xref: /openbmc/linux/fs/xfs/libxfs/xfs_bmap_btree.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_quota.h"
22 #include "xfs_trace.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25 
26 static struct kmem_cache	*xfs_bmbt_cur_cache;
27 
28 /*
29  * Convert on-disk form of btree root to in-memory form.
30  */
31 void
32 xfs_bmdr_to_bmbt(
33 	struct xfs_inode	*ip,
34 	xfs_bmdr_block_t	*dblock,
35 	int			dblocklen,
36 	struct xfs_btree_block	*rblock,
37 	int			rblocklen)
38 {
39 	struct xfs_mount	*mp = ip->i_mount;
40 	int			dmxr;
41 	xfs_bmbt_key_t		*fkp;
42 	__be64			*fpp;
43 	xfs_bmbt_key_t		*tkp;
44 	__be64			*tpp;
45 
46 	xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
47 				 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
48 				 XFS_BTREE_LONG_PTRS);
49 	rblock->bb_level = dblock->bb_level;
50 	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
51 	rblock->bb_numrecs = dblock->bb_numrecs;
52 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
53 	fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
54 	tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
55 	fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
56 	tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
57 	dmxr = be16_to_cpu(dblock->bb_numrecs);
58 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
59 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
60 }
61 
62 void
63 xfs_bmbt_disk_get_all(
64 	const struct xfs_bmbt_rec *rec,
65 	struct xfs_bmbt_irec	*irec)
66 {
67 	uint64_t		l0 = get_unaligned_be64(&rec->l0);
68 	uint64_t		l1 = get_unaligned_be64(&rec->l1);
69 
70 	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
71 	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
72 	irec->br_blockcount = l1 & xfs_mask64lo(21);
73 	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
74 		irec->br_state = XFS_EXT_UNWRITTEN;
75 	else
76 		irec->br_state = XFS_EXT_NORM;
77 }
78 
79 /*
80  * Extract the blockcount field from an on disk bmap extent record.
81  */
82 xfs_filblks_t
83 xfs_bmbt_disk_get_blockcount(
84 	const struct xfs_bmbt_rec	*r)
85 {
86 	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
87 }
88 
89 /*
90  * Extract the startoff field from a disk format bmap extent record.
91  */
92 xfs_fileoff_t
93 xfs_bmbt_disk_get_startoff(
94 	const struct xfs_bmbt_rec	*r)
95 {
96 	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
97 		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
98 }
99 
100 /*
101  * Set all the fields in a bmap extent record from the uncompressed form.
102  */
103 void
104 xfs_bmbt_disk_set_all(
105 	struct xfs_bmbt_rec	*r,
106 	struct xfs_bmbt_irec	*s)
107 {
108 	int			extent_flag = (s->br_state != XFS_EXT_NORM);
109 
110 	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
111 	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
112 	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
113 	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
114 
115 	put_unaligned_be64(
116 		((xfs_bmbt_rec_base_t)extent_flag << 63) |
117 		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
118 		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
119 	put_unaligned_be64(
120 		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
121 		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
122 		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
123 }
124 
125 /*
126  * Convert in-memory form of btree root to on-disk form.
127  */
128 void
129 xfs_bmbt_to_bmdr(
130 	struct xfs_mount	*mp,
131 	struct xfs_btree_block	*rblock,
132 	int			rblocklen,
133 	xfs_bmdr_block_t	*dblock,
134 	int			dblocklen)
135 {
136 	int			dmxr;
137 	xfs_bmbt_key_t		*fkp;
138 	__be64			*fpp;
139 	xfs_bmbt_key_t		*tkp;
140 	__be64			*tpp;
141 
142 	if (xfs_has_crc(mp)) {
143 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
144 		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
145 		       &mp->m_sb.sb_meta_uuid));
146 		ASSERT(rblock->bb_u.l.bb_blkno ==
147 		       cpu_to_be64(XFS_BUF_DADDR_NULL));
148 	} else
149 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
150 	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
151 	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
152 	ASSERT(rblock->bb_level != 0);
153 	dblock->bb_level = rblock->bb_level;
154 	dblock->bb_numrecs = rblock->bb_numrecs;
155 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
156 	fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
157 	tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
158 	fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
159 	tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
160 	dmxr = be16_to_cpu(dblock->bb_numrecs);
161 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
162 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
163 }
164 
165 STATIC struct xfs_btree_cur *
166 xfs_bmbt_dup_cursor(
167 	struct xfs_btree_cur	*cur)
168 {
169 	struct xfs_btree_cur	*new;
170 
171 	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
172 			cur->bc_ino.ip, cur->bc_ino.whichfork);
173 
174 	/*
175 	 * Copy the firstblock, dfops, and flags values,
176 	 * since init cursor doesn't get them.
