1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_mount.h" 26 #include "xfs_defer.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_alloc.h" 31 #include "xfs_btree.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_bmap.h" 34 #include "xfs_error.h" 35 #include "xfs_quota.h" 36 #include "xfs_trace.h" 37 #include "xfs_cksum.h" 38 #include "xfs_rmap.h" 39 40 /* 41 * Determine the extent state. 42 */ 43 /* ARGSUSED */ 44 STATIC xfs_exntst_t 45 xfs_extent_state( 46 xfs_filblks_t blks, 47 int extent_flag) 48 { 49 if (extent_flag) { 50 ASSERT(blks != 0); /* saved for DMIG */ 51 return XFS_EXT_UNWRITTEN; 52 } 53 return XFS_EXT_NORM; 54 } 55 56 /* 57 * Convert on-disk form of btree root to in-memory form. 58 */ 59 void 60 xfs_bmdr_to_bmbt( 61 struct xfs_inode *ip, 62 xfs_bmdr_block_t *dblock, 63 int dblocklen, 64 struct xfs_btree_block *rblock, 65 int rblocklen) 66 { 67 struct xfs_mount *mp = ip->i_mount; 68 int dmxr; 69 xfs_bmbt_key_t *fkp; 70 __be64 *fpp; 71 xfs_bmbt_key_t *tkp; 72 __be64 *tpp; 73 74 if (xfs_sb_version_hascrc(&mp->m_sb)) 75 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 76 XFS_BMAP_CRC_MAGIC, 0, 0, ip->i_ino, 77 XFS_BTREE_LONG_PTRS | XFS_BTREE_CRC_BLOCKS); 78 else 79 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 80 XFS_BMAP_MAGIC, 0, 0, ip->i_ino, 81 XFS_BTREE_LONG_PTRS); 82 83 rblock->bb_level = dblock->bb_level; 84 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 85 rblock->bb_numrecs = dblock->bb_numrecs; 86 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 87 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 88 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 89 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 90 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 91 dmxr = be16_to_cpu(dblock->bb_numrecs); 92 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 93 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 94 } 95 96 /* 97 * Convert a compressed bmap extent record to an uncompressed form. 98 * This code must be in sync with the routines xfs_bmbt_get_startoff, 99 * xfs_bmbt_get_startblock, xfs_bmbt_get_blockcount and xfs_bmbt_get_state. 100 */ 101 STATIC void 102 __xfs_bmbt_get_all( 103 __uint64_t l0, 104 __uint64_t l1, 105 xfs_bmbt_irec_t *s) 106 { 107 int ext_flag; 108 xfs_exntst_t st; 109 110 ext_flag = (int)(l0 >> (64 - BMBT_EXNTFLAG_BITLEN)); 111 s->br_startoff = ((xfs_fileoff_t)l0 & 112 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 113 s->br_startblock = (((xfs_fsblock_t)l0 & xfs_mask64lo(9)) << 43) | 114 (((xfs_fsblock_t)l1) >> 21); 115 s->br_blockcount = (xfs_filblks_t)(l1 & xfs_mask64lo(21)); 116 /* This is xfs_extent_state() in-line */ 117 if (ext_flag) { 118 ASSERT(s->br_blockcount != 0); /* saved for DMIG */ 119 st = XFS_EXT_UNWRITTEN; 120 } else 121 st = XFS_EXT_NORM; 122 s->br_state = st; 123 } 124 125 void 126 xfs_bmbt_get_all( 127 xfs_bmbt_rec_host_t *r, 128 xfs_bmbt_irec_t *s) 129 { 130 __xfs_bmbt_get_all(r->l0, r->l1, s); 131 } 132 133 /* 134 * Extract the blockcount field from an in memory bmap extent record. 135 */ 136 xfs_filblks_t 137 xfs_bmbt_get_blockcount( 138 xfs_bmbt_rec_host_t *r) 139 { 140 return (xfs_filblks_t)(r->l1 & xfs_mask64lo(21)); 141 } 142 143 /* 144 * Extract the startblock field from an in memory bmap extent record. 145 */ 146 xfs_fsblock_t 147 xfs_bmbt_get_startblock( 148 xfs_bmbt_rec_host_t *r) 149 { 150 return (((xfs_fsblock_t)r->l0 & xfs_mask64lo(9)) << 43) | 151 (((xfs_fsblock_t)r->l1) >> 21); 152 } 153 154 /* 155 * Extract the startoff field from an in memory bmap extent record. 