 216 * complete a full tree split for an extent insert. If 217 * we are converting the middle part of an extent then 218 * we may need space for two tree splits. 219 * 220 * We are relying on the caller to make the correct block 221 * reservation for this operation to succeed. If the 222 * reservation amount is insufficient then we may fail a 223 * block allocation here and corrupt the filesystem. 224 */ 225 args.minleft = args.tp->t_blk_res; 226 } else if (cur->bc_tp->t_flags & XFS_TRANS_LOWMODE) { 227 args.type = XFS_ALLOCTYPE_START_BNO; 228 } else { 229 args.type = XFS_ALLOCTYPE_NEAR_BNO; 230 } 231 232 args.minlen = args.maxlen = args.prod = 1; 233 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL; 234 if (!args.wasdel && args.tp->t_blk_res == 0) { 235 error = -ENOSPC; 236 goto error0; 237 } 238 error = xfs_alloc_vextent(&args); 239 if (error) 240 goto error0; 241 242 if (args.fsbno == NULLFSBLOCK && args.minleft) { 243 /* 244 * Could not find an AG with enough free space to satisfy 245 * a full btree split. Try again and if 246 * successful activate the lowspace algorithm. 247 */ 248 args.fsbno = 0; 249 args.type = XFS_ALLOCTYPE_FIRST_AG; 250 error = xfs_alloc_vextent(&args); 251 if (error) 252 goto error0; 253 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; 254 } 255 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 256 *stat = 0; 257 return 0; 258 } 259 260 ASSERT(args.len == 1); 261 cur->bc_tp->t_firstblock = args.fsbno; 262 cur->bc_ino.allocated++; 263 cur->bc_ino.ip->i_nblocks++; 264 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); 265 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, 266 XFS_TRANS_DQ_BCOUNT, 1L); 267 268 new->l = cpu_to_be64(args.fsbno); 269 270 *stat = 1; 271 return 0; 272 273 error0: 274 return error; 275 } 276 277 STATIC int 278 xfs_bmbt_free_block( 279 struct xfs_btree_cur *cur, 280 struct xfs_buf *bp) 281 { 282 struct xfs_mount *mp = cur->bc_mp; 283 struct xfs_inode *ip = cur->bc_ino.ip; 284 struct xfs_trans *tp = cur->bc_tp; 285 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); 286 struct xfs_owner_info oinfo; 287 288 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); 289 xfs_bmap_add_free(cur->bc_tp, fsbno, 1, &oinfo); 290 ip->i_nblocks--; 291 292 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 293 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 294 return 0; 295 } 296 297 STATIC int 298 xfs_bmbt_get_minrecs( 299 struct xfs_btree_cur *cur, 300 int level) 301 { 302 if (level == cur->bc_nlevels - 1) { 303 struct xfs_ifork *ifp; 304 305 ifp = XFS_IFORK_PTR(cur->bc_ino.ip, 306 cur->bc_ino.whichfork); 307 308 return xfs_bmbt_maxrecs(cur->bc_mp, 309 ifp->if_broot_bytes, level == 0) / 2; 310 } 311 312 return cur->bc_mp->m_bmap_dmnr[level != 0]; 313 } 314 315 int 316 xfs_bmbt_get_maxrecs( 317 struct xfs_btree_cur *cur, 318 int level) 319 { 320 if (level == cur->bc_nlevels - 1) { 321 struct xfs_ifork *ifp; 322 323 ifp = XFS_IFORK_PTR(cur->bc_ino.ip, 324 cur->bc_ino.whichfork); 325 326 return xfs_bmbt_maxrecs(cur->bc_mp, 327 ifp->if_broot_bytes, level == 0); 328 } 329 330 return cur->bc_mp->m_bmap_dmxr[level != 0]; 331 332 } 333 334 /* 335 * Get the maximum records we could store in the on-disk format. 336 * 337 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 338 * for the root node this checks the available space in the dinode fork 339 * so that we can resize the in-memory buffer to match it. After a 340 * resize to the maximum size this function returns the same value 341 * as xfs_bmbt_get_maxrecs for the root node, too. 342 */ 343 STATIC int 344 xfs_bmbt_get_dmaxrecs( 345 struct xfs_btree_cur *cur, 346 int level) 347 { 348 if (level != cur->bc_nlevels - 1) 349 return cur->bc_mp->m_bmap_dmxr[level != 0]; 350 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); 351 } 352 353 STATIC void 354 xfs_bmbt_init_key_from_rec( 355 union xfs_btree_key *key, 356 union xfs_btree_rec *rec) 357 { 358 key->bmbt.br_startoff = 359 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 360 } 361 362 STATIC void 363 xfs_bmbt_init_high_key_from_rec( 364 union xfs_btree_key *key, 365 union xfs_btree_rec *rec) 366 { 367 key->bmbt.br_startoff = cpu_to_be64( 368 