177 	 */
178 	new->bc_ino.flags = cur->bc_ino.flags;
179 
180 	return new;
181 }
182 
183 STATIC void
184 xfs_bmbt_update_cursor(
185 	struct xfs_btree_cur	*src,
186 	struct xfs_btree_cur	*dst)
187 {
188 	ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
189 	       (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
190 
191 	dst->bc_ino.allocated += src->bc_ino.allocated;
192 	dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
193 
194 	src->bc_ino.allocated = 0;
195 }
196 
197 STATIC int
198 xfs_bmbt_alloc_block(
199 	struct xfs_btree_cur		*cur,
200 	const union xfs_btree_ptr	*start,
201 	union xfs_btree_ptr		*new,
202 	int				*stat)
203 {
204 	struct xfs_alloc_arg	args;
205 	int			error;
206 
207 	memset(&args, 0, sizeof(args));
208 	args.tp = cur->bc_tp;
209 	args.mp = cur->bc_mp;
210 	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
211 			cur->bc_ino.whichfork);
212 	args.minlen = args.maxlen = args.prod = 1;
213 	args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
214 	if (!args.wasdel && args.tp->t_blk_res == 0)
215 		return -ENOSPC;
216 
217 	/*
218 	 * If we are coming here from something like unwritten extent
219 	 * conversion, there has been no data extent allocation already done, so
220 	 * we have to ensure that we attempt to locate the entire set of bmbt
221 	 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
222 	 */
223 	if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
224 		args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
225 					cur->bc_ino.whichfork);
226 
227 	error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
228 	if (error)
229 		return error;
230 
231 	if (args.fsbno == NULLFSBLOCK && args.minleft) {
232 		/*
233 		 * Could not find an AG with enough free space to satisfy
234 		 * a full btree split.  Try again and if
235 		 * successful activate the lowspace algorithm.
236 		 */
237 		args.minleft = 0;
238 		error = xfs_alloc_vextent_start_ag(&args, 0);
239 		if (error)
240 			return error;
241 		cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
242 	}
243 	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
244 		*stat = 0;
245 		return 0;
246 	}
247 
248 	ASSERT(args.len == 1);
249 	cur->bc_ino.allocated++;
250 	cur->bc_ino.ip->i_nblocks++;
251 	xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
252 	xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
253 			XFS_TRANS_DQ_BCOUNT, 1L);
254 
255 	new->l = cpu_to_be64(args.fsbno);
256 
257 	*stat = 1;
258 	return 0;
259 }
260 
261 STATIC int
262 xfs_bmbt_free_block(
263 	struct xfs_btree_cur	*cur,
264 	struct xfs_buf		*bp)
265 {
266 	struct xfs_mount	*mp = cur->bc_mp;
267 	struct xfs_inode	*ip = cur->bc_ino.ip;
268 	struct xfs_trans	*tp = cur->bc_tp;
269 	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
270 	struct xfs_owner_info	oinfo;
271 	int			error;
272 
273 	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
274 	error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo);
275 	if (error)
276 		return error;
277 
278 	ip->i_nblocks--;
279 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
280 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
281 	return 0;
282 }
283 
284 STATIC int
285 xfs_bmbt_get_minrecs(
286 	struct xfs_btree_cur	*cur,
287 	int			level)
288 {
289 	if (level == cur->bc_nlevels - 1) {
290 		struct xfs_ifork	*ifp;
291 
292 		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
293 				    cur->bc_ino.whichfork);
294 
295 		return xfs_bmbt_maxrecs(cur->bc_mp,
296 					ifp->if_broot_bytes, level == 0) / 2;
297 	}
298 
299 	return cur->bc_mp->m_bmap_dmnr[level != 0];
300 }
301 
302 int
303 xfs_bmbt_get_maxrecs(
304 	struct xfs_btree_cur	*cur,
305 	int			level)
306 {
307 	if (level == cur->bc_nlevels - 1) {
308 		struct xfs_ifork	*ifp;
309 
310 		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
311 				    cur->bc_ino.whichfork);
312 
313 		return xfs_bmbt_maxrecs(cur->bc_mp,
314 					ifp->if_broot_bytes, level == 0);
315 	}
316 
317 	return cur->bc_mp->m_bmap_dmxr[level != 0];
318 
319 }
320 
321 /*
322  * Get the maximum records we could store in the on-disk format.
