1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_mount.h" 26 #include "xfs_defer.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_alloc.h" 31 #include "xfs_btree.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_bmap.h" 34 #include "xfs_error.h" 35 #include "xfs_quota.h" 36 #include "xfs_trace.h" 37 #include "xfs_cksum.h" 38 #include "xfs_rmap.h" 39 40 /* 41 * Determine the extent state. 42 */ 43 /* ARGSUSED */ 44 STATIC xfs_exntst_t 45 xfs_extent_state( 46 xfs_filblks_t blks, 47 int extent_flag) 48 { 49 if (extent_flag) { 50 ASSERT(blks != 0); /* saved for DMIG */ 51 return XFS_EXT_UNWRITTEN; 52 } 53 return XFS_EXT_NORM; 54 } 55 56 /* 57 * Convert on-disk form of btree root to in-memory form. 58 */ 59 void 60 xfs_bmdr_to_bmbt( 61 struct xfs_inode *ip, 62 xfs_bmdr_block_t *dblock, 63 int dblocklen, 64 struct xfs_btree_block *rblock, 65 int rblocklen) 66 { 67 struct xfs_mount *mp = ip->i_mount; 68 int dmxr; 69 xfs_bmbt_key_t *fkp; 70 __be64 *fpp; 71 xfs_bmbt_key_t *tkp; 72 __be64 *tpp; 73 74 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 75 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 76 XFS_BTREE_LONG_PTRS); 77 rblock->bb_level = dblock->bb_level; 78 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 79 rblock->bb_numrecs = dblock->bb_numrecs; 80 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 81 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 82 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 83 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 84 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 85 dmxr = be16_to_cpu(dblock->bb_numrecs); 86 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 87 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 88 } 89 90 /* 91 * Convert a compressed bmap extent record to an uncompressed form. 92 * This code must be in sync with the routines xfs_bmbt_get_startoff, 93 * xfs_bmbt_get_startblock, xfs_bmbt_get_blockcount and xfs_bmbt_get_state. 94 */ 95 STATIC void 96 __xfs_bmbt_get_all( 97 __uint64_t l0, 98 __uint64_t l1, 99 xfs_bmbt_irec_t *s) 100 { 101 int ext_flag; 102 xfs_exntst_t st; 103 104 ext_flag = (int)(l0 >> (64 - BMBT_EXNTFLAG_BITLEN)); 105 s->br_startoff = ((xfs_fileoff_t)l0 & 106 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 107 s->br_startblock = (((xfs_fsblock_t)l0 & xfs_mask64lo(9)) << 43) | 108 (((xfs_fsblock_t)l1) >> 21); 109 s->br_blockcount = (xfs_filblks_t)(l1 & xfs_mask64lo(21)); 110 /* This is xfs_extent_state() in-line */ 111 if (ext_flag) { 112 ASSERT(s->br_blockcount != 0); /* saved for DMIG */ 113 st = XFS_EXT_UNWRITTEN; 114 } else 115 st = XFS_EXT_NORM; 116 s->br_state = st; 117 } 118 119 void 120 xfs_bmbt_get_all( 121 xfs_bmbt_rec_host_t *r, 122 xfs_bmbt_irec_t *s) 123 { 124 __xfs_bmbt_get_all(r->l0, r->l1, s); 125 } 126 127 /* 128 * Extract the blockcount field from an in memory bmap extent record. 129 */ 130 xfs_filblks_t 131 xfs_bmbt_get_blockcount( 132 xfs_bmbt_rec_host_t *r) 133 { 134 return (xfs_filblks_t)(r->l1 & xfs_mask64lo(21)); 135 } 136 137 /* 138 * Extract the startblock field from an in memory bmap extent record. 139 */ 140 xfs_fsblock_t 141 xfs_bmbt_get_startblock( 142 xfs_bmbt_rec_host_t *r) 143 { 144 return (((xfs_fsblock_t)r->l0 & xfs_mask64lo(9)) << 43) | 145 (((xfs_fsblock_t)r->l1) >> 21); 146 } 147 148 /* 149 * Extract the startoff field from an in memory bmap extent record. 