156 */ 157 xfs_fileoff_t 158 xfs_bmbt_get_startoff( 159 xfs_bmbt_rec_host_t *r) 160 { 161 return ((xfs_fileoff_t)r->l0 & 162 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 163 } 164 165 xfs_exntst_t 166 xfs_bmbt_get_state( 167 xfs_bmbt_rec_host_t *r) 168 { 169 int ext_flag; 170 171 ext_flag = (int)((r->l0) >> (64 - BMBT_EXNTFLAG_BITLEN)); 172 return xfs_extent_state(xfs_bmbt_get_blockcount(r), 173 ext_flag); 174 } 175 176 /* 177 * Extract the blockcount field from an on disk bmap extent record. 178 */ 179 xfs_filblks_t 180 xfs_bmbt_disk_get_blockcount( 181 xfs_bmbt_rec_t *r) 182 { 183 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 184 } 185 186 /* 187 * Extract the startoff field from a disk format bmap extent record. 188 */ 189 xfs_fileoff_t 190 xfs_bmbt_disk_get_startoff( 191 xfs_bmbt_rec_t *r) 192 { 193 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 194 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 195 } 196 197 198 /* 199 * Set all the fields in a bmap extent record from the arguments. 200 */ 201 void 202 xfs_bmbt_set_allf( 203 xfs_bmbt_rec_host_t *r, 204 xfs_fileoff_t startoff, 205 xfs_fsblock_t startblock, 206 xfs_filblks_t blockcount, 207 xfs_exntst_t state) 208 { 209 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; 210 211 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); 212 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); 213 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); 214 215 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); 216 217 r->l0 = ((xfs_bmbt_rec_base_t)extent_flag << 63) | 218 ((xfs_bmbt_rec_base_t)startoff << 9) | 219 ((xfs_bmbt_rec_base_t)startblock >> 43); 220 r->l1 = ((xfs_bmbt_rec_base_t)startblock << 21) | 221 ((xfs_bmbt_rec_base_t)blockcount & 222 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)); 223 } 224 225 /* 226 * Set all the fields in a bmap extent record from the uncompressed form. 227 */ 228 void 229 xfs_bmbt_set_all( 230 xfs_bmbt_rec_host_t *r, 231 xfs_bmbt_irec_t *s) 232 { 233 xfs_bmbt_set_allf(r, s->br_startoff, s->br_startblock, 234 s->br_blockcount, s->br_state); 235 } 236 237 238 /* 239 * Set all the fields in a disk format bmap extent record from the arguments. 240 */ 241 void 242 xfs_bmbt_disk_set_allf( 243 xfs_bmbt_rec_t *r, 244 xfs_fileoff_t startoff, 245 xfs_fsblock_t startblock, 246 xfs_filblks_t blockcount, 247 xfs_exntst_t state) 248 { 249 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; 250 251 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); 252 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); 253 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); 254 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); 255 256 r->l0 = cpu_to_be64( 257 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 258 ((xfs_bmbt_rec_base_t)startoff << 9) | 259 ((xfs_bmbt_rec_base_t)startblock >> 43)); 260 r->l1 = cpu_to_be64( 261 ((xfs_bmbt_rec_base_t)startblock << 21) | 262 ((xfs_bmbt_rec_base_t)blockcount & 263 (xfs_bmbt_rec_base_t)xfs_mask64lo(21))); 264 } 265 266 /* 267 * Set all the fields in a bmap extent record from the uncompressed form. 268 */ 269 STATIC void 270 xfs_bmbt_disk_set_all( 271 xfs_bmbt_rec_t *r, 272 xfs_bmbt_irec_t *s) 273 { 274 xfs_bmbt_disk_set_allf(r, s->br_startoff, s->br_startblock, 275 s->br_blockcount, s->br_state); 276 } 277 278 /* 279 * Set the blockcount field in a bmap extent record. 280 */ 281 void 282 xfs_bmbt_set_blockcount( 283 xfs_bmbt_rec_host_t *r, 284 xfs_filblks_t v) 285 { 286 ASSERT((v & xfs_mask64hi(43)) == 0); 287 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64hi(43)) | 288 (xfs_bmbt_rec_base_t)(v & xfs_mask64lo(21)); 289 } 290 291 /* 292 * Set the startblock field in a bmap extent record. 