xref: /openbmc/linux/fs/xfs/libxfs/xfs_attr_leaf.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2013 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr_remote.h"
23 #include "xfs_attr.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30 
31 
32 /*
33  * xfs_attr_leaf.c
34  *
35  * Routines to implement leaf blocks of attributes as Btrees of hashed names.
36  */
37 
38 /*========================================================================
39  * Function prototypes for the kernel.
40  *========================================================================*/
41 
42 /*
43  * Routines used for growing the Btree.
44  */
45 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
46 				 xfs_dablk_t which_block, struct xfs_buf **bpp);
47 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
48 				   struct xfs_attr3_icleaf_hdr *ichdr,
49 				   struct xfs_da_args *args, int freemap_index);
50 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
51 				   struct xfs_attr3_icleaf_hdr *ichdr,
52 				   struct xfs_buf *leaf_buffer);
53 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
54 						   xfs_da_state_blk_t *blk1,
55 						   xfs_da_state_blk_t *blk2);
56 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
57 			xfs_da_state_blk_t *leaf_blk_1,
58 			struct xfs_attr3_icleaf_hdr *ichdr1,
59 			xfs_da_state_blk_t *leaf_blk_2,
60 			struct xfs_attr3_icleaf_hdr *ichdr2,
61 			int *number_entries_in_blk1,
62 			int *number_usedbytes_in_blk1);
63 
64 /*
65  * Utility routines.
66  */
67 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
68 			struct xfs_attr_leafblock *src_leaf,
69 			struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
70 			struct xfs_attr_leafblock *dst_leaf,
71 			struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
72 			int move_count);
73 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
74 
75 /*
76  * attr3 block 'firstused' conversion helpers.
77  *
78  * firstused refers to the offset of the first used byte of the nameval region
79  * of an attr leaf block. The region starts at the tail of the block and expands
80  * backwards towards the middle. As such, firstused is initialized to the block
81  * size for an empty leaf block and is reduced from there.
82  *
83  * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
84  * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
85  * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
86  * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
87  * the attr block size. The following helpers manage the conversion between the
88  * in-core and on-disk formats.
89  */
90 
91 static void
92 xfs_attr3_leaf_firstused_from_disk(
93 	struct xfs_da_geometry		*geo,
94 	struct xfs_attr3_icleaf_hdr	*to,
95 	struct xfs_attr_leafblock	*from)
96 {
97 	struct xfs_attr3_leaf_hdr	*hdr3;
98 
99 	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
100 		hdr3 = (struct xfs_attr3_leaf_hdr *) from;
101 		to->firstused = be16_to_cpu(hdr3->firstused);
102 	} else {
103 		to->firstused = be16_to_cpu(from->hdr.firstused);
104 	}
105 
106 	/*
107 	 * Convert from the magic fsb size value to actual blocksize. This
108 	 * should only occur for empty blocks when the block size overflows
109 	 * 16-bits.
110 	 */
111 	if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
112 		ASSERT(!to->count && !to->usedbytes);
113 		ASSERT(geo->blksize > USHRT_MAX);
114 		to->firstused = geo->blksize;
115 	}
116 }
117 
118 static void
119 xfs_attr3_leaf_firstused_to_disk(
120 	struct xfs_da_geometry		*geo,
121 	struct xfs_attr_leafblock	*to,
122 	struct xfs_attr3_icleaf_hdr	*from)
123 {
124 	struct xfs_attr3_leaf_hdr	*hdr3;
125 	uint32_t			firstused;
126 
127 	/* magic value should only be seen on disk */
128 	ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
129 
130 	/*
131 	 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
132 	 * value. This only overflows at the max supported value of 64k. Use the
133 	 * magic on-disk value to represent block size in this case.
134 	 */
135 	firstused = from->firstused;
136 	if (firstused > USHRT_MAX) {
137 		ASSERT(from->firstused == geo->blksize);
138 		firstused = XFS_ATTR3_LEAF_NULLOFF;
139 	}
140 
141 	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
142 		hdr3 = (struct xfs_attr3_leaf_hdr *) to;
143 		hdr3->firstused = cpu_to_be16(firstused);
144 	} else {
145 		to->hdr.firstused = cpu_to_be16(firstused);
146 	}
147 }
148 
149 void
150 xfs_attr3_leaf_hdr_from_disk(
151 	struct xfs_da_geometry		*geo,
152 	struct xfs_attr3_icleaf_hdr	*to,
153 	struct xfs_attr_leafblock	*from)
154 {
155 	int	i;
156 
157 	ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
158 	       from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
159 
160 	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
161 		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
162 
163 		to->forw = be32_to_cpu(hdr3->info.hdr.forw);
164 		to->back = be32_to_cpu(hdr3->info.hdr.back);
165 		to->magic = be16_to_cpu(hdr3->info.hdr.magic);
166 		to->count = be16_to_cpu(hdr3->count);
167 		to->usedbytes = be16_to_cpu(hdr3->usedbytes);
168 		xfs_attr3_leaf_firstused_from_disk(geo, to, from);
169 		to->holes = hdr3->holes;
170 
171 		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
172 			to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
173 			to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
174 		}
175 		return;
176 	}
177 	to->forw = be32_to_cpu(from->hdr.info.forw);
178 	to->back = be32_to_cpu(from->hdr.info.back);
179 	to->magic = be16_to_cpu(from->hdr.info.magic);
180 	to->count = be16_to_cpu(from->hdr.count);
181 	to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
182 	xfs_attr3_leaf_firstused_from_disk(geo, to, from);
183 	to->holes = from->hdr.holes;
184 
185 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
186 		to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
187 		to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
188 	}
189 }
190 
191 void
192 xfs_attr3_leaf_hdr_to_disk(
193 	struct xfs_da_geometry		*geo,
194 	struct xfs_attr_leafblock	*to,
195 	struct xfs_attr3_icleaf_hdr	*from)
196 {
197 	int				i;
198 
199 	ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
200 	       from->magic == XFS_ATTR3_LEAF_MAGIC);
201 
202 	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
203 		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
204 
205 		hdr3->info.hdr.forw = cpu_to_be32(from->forw);
206 		hdr3->info.hdr.back = cpu_to_be32(from->back);
207 		hdr3->info.hdr.magic = cpu_to_be16(from->magic);
208 		hdr3->count = cpu_to_be16(from->count);
209 		hdr3->usedbytes = cpu_to_be16(from->usedbytes);
210 		xfs_attr3_leaf_firstused_to_disk(geo, to, from);
211 		hdr3->holes = from->holes;
212 		hdr3->pad1 = 0;
213 
214 		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
215 			hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
216 			hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
217 		}
218 		return;
219 	}
220 	to->hdr.info.forw = cpu_to_be32(from->forw);
221 	to->hdr.info.back = cpu_to_be32(from->back);
222 	to->hdr.info.magic = cpu_to_be16(from->magic);
223 	to->hdr.count = cpu_to_be16(from->count);
224 	to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
225 	xfs_attr3_leaf_firstused_to_disk(geo, to, from);
226 	to->hdr.holes = from->holes;
227 	to->hdr.pad1 = 0;
228 
229 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
230 		to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
231 		to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
232 	}
233 }
234 
235 static xfs_failaddr_t
236 xfs_attr3_leaf_verify_entry(
237 	struct xfs_mount			*mp,
238 	char					*buf_end,
239 	struct xfs_attr_leafblock		*leaf,
240 	struct xfs_attr3_icleaf_hdr		*leafhdr,
241 	struct xfs_attr_leaf_entry		*ent,
242 	int					idx,
243 	__u32					*last_hashval)
244 {
245 	struct xfs_attr_leaf_name_local		*lentry;
246 	struct xfs_attr_leaf_name_remote	*rentry;
247 	char					*name_end;
248 	unsigned int				nameidx;
249 	unsigned int				namesize;
250 	__u32					hashval;
251 
252 	/* hash order check */
253 	hashval = be32_to_cpu(ent->hashval);
254 	if (hashval < *last_hashval)
255 		return __this_address;
256 	*last_hashval = hashval;
257 
258 	nameidx = be16_to_cpu(ent->nameidx);
259 	if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
260 		return __this_address;
261 
262 	/*
263 	 * Check the name information.  The namelen fields are u8 so we can't
264 	 * possibly exceed the maximum name length of 255 bytes.
