1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_alloc.h" 19 #include "xfs_btree.h" 20 #include "xfs_bmap_btree.h" 21 #include "xfs_bmap.h" 22 #include "xfs_error.h" 23 #include "xfs_quota.h" 24 #include "xfs_trace.h" 25 #include "xfs_cksum.h" 26 #include "xfs_rmap.h" 27 28 /* 29 * Convert on-disk form of btree root to in-memory form. 30 */ 31 void 32 xfs_bmdr_to_bmbt( 33 struct xfs_inode *ip, 34 xfs_bmdr_block_t *dblock, 35 int dblocklen, 36 struct xfs_btree_block *rblock, 37 int rblocklen) 38 { 39 struct xfs_mount *mp = ip->i_mount; 40 int dmxr; 41 xfs_bmbt_key_t *fkp; 42 __be64 *fpp; 43 xfs_bmbt_key_t *tkp; 44 __be64 *tpp; 45 46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 48 XFS_BTREE_LONG_PTRS); 49 rblock->bb_level = dblock->bb_level; 50 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 51 rblock->bb_numrecs = dblock->bb_numrecs; 52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 57 dmxr = be16_to_cpu(dblock->bb_numrecs); 58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 60 } 61 62 void 63 xfs_bmbt_disk_get_all( 64 struct xfs_bmbt_rec *rec, 65 struct xfs_bmbt_irec *irec) 66 { 67 uint64_t l0 = get_unaligned_be64(&rec->l0); 68 uint64_t l1 = get_unaligned_be64(&rec->l1); 69 70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 72 irec->br_blockcount = l1 & xfs_mask64lo(21); 73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 74 irec->br_state = XFS_EXT_UNWRITTEN; 75 else 76 irec->br_state = XFS_EXT_NORM; 77 } 78 79 /* 80 * Extract the blockcount field from an on disk bmap extent record. 81 */ 82 xfs_filblks_t 83 xfs_bmbt_disk_get_blockcount( 84 xfs_bmbt_rec_t *r) 85 { 86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 87 } 88 89 /* 90 * Extract the startoff field from a disk format bmap extent record. 91 */ 92 xfs_fileoff_t 93 xfs_bmbt_disk_get_startoff( 94 xfs_bmbt_rec_t *r) 95 { 96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 98 } 99 100 /* 101 * Set all the fields in a bmap extent record from the uncompressed form. 102 */ 103 void 104 xfs_bmbt_disk_set_all( 105 struct xfs_bmbt_rec *r, 106 struct xfs_bmbt_irec *s) 107 { 108 int extent_flag = (s->br_state != XFS_EXT_NORM); 109 110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 114 115 put_unaligned_be64( 116 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 119 put_unaligned_be64( 120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 121 ((xfs_bmbt_rec_base_t)s->br_blockcount & 122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 123 } 124 125 /* 126 * Convert in-memory form of btree root to on-disk form. 127 */ 128 void 129 xfs_bmbt_to_bmdr( 130 struct xfs_mount *mp, 131 struct xfs_btree_block *rblock, 132 int rblocklen, 133 xfs_bmdr_block_t *dblock, 134 int dblocklen) 135 { 136 int dmxr; 137 xfs_bmbt_key_t *fkp; 138 __be64 *fpp; 139 xfs_bmbt_key_t *tkp; 140 __be64 *tpp; 141 142 if (xfs_sb_version_hascrc(&mp->m_sb)) { 143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 145 &mp->m_sb.sb_meta_uuid)); 146 ASSERT(rblock->bb_u.l.bb_blkno == 147 cpu_to_be64(XFS_BUF_DADDR_NULL)); 148 } else 149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 152 ASSERT(rblock->bb_level != 0); 153 dblock->bb_level = rblock->bb_level; 154 dblock->bb_numrecs = rblock->bb_numrecs; 155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 160 dmxr = be16_to_cpu(dblock->bb_numrecs); 161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 163 } 164 165 STATIC struct xfs_btree_cur * 166 xfs_bmbt_dup_cursor( 167 struct xfs_btree_cur *cur) 168 { 169 struct xfs_btree_cur *new; 170 171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 172 cur->bc_private.b.ip, cur->bc_private.b.whichfork); 173 174 /* 175 * Copy the firstblock, dfops, and flags values, 176 * since init cursor doesn't get them. 177 */ 178 new->bc_private.b.flags = cur->bc_private.b.flags; 179 180 return new; 181 } 182 183 STATIC void 184 xfs_bmbt_update_cursor( 185 struct xfs_btree_cur *src, 186 struct xfs_btree_cur *dst) 187 { 188 ASSERT((dst->bc_tp->t_firstblock != NULLFSBLOCK) || 189 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME)); 190 191 dst->bc_private.b.allocated += src->bc_private.b.allocated; 192 dst->bc_tp->t_firstblock = src->bc_tp->t_firstblock; 193 194 src->bc_private.b.allocated = 0; 195 } 196 197 STATIC int 198 xfs_bmbt_alloc_block( 199 struct xfs_btree_cur *cur, 200 union xfs_btree_ptr *start, 201 union xfs_btree_ptr *new, 202 int *stat) 203 { 204 xfs_alloc_arg_t args; /* block allocation args */ 205 int error; /* error return value */ 206 207 memset(&args, 0, sizeof(args)); 208 args.tp = cur->bc_tp; 209 args.mp = cur->bc_mp; 210 args.fsbno = cur->bc_tp->t_firstblock; 211 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino, 212 cur->bc_private.b.whichfork); 213 214 if (args.fsbno == NULLFSBLOCK) { 215 args.fsbno = be64_to_cpu(start->l); 216 args.type = XFS_ALLOCTYPE_START_BNO; 217 /* 218 * Make sure there is sufficient room left in the AG to 219 * complete a full tree split for an extent insert. If 220 * we are converting the middle part of an extent then 221 * we may need space for two tree splits. 222 * 223 * We are relying on the caller to make the correct block 224 * reservation for this operation to succeed. If the 225 * reservation amount is insufficient then we may fail a 226 * block allocation here and corrupt the filesystem. 227 */ 228 args.minleft = args.tp->t_blk_res; 229 } else if (cur->bc_tp->t_flags & XFS_TRANS_LOWMODE) { 230 args.type = XFS_ALLOCTYPE_START_BNO; 231 } else { 232 args.type = XFS_ALLOCTYPE_NEAR_BNO; 233 } 234 235 args.minlen = args.maxlen = args.prod = 1; 236 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL; 237 if (!args.wasdel && args.tp->t_blk_res == 0) { 238 error = -ENOSPC; 239 goto error0; 240 } 241 error = xfs_alloc_vextent(&args); 242 if (error) 243 goto error0; 244 245 if (args.fsbno == NULLFSBLOCK && args.minleft) { 246 /* 247 * Could not find an AG with enough free space to satisfy 248 * a full btree split. Try again and if 249 * successful activate the lowspace algorithm. 250 */ 251 args.fsbno = 0; 252 args.type = XFS_ALLOCTYPE_FIRST_AG; 253 error = xfs_alloc_vextent(&args); 254 if (error) 255 goto error0; 256 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; 257 } 258 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 259 *stat = 0; 260 return 0; 261 } 262 263 ASSERT(args.len == 1); 264 cur->bc_tp->t_firstblock = args.fsbno; 265 cur->bc_private.b.allocated++; 266 cur->bc_private.b.ip->i_d.di_nblocks++; 267 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE); 268 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip, 269 XFS_TRANS_DQ_BCOUNT, 1L); 270 271 new->l = cpu_to_be64(args.fsbno); 272 273 *stat = 1; 274 return 0; 275 276 error0: 277 return error; 278 } 279 280 STATIC int 281 xfs_bmbt_free_block( 282 struct xfs_btree_cur *cur, 283 struct xfs_buf *bp) 284 { 285 struct xfs_mount *mp = cur->bc_mp; 286 struct xfs_inode *ip = cur->bc_private.b.ip; 287 struct xfs_trans *tp = cur->bc_tp; 288 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); 289 struct xfs_owner_info oinfo; 290 291 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork); 292 xfs_bmap_add_free(cur->bc_tp, fsbno, 1, &oinfo); 293 ip->i_d.di_nblocks--; 294 295 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 296 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 297 return 0; 298 } 299 300 STATIC int 301 xfs_bmbt_get_minrecs( 302 struct xfs_btree_cur *cur, 303 int level) 304 { 305 if (level == cur->bc_nlevels - 1) { 306 struct xfs_ifork *ifp; 307 308 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 309 cur->bc_private.b.whichfork); 310 311 return xfs_bmbt_maxrecs(cur->bc_mp, 312 ifp->if_broot_bytes, level == 0) / 2; 313 } 314 315 return cur->bc_mp->m_bmap_dmnr[level != 0]; 316 } 317 318 int 319 xfs_bmbt_get_maxrecs( 320 struct xfs_btree_cur *cur, 321 int level) 322 { 323 if (level == cur->bc_nlevels - 1) { 324 struct xfs_ifork *ifp; 325 326 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 327 cur->bc_private.b.whichfork); 328 329 return xfs_bmbt_maxrecs(cur->bc_mp, 330 ifp->if_broot_bytes, level == 0); 331 } 332 333 return cur->bc_mp->m_bmap_dmxr[level != 0]; 334 335 } 336 337 /* 338 * Get the maximum records we could store in the on-disk format. 