293 */ 294 void 295 xfs_bmbt_set_startblock( 296 xfs_bmbt_rec_host_t *r, 297 xfs_fsblock_t v) 298 { 299 ASSERT((v & xfs_mask64hi(12)) == 0); 300 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64hi(55)) | 301 (xfs_bmbt_rec_base_t)(v >> 43); 302 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)) | 303 (xfs_bmbt_rec_base_t)(v << 21); 304 } 305 306 /* 307 * Set the startoff field in a bmap extent record. 308 */ 309 void 310 xfs_bmbt_set_startoff( 311 xfs_bmbt_rec_host_t *r, 312 xfs_fileoff_t v) 313 { 314 ASSERT((v & xfs_mask64hi(9)) == 0); 315 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t) xfs_mask64hi(1)) | 316 ((xfs_bmbt_rec_base_t)v << 9) | 317 (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64lo(9)); 318 } 319 320 /* 321 * Set the extent state field in a bmap extent record. 322 */ 323 void 324 xfs_bmbt_set_state( 325 xfs_bmbt_rec_host_t *r, 326 xfs_exntst_t v) 327 { 328 ASSERT(v == XFS_EXT_NORM || v == XFS_EXT_UNWRITTEN); 329 if (v == XFS_EXT_NORM) 330 r->l0 &= xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN); 331 else 332 r->l0 |= xfs_mask64hi(BMBT_EXNTFLAG_BITLEN); 333 } 334 335 /* 336 * Convert in-memory form of btree root to on-disk form. 337 */ 338 void 339 xfs_bmbt_to_bmdr( 340 struct xfs_mount *mp, 341 struct xfs_btree_block *rblock, 342 int rblocklen, 343 xfs_bmdr_block_t *dblock, 344 int dblocklen) 345 { 346 int dmxr; 347 xfs_bmbt_key_t *fkp; 348 __be64 *fpp; 349 xfs_bmbt_key_t *tkp; 350 __be64 *tpp; 351 352 if (xfs_sb_version_hascrc(&mp->m_sb)) { 353 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 354 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 355 &mp->m_sb.sb_meta_uuid)); 356 ASSERT(rblock->bb_u.l.bb_blkno == 357 cpu_to_be64(XFS_BUF_DADDR_NULL)); 358 } else 359 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 360 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 361 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 362 ASSERT(rblock->bb_level != 0); 363 dblock->bb_level = rblock->bb_level; 364 dblock->bb_numrecs = rblock->bb_numrecs; 365 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 366 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 367 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 368 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 369 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 370 dmxr = be16_to_cpu(dblock->bb_numrecs); 371 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 372 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 373 } 374 375 /* 376 * Check extent records, which have just been read, for 377 * any bit in the extent flag field. ASSERT on debug 378 * kernels, as this condition should not occur. 379 * Return an error condition (1) if any flags found, 380 * otherwise return 0. 381 */ 382 383 int 384 xfs_check_nostate_extents( 385 xfs_ifork_t *ifp, 386 xfs_extnum_t idx, 387 xfs_extnum_t num) 388 { 389 for (; num > 0; num--, idx++) { 390 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, idx); 391 if ((ep->l0 >> 392 (64 - BMBT_EXNTFLAG_BITLEN)) != 0) { 393 ASSERT(0); 394 return 1; 395 } 396 } 397 return 0; 398 } 399 400 401 STATIC struct xfs_btree_cur * 402 xfs_bmbt_dup_cursor( 403 struct xfs_btree_cur *cur) 404 { 405 struct xfs_btree_cur *new; 406 407 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 408 cur->bc_private.b.ip, cur->bc_private.b.whichfork); 409 410 /* 411 * Copy the firstblock, dfops, and flags values, 412 * since init cursor doesn't get them. 413 */ 414 new->bc_private.b.firstblock = cur->bc_private.b.firstblock; 415 new->bc_private.b.dfops = cur->bc_private.b.dfops; 416 new->bc_private.b.flags = cur->bc_private.b.flags; 417 418 return new; 419 } 420 421 STATIC void 422 xfs_bmbt_update_cursor( 423 struct xfs_btree_cur *src, 424 struct xfs_btree_cur *dst) 425 { 426 ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) || 427 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME)); 428 ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops); 429 430 dst->bc_private.b.allocated += src->bc_private.b.allocated; 431 dst->bc_private.b.firstblock = src->bc_private.b.firstblock; 432 433 src->bc_private.b.allocated = 0; 434 } 435 436 STATIC int 437 xfs_bmbt_alloc_block( 438 struct xfs_btree_cur *cur, 439 union xfs_btree_ptr *start, 440 union xfs_btree_ptr *new, 441 int *stat) 442 { 443 xfs_alloc_arg_t args; /* block allocation args */ 444 int error; /* error return value */ 445 446 memset(&args, 0, sizeof(args)); 447 args.tp = cur->bc_tp; 448 args.mp = cur->bc_mp; 449 args.fsbno = cur->bc_private.b.firstblock; 450 args.firstblock = args.fsbno; 451 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino, 452 cur->bc_private.b.whichfork); 453 454 if (args.fsbno == NULLFSBLOCK) { 455 args.fsbno = be64_to_cpu(start->l); 456 try_another_ag: 457 args.type = XFS_ALLOCTYPE_START_BNO; 458 /* 459 * Make sure there is sufficient room left in the AG to 460 * complete a full tree split for an extent insert. If 461 * we are converting the middle part of an extent then 462 * we may need space for two tree splits. 463 * 464 * We are relying on the caller to make the correct block 465 * reservation for this operation to succeed. If the 466 * reservation amount is insufficient then we may fail a 467 * block allocation here and corrupt the filesystem. 468 */ 469 args.minleft = args.tp->t_blk_res; 470 } else if (cur->bc_private.b.dfops->dop_low) { 471 args.type = XFS_ALLOCTYPE_START_BNO; 472 } else { 473 args.type = XFS_ALLOCTYPE_NEAR_BNO; 474 } 475 476 args.minlen = args.maxlen = args.prod = 1; 477 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL; 478 if (!args.wasdel && args.tp->t_blk_res == 0) { 479 error = -ENOSPC; 480 goto error0; 481 } 482 error = xfs_alloc_vextent(&args); 483 if (error) 484 goto error0; 485 486 /* 487 * During a CoW operation, the allocation and bmbt updates occur in 488 * different transactions. The mapping code tries to put new bmbt 489 * blocks near extents being mapped, but the only way to guarantee this 490 * is if the alloc and the mapping happen in a single transaction that 491 * has a block reservation. That isn't the case here, so if we run out 492 * of space we'll try again with another AG. 493 */ 494 if (xfs_sb_version_hasreflink(&cur->bc_mp->m_sb) && 495 args.fsbno == NULLFSBLOCK && 496 args.type == XFS_ALLOCTYPE_NEAR_BNO) { 497 cur->bc_private.b.dfops->dop_low = true; 498 args.fsbno = cur->bc_private.b.firstblock; 499 goto try_another_ag; 500 } 501 502 if (args.fsbno == NULLFSBLOCK && args.minleft) { 503 /* 504 * Could not find an AG with enough free space to satisfy 505 * a full btree split. Try again and if 506 * successful activate the lowspace algorithm. 