323  *
324  * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
325  * for the root node this checks the available space in the dinode fork
326  * so that we can resize the in-memory buffer to match it.  After a
327  * resize to the maximum size this function returns the same value
328  * as xfs_bmbt_get_maxrecs for the root node, too.
329  */
330 STATIC int
331 xfs_bmbt_get_dmaxrecs(
332 	struct xfs_btree_cur	*cur,
333 	int			level)
334 {
335 	if (level != cur->bc_nlevels - 1)
336 		return cur->bc_mp->m_bmap_dmxr[level != 0];
337 	return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
338 }
339 
340 STATIC void
341 xfs_bmbt_init_key_from_rec(
342 	union xfs_btree_key		*key,
343 	const union xfs_btree_rec	*rec)
344 {
345 	key->bmbt.br_startoff =
346 		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
347 }
348 
349 STATIC void
350 xfs_bmbt_init_high_key_from_rec(
351 	union xfs_btree_key		*key,
352 	const union xfs_btree_rec	*rec)
353 {
354 	key->bmbt.br_startoff = cpu_to_be64(
355 			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
356 			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
357 }
358 
359 STATIC void
360 xfs_bmbt_init_rec_from_cur(
361 	struct xfs_btree_cur	*cur,
362 	union xfs_btree_rec	*rec)
363 {
364 	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
365 }
366 
367 STATIC void
368 xfs_bmbt_init_ptr_from_cur(
369 	struct xfs_btree_cur	*cur,
370 	union xfs_btree_ptr	*ptr)
371 {
372 	ptr->l = 0;
373 }
374 
375 STATIC int64_t
376 xfs_bmbt_key_diff(
377 	struct xfs_btree_cur		*cur,
378 	const union xfs_btree_key	*key)
379 {
380 	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
381 				      cur->bc_rec.b.br_startoff;
382 }
383 
384 STATIC int64_t
385 xfs_bmbt_diff_two_keys(
386 	struct xfs_btree_cur		*cur,
387 	const union xfs_btree_key	*k1,
388 	const union xfs_btree_key	*k2,
389 	const union xfs_btree_key	*mask)
390 {
391 	uint64_t			a = be64_to_cpu(k1->bmbt.br_startoff);
392 	uint64_t			b = be64_to_cpu(k2->bmbt.br_startoff);
393 
394 	ASSERT(!mask || mask->bmbt.br_startoff);
395 
396 	/*
397 	 * Note: This routine previously casted a and b to int64 and subtracted
398 	 * them to generate a result.  This lead to problems if b was the
399 	 * "maximum" key value (all ones) being signed incorrectly, hence this
400 	 * somewhat less efficient version.
401 	 */
402 	if (a > b)
403 		return 1;
404 	if (b > a)
405 		return -1;
406 	return 0;
407 }
408 
409 static xfs_failaddr_t
410 xfs_bmbt_verify(
411 	struct xfs_buf		*bp)
412 {
413 	struct xfs_mount	*mp = bp->b_mount;
414 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
415 	xfs_failaddr_t		fa;
416 	unsigned int		level;
417 
418 	if (!xfs_verify_magic(bp, block->bb_magic))
419 		return __this_address;
420 
421 	if (xfs_has_crc(mp)) {
422 		/*
423 		 * XXX: need a better way of verifying the owner here. Right now
424 		 * just make sure there has been one set.
425 		 */
426 		fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
427 		if (fa)
428 			return fa;
429 	}
430 
431 	/*
432 	 * numrecs and level verification.
433 	 *
434 	 * We don't know what fork we belong to, so just verify that the level
435 	 * is less than the maximum of the two. Later checks will be more
436 	 * precise.