339 * 340 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 341 * for the root node this checks the available space in the dinode fork 342 * so that we can resize the in-memory buffer to match it. After a 343 * resize to the maximum size this function returns the same value 344 * as xfs_bmbt_get_maxrecs for the root node, too. 345 */ 346 STATIC int 347 xfs_bmbt_get_dmaxrecs( 348 struct xfs_btree_cur *cur, 349 int level) 350 { 351 if (level != cur->bc_nlevels - 1) 352 return cur->bc_mp->m_bmap_dmxr[level != 0]; 353 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0); 354 } 355 356 STATIC void 357 xfs_bmbt_init_key_from_rec( 358 union xfs_btree_key *key, 359 union xfs_btree_rec *rec) 360 { 361 key->bmbt.br_startoff = 362 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 363 } 364 365 STATIC void 366 xfs_bmbt_init_high_key_from_rec( 367 union xfs_btree_key *key, 368 union xfs_btree_rec *rec) 369 { 370 key->bmbt.br_startoff = cpu_to_be64( 371 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 372 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 373 } 374 375 STATIC void 376 xfs_bmbt_init_rec_from_cur( 377 struct xfs_btree_cur *cur, 378 union xfs_btree_rec *rec) 379 { 380 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 381 } 382 383 STATIC void 384 xfs_bmbt_init_ptr_from_cur( 385 struct xfs_btree_cur *cur, 386 union xfs_btree_ptr *ptr) 387 { 388 ptr->l = 0; 389 } 390 391 STATIC int64_t 392 xfs_bmbt_key_diff( 393 struct xfs_btree_cur *cur, 394 union xfs_btree_key *key) 395 { 396 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 397 cur->bc_rec.b.br_startoff; 398 } 399 400 STATIC int64_t 401 xfs_bmbt_diff_two_keys( 402 struct xfs_btree_cur *cur, 403 union xfs_btree_key *k1, 404 union xfs_btree_key *k2) 405 { 406 return (int64_t)be64_to_cpu(k1->bmbt.br_startoff) - 407 be64_to_cpu(k2->bmbt.br_startoff); 408 } 409 410 static xfs_failaddr_t 411 xfs_bmbt_verify( 412 struct xfs_buf *bp) 413 { 414 struct xfs_mount *mp = bp->b_target->bt_mount; 415 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 416 xfs_failaddr_t fa; 417 unsigned int level; 418 419 if (!xfs_verify_magic(bp, block->bb_magic)) 420 return __this_address; 421 422 if (xfs_sb_version_hascrc(&mp->m_sb)) { 423 /* 424 * XXX: need a better way of verifying the owner here. Right now 425 * just make sure there has been one set. 426 */ 427 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 428 if (fa) 429 return fa; 430 } 431 432 /* 433 * numrecs and level verification. 434 * 435 * We don't know what fork we belong to, so just verify that the level 436 * is less than the maximum of the two. Later checks will be more 437 * precise. 438 */ 439 level = be16_to_cpu(block->bb_level); 440 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 441 return __this_address; 442 443 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 444 } 445 446 static void 447 xfs_bmbt_read_verify( 448 struct xfs_buf *bp) 449 { 450 xfs_failaddr_t fa; 451 452 if (!xfs_btree_lblock_verify_crc(bp)) 453 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 454 else { 455 fa = xfs_bmbt_verify(bp); 456 if (fa) 457 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 458 } 459 460 if (bp->b_error) 461 trace_xfs_btree_corrupt(bp, _RET_IP_); 462 } 463 464 static void 465 xfs_bmbt_write_verify( 466 struct xfs_buf *bp) 467 { 468 xfs_failaddr_t fa; 469 470 fa = xfs_bmbt_verify(bp); 471 if (fa) { 472 trace_xfs_btree_corrupt(bp, _RET_IP_); 473 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 474 return; 475 } 476 xfs_btree_lblock_calc_crc(bp); 477 } 478 479 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 480 .name = "xfs_bmbt", 481 .magic = { cpu_to_be32(XFS_BMAP_MAGIC), 482 cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, 483 .verify_read = xfs_bmbt_read_verify, 484 .verify_write = xfs_bmbt_write_verify, 485 .verify_struct = xfs_bmbt_verify, 486 }; 487 488 489 STATIC int 490 xfs_bmbt_keys_inorder( 491 struct xfs_btree_cur *cur, 492 union xfs_btree_key *k1, 493 union xfs_btree_key *k2) 494 { 495 return be64_to_cpu(k1->bmbt.br_startoff) < 496 be64_to_cpu(k2->bmbt.br_startoff); 497 } 498 499 STATIC int 500 xfs_bmbt_recs_inorder( 501 struct xfs_btree_cur *cur, 502 union xfs_btree_rec *r1, 503 union xfs_btree_rec *r2) 504 { 505 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 506 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 507 xfs_bmbt_disk_get_startoff(&r2->bmbt); 508 } 509 510 static const struct xfs_btree_ops xfs_bmbt_ops = { 511 .rec_len = sizeof(xfs_bmbt_rec_t), 512 .key_len = sizeof(xfs_bmbt_key_t), 513 514 .dup_cursor = xfs_bmbt_dup_cursor, 515 .update_cursor = xfs_bmbt_update_cursor, 516 .alloc_block = xfs_bmbt_alloc_block, 517 .free_block = xfs_bmbt_free_block, 518 .get_maxrecs = xfs_bmbt_get_maxrecs, 519 .get_minrecs = xfs_bmbt_get_minrecs, 520 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 521 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 522 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 523 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 524 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 525 .key_diff = xfs_bmbt_key_diff, 526 .diff_two_keys = xfs_bmbt_diff_two_keys, 527 .buf_ops = &xfs_bmbt_buf_ops, 528 .keys_inorder = xfs_bmbt_keys_inorder, 529 .recs_inorder = xfs_bmbt_recs_inorder, 530 }; 531 532 /* 533 * Allocate a new bmap btree cursor. 