507 */ 508 args.fsbno = 0; 509 args.type = XFS_ALLOCTYPE_FIRST_AG; 510 error = xfs_alloc_vextent(&args); 511 if (error) 512 goto error0; 513 cur->bc_private.b.dfops->dop_low = true; 514 } 515 if (args.fsbno == NULLFSBLOCK) { 516 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 517 *stat = 0; 518 return 0; 519 } 520 ASSERT(args.len == 1); 521 cur->bc_private.b.firstblock = args.fsbno; 522 cur->bc_private.b.allocated++; 523 cur->bc_private.b.ip->i_d.di_nblocks++; 524 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE); 525 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip, 526 XFS_TRANS_DQ_BCOUNT, 1L); 527 528 new->l = cpu_to_be64(args.fsbno); 529 530 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 531 *stat = 1; 532 return 0; 533 534 error0: 535 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 536 return error; 537 } 538 539 STATIC int 540 xfs_bmbt_free_block( 541 struct xfs_btree_cur *cur, 542 struct xfs_buf *bp) 543 { 544 struct xfs_mount *mp = cur->bc_mp; 545 struct xfs_inode *ip = cur->bc_private.b.ip; 546 struct xfs_trans *tp = cur->bc_tp; 547 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); 548 struct xfs_owner_info oinfo; 549 550 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork); 551 xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo); 552 ip->i_d.di_nblocks--; 553 554 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 555 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 556 return 0; 557 } 558 559 STATIC int 560 xfs_bmbt_get_minrecs( 561 struct xfs_btree_cur *cur, 562 int level) 563 { 564 if (level == cur->bc_nlevels - 1) { 565 struct xfs_ifork *ifp; 566 567 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 568 cur->bc_private.b.whichfork); 569 570 return xfs_bmbt_maxrecs(cur->bc_mp, 571 ifp->if_broot_bytes, level == 0) / 2; 572 } 573 574 return cur->bc_mp->m_bmap_dmnr[level != 0]; 575 } 576 577 int 578 xfs_bmbt_get_maxrecs( 579 struct xfs_btree_cur *cur, 580 int level) 581 { 582 if (level == cur->bc_nlevels - 1) { 583 struct xfs_ifork *ifp; 584 585 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 586 cur->bc_private.b.whichfork); 587 588 return xfs_bmbt_maxrecs(cur->bc_mp, 589 ifp->if_broot_bytes, level == 0); 590 } 591 592 return cur->bc_mp->m_bmap_dmxr[level != 0]; 593 594 } 595 596 /* 597 * Get the maximum records we could store in the on-disk format. 598 * 599 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 600 * for the root node this checks the available space in the dinode fork 601 * so that we can resize the in-memory buffer to match it. After a 602 * resize to the maximum size this function returns the same value 603 * as xfs_bmbt_get_maxrecs for the root node, too. 604 */ 605 STATIC int 606 xfs_bmbt_get_dmaxrecs( 607 struct xfs_btree_cur *cur, 608 int level) 609 { 610 if (level != cur->bc_nlevels - 1) 611 return cur->bc_mp->m_bmap_dmxr[level != 0]; 612 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0); 613 } 614 615 STATIC void 616 xfs_bmbt_init_key_from_rec( 617 union xfs_btree_key *key, 618 union xfs_btree_rec *rec) 619 { 620 key->bmbt.br_startoff = 621 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 622 } 623 624 STATIC void 625 xfs_bmbt_init_rec_from_cur( 626 struct xfs_btree_cur *cur, 627 union xfs_btree_rec *rec) 628 { 629 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 630 } 631 632 STATIC void 633 xfs_bmbt_init_ptr_from_cur( 634 struct xfs_btree_cur *cur, 635 union xfs_btree_ptr *ptr) 636 { 637 ptr->l = 0; 638 } 639 640 STATIC __int64_t 641 xfs_bmbt_key_diff( 642 struct xfs_btree_cur *cur, 643 union xfs_btree_key *key) 644 { 645 return (__int64_t)be64_to_cpu(key->bmbt.br_startoff) - 646 cur->bc_rec.b.br_startoff; 647 } 648 649 static bool 650 xfs_bmbt_verify( 651 struct xfs_buf *bp) 652 { 653 struct xfs_mount *mp = bp->b_target->bt_mount; 654 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 655 unsigned int level; 656 657 switch (block->bb_magic) { 658 case cpu_to_be32(XFS_BMAP_CRC_MAGIC): 659 if (!xfs_sb_version_hascrc(&mp->m_sb)) 660 return false; 661 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 662 return false; 663 if (be64_to_cpu(block->bb_u.l.bb_blkno) != bp->b_bn) 664 return false; 665 /* 666 * XXX: need a better way of verifying the owner here. Right now 667 * just make sure there has been one set. 668 */ 669 if (be64_to_cpu(block->bb_u.l.bb_owner) == 0) 670 return false; 671 /* fall through */ 672 case cpu_to_be32(XFS_BMAP_MAGIC): 673 break; 674 default: 675 return false; 676 } 677 678 /* 679 * numrecs and level verification. 