265 	 */
266 	if (ent->flags & XFS_ATTR_LOCAL) {
267 		lentry = xfs_attr3_leaf_name_local(leaf, idx);
268 		namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
269 				be16_to_cpu(lentry->valuelen));
270 		name_end = (char *)lentry + namesize;
271 		if (lentry->namelen == 0)
272 			return __this_address;
273 	} else {
274 		rentry = xfs_attr3_leaf_name_remote(leaf, idx);
275 		namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
276 		name_end = (char *)rentry + namesize;
277 		if (rentry->namelen == 0)
278 			return __this_address;
279 		if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
280 		    rentry->valueblk == 0)
281 			return __this_address;
282 	}
283 
284 	if (name_end > buf_end)
285 		return __this_address;
286 
287 	return NULL;
288 }
289 
290 static xfs_failaddr_t
291 xfs_attr3_leaf_verify(
292 	struct xfs_buf			*bp)
293 {
294 	struct xfs_attr3_icleaf_hdr	ichdr;
295 	struct xfs_mount		*mp = bp->b_mount;
296 	struct xfs_attr_leafblock	*leaf = bp->b_addr;
297 	struct xfs_attr_leaf_entry	*entries;
298 	struct xfs_attr_leaf_entry	*ent;
299 	char				*buf_end;
300 	uint32_t			end;	/* must be 32bit - see below */
301 	__u32				last_hashval = 0;
302 	int				i;
303 	xfs_failaddr_t			fa;
304 
305 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
306 
307 	fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
308 	if (fa)
309 		return fa;
310 
311 	/*
312 	 * firstused is the block offset of the first name info structure.
313 	 * Make sure it doesn't go off the block or crash into the header.
314 	 */
315 	if (ichdr.firstused > mp->m_attr_geo->blksize)
316 		return __this_address;
317 	if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
318 		return __this_address;
319 
320 	/* Make sure the entries array doesn't crash into the name info. */
321 	entries = xfs_attr3_leaf_entryp(bp->b_addr);
322 	if ((char *)&entries[ichdr.count] >
323 	    (char *)bp->b_addr + ichdr.firstused)
324 		return __this_address;
325 
326 	/*
327 	 * NOTE: This verifier historically failed empty leaf buffers because
328 	 * we expect the fork to be in another format. Empty attr fork format
329 	 * conversions are possible during xattr set, however, and format
330 	 * conversion is not atomic with the xattr set that triggers it. We
331 	 * cannot assume leaf blocks are non-empty until that is addressed.
332 	*/
333 	buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
334 	for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
335 		fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
336 				ent, i, &last_hashval);
337 		if (fa)
338 			return fa;
339 	}
340 
341 	/*
342 	 * Quickly check the freemap information.  Attribute data has to be
343 	 * aligned to 4-byte boundaries, and likewise for the free space.
344 	 *
345 	 * Note that for 64k block size filesystems, the freemap entries cannot
346 	 * overflow as they are only be16 fields. However, when checking end
347 	 * pointer of the freemap, we have to be careful to detect overflows and
348 	 * so use uint32_t for those checks.
349 	 */
350 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
351 		if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
352 			return __this_address;
353 		if (ichdr.freemap[i].base & 0x3)
354 			return __this_address;
355 		if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
356 			return __this_address;
357 		if (ichdr.freemap[i].size & 0x3)
358 			return __this_address;
359 
360 		/* be care of 16 bit overflows here */
361 		end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
362 		if (end < ichdr.freemap[i].base)
363 			return __this_address;
364 		if (end > mp->m_attr_geo->blksize)
365 			return __this_address;
366 	}
367 
368 	return NULL;
369 }
370 
371 static void
372 xfs_attr3_leaf_write_verify(
373 	struct xfs_buf	*bp)
374 {
375 	struct xfs_mount	*mp = bp->b_mount;
376 	struct xfs_buf_log_item	*bip = bp->b_log_item;
377 	struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
378 	xfs_failaddr_t		fa;
379 
380 	fa = xfs_attr3_leaf_verify(bp);
381 	if (fa) {
382 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
383 		return;
384 	}
385 
386 	if (!xfs_sb_version_hascrc(&mp->m_sb))
387 		return;
388 
389 	if (bip)
390 		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
391 
392 	xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
393 }
394 
395 /*
396  * leaf/node format detection on trees is sketchy, so a node read can be done on
397  * leaf level blocks when detection identifies the tree as a node format tree
398  * incorrectly. In this case, we need to swap the verifier to match the correct
399  * format of the block being read.