437 	 */
438 	level = be16_to_cpu(block->bb_level);
439 	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
440 		return __this_address;
441 
442 	return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
443 }
444 
445 static void
446 xfs_bmbt_read_verify(
447 	struct xfs_buf	*bp)
448 {
449 	xfs_failaddr_t	fa;
450 
451 	if (!xfs_btree_lblock_verify_crc(bp))
452 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
453 	else {
454 		fa = xfs_bmbt_verify(bp);
455 		if (fa)
456 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
457 	}
458 
459 	if (bp->b_error)
460 		trace_xfs_btree_corrupt(bp, _RET_IP_);
461 }
462 
463 static void
464 xfs_bmbt_write_verify(
465 	struct xfs_buf	*bp)
466 {
467 	xfs_failaddr_t	fa;
468 
469 	fa = xfs_bmbt_verify(bp);
470 	if (fa) {
471 		trace_xfs_btree_corrupt(bp, _RET_IP_);
472 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
473 		return;
474 	}
475 	xfs_btree_lblock_calc_crc(bp);
476 }
477 
478 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
479 	.name = "xfs_bmbt",
480 	.magic = { cpu_to_be32(XFS_BMAP_MAGIC),
481 		   cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
482 	.verify_read = xfs_bmbt_read_verify,
483 	.verify_write = xfs_bmbt_write_verify,
484 	.verify_struct = xfs_bmbt_verify,
485 };
486 
487 
488 STATIC int
489 xfs_bmbt_keys_inorder(
490 	struct xfs_btree_cur		*cur,
491 	const union xfs_btree_key	*k1,
492 	const union xfs_btree_key	*k2)
493 {
494 	return be64_to_cpu(k1->bmbt.br_startoff) <
495 		be64_to_cpu(k2->bmbt.br_startoff);
496 }
497 
498 STATIC int
499 xfs_bmbt_recs_inorder(
500 	struct xfs_btree_cur		*cur,
501 	const union xfs_btree_rec	*r1,
502 	const union xfs_btree_rec	*r2)
503 {
504 	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
505 		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
506 		xfs_bmbt_disk_get_startoff(&r2->bmbt);
507 }
508 
509 STATIC enum xbtree_key_contig
510 xfs_bmbt_keys_contiguous(
511 	struct xfs_btree_cur		*cur,
512 	const union xfs_btree_key	*key1,
513 	const union xfs_btree_key	*key2,
514 	const union xfs_btree_key	*mask)
515 {
516 	ASSERT(!mask || mask->bmbt.br_startoff);
517 
518 	return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
519 				 be64_to_cpu(key2->bmbt.br_startoff));
520 }
521 
522 static const struct xfs_btree_ops xfs_bmbt_ops = {
523 	.rec_len		= sizeof(xfs_bmbt_rec_t),
524 	.key_len		= sizeof(xfs_bmbt_key_t),
525 
526 	.dup_cursor		= xfs_bmbt_dup_cursor,
527 	.update_cursor		= xfs_bmbt_update_cursor,
528 	.alloc_block		= xfs_bmbt_alloc_block,
529 	.free_block		= xfs_bmbt_free_block,
530 	.get_maxrecs		= xfs_bmbt_get_maxrecs,
531 	.get_minrecs		= xfs_bmbt_get_minrecs,
532 	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
533 	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
534 	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
535 	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
536 	.init_ptr_from_cur	= xfs_bmbt_init_ptr_from_cur,
537 	.key_diff		= xfs_bmbt_key_diff,
538 	.diff_two_keys		= xfs_bmbt_diff_two_keys,
539 	.buf_ops		= &xfs_bmbt_buf_ops,
540 	.keys_inorder		= xfs_bmbt_keys_inorder,
541 	.recs_inorder		= xfs_bmbt_recs_inorder,
542 	.keys_contiguous	= xfs_bmbt_keys_contiguous,
543 };
544 
545 /*
546  * Allocate a new bmap btree cursor.