150 */ 151 xfs_fileoff_t 152 xfs_bmbt_get_startoff( 153 xfs_bmbt_rec_host_t *r) 154 { 155 return ((xfs_fileoff_t)r->l0 & 156 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 157 } 158 159 xfs_exntst_t 160 xfs_bmbt_get_state( 161 xfs_bmbt_rec_host_t *r) 162 { 163 int ext_flag; 164 165 ext_flag = (int)((r->l0) >> (64 - BMBT_EXNTFLAG_BITLEN)); 166 return xfs_extent_state(xfs_bmbt_get_blockcount(r), 167 ext_flag); 168 } 169 170 /* 171 * Extract the blockcount field from an on disk bmap extent record. 172 */ 173 xfs_filblks_t 174 xfs_bmbt_disk_get_blockcount( 175 xfs_bmbt_rec_t *r) 176 { 177 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 178 } 179 180 /* 181 * Extract the startoff field from a disk format bmap extent record. 182 */ 183 xfs_fileoff_t 184 xfs_bmbt_disk_get_startoff( 185 xfs_bmbt_rec_t *r) 186 { 187 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 188 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 189 } 190 191 192 /* 193 * Set all the fields in a bmap extent record from the arguments. 194 */ 195 void 196 xfs_bmbt_set_allf( 197 xfs_bmbt_rec_host_t *r, 198 xfs_fileoff_t startoff, 199 xfs_fsblock_t startblock, 200 xfs_filblks_t blockcount, 201 xfs_exntst_t state) 202 { 203 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; 204 205 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); 206 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); 207 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); 208 209 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); 210 211 r->l0 = ((xfs_bmbt_rec_base_t)extent_flag << 63) | 212 ((xfs_bmbt_rec_base_t)startoff << 9) | 213 ((xfs_bmbt_rec_base_t)startblock >> 43); 214 r->l1 = ((xfs_bmbt_rec_base_t)startblock << 21) | 215 ((xfs_bmbt_rec_base_t)blockcount & 216 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)); 217 } 218 219 /* 220 * Set all the fields in a bmap extent record from the uncompressed form. 221 */ 222 void 223 xfs_bmbt_set_all( 224 xfs_bmbt_rec_host_t *r, 225 xfs_bmbt_irec_t *s) 226 { 227 xfs_bmbt_set_allf(r, s->br_startoff, s->br_startblock, 228 s->br_blockcount, s->br_state); 229 } 230 231 232 /* 233 * Set all the fields in a disk format bmap extent record from the arguments. 234 */ 235 void 236 xfs_bmbt_disk_set_allf( 237 xfs_bmbt_rec_t *r, 238 xfs_fileoff_t startoff, 239 xfs_fsblock_t startblock, 240 xfs_filblks_t blockcount, 241 xfs_exntst_t state) 242 { 243 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; 244 245 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); 246 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); 247 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); 248 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); 249 250 r->l0 = cpu_to_be64( 251 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 252 ((xfs_bmbt_rec_base_t)startoff << 9) | 253 ((xfs_bmbt_rec_base_t)startblock >> 43)); 254 r->l1 = cpu_to_be64( 255 ((xfs_bmbt_rec_base_t)startblock << 21) | 256 ((xfs_bmbt_rec_base_t)blockcount & 257 (xfs_bmbt_rec_base_t)xfs_mask64lo(21))); 258 } 259 260 /* 261 * Set all the fields in a bmap extent record from the uncompressed form. 262 */ 263 STATIC void 264 xfs_bmbt_disk_set_all( 265 xfs_bmbt_rec_t *r, 266 xfs_bmbt_irec_t *s) 267 { 268 xfs_bmbt_disk_set_allf(r, s->br_startoff, s->br_startblock, 269 s->br_blockcount, s->br_state); 270 } 271 272 /* 273 * Set the blockcount field in a bmap extent record. 274 */ 275 void 276 xfs_bmbt_set_blockcount( 277 xfs_bmbt_rec_host_t *r, 278 xfs_filblks_t v) 279 { 280 ASSERT((v & xfs_mask64hi(43)) == 0); 281 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64hi(43)) | 282 (xfs_bmbt_rec_base_t)(v & xfs_mask64lo(21)); 283 } 284 285 /* 286 * Set the startblock field in a bmap extent record. 