400  */
401 static void
402 xfs_attr3_leaf_read_verify(
403 	struct xfs_buf		*bp)
404 {
405 	struct xfs_mount	*mp = bp->b_mount;
406 	xfs_failaddr_t		fa;
407 
408 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
409 	     !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
410 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
411 	else {
412 		fa = xfs_attr3_leaf_verify(bp);
413 		if (fa)
414 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
415 	}
416 }
417 
418 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
419 	.name = "xfs_attr3_leaf",
420 	.magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
421 		     cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
422 	.verify_read = xfs_attr3_leaf_read_verify,
423 	.verify_write = xfs_attr3_leaf_write_verify,
424 	.verify_struct = xfs_attr3_leaf_verify,
425 };
426 
427 int
428 xfs_attr3_leaf_read(
429 	struct xfs_trans	*tp,
430 	struct xfs_inode	*dp,
431 	xfs_dablk_t		bno,
432 	struct xfs_buf		**bpp)
433 {
434 	int			err;
435 
436 	err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
437 			&xfs_attr3_leaf_buf_ops);
438 	if (!err && tp && *bpp)
439 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
440 	return err;
441 }
442 
443 /*========================================================================
444  * Namespace helper routines
445  *========================================================================*/
446 
447 static bool
448 xfs_attr_match(
449 	struct xfs_da_args	*args,
450 	uint8_t			namelen,
451 	unsigned char		*name,
452 	int			flags)
453 {
454 	if (args->namelen != namelen)
455 		return false;
456 	if (memcmp(args->name, name, namelen) != 0)
457 		return false;
458 	/*
459 	 * If we are looking for incomplete entries, show only those, else only
460 	 * show complete entries.
461 	 */
462 	if (args->attr_filter !=
463 	    (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
464 		return false;
465 	return true;
466 }
467 
468 static int
469 xfs_attr_copy_value(
470 	struct xfs_da_args	*args,
471 	unsigned char		*value,
472 	int			valuelen)
473 {
474 	/*
475 	 * No copy if all we have to do is get the length
476 	 */
477 	if (!args->valuelen) {
478 		args->valuelen = valuelen;
479 		return 0;
480 	}
481 
482 	/*
483 	 * No copy if the length of the existing buffer is too small
484 	 */
485 	if (args->valuelen < valuelen) {
486 		args->valuelen = valuelen;
487 		return -ERANGE;
488 	}
489 
490 	if (!args->value) {
491 		args->value = kmem_alloc_large(valuelen, KM_NOLOCKDEP);
492 		if (!args->value)
493 			return -ENOMEM;
494 	}
495 	args->valuelen = valuelen;
496 
497 	/* remote block xattr requires IO for copy-in */
498 	if (args->rmtblkno)
499 		return xfs_attr_rmtval_get(args);
500 
501 	/*
502 	 * This is to prevent a GCC warning because the remote xattr case
503 	 * doesn't have a value to pass in. In that case, we never reach here,
504 	 * but GCC can't work that out and so throws a "passing NULL to
505 	 * memcpy" warning.
506 	 */
507 	if (!value)
508 		return -EINVAL;
509 	memcpy(args->value, value, valuelen);
510 	return 0;
511 }
512 
513 /*========================================================================
514  * External routines when attribute fork size < XFS_LITINO(mp).
515  *========================================================================*/
516 
517 /*
518  * Query whether the requested number of additional bytes of extended
519  * attribute space will be able to fit inline.
520  *
521  * Returns zero if not, else the di_forkoff fork offset to be used in the
522  * literal area for attribute data once the new bytes have been added.
523  *
524  * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
525  * special case for dev/uuid inodes, they have fixed size data forks.
526  */
527 int
528 xfs_attr_shortform_bytesfit(
529 	struct xfs_inode	*dp,
530 	int			bytes)
531 {
532 	struct xfs_mount	*mp = dp->i_mount;
533 	int64_t			dsize;
534 	int			minforkoff;
535 	int			maxforkoff;
536 	int			offset;
537 
538 	/* rounded down */
539 	offset = (XFS_LITINO(mp) - bytes) >> 3;
540 
541 	if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
542 		minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
543 		return (offset >= minforkoff) ? minforkoff : 0;
544 	}
545 
546 	/*
547 	 * If the requested numbers of bytes is smaller or equal to the
548 	 * current attribute fork size we can always proceed.
549 	 *
550 	 * Note that if_bytes in the data fork might actually be larger than
551 	 * the current data fork size is due to delalloc extents. In that
552 	 * case either the extent count will go down when they are converted
553 	 * to real extents, or the delalloc conversion will take care of the
554 	 * literal area rebalancing.
555 	 */
556 	if (bytes <= XFS_IFORK_ASIZE(dp))
557 		return dp->i_d.di_forkoff;
558 
559 	/*
560 	 * For attr2 we can try to move the forkoff if there is space in the
561 	 * literal area, but for the old format we are done if there is no
562 	 * space in the fixed attribute fork.
563 	 */
564 	if (!(mp->m_flags & XFS_MOUNT_ATTR2))
565 		return 0;
566 
567 	dsize = dp->i_df.if_bytes;
568 
569 	switch (dp->i_df.if_format) {
570 	case XFS_DINODE_FMT_EXTENTS:
571 		/*
572 		 * If there is no attr fork and the data fork is extents,
573 		 * determine if creating the default attr fork will result
574 		 * in the extents form migrating to btree. If so, the
575 		 * minimum offset only needs to be the space required for
576 		 * the btree root.
577 		 */
578 		if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
579 		    xfs_default_attroffset(dp))
580 			dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
581 		break;
582 	case XFS_DINODE_FMT_BTREE:
583 		/*
584 		 * If we have a data btree then keep forkoff if we have one,
585 		 * otherwise we are adding a new attr, so then we set
586 		 * minforkoff to where the btree root can finish so we have
587 		 * plenty of room for attrs
588 		 */
589 		if (dp->i_d.di_forkoff) {
590 			if (offset < dp->i_d.di_forkoff)
591 				return 0;
592 			return dp->i_d.di_forkoff;
593 		}
594 		dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
595 		break;
596 	}
597 
598 	/*
599 	 * A data fork btree root must have space for at least
600 	 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
601 	 */
602 	minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
603 	minforkoff = roundup(minforkoff, 8) >> 3;
604 
605 	/* attr fork btree root can have at least this many key/ptr pairs */
606 	maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
607 	maxforkoff = maxforkoff >> 3;	/* rounded down */
608 
609 	if (offset >= maxforkoff)
610 		return maxforkoff;
611 	if (offset >= minforkoff)
612 		return offset;
613 	return 0;
614 }
615 
616 /*
617  * Switch on the ATTR2 superblock bit (implies also FEATURES2)
618  */
619 STATIC void
620 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
621 {
622 	if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
623 	    !(xfs_sb_version_hasattr2(&mp->m_sb))) {
624 		spin_lock(&mp->m_sb_lock);
625 		if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
626 			xfs_sb_version_addattr2(&mp->m_sb);
627 			spin_unlock(&mp->m_sb_lock);
628 			xfs_log_sb(tp);
629 		} else
630 			spin_unlock(&mp->m_sb_lock);
631 	}
632 }
633 
634 /*
635  * Create the initial contents of a shortform attribute list.