547  */
548 struct xfs_btree_cur *				/* new bmap btree cursor */
549 xfs_bmbt_init_cursor(
550 	struct xfs_mount	*mp,		/* file system mount point */
551 	struct xfs_trans	*tp,		/* transaction pointer */
552 	struct xfs_inode	*ip,		/* inode owning the btree */
553 	int			whichfork)	/* data or attr fork */
554 {
555 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
556 	struct xfs_btree_cur	*cur;
557 	ASSERT(whichfork != XFS_COW_FORK);
558 
559 	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
560 			mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
561 	cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
562 	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
563 
564 	cur->bc_ops = &xfs_bmbt_ops;
565 	cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
566 	if (xfs_has_crc(mp))
567 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
568 
569 	cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
570 	cur->bc_ino.ip = ip;
571 	cur->bc_ino.allocated = 0;
572 	cur->bc_ino.flags = 0;
573 	cur->bc_ino.whichfork = whichfork;
574 
575 	return cur;
576 }
577 
578 /* Calculate number of records in a block mapping btree block. */
579 static inline unsigned int
580 xfs_bmbt_block_maxrecs(
581 	unsigned int		blocklen,
582 	bool			leaf)
583 {
584 	if (leaf)
585 		return blocklen / sizeof(xfs_bmbt_rec_t);
586 	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
587 }
588 
589 /*
590  * Calculate number of records in a bmap btree block.
591  */
592 int
593 xfs_bmbt_maxrecs(
594 	struct xfs_mount	*mp,
595 	int			blocklen,
596 	int			leaf)
597 {
598 	blocklen -= XFS_BMBT_BLOCK_LEN(mp);
599 	return xfs_bmbt_block_maxrecs(blocklen, leaf);
600 }
601 
602 /*
603  * Calculate the maximum possible height of the btree that the on-disk format
604  * supports. This is used for sizing structures large enough to support every
605  * possible configuration of a filesystem that might get mounted.
606  */
607 unsigned int
608 xfs_bmbt_maxlevels_ondisk(void)
609 {
610 	unsigned int		minrecs[2];
611 	unsigned int		blocklen;
612 
613 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
614 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
615 
616 	minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
617 	minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
618 
619 	/* One extra level for the inode root. */
620 	return xfs_btree_compute_maxlevels(minrecs,
621 			XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
622 }
623 
624 /*
625  * Calculate number of records in a bmap btree inode root.
626  */
627 int
628 xfs_bmdr_maxrecs(
629 	int			blocklen,
630 	int			leaf)
631 {
632 	blocklen -= sizeof(xfs_bmdr_block_t);
633 
634 	if (leaf)
635 		return blocklen / sizeof(xfs_bmdr_rec_t);
636 	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
637 }
638 
639 /*
640  * Change the owner of a btree format fork fo the inode passed in. Change it to
641  * the owner of that is passed in so that we can change owners before or after
642  * we switch forks between inodes. The operation that the caller is doing will
643  * determine whether is needs to change owner before or after the switch.
644  *
645  * For demand paged transactional modification, the fork switch should be done
646  * after reading in all the blocks, modifying them and pinning them in the
647  * transaction. For modification when the buffers are already pinned in memory,
648  * the fork switch can be done before changing the owner as we won't need to
649  * validate the owner until the btree buffers are unpinned and writes can occur
650  * again.
651  *
652  * For recovery based ownership change, there is no transactional context and
653  * so a buffer list must be supplied so that we can record the buffers that we
654  * modified for the caller to issue IO on.
655  */
656 int
657 xfs_bmbt_change_owner(
658 	struct xfs_trans	*tp,
659 	struct xfs_inode	*ip,
660 	int			whichfork,
661 	xfs_ino_t		new_owner,
662 	struct list_head	*buffer_list)
663 {
664 	struct xfs_btree_cur	*cur;
665 	int			error;
666 
667 	ASSERT(tp || buffer_list);
668 	ASSERT(!(tp && buffer_list));
669 	ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
670 
671 	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
672 	cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
673 
674 	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
675 	xfs_btree_del_cursor(cur, error);
676 	return error;
677 }
678 
679 /* Calculate the bmap btree size for some records. */
680 unsigned long long
681 xfs_bmbt_calc_size(
682 	struct xfs_mount	*mp,
683 	unsigned long long	len)
684 {
685 	return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
686 }
687 
688 int __init
689 xfs_bmbt_init_cur_cache(void)
690 {
691 	xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
692 			xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
693 			0, 0, NULL);
694 
695 	if (!xfs_bmbt_cur_cache)
696 		return -ENOMEM;
697 	return 0;
698 }
699 
700 void
701 xfs_bmbt_destroy_cur_cache(void)
702 {
703 	kmem_cache_destroy(xfs_bmbt_cur_cache);
704 	xfs_bmbt_cur_cache = NULL;
705 }
706