287 */ 288 void 289 xfs_bmbt_set_startblock( 290 xfs_bmbt_rec_host_t *r, 291 xfs_fsblock_t v) 292 { 293 ASSERT((v & xfs_mask64hi(12)) == 0); 294 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64hi(55)) | 295 (xfs_bmbt_rec_base_t)(v >> 43); 296 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)) | 297 (xfs_bmbt_rec_base_t)(v << 21); 298 } 299 300 /* 301 * Set the startoff field in a bmap extent record. 302 */ 303 void 304 xfs_bmbt_set_startoff( 305 xfs_bmbt_rec_host_t *r, 306 xfs_fileoff_t v) 307 { 308 ASSERT((v & xfs_mask64hi(9)) == 0); 309 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t) xfs_mask64hi(1)) | 310 ((xfs_bmbt_rec_base_t)v << 9) | 311 (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64lo(9)); 312 } 313 314 /* 315 * Set the extent state field in a bmap extent record. 316 */ 317 void 318 xfs_bmbt_set_state( 319 xfs_bmbt_rec_host_t *r, 320 xfs_exntst_t v) 321 { 322 ASSERT(v == XFS_EXT_NORM || v == XFS_EXT_UNWRITTEN); 323 if (v == XFS_EXT_NORM) 324 r->l0 &= xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN); 325 else 326 r->l0 |= xfs_mask64hi(BMBT_EXNTFLAG_BITLEN); 327 } 328 329 /* 330 * Convert in-memory form of btree root to on-disk form. 331 */ 332 void 333 xfs_bmbt_to_bmdr( 334 struct xfs_mount *mp, 335 struct xfs_btree_block *rblock, 336 int rblocklen, 337 xfs_bmdr_block_t *dblock, 338 int dblocklen) 339 { 340 int dmxr; 341 xfs_bmbt_key_t *fkp; 342 __be64 *fpp; 343 xfs_bmbt_key_t *tkp; 344 __be64 *tpp; 345 346 if (xfs_sb_version_hascrc(&mp->m_sb)) { 347 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 348 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 349 &mp->m_sb.sb_meta_uuid)); 350 ASSERT(rblock->bb_u.l.bb_blkno == 351 cpu_to_be64(XFS_BUF_DADDR_NULL)); 352 } else 353 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 354 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 355 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 356 ASSERT(rblock->bb_level != 0); 357 dblock->bb_level = rblock->bb_level; 358 dblock->bb_numrecs = rblock->bb_numrecs; 359 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 360 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 361 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 362 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 363 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 364 dmxr = be16_to_cpu(dblock->bb_numrecs); 365 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 366 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 367 } 368 369 /* 370 * Check extent records, which have just been read, for 371 * any bit in the extent flag field. ASSERT on debug 372 * kernels, as this condition should not occur. 373 * Return an error condition (1) if any flags found, 374 * otherwise return 0. 375 */ 376 377 int 378 xfs_check_nostate_extents( 379 xfs_ifork_t *ifp, 380 xfs_extnum_t idx, 381 xfs_extnum_t num) 382 { 383 for (; num > 0; num--, idx++) { 384 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, idx); 385 if ((ep->l0 >> 386 (64 - BMBT_EXNTFLAG_BITLEN)) != 0) { 387 ASSERT(0); 388 return 1; 389 } 390 } 391 return 0; 392 } 393 394 395 STATIC struct xfs_btree_cur * 396 xfs_bmbt_dup_cursor( 397 struct xfs_btree_cur *cur) 398 { 399 struct xfs_btree_cur *new; 400 401 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 402 cur->bc_private.b.ip, cur->bc_private.b.whichfork); 403 404 /* 405 * Copy the firstblock, dfops, and flags values, 406 * since init cursor doesn't get them. 407 */ 408 new->bc_private.b.firstblock = cur->bc_private.b.firstblock; 409 new->bc_private.b.dfops = cur->bc_private.b.dfops; 410 