636  */
637 void
638 xfs_attr_shortform_create(
639 	struct xfs_da_args	*args)
640 {
641 	struct xfs_inode	*dp = args->dp;
642 	struct xfs_ifork	*ifp = dp->i_afp;
643 	struct xfs_attr_sf_hdr	*hdr;
644 
645 	trace_xfs_attr_sf_create(args);
646 
647 	ASSERT(ifp->if_bytes == 0);
648 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) {
649 		ifp->if_flags &= ~XFS_IFEXTENTS;	/* just in case */
650 		ifp->if_format = XFS_DINODE_FMT_LOCAL;
651 		ifp->if_flags |= XFS_IFINLINE;
652 	} else {
653 		ASSERT(ifp->if_flags & XFS_IFINLINE);
654 	}
655 	xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
656 	hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
657 	hdr->count = 0;
658 	hdr->totsize = cpu_to_be16(sizeof(*hdr));
659 	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
660 }
661 
662 /*
663  * Add a name/value pair to the shortform attribute list.
664  * Overflow from the inode has already been checked for.
665  */
666 void
667 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
668 {
669 	xfs_attr_shortform_t *sf;
670 	xfs_attr_sf_entry_t *sfe;
671 	int i, offset, size;
672 	xfs_mount_t *mp;
673 	xfs_inode_t *dp;
674 	struct xfs_ifork *ifp;
675 
676 	trace_xfs_attr_sf_add(args);
677 
678 	dp = args->dp;
679 	mp = dp->i_mount;
680 	dp->i_d.di_forkoff = forkoff;
681 
682 	ifp = dp->i_afp;
683 	ASSERT(ifp->if_flags & XFS_IFINLINE);
684 	sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
685 	sfe = &sf->list[0];
686 	for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
687 		ASSERT(!xfs_attr_match(args, sfe->namelen, sfe->nameval,
688 			sfe->flags));
689 	}
690 
691 	offset = (char *)sfe - (char *)sf;
692 	size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
693 	xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
694 	sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
695 	sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
696 
697 	sfe->namelen = args->namelen;
698 	sfe->valuelen = args->valuelen;
699 	sfe->flags = args->attr_filter;
700 	memcpy(sfe->nameval, args->name, args->namelen);
701 	memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
702 	sf->hdr.count++;
703 	be16_add_cpu(&sf->hdr.totsize, size);
704 	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
705 
706 	xfs_sbversion_add_attr2(mp, args->trans);
707 }
708 
709 /*
710  * After the last attribute is removed revert to original inode format,
711  * making all literal area available to the data fork once more.
712  */
713 void
714 xfs_attr_fork_remove(
715 	struct xfs_inode	*ip,
716 	struct xfs_trans	*tp)
717 {
718 	ASSERT(ip->i_afp->if_nextents == 0);
719 
720 	xfs_idestroy_fork(ip->i_afp);
721 	kmem_cache_free(xfs_ifork_zone, ip->i_afp);
722 	ip->i_afp = NULL;
723 	ip->i_d.di_forkoff = 0;
724 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
725 }
726 
727 /*
728  * Remove an attribute from the shortform attribute list structure.
729  */
730 int
731 xfs_attr_shortform_remove(xfs_da_args_t *args)
732 {
733 	xfs_attr_shortform_t *sf;
734 	xfs_attr_sf_entry_t *sfe;
735 	int base, size=0, end, totsize, i;
736 	xfs_mount_t *mp;
737 	xfs_inode_t *dp;
738 
739 	trace_xfs_attr_sf_remove(args);
740 
741 	dp = args->dp;
742 	mp = dp->i_mount;
743 	base = sizeof(xfs_attr_sf_hdr_t);
744 	sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
745 	sfe = &sf->list[0];
746 	end = sf->hdr.count;
747 	for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
748 					base += size, i++) {
749 		size = XFS_ATTR_SF_ENTSIZE(sfe);
750 		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
751 				sfe->flags))
752 			break;
753 	}
754 	if (i == end)
755 		return -ENOATTR;
756 
757 	/*
758 	 * Fix up the attribute fork data, covering the hole
759 	 */
760 	end = base + size;
761 	totsize = be16_to_cpu(sf->hdr.totsize);
762 	if (end != totsize)
763 		memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
764 	sf->hdr.count--;
765 	be16_add_cpu(&sf->hdr.totsize, -size);
766 
767 	/*
768 	 * Fix up the start offset of the attribute fork
769 	 */
770 	totsize -= size;
771 	if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
772 	    (mp->m_flags & XFS_MOUNT_ATTR2) &&
773 	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
774 	    !(args->op_flags & XFS_DA_OP_ADDNAME)) {
775 		xfs_attr_fork_remove(dp, args->trans);
776 	} else {
777 		xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
778 		dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
779 		ASSERT(dp->i_d.di_forkoff);
780 		ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
781 				(args->op_flags & XFS_DA_OP_ADDNAME) ||
782 				!(mp->m_flags & XFS_MOUNT_ATTR2) ||
783 				dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
784 		xfs_trans_log_inode(args->trans, dp,
785 					XFS_ILOG_CORE | XFS_ILOG_ADATA);
786 	}
787 
788 	xfs_sbversion_add_attr2(mp, args->trans);
789 
790 	return 0;
791 }
792 
793 /*
794  * Look up a name in a shortform attribute list structure.
795  */
796 /*ARGSUSED*/
797 int
798 xfs_attr_shortform_lookup(xfs_da_args_t *args)
799 {
800 	xfs_attr_shortform_t *sf;
801 	xfs_attr_sf_entry_t *sfe;
802 	int i;
803 	struct xfs_ifork *ifp;
804 
805 	trace_xfs_attr_sf_lookup(args);
806 
807 	ifp = args->dp->i_afp;
808 	ASSERT(ifp->if_flags & XFS_IFINLINE);
809 	sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
810 	sfe = &sf->list[0];
811 	for (i = 0; i < sf->hdr.count;
812 				sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
813 		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
814 				sfe->flags))
815 			return -EEXIST;
816 	}
817 	return -ENOATTR;
818 }
819 
820 /*
821  * Retrieve the attribute value and length.
822  *
823  * If args->valuelen is zero, only the length needs to be returned.  Unlike a
824  * lookup, we only return an error if the attribute does not exist or we can't
825  * retrieve the value.
826  */
827 int
828 xfs_attr_shortform_getvalue(
829 	struct xfs_da_args	*args)
830 {
831 	struct xfs_attr_shortform *sf;
832 	struct xfs_attr_sf_entry *sfe;
833 	int			i;
834 
835 	ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
836 	sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
837 	sfe = &sf->list[0];
838 	for (i = 0; i < sf->hdr.count;
839 				sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
840 		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
841 				sfe->flags))
842 			return xfs_attr_copy_value(args,
843 				&sfe->nameval[args->namelen], sfe->valuelen);
844 	}
845 	return -ENOATTR;
846 }
847 
848 /*
849  * Convert from using the shortform to the leaf.  On success, return the
850  * buffer so that we can keep it locked until we're totally done with it.