680 * 681 * We don't know what fork we belong to, so just verify that the level 682 * is less than the maximum of the two. Later checks will be more 683 * precise. 684 */ 685 level = be16_to_cpu(block->bb_level); 686 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 687 return false; 688 if (be16_to_cpu(block->bb_numrecs) > mp->m_bmap_dmxr[level != 0]) 689 return false; 690 691 /* sibling pointer verification */ 692 if (!block->bb_u.l.bb_leftsib || 693 (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 694 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))) 695 return false; 696 if (!block->bb_u.l.bb_rightsib || 697 (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 698 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))) 699 return false; 700 701 return true; 702 } 703 704 static void 705 xfs_bmbt_read_verify( 706 struct xfs_buf *bp) 707 { 708 if (!xfs_btree_lblock_verify_crc(bp)) 709 xfs_buf_ioerror(bp, -EFSBADCRC); 710 else if (!xfs_bmbt_verify(bp)) 711 xfs_buf_ioerror(bp, -EFSCORRUPTED); 712 713 if (bp->b_error) { 714 trace_xfs_btree_corrupt(bp, _RET_IP_); 715 xfs_verifier_error(bp); 716 } 717 } 718 719 static void 720 xfs_bmbt_write_verify( 721 struct xfs_buf *bp) 722 { 723 if (!xfs_bmbt_verify(bp)) { 724 trace_xfs_btree_corrupt(bp, _RET_IP_); 725 xfs_buf_ioerror(bp, -EFSCORRUPTED); 726 xfs_verifier_error(bp); 727 return; 728 } 729 xfs_btree_lblock_calc_crc(bp); 730 } 731 732 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 733 .name = "xfs_bmbt", 734 .verify_read = xfs_bmbt_read_verify, 735 .verify_write = xfs_bmbt_write_verify, 736 }; 737 738 739 #if defined(DEBUG) || defined(XFS_WARN) 740 STATIC int 741 xfs_bmbt_keys_inorder( 742 struct xfs_btree_cur *cur, 743 union xfs_btree_key *k1, 744 union xfs_btree_key *k2) 745 { 746 return be64_to_cpu(k1->bmbt.br_startoff) < 747 be64_to_cpu(k2->bmbt.br_startoff); 748 } 749 750 STATIC int 751 xfs_bmbt_recs_inorder( 752 struct xfs_btree_cur *cur, 753 union xfs_btree_rec *r1, 754 union xfs_btree_rec *r2) 755 { 756 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 757 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 758 xfs_bmbt_disk_get_startoff(&r2->bmbt); 759 } 760 #endif /* DEBUG */ 761 762 static const struct xfs_btree_ops xfs_bmbt_ops = { 763 .rec_len = sizeof(xfs_bmbt_rec_t), 764 .key_len = sizeof(xfs_bmbt_key_t), 765 766 .dup_cursor = xfs_bmbt_dup_cursor, 767 .update_cursor = xfs_bmbt_update_cursor, 768 .alloc_block = xfs_bmbt_alloc_block, 769 .free_block = xfs_bmbt_free_block, 770 .get_maxrecs = xfs_bmbt_get_maxrecs, 771 .get_minrecs = xfs_bmbt_get_minrecs, 772 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 773 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 774 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 775 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 776 .key_diff = xfs_bmbt_key_diff, 777 .buf_ops = &xfs_bmbt_buf_ops, 778 #if defined(DEBUG) || defined(XFS_WARN) 779 .keys_inorder = xfs_bmbt_keys_inorder, 780 .recs_inorder = xfs_bmbt_recs_inorder, 781 #endif 782 }; 783 784 /* 785 * Allocate a new bmap btree cursor. 