new->bc_private.b.flags = cur->bc_private.b.flags; 411 412 return new; 413 } 414 415 STATIC void 416 xfs_bmbt_update_cursor( 417 struct xfs_btree_cur *src, 418 struct xfs_btree_cur *dst) 419 { 420 ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) || 421 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME)); 422 ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops); 423 424 dst->bc_private.b.allocated += src->bc_private.b.allocated; 425 dst->bc_private.b.firstblock = src->bc_private.b.firstblock; 426 427 src->bc_private.b.allocated = 0; 428 } 429 430 STATIC int 431 xfs_bmbt_alloc_block( 432 struct xfs_btree_cur *cur, 433 union xfs_btree_ptr *start, 434 union xfs_btree_ptr *new, 435 int *stat) 436 { 437 xfs_alloc_arg_t args; /* block allocation args */ 438 int error; /* error return value */ 439 440 memset(&args, 0, sizeof(args)); 441 args.tp = cur->bc_tp; 442 args.mp = cur->bc_mp; 443 args.fsbno = cur->bc_private.b.firstblock; 444 args.firstblock = args.fsbno; 445 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino, 446 cur->bc_private.b.whichfork); 447 448 if (args.fsbno == NULLFSBLOCK) { 449 args.fsbno = be64_to_cpu(start->l); 450 try_another_ag: 451 args.type = XFS_ALLOCTYPE_START_BNO; 452 /* 453 * Make sure there is sufficient room left in the AG to 454 * complete a full tree split for an extent insert. If 455 * we are converting the middle part of an extent then 456 * we may need space for two tree splits. 457 * 458 * We are relying on the caller to make the correct block 459 * reservation for this operation to succeed. If the 460 * reservation amount is insufficient then we may fail a 461 * block allocation here and corrupt the filesystem. 462 */ 463 args.minleft = args.tp->t_blk_res; 464 } else if (cur->bc_private.b.dfops->dop_low) { 465 args.type = XFS_ALLOCTYPE_START_BNO; 466 } else { 467 args.type = XFS_ALLOCTYPE_NEAR_BNO; 468 } 469 470 args.minlen = args.maxlen = args.prod = 1; 471 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL; 472 if (!args.wasdel && args.tp->t_blk_res == 0) { 473 error = -ENOSPC; 474 goto error0; 475 } 476 error = xfs_alloc_vextent(&args); 477 if (error) 478 goto error0; 479 480 /* 481 * During a CoW operation, the allocation and bmbt updates occur in 482 * different transactions. The mapping code tries to put new bmbt 483 * blocks near extents being mapped, but the only way to guarantee this 484 * is if the alloc and the mapping happen in a single transaction that 485 * has a block reservation. That isn't the case here, so if we run out 486 * of space we'll try again with another AG. 487 */ 488 if (xfs_sb_version_hasreflink(&cur->bc_mp->m_sb) && 489 args.fsbno == NULLFSBLOCK && 490 args.type == XFS_ALLOCTYPE_NEAR_BNO) { 491 cur->bc_private.b.dfops->dop_low = true; 492 args.fsbno = cur->bc_private.b.firstblock; 493 goto try_another_ag; 494 } 495 496 if (args.fsbno == NULLFSBLOCK && args.minleft) { 497 /* 498 * Could not find an AG with enough free space to satisfy 499 * a full btree split. Try again and if 500 * successful activate the lowspace algorithm. 