851  */
852 int
853 xfs_attr_shortform_to_leaf(
854 	struct xfs_da_args		*args,
855 	struct xfs_buf			**leaf_bp)
856 {
857 	struct xfs_inode		*dp;
858 	struct xfs_attr_shortform	*sf;
859 	struct xfs_attr_sf_entry	*sfe;
860 	struct xfs_da_args		nargs;
861 	char				*tmpbuffer;
862 	int				error, i, size;
863 	xfs_dablk_t			blkno;
864 	struct xfs_buf			*bp;
865 	struct xfs_ifork		*ifp;
866 
867 	trace_xfs_attr_sf_to_leaf(args);
868 
869 	dp = args->dp;
870 	ifp = dp->i_afp;
871 	sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
872 	size = be16_to_cpu(sf->hdr.totsize);
873 	tmpbuffer = kmem_alloc(size, 0);
874 	ASSERT(tmpbuffer != NULL);
875 	memcpy(tmpbuffer, ifp->if_u1.if_data, size);
876 	sf = (xfs_attr_shortform_t *)tmpbuffer;
877 
878 	xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
879 	xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
880 
881 	bp = NULL;
882 	error = xfs_da_grow_inode(args, &blkno);
883 	if (error)
884 		goto out;
885 
886 	ASSERT(blkno == 0);
887 	error = xfs_attr3_leaf_create(args, blkno, &bp);
888 	if (error)
889 		goto out;
890 
891 	memset((char *)&nargs, 0, sizeof(nargs));
892 	nargs.dp = dp;
893 	nargs.geo = args->geo;
894 	nargs.total = args->total;
895 	nargs.whichfork = XFS_ATTR_FORK;
896 	nargs.trans = args->trans;
897 	nargs.op_flags = XFS_DA_OP_OKNOENT;
898 
899 	sfe = &sf->list[0];
900 	for (i = 0; i < sf->hdr.count; i++) {
901 		nargs.name = sfe->nameval;
902 		nargs.namelen = sfe->namelen;
903 		nargs.value = &sfe->nameval[nargs.namelen];
904 		nargs.valuelen = sfe->valuelen;
905 		nargs.hashval = xfs_da_hashname(sfe->nameval,
906 						sfe->namelen);
907 		nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
908 		error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
909 		ASSERT(error == -ENOATTR);
910 		error = xfs_attr3_leaf_add(bp, &nargs);
911 		ASSERT(error != -ENOSPC);
912 		if (error)
913 			goto out;
914 		sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
915 	}
916 	error = 0;
917 	*leaf_bp = bp;
918 out:
919 	kmem_free(tmpbuffer);
920 	return error;
921 }
922 
923 /*
924  * Check a leaf attribute block to see if all the entries would fit into
925  * a shortform attribute list.
926  */
927 int
928 xfs_attr_shortform_allfit(
929 	struct xfs_buf		*bp,
930 	struct xfs_inode	*dp)
931 {
932 	struct xfs_attr_leafblock *leaf;
933 	struct xfs_attr_leaf_entry *entry;
934 	xfs_attr_leaf_name_local_t *name_loc;
935 	struct xfs_attr3_icleaf_hdr leafhdr;
936 	int			bytes;
937 	int			i;
938 	struct xfs_mount	*mp = bp->b_mount;
939 
940 	leaf = bp->b_addr;
941 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
942 	entry = xfs_attr3_leaf_entryp(leaf);
943 
944 	bytes = sizeof(struct xfs_attr_sf_hdr);
945 	for (i = 0; i < leafhdr.count; entry++, i++) {
946 		if (entry->flags & XFS_ATTR_INCOMPLETE)
947 			continue;		/* don't copy partial entries */
948 		if (!(entry->flags & XFS_ATTR_LOCAL))
949 			return 0;
950 		name_loc = xfs_attr3_leaf_name_local(leaf, i);
951 		if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
952 			return 0;
953 		if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
954 			return 0;
955 		bytes += sizeof(struct xfs_attr_sf_entry) - 1
956 				+ name_loc->namelen
957 				+ be16_to_cpu(name_loc->valuelen);
958 	}
959 	if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
960 	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
961 	    (bytes == sizeof(struct xfs_attr_sf_hdr)))
962 		return -1;
963 	return xfs_attr_shortform_bytesfit(dp, bytes);
964 }
965 
966 /* Verify the consistency of an inline attribute fork. */
967 xfs_failaddr_t
968 xfs_attr_shortform_verify(
969 	struct xfs_inode		*ip)
970 {
971 	struct xfs_attr_shortform	*sfp;
972 	struct xfs_attr_sf_entry	*sfep;
973 	struct xfs_attr_sf_entry	*next_sfep;
974 	char				*endp;
975 	struct xfs_ifork		*ifp;
976 	int				i;
977 	int64_t				size;
978 
979 	ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
980 	ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
981 	sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
982 	size = ifp->if_bytes;
983 
984 	/*
985 	 * Give up if the attribute is way too short.
986 	 */
987 	if (size < sizeof(struct xfs_attr_sf_hdr))
988 		return __this_address;
989 
990 	endp = (char *)sfp + size;
991 
992 	/* Check all reported entries */
993 	sfep = &sfp->list[0];
994 	for (i = 0; i < sfp->hdr.count; i++) {
995 		/*
996 		 * struct xfs_attr_sf_entry has a variable length.
997 		 * Check the fixed-offset parts of the structure are
998 		 * within the data buffer.
999 		 */
1000 		if (((char *)sfep + sizeof(*sfep)) >= endp)
1001 			return __this_address;
1002 
1003 		/* Don't allow names with known bad length. */
1004 		if (sfep->namelen == 0)
1005 			return __this_address;
1006 
1007 		/*
1008 		 * Check that the variable-length part of the structure is
1009 		 * within the data buffer.  The next entry starts after the
1010 		 * name component, so nextentry is an acceptable test.
1011 		 */
1012 		next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep);
1013 		if ((char *)next_sfep > endp)
1014 			return __this_address;
1015 
1016 		/*
1017 		 * Check for unknown flags.  Short form doesn't support
1018 		 * the incomplete or local bits, so we can use the namespace
1019 		 * mask here.
1020 		 */
1021 		if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1022 			return __this_address;
1023 
1024 		/*
1025 		 * Check for invalid namespace combinations.  We only allow
1026 		 * one namespace flag per xattr, so we can just count the
1027 		 * bits (i.e. hweight) here.