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 369 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 370 } 371 372 STATIC void 373 xfs_bmbt_init_rec_from_cur( 374 struct xfs_btree_cur *cur, 375 union xfs_btree_rec *rec) 376 { 377 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 378 } 379 380 STATIC void 381 xfs_bmbt_init_ptr_from_cur( 382 struct xfs_btree_cur *cur, 383 union xfs_btree_ptr *ptr) 384 { 385 ptr->l = 0; 386 } 387 388 STATIC int64_t 389 xfs_bmbt_key_diff( 390 struct xfs_btree_cur *cur, 391 union xfs_btree_key *key) 392 { 393 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 394 cur->bc_rec.b.br_startoff; 395 } 396 397 STATIC int64_t 398 xfs_bmbt_diff_two_keys( 399 struct xfs_btree_cur *cur, 400 union xfs_btree_key *k1, 401 union xfs_btree_key *k2) 402 { 403 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); 404 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); 405 406 /* 407 * Note: This routine previously casted a and b to int64 and subtracted 408 * them to generate a result. This lead to problems if b was the 409 * "maximum" key value (all ones) being signed incorrectly, hence this 410 * somewhat less efficient version. 411 */ 412 if (a > b) 413 return 1; 414 if (b > a) 415 return -1; 416 return 0; 417 } 418 419 static xfs_failaddr_t 420 xfs_bmbt_verify( 421 struct xfs_buf *bp) 422 { 423 struct xfs_mount *mp = bp->b_mount; 424 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 425 xfs_failaddr_t fa; 426 unsigned int level; 427 428 if (!xfs_verify_magic(bp, block->bb_magic)) 429 return __this_address; 430 431 if (xfs_sb_version_hascrc(&mp->m_sb)) { 432 /* 433 * XXX: need a better way of verifying the owner here. Right now 434 * just make sure there has been one set. 435 */ 436 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 437 if (fa) 438 return fa; 439 } 440 441 /* 442 * numrecs and level verification. 443 * 444 * We don't know what fork we belong to, so just verify that the level 445 * is less than the maximum of the two. Later checks will be more 446 * precise. 447 */ 448 level = be16_to_cpu(block->bb_level); 449 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 450 return __this_address; 451 452 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 453 } 454 455 static void 456 xfs_bmbt_read_verify( 457 struct xfs_buf *bp) 458 { 459 xfs_failaddr_t fa; 460 461 if (!xfs_btree_lblock_verify_crc(bp)) 462 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 463 else { 464 fa = xfs_bmbt_verify(bp); 465 if (fa) 466 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 467 } 468 469 if (bp->b_error) 470 trace_xfs_btree_corrupt(bp, _RET_IP_); 471 } 472 473 static void 474 xfs_bmbt_write_verify( 475 struct xfs_buf *bp) 476 { 477 xfs_failaddr_t fa; 478 479 fa = xfs_bmbt_verify(bp); 480 if (fa) { 481 trace_xfs_btree_corrupt(bp, _RET_IP_); 482 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 483 return; 484 } 485 xfs_btree_lblock_calc_crc(bp); 486 } 487 488 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 489 .name = "xfs_bmbt", 490 .magic = { cpu_to_be32(XFS_BMAP_MAGIC), 491 cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, 492 .verify_read = xfs_bmbt_read_verify, 493 .verify_write = xfs_bmbt_write_verify, 494 .verify_struct = xfs_bmbt_verify, 495 }; 496 497 498 STATIC int 499 xfs_bmbt_keys_inorder( 500 struct xfs_btree_cur *cur, 501 union xfs_btree_key *k1, 502 union xfs_btree_key *k2) 503 { 504 return be64_to_cpu(k1->bmbt.br_startoff) < 505 be64_to_cpu(k2->bmbt.br_startoff); 506 } 507 508 STATIC int 509 xfs_bmbt_recs_inorder( 510 struct xfs_btree_cur *cur, 511 union xfs_btree_rec *r1, 512 union xfs_btree_rec *r2) 513 { 514 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 515 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 516 xfs_bmbt_disk_get_startoff(&r2->bmbt); 517 } 518 519 static const struct xfs_btree_ops xfs_bmbt_ops = { 520 .rec_len = sizeof(xfs_bmbt_rec_t), 521 .key_len = sizeof(xfs_bmbt_key_t), 522 523 .dup_cursor = xfs_bmbt_dup_cursor, 524 .update_cursor = xfs_bmbt_update_cursor, 525 .alloc_block = xfs_bmbt_alloc_block, 526 .free_block = xfs_bmbt_free_block, 527 .get_maxrecs = xfs_bmbt_get_maxrecs, 528 .get_minrecs = xfs_bmbt_get_minrecs, 529 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 530 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 531 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 532 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 533 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 534 .key_diff = xfs_bmbt_key_diff, 535 .diff_two_keys = xfs_bmbt_diff_two_keys, 536 .buf_ops = &xfs_bmbt_buf_ops, 537 .keys_inorder = xfs_bmbt_keys_inorder, 538 .recs_inorder = xfs_bmbt_recs_inorder, 539 }; 540 541 /* 542 * Allocate a new bmap btree cursor. 