501 */ 502 args.fsbno = 0; 503 args.type = XFS_ALLOCTYPE_FIRST_AG; 504 error = xfs_alloc_vextent(&args); 505 if (error) 506 goto error0; 507 cur->bc_private.b.dfops->dop_low = true; 508 } 509 if (args.fsbno == NULLFSBLOCK) { 510 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 511 *stat = 0; 512 return 0; 513 } 514 ASSERT(args.len == 1); 515 cur->bc_private.b.firstblock = args.fsbno; 516 cur->bc_private.b.allocated++; 517 cur->bc_private.b.ip->i_d.di_nblocks++; 518 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE); 519 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip, 520 XFS_TRANS_DQ_BCOUNT, 1L); 521 522 new->l = cpu_to_be64(args.fsbno); 523 524 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 525 *stat = 1; 526 return 0; 527 528 error0: 529 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 530 return error; 531 } 532 533 STATIC int 534 xfs_bmbt_free_block( 535 struct xfs_btree_cur *cur, 536 struct xfs_buf *bp) 537 { 538 struct xfs_mount *mp = cur->bc_mp; 539 struct xfs_inode *ip = cur->bc_private.b.ip; 540 struct xfs_trans *tp = cur->bc_tp; 541 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); 542 struct xfs_owner_info oinfo; 543 544 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork); 545 xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo); 546 ip->i_d.di_nblocks--; 547 548 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 549 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 550 return 0; 551 } 552 553 STATIC int 554 xfs_bmbt_get_minrecs( 555 struct xfs_btree_cur *cur, 556 int level) 557 { 558 if (level == cur->bc_nlevels - 1) { 559 struct xfs_ifork *ifp; 560 561 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 562 cur->bc_private.b.whichfork); 563 564 return xfs_bmbt_maxrecs(cur->bc_mp, 565 ifp->if_broot_bytes, level == 0) / 2; 566 } 567 568 return cur->bc_mp->m_bmap_dmnr[level != 0]; 569 } 570 571 int 572 xfs_bmbt_get_maxrecs( 573 struct xfs_btree_cur *cur, 574 int level) 575 { 576 if (level == cur->bc_nlevels - 1) { 577 struct xfs_ifork *ifp; 578 579 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, 580 cur->bc_private.b.whichfork); 581 582 return xfs_bmbt_maxrecs(cur->bc_mp, 583 ifp->if_broot_bytes, level == 0); 584 } 585 586 return cur->bc_mp->m_bmap_dmxr[level != 0]; 587 588 } 589 590 /* 591 * Get the maximum records we could store in the on-disk format. 592 * 593 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 594 * for the root node this checks the available space in the dinode fork 595 * so that we can resize the in-memory buffer to match it. After a 596 * resize to the maximum size this function returns the same value 597 * as xfs_bmbt_get_maxrecs for the root node, too. 598 */ 599 STATIC int 600 xfs_bmbt_get_dmaxrecs( 601 struct xfs_btree_cur *cur, 602 int level) 603 { 604 if (level != cur->bc_nlevels - 1) 605 return cur->bc_mp->m_bmap_dmxr[level != 0]; 606 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0); 607 } 608 609 STATIC void 610 xfs_bmbt_init_key_from_rec( 611 union xfs_btree_key *key, 612 union xfs_btree_rec *rec) 613 { 614 key->bmbt.br_startoff = 615 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 616 } 617 618 STATIC void 619 xfs_bmbt_init_rec_from_cur( 620 struct xfs_btree_cur *cur, 621 union xfs_btree_rec *rec) 622 { 623 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 624 } 625 626 STATIC void 627 xfs_bmbt_init_ptr_from_cur( 628 struct xfs_btree_cur *cur, 629 union xfs_btree_ptr *ptr) 630 { 631 ptr->l = 0; 632 } 633 634 STATIC __int64_t 635 xfs_bmbt_key_diff( 636 struct xfs_btree_cur *cur, 637 union xfs_btree_key *key) 638 { 639 return (__int64_t)be64_to_cpu(key->bmbt.br_startoff) - 640 cur->bc_rec.b.br_startoff; 641 } 642 643 static bool 644 xfs_bmbt_verify( 645 struct xfs_buf *bp) 646 { 647 struct xfs_mount *mp = bp->b_target->bt_mount; 648 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 649 unsigned int level; 650 651 switch (block->bb_magic) { 652 case cpu_to_be32(XFS_BMAP_CRC_MAGIC): 653 if (!xfs_sb_version_hascrc(&mp->m_sb)) 654 return false; 655 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 656 return false; 657 if (be64_to_cpu(block->bb_u.l.bb_blkno) != bp->b_bn) 658 return false; 659 /* 660 * XXX: need a better way of verifying the owner here. Right now 661 * just make sure there has been one set. 662 */ 663 if (be64_to_cpu(block->bb_u.l.bb_owner) == 0) 664 return false; 665 /* fall through */ 666 case cpu_to_be32(XFS_BMAP_MAGIC): 667 break; 668 default: 669 return false; 670 } 671 672 /* 673 * numrecs and level verification. 