1028 		 */
1029 		if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1030 			return __this_address;
1031 
1032 		sfep = next_sfep;
1033 	}
1034 	if ((void *)sfep != (void *)endp)
1035 		return __this_address;
1036 
1037 	return NULL;
1038 }
1039 
1040 /*
1041  * Convert a leaf attribute list to shortform attribute list
1042  */
1043 int
1044 xfs_attr3_leaf_to_shortform(
1045 	struct xfs_buf		*bp,
1046 	struct xfs_da_args	*args,
1047 	int			forkoff)
1048 {
1049 	struct xfs_attr_leafblock *leaf;
1050 	struct xfs_attr3_icleaf_hdr ichdr;
1051 	struct xfs_attr_leaf_entry *entry;
1052 	struct xfs_attr_leaf_name_local *name_loc;
1053 	struct xfs_da_args	nargs;
1054 	struct xfs_inode	*dp = args->dp;
1055 	char			*tmpbuffer;
1056 	int			error;
1057 	int			i;
1058 
1059 	trace_xfs_attr_leaf_to_sf(args);
1060 
1061 	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1062 	if (!tmpbuffer)
1063 		return -ENOMEM;
1064 
1065 	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1066 
1067 	leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1068 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1069 	entry = xfs_attr3_leaf_entryp(leaf);
1070 
1071 	/* XXX (dgc): buffer is about to be marked stale - why zero it? */
1072 	memset(bp->b_addr, 0, args->geo->blksize);
1073 
1074 	/*
1075 	 * Clean out the prior contents of the attribute list.
1076 	 */
1077 	error = xfs_da_shrink_inode(args, 0, bp);
1078 	if (error)
1079 		goto out;
1080 
1081 	if (forkoff == -1) {
1082 		ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
1083 		ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1084 		xfs_attr_fork_remove(dp, args->trans);
1085 		goto out;
1086 	}
1087 
1088 	xfs_attr_shortform_create(args);
1089 
1090 	/*
1091 	 * Copy the attributes
1092 	 */
1093 	memset((char *)&nargs, 0, sizeof(nargs));
1094 	nargs.geo = args->geo;
1095 	nargs.dp = dp;
1096 	nargs.total = args->total;
1097 	nargs.whichfork = XFS_ATTR_FORK;
1098 	nargs.trans = args->trans;
1099 	nargs.op_flags = XFS_DA_OP_OKNOENT;
1100 
1101 	for (i = 0; i < ichdr.count; entry++, i++) {
1102 		if (entry->flags & XFS_ATTR_INCOMPLETE)
1103 			continue;	/* don't copy partial entries */
1104 		if (!entry->nameidx)
1105 			continue;
1106 		ASSERT(entry->flags & XFS_ATTR_LOCAL);
1107 		name_loc = xfs_attr3_leaf_name_local(leaf, i);
1108 		nargs.name = name_loc->nameval;
1109 		nargs.namelen = name_loc->namelen;
1110 		nargs.value = &name_loc->nameval[nargs.namelen];
1111 		nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1112 		nargs.hashval = be32_to_cpu(entry->hashval);
1113 		nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1114 		xfs_attr_shortform_add(&nargs, forkoff);
1115 	}
1116 	error = 0;
1117 
1118 out:
1119 	kmem_free(tmpbuffer);
1120 	return error;
1121 }
1122 
1123 /*
1124  * Convert from using a single leaf to a root node and a leaf.
1125  */
1126 int
1127 xfs_attr3_leaf_to_node(
1128 	struct xfs_da_args	*args)
1129 {
1130 	struct xfs_attr_leafblock *leaf;
1131 	struct xfs_attr3_icleaf_hdr icleafhdr;
1132 	struct xfs_attr_leaf_entry *entries;
1133 	struct xfs_da3_icnode_hdr icnodehdr;
1134 	struct xfs_da_intnode	*node;
1135 	struct xfs_inode	*dp = args->dp;
1136 	struct xfs_mount	*mp = dp->i_mount;
1137 	struct xfs_buf		*bp1 = NULL;
1138 	struct xfs_buf		*bp2 = NULL;
1139 	xfs_dablk_t		blkno;
1140 	int			error;
1141 
1142 	trace_xfs_attr_leaf_to_node(args);
1143 
1144 	error = xfs_da_grow_inode(args, &blkno);
1145 	if (error)
1146 		goto out;
1147 	error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1148 	if (error)
1149 		goto out;
1150 
1151 	error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1152 	if (error)
1153 		goto out;
1154 
1155 	/* copy leaf to new buffer, update identifiers */
1156 	xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1157 	bp2->b_ops = bp1->b_ops;
1158 	memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1159 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
1160 		struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1161 		hdr3->blkno = cpu_to_be64(bp2->b_bn);
1162 	}
1163 	xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1164 
1165 	/*
1166 	 * Set up the new root node.
1167 	 */
1168 	error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1169 	if (error)
1170 		goto out;
1171 	node = bp1->b_addr;
1172 	xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1173 
1174 	leaf = bp2->b_addr;
1175 	xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1176 	entries = xfs_attr3_leaf_entryp(leaf);
1177 
1178 	/* both on-disk, don't endian-flip twice */
1179 	icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1180 	icnodehdr.btree[0].before = cpu_to_be32(blkno);
1181 	icnodehdr.count = 1;
1182 	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1183 	xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1184 	error = 0;
1185 out:
1186 	return error;
1187 }
1188 
1189 /*========================================================================
1190  * Routines used for growing the Btree.
1191  *========================================================================*/
1192 
1193 /*
1194  * Create the initial contents of a leaf attribute list
1195  * or a leaf in a node attribute list.
1196  */
1197 STATIC int
1198 xfs_attr3_leaf_create(
1199 	struct xfs_da_args	*args,
1200 	xfs_dablk_t		blkno,
1201 	struct xfs_buf		**bpp)
1202 {
1203 	struct xfs_attr_leafblock *leaf;
1204 	struct xfs_attr3_icleaf_hdr ichdr;
1205 	struct xfs_inode	*dp = args->dp;
1206 	struct xfs_mount	*mp = dp->i_mount;
1207 	struct xfs_buf		*bp;
1208 	int			error;
1209 
1210 	trace_xfs_attr_leaf_create(args);
1211 
1212 	error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1213 					    XFS_ATTR_FORK);
1214 	if (error)
1215 		return error;
1216 	bp->b_ops = &xfs_attr3_leaf_buf_ops;
1217 	xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1218 	leaf = bp->b_addr;
1219 	memset(leaf, 0, args->geo->blksize);
1220 
1221 	memset(&ichdr, 0, sizeof(ichdr));
1222 	ichdr.firstused = args->geo->blksize;
1223 
1224 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
1225 		struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1226 
1227 		ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1228 
1229 		hdr3->blkno = cpu_to_be64(bp->b_bn);
1230 		hdr3->owner = cpu_to_be64(dp->i_ino);
1231 		uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1232 
1233 		ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1234 	} else {
1235 		ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1236 		ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1237 	}
1238 	ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1239 
1240 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1241 	xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1242 
1243 	*bpp = bp;
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Split the leaf node, rebalance, then add the new entry.
1249  */
1250 int
1251 xfs_attr3_leaf_split(
1252 	struct xfs_da_state	*state,
1253 	struct xfs_da_state_blk	*oldblk,
1254 	struct xfs_da_state_blk	*newblk)
1255 {
1256 	xfs_dablk_t blkno;
1257 	int error;
1258 
1259 	trace_xfs_attr_leaf_split(state->args);
1260 
1261 	/*
1262 	 * Allocate space for a new leaf node.