786 */ 787 struct xfs_btree_cur * /* new bmap btree cursor */ 788 xfs_bmbt_init_cursor( 789 struct xfs_mount *mp, /* file system mount point */ 790 struct xfs_trans *tp, /* transaction pointer */ 791 struct xfs_inode *ip, /* inode owning the btree */ 792 int whichfork) /* data or attr fork */ 793 { 794 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 795 struct xfs_btree_cur *cur; 796 ASSERT(whichfork != XFS_COW_FORK); 797 798 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 799 800 cur->bc_tp = tp; 801 cur->bc_mp = mp; 802 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 803 cur->bc_btnum = XFS_BTNUM_BMAP; 804 cur->bc_blocklog = mp->m_sb.sb_blocklog; 805 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 806 807 cur->bc_ops = &xfs_bmbt_ops; 808 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 809 if (xfs_sb_version_hascrc(&mp->m_sb)) 810 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 811 812 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork); 813 cur->bc_private.b.ip = ip; 814 cur->bc_private.b.firstblock = NULLFSBLOCK; 815 cur->bc_private.b.dfops = NULL; 816 cur->bc_private.b.allocated = 0; 817 cur->bc_private.b.flags = 0; 818 cur->bc_private.b.whichfork = whichfork; 819 820 return cur; 821 } 822 823 /* 824 * Calculate number of records in a bmap btree block. 825 */ 826 int 827 xfs_bmbt_maxrecs( 828 struct xfs_mount *mp, 829 int blocklen, 830 int leaf) 831 { 832 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 833 834 if (leaf) 835 return blocklen / sizeof(xfs_bmbt_rec_t); 836 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 837 } 838 839 /* 840 * Calculate number of records in a bmap btree inode root. 841 */ 842 int 843 xfs_bmdr_maxrecs( 844 int blocklen, 845 int leaf) 846 { 847 blocklen -= sizeof(xfs_bmdr_block_t); 848 849 if (leaf) 850 return blocklen / sizeof(xfs_bmdr_rec_t); 851 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 852 } 853 854 /* 855 * Change the owner of a btree format fork fo the inode passed in. Change it to 856 * the owner of that is passed in so that we can change owners before or after 857 * we switch forks between inodes. The operation that the caller is doing will 858 * determine whether is needs to change owner before or after the switch. 859 * 860 * For demand paged transactional modification, the fork switch should be done 861 * after reading in all the blocks, modifying them and pinning them in the 862 * transaction. For modification when the buffers are already pinned in memory, 863 * the fork switch can be done before changing the owner as we won't need to 864 * validate the owner until the btree buffers are unpinned and writes can occur 865 * again. 866 * 867 * For recovery based ownership change, there is no transactional context and 868 * so a buffer list must be supplied so that we can record the buffers that we 869 * modified for the caller to issue IO on. 870 */ 871 int 872 xfs_bmbt_change_owner( 873 struct xfs_trans *tp, 874 struct xfs_inode *ip, 875 int whichfork, 876 xfs_ino_t new_owner, 877 struct list_head *buffer_list) 878 { 879 struct xfs_btree_cur *cur; 880 int error; 881 882 ASSERT(tp || buffer_list); 883 ASSERT(!(tp && buffer_list)); 884 if (whichfork == XFS_DATA_FORK) 885 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE); 886 else 887 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE); 888 889 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 890 if (!cur) 891 return -ENOMEM; 892 893 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 894 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 895 return error; 896 } 897