674 * 675 * We don't know what fork we belong to, so just verify that the level 676 * is less than the maximum of the two. Later checks will be more 677 * precise. 678 */ 679 level = be16_to_cpu(block->bb_level); 680 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 681 return false; 682 if (be16_to_cpu(block->bb_numrecs) > mp->m_bmap_dmxr[level != 0]) 683 return false; 684 685 /* sibling pointer verification */ 686 if (!block->bb_u.l.bb_leftsib || 687 (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 688 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))) 689 return false; 690 if (!block->bb_u.l.bb_rightsib || 691 (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 692 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))) 693 return false; 694 695 return true; 696 } 697 698 static void 699 xfs_bmbt_read_verify( 700 struct xfs_buf *bp) 701 { 702 if (!xfs_btree_lblock_verify_crc(bp)) 703 xfs_buf_ioerror(bp, -EFSBADCRC); 704 else if (!xfs_bmbt_verify(bp)) 705 xfs_buf_ioerror(bp, -EFSCORRUPTED); 706 707 if (bp->b_error) { 708 trace_xfs_btree_corrupt(bp, _RET_IP_); 709 xfs_verifier_error(bp); 710 } 711 } 712 713 static void 714 xfs_bmbt_write_verify( 715 struct xfs_buf *bp) 716 { 717 if (!xfs_bmbt_verify(bp)) { 718 trace_xfs_btree_corrupt(bp, _RET_IP_); 719 xfs_buf_ioerror(bp, -EFSCORRUPTED); 720 xfs_verifier_error(bp); 721 return; 722 } 723 xfs_btree_lblock_calc_crc(bp); 724 } 725 726 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 727 .name = "xfs_bmbt", 728 .verify_read = xfs_bmbt_read_verify, 729 .verify_write = xfs_bmbt_write_verify, 730 }; 731 732 733 #if defined(DEBUG) || defined(XFS_WARN) 734 STATIC int 735 xfs_bmbt_keys_inorder( 736 struct xfs_btree_cur *cur, 737 union xfs_btree_key *k1, 738 union xfs_btree_key *k2) 739 { 740 return be64_to_cpu(k1->bmbt.br_startoff) < 741 be64_to_cpu(k2->bmbt.br_startoff); 742 } 743 744 STATIC int 745 xfs_bmbt_recs_inorder( 746 struct xfs_btree_cur *cur, 747 union xfs_btree_rec *r1, 748 union xfs_btree_rec *r2) 749 { 750 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 751 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 752 xfs_bmbt_disk_get_startoff(&r2->bmbt); 753 } 754 #endif /* DEBUG */ 755 756 static const struct xfs_btree_ops xfs_bmbt_ops = { 757 .rec_len = sizeof(xfs_bmbt_rec_t), 758 .key_len = sizeof(xfs_bmbt_key_t), 759 760 .dup_cursor = xfs_bmbt_dup_cursor, 761 .update_cursor = xfs_bmbt_update_cursor, 762 .alloc_block = xfs_bmbt_alloc_block, 763 .free_block = xfs_bmbt_free_block, 764 .get_maxrecs = xfs_bmbt_get_maxrecs, 765 .get_minrecs = xfs_bmbt_get_minrecs, 766 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 767 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 768 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 769 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 770 .key_diff = xfs_bmbt_key_diff, 771 .buf_ops = &xfs_bmbt_buf_ops, 772 #if defined(DEBUG) || defined(XFS_WARN) 773 .keys_inorder = xfs_bmbt_keys_inorder, 774 .recs_inorder = xfs_bmbt_recs_inorder, 775 #endif 776 }; 777 778 /* 779 * Allocate a new bmap btree cursor. 