1263 	 */
1264 	ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1265 	error = xfs_da_grow_inode(state->args, &blkno);
1266 	if (error)
1267 		return error;
1268 	error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1269 	if (error)
1270 		return error;
1271 	newblk->blkno = blkno;
1272 	newblk->magic = XFS_ATTR_LEAF_MAGIC;
1273 
1274 	/*
1275 	 * Rebalance the entries across the two leaves.
1276 	 * NOTE: rebalance() currently depends on the 2nd block being empty.
1277 	 */
1278 	xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1279 	error = xfs_da3_blk_link(state, oldblk, newblk);
1280 	if (error)
1281 		return error;
1282 
1283 	/*
1284 	 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1285 	 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1286 	 * "new" attrs info.  Will need the "old" info to remove it later.
1287 	 *
1288 	 * Insert the "new" entry in the correct block.
1289 	 */
1290 	if (state->inleaf) {
1291 		trace_xfs_attr_leaf_add_old(state->args);
1292 		error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1293 	} else {
1294 		trace_xfs_attr_leaf_add_new(state->args);
1295 		error = xfs_attr3_leaf_add(newblk->bp, state->args);
1296 	}
1297 
1298 	/*
1299 	 * Update last hashval in each block since we added the name.
1300 	 */
1301 	oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1302 	newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1303 	return error;
1304 }
1305 
1306 /*
1307  * Add a name to the leaf attribute list structure.
1308  */
1309 int
1310 xfs_attr3_leaf_add(
1311 	struct xfs_buf		*bp,
1312 	struct xfs_da_args	*args)
1313 {
1314 	struct xfs_attr_leafblock *leaf;
1315 	struct xfs_attr3_icleaf_hdr ichdr;
1316 	int			tablesize;
1317 	int			entsize;
1318 	int			sum;
1319 	int			tmp;
1320 	int			i;
1321 
1322 	trace_xfs_attr_leaf_add(args);
1323 
1324 	leaf = bp->b_addr;
1325 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1326 	ASSERT(args->index >= 0 && args->index <= ichdr.count);
1327 	entsize = xfs_attr_leaf_newentsize(args, NULL);
1328 
1329 	/*
1330 	 * Search through freemap for first-fit on new name length.
1331 	 * (may need to figure in size of entry struct too)
1332 	 */
1333 	tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1334 					+ xfs_attr3_leaf_hdr_size(leaf);
1335 	for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1336 		if (tablesize > ichdr.firstused) {
1337 			sum += ichdr.freemap[i].size;
1338 			continue;
1339 		}
1340 		if (!ichdr.freemap[i].size)
1341 			continue;	/* no space in this map */
1342 		tmp = entsize;
1343 		if (ichdr.freemap[i].base < ichdr.firstused)
1344 			tmp += sizeof(xfs_attr_leaf_entry_t);
1345 		if (ichdr.freemap[i].size >= tmp) {
1346 			tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1347 			goto out_log_hdr;
1348 		}
1349 		sum += ichdr.freemap[i].size;
1350 	}
1351 
1352 	/*
1353 	 * If there are no holes in the address space of the block,
1354 	 * and we don't have enough freespace, then compaction will do us
1355 	 * no good and we should just give up.
1356 	 */
1357 	if (!ichdr.holes && sum < entsize)
1358 		return -ENOSPC;
1359 
1360 	/*
1361 	 * Compact the entries to coalesce free space.
1362 	 * This may change the hdr->count via dropping INCOMPLETE entries.
1363 	 */
1364 	xfs_attr3_leaf_compact(args, &ichdr, bp);
1365 
1366 	/*
1367 	 * After compaction, the block is guaranteed to have only one
1368 	 * free region, in freemap[0].  If it is not big enough, give up.
1369 	 */
1370 	if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1371 		tmp = -ENOSPC;
1372 		goto out_log_hdr;
1373 	}
1374 
1375 	tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1376 
1377 out_log_hdr:
1378 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1379 	xfs_trans_log_buf(args->trans, bp,
1380 		XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1381 				xfs_attr3_leaf_hdr_size(leaf)));
1382 	return tmp;
1383 }
1384 
1385 /*
1386  * Add a name to a leaf attribute list structure.
1387  */
1388 STATIC int
1389 xfs_attr3_leaf_add_work(
1390 	struct xfs_buf		*bp,
1391 	struct xfs_attr3_icleaf_hdr *ichdr,
1392 	struct xfs_da_args	*args,
1393 	int			mapindex)
1394 {
1395 	struct xfs_attr_leafblock *leaf;
1396 	struct xfs_attr_leaf_entry *entry;
1397 	struct xfs_attr_leaf_name_local *name_loc;
1398 	struct xfs_attr_leaf_name_remote *name_rmt;
1399 	struct xfs_mount	*mp;
1400 	int			tmp;
1401 	int			i;
1402 
1403 	trace_xfs_attr_leaf_add_work(args);
1404 
1405 	leaf = bp->b_addr;
1406 	ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1407 	ASSERT(args->index >= 0 && args->index <= ichdr->count);
1408 
1409 	/*
1410 	 * Force open some space in the entry array and fill it in.
1411 	 */
1412 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1413 	if (args->index < ichdr->count) {
1414 		tmp  = ichdr->count - args->index;
1415 		tmp *= sizeof(xfs_attr_leaf_entry_t);
1416 		memmove(entry + 1, entry, tmp);
1417 		xfs_trans_log_buf(args->trans, bp,
1418 		    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1419 	}
1420 	ichdr->count++;
1421 
1422 	/*
1423 	 * Allocate space for the new string (at the end of the run).
1424 	 */
1425 	mp = args->trans->t_mountp;
1426 	ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1427 	ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1428 	ASSERT(ichdr->freemap[mapindex].size >=
1429 		xfs_attr_leaf_newentsize(args, NULL));
1430 	ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1431 	ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1432 
1433 	ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1434 
1435 	entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1436 				     ichdr->freemap[mapindex].size);
1437 	entry->hashval = cpu_to_be32(args->hashval);
1438 	entry->flags = args->attr_filter;
1439 	if (tmp)
1440 		entry->flags |= XFS_ATTR_LOCAL;
1441 	if (args->op_flags & XFS_DA_OP_RENAME) {
1442 		entry->flags |= XFS_ATTR_INCOMPLETE;
1443 		if ((args->blkno2 == args->blkno) &&
1444 		    (args->index2 <= args->index)) {
1445 			args->index2++;
1446 		}
1447 	}
1448 	xfs_trans_log_buf(args->trans, bp,
1449 			  XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1450 	ASSERT((args->index == 0) ||
1451 	       (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1452 	ASSERT((args->index == ichdr->count - 1) ||
1453 	       (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1454 
1455 	/*
1456 	 * For "remote" attribute values, simply note that we need to
1457 	 * allocate space for the "remote" value.  We can't actually
1458 	 * allocate the extents in this transaction, and we can't decide
1459 	 * which blocks they should be as we might allocate more blocks
1460 	 * as part of this transaction (a split operation for example).