543 */ 544 struct xfs_btree_cur * /* new bmap btree cursor */ 545 xfs_bmbt_init_cursor( 546 struct xfs_mount *mp, /* file system mount point */ 547 struct xfs_trans *tp, /* transaction pointer */ 548 struct xfs_inode *ip, /* inode owning the btree */ 549 int whichfork) /* data or attr fork */ 550 { 551 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 552 struct xfs_btree_cur *cur; 553 ASSERT(whichfork != XFS_COW_FORK); 554 555 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL); 556 557 cur->bc_tp = tp; 558 cur->bc_mp = mp; 559 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 560 cur->bc_btnum = XFS_BTNUM_BMAP; 561 cur->bc_blocklog = mp->m_sb.sb_blocklog; 562 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 563 564 cur->bc_ops = &xfs_bmbt_ops; 565 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 566 if (xfs_sb_version_hascrc(&mp->m_sb)) 567 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 568 569 cur->bc_ino.forksize = XFS_IFORK_SIZE(ip, whichfork); 570 cur->bc_ino.ip = ip; 571 cur->bc_ino.allocated = 0; 572 cur->bc_ino.flags = 0; 573 cur->bc_ino.whichfork = whichfork; 574 575 return cur; 576 } 577 578 /* 579 * Calculate number of records in a bmap btree block. 580 */ 581 int 582 xfs_bmbt_maxrecs( 583 struct xfs_mount *mp, 584 int blocklen, 585 int leaf) 586 { 587 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 588 589 if (leaf) 590 return blocklen / sizeof(xfs_bmbt_rec_t); 591 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 592 } 593 594 /* 595 * Calculate number of records in a bmap btree inode root. 596 */ 597 int 598 xfs_bmdr_maxrecs( 599 int blocklen, 600 int leaf) 601 { 602 blocklen -= sizeof(xfs_bmdr_block_t); 603 604 if (leaf) 605 return blocklen / sizeof(xfs_bmdr_rec_t); 606 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 607 } 608 609 /* 610 * Change the owner of a btree format fork fo the inode passed in. Change it to 611 * the owner of that is passed in so that we can change owners before or after 612 * we switch forks between inodes. The operation that the caller is doing will 613 * determine whether is needs to change owner before or after the switch. 614 * 615 * For demand paged transactional modification, the fork switch should be done 616 * after reading in all the blocks, modifying them and pinning them in the 617 * transaction. For modification when the buffers are already pinned in memory, 618 * the fork switch can be done before changing the owner as we won't need to 619 * validate the owner until the btree buffers are unpinned and writes can occur 620 * again. 621 * 622 * For recovery based ownership change, there is no transactional context and 623 * so a buffer list must be supplied so that we can record the buffers that we 624 * modified for the caller to issue IO on. 625 */ 626 int 627 xfs_bmbt_change_owner( 628 struct xfs_trans *tp, 629 struct xfs_inode *ip, 630 int whichfork, 631 xfs_ino_t new_owner, 632 struct list_head *buffer_list) 633 { 634 struct xfs_btree_cur *cur; 635 int error; 636 637 ASSERT(tp || buffer_list); 638 ASSERT(!(tp && buffer_list)); 639 ASSERT(XFS_IFORK_PTR(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); 640 641 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 642 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER; 643 644 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 645 xfs_btree_del_cursor(cur, error); 646 return error; 647 } 648 649 /* Calculate the bmap btree size for some records. */ 650 unsigned long long 651 xfs_bmbt_calc_size( 652 struct xfs_mount *mp, 653 unsigned long long len) 654 { 655 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 656 } 657