780 */ 781 struct xfs_btree_cur * /* new bmap btree cursor */ 782 xfs_bmbt_init_cursor( 783 struct xfs_mount *mp, /* file system mount point */ 784 struct xfs_trans *tp, /* transaction pointer */ 785 struct xfs_inode *ip, /* inode owning the btree */ 786 int whichfork) /* data or attr fork */ 787 { 788 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 789 struct xfs_btree_cur *cur; 790 ASSERT(whichfork != XFS_COW_FORK); 791 792 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 793 794 cur->bc_tp = tp; 795 cur->bc_mp = mp; 796 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 797 cur->bc_btnum = XFS_BTNUM_BMAP; 798 cur->bc_blocklog = mp->m_sb.sb_blocklog; 799 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 800 801 cur->bc_ops = &xfs_bmbt_ops; 802 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 803 if (xfs_sb_version_hascrc(&mp->m_sb)) 804 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 805 806 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork); 807 cur->bc_private.b.ip = ip; 808 cur->bc_private.b.firstblock = NULLFSBLOCK; 809 cur->bc_private.b.dfops = NULL; 810 cur->bc_private.b.allocated = 0; 811 cur->bc_private.b.flags = 0; 812 cur->bc_private.b.whichfork = whichfork; 813 814 return cur; 815 } 816 817 /* 818 * Calculate number of records in a bmap btree block. 819 */ 820 int 821 xfs_bmbt_maxrecs( 822 struct xfs_mount *mp, 823 int blocklen, 824 int leaf) 825 { 826 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 827 828 if (leaf) 829 return blocklen / sizeof(xfs_bmbt_rec_t); 830 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 831 } 832 833 /* 834 * Calculate number of records in a bmap btree inode root. 835 */ 836 int 837 xfs_bmdr_maxrecs( 838 int blocklen, 839 int leaf) 840 { 841 blocklen -= sizeof(xfs_bmdr_block_t); 842 843 if (leaf) 844 return blocklen / sizeof(xfs_bmdr_rec_t); 845 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 846 } 847 848 /* 849 * Change the owner of a btree format fork fo the inode passed in. Change it to 850 * the owner of that is passed in so that we can change owners before or after 851 * we switch forks between inodes. The operation that the caller is doing will 852 * determine whether is needs to change owner before or after the switch. 853 * 854 * For demand paged transactional modification, the fork switch should be done 855 * after reading in all the blocks, modifying them and pinning them in the 856 * transaction. For modification when the buffers are already pinned in memory, 857 * the fork switch can be done before changing the owner as we won't need to 858 * validate the owner until the btree buffers are unpinned and writes can occur 859 * again. 860 * 861 * For recovery based ownership change, there is no transactional context and 862 * so a buffer list must be supplied so that we can record the buffers that we 863 * modified for the caller to issue IO on. 864 */ 865 int 866 xfs_bmbt_change_owner( 867 struct xfs_trans *tp, 868 struct xfs_inode *ip, 869 int whichfork, 870 xfs_ino_t new_owner, 871 struct list_head *buffer_list) 872 { 873 struct xfs_btree_cur *cur; 874 int error; 875 876 ASSERT(tp || buffer_list); 877 ASSERT(!(tp && buffer_list)); 878 if (whichfork == XFS_DATA_FORK) 879 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE); 880 else 881 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE); 882 883 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 884 if (!cur) 885 return -ENOMEM; 886 887 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 888 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 889 return error; 890 } 891