534 */ 535 struct xfs_btree_cur * /* new bmap btree cursor */ 536 xfs_bmbt_init_cursor( 537 struct xfs_mount *mp, /* file system mount point */ 538 struct xfs_trans *tp, /* transaction pointer */ 539 struct xfs_inode *ip, /* inode owning the btree */ 540 int whichfork) /* data or attr fork */ 541 { 542 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 543 struct xfs_btree_cur *cur; 544 ASSERT(whichfork != XFS_COW_FORK); 545 546 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 547 548 cur->bc_tp = tp; 549 cur->bc_mp = mp; 550 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 551 cur->bc_btnum = XFS_BTNUM_BMAP; 552 cur->bc_blocklog = mp->m_sb.sb_blocklog; 553 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 554 555 cur->bc_ops = &xfs_bmbt_ops; 556 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 557 if (xfs_sb_version_hascrc(&mp->m_sb)) 558 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 559 560 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork); 561 cur->bc_private.b.ip = ip; 562 cur->bc_private.b.allocated = 0; 563 cur->bc_private.b.flags = 0; 564 cur->bc_private.b.whichfork = whichfork; 565 566 return cur; 567 } 568 569 /* 570 * Calculate number of records in a bmap btree block. 571 */ 572 int 573 xfs_bmbt_maxrecs( 574 struct xfs_mount *mp, 575 int blocklen, 576 int leaf) 577 { 578 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 579 580 if (leaf) 581 return blocklen / sizeof(xfs_bmbt_rec_t); 582 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 583 } 584 585 /* 586 * Calculate number of records in a bmap btree inode root. 587 */ 588 int 589 xfs_bmdr_maxrecs( 590 int blocklen, 591 int leaf) 592 { 593 blocklen -= sizeof(xfs_bmdr_block_t); 594 595 if (leaf) 596 return blocklen / sizeof(xfs_bmdr_rec_t); 597 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 598 } 599 600 /* 601 * Change the owner of a btree format fork fo the inode passed in. Change it to 602 * the owner of that is passed in so that we can change owners before or after 603 * we switch forks between inodes. The operation that the caller is doing will 604 * determine whether is needs to change owner before or after the switch. 605 * 606 * For demand paged transactional modification, the fork switch should be done 607 * after reading in all the blocks, modifying them and pinning them in the 608 * transaction. For modification when the buffers are already pinned in memory, 609 * the fork switch can be done before changing the owner as we won't need to 610 * validate the owner until the btree buffers are unpinned and writes can occur 611 * again. 612 * 613 * For recovery based ownership change, there is no transactional context and 614 * so a buffer list must be supplied so that we can record the buffers that we 615 * modified for the caller to issue IO on. 616 */ 617 int 618 xfs_bmbt_change_owner( 619 struct xfs_trans *tp, 620 struct xfs_inode *ip, 621 int whichfork, 622 xfs_ino_t new_owner, 623 struct list_head *buffer_list) 624 { 625 struct xfs_btree_cur *cur; 626 int error; 627 628 ASSERT(tp || buffer_list); 629 ASSERT(!(tp && buffer_list)); 630 if (whichfork == XFS_DATA_FORK) 631 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE); 632 else 633 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE); 634 635 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 636 if (!cur) 637 return -ENOMEM; 638 cur->bc_private.b.flags |= XFS_BTCUR_BPRV_INVALID_OWNER; 639 640 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 641 xfs_btree_del_cursor(cur, error); 642 return error; 643 } 644 645 /* Calculate the bmap btree size for some records. */ 646 unsigned long long 647 xfs_bmbt_calc_size( 648 struct xfs_mount *mp, 649 unsigned long long len) 650 { 651 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 652 } 653