1461 	 */
1462 	if (entry->flags & XFS_ATTR_LOCAL) {
1463 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1464 		name_loc->namelen = args->namelen;
1465 		name_loc->valuelen = cpu_to_be16(args->valuelen);
1466 		memcpy((char *)name_loc->nameval, args->name, args->namelen);
1467 		memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1468 				   be16_to_cpu(name_loc->valuelen));
1469 	} else {
1470 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1471 		name_rmt->namelen = args->namelen;
1472 		memcpy((char *)name_rmt->name, args->name, args->namelen);
1473 		entry->flags |= XFS_ATTR_INCOMPLETE;
1474 		/* just in case */
1475 		name_rmt->valuelen = 0;
1476 		name_rmt->valueblk = 0;
1477 		args->rmtblkno = 1;
1478 		args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1479 		args->rmtvaluelen = args->valuelen;
1480 	}
1481 	xfs_trans_log_buf(args->trans, bp,
1482 	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1483 				   xfs_attr_leaf_entsize(leaf, args->index)));
1484 
1485 	/*
1486 	 * Update the control info for this leaf node
1487 	 */
1488 	if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1489 		ichdr->firstused = be16_to_cpu(entry->nameidx);
1490 
1491 	ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1492 					+ xfs_attr3_leaf_hdr_size(leaf));
1493 	tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1494 					+ xfs_attr3_leaf_hdr_size(leaf);
1495 
1496 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1497 		if (ichdr->freemap[i].base == tmp) {
1498 			ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1499 			ichdr->freemap[i].size -=
1500 				min_t(uint16_t, ichdr->freemap[i].size,
1501 						sizeof(xfs_attr_leaf_entry_t));
1502 		}
1503 	}
1504 	ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1505 	return 0;
1506 }
1507 
1508 /*
1509  * Garbage collect a leaf attribute list block by copying it to a new buffer.
1510  */
1511 STATIC void
1512 xfs_attr3_leaf_compact(
1513 	struct xfs_da_args	*args,
1514 	struct xfs_attr3_icleaf_hdr *ichdr_dst,
1515 	struct xfs_buf		*bp)
1516 {
1517 	struct xfs_attr_leafblock *leaf_src;
1518 	struct xfs_attr_leafblock *leaf_dst;
1519 	struct xfs_attr3_icleaf_hdr ichdr_src;
1520 	struct xfs_trans	*trans = args->trans;
1521 	char			*tmpbuffer;
1522 
1523 	trace_xfs_attr_leaf_compact(args);
1524 
1525 	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1526 	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1527 	memset(bp->b_addr, 0, args->geo->blksize);
1528 	leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1529 	leaf_dst = bp->b_addr;
1530 
1531 	/*
1532 	 * Copy the on-disk header back into the destination buffer to ensure
1533 	 * all the information in the header that is not part of the incore
1534 	 * header structure is preserved.
1535 	 */
1536 	memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1537 
1538 	/* Initialise the incore headers */
1539 	ichdr_src = *ichdr_dst;	/* struct copy */
1540 	ichdr_dst->firstused = args->geo->blksize;
1541 	ichdr_dst->usedbytes = 0;
1542 	ichdr_dst->count = 0;
1543 	ichdr_dst->holes = 0;
1544 	ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1545 	ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1546 						ichdr_dst->freemap[0].base;
1547 
1548 	/* write the header back to initialise the underlying buffer */
1549 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1550 
1551 	/*
1552 	 * Copy all entry's in the same (sorted) order,
1553 	 * but allocate name/value pairs packed and in sequence.
1554 	 */
1555 	xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1556 				leaf_dst, ichdr_dst, 0, ichdr_src.count);
1557 	/*
1558 	 * this logs the entire buffer, but the caller must write the header
1559 	 * back to the buffer when it is finished modifying it.
1560 	 */
1561 	xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1562 
1563 	kmem_free(tmpbuffer);
1564 }
1565 
1566 /*
1567  * Compare two leaf blocks "order".
1568  * Return 0 unless leaf2 should go before leaf1.
1569  */
1570 static int
1571 xfs_attr3_leaf_order(
1572 	struct xfs_buf	*leaf1_bp,
1573 	struct xfs_attr3_icleaf_hdr *leaf1hdr,
1574 	struct xfs_buf	*leaf2_bp,
1575 	struct xfs_attr3_icleaf_hdr *leaf2hdr)
1576 {
1577 	struct xfs_attr_leaf_entry *entries1;
1578 	struct xfs_attr_leaf_entry *entries2;
1579 
1580 	entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1581 	entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1582 	if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1583 	    ((be32_to_cpu(entries2[0].hashval) <
1584 	      be32_to_cpu(entries1[0].hashval)) ||
1585 	     (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1586 	      be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1587 		return 1;
1588 	}
1589 	return 0;
1590 }
1591 
1592 int
1593 xfs_attr_leaf_order(
1594 	struct xfs_buf	*leaf1_bp,
1595 	struct xfs_buf	*leaf2_bp)
1596 {
1597 	struct xfs_attr3_icleaf_hdr ichdr1;
1598 	struct xfs_attr3_icleaf_hdr ichdr2;
1599 	struct xfs_mount *mp = leaf1_bp->b_mount;
1600 
1601 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1602 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1603 	return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1604 }
1605 
1606 /*
1607  * Redistribute the attribute list entries between two leaf nodes,
1608  * taking into account the size of the new entry.
1609  *
1610  * NOTE: if new block is empty, then it will get the upper half of the
1611  * old block.  At present, all (one) callers pass in an empty second block.
1612  *
1613  * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1614  * to match what it is doing in splitting the attribute leaf block.  Those
1615  * values are used in "atomic rename" operations on attributes.  Note that
1616  * the "new" and "old" values can end up in different blocks.
1617  */
1618 STATIC void
1619 xfs_attr3_leaf_rebalance(
1620 	struct xfs_da_state	*state,
1621 	struct xfs_da_state_blk	*blk1,
1622 	struct xfs_da_state_blk	*blk2)
1623 {
1624 	struct xfs_da_args	*args;
1625 	struct xfs_attr_leafblock *leaf1;
1626 	struct xfs_attr_leafblock *leaf2;
1627 	struct xfs_attr3_icleaf_hdr ichdr1;
1628 	struct xfs_attr3_icleaf_hdr ichdr2;
1629 	struct xfs_attr_leaf_entry *entries1;
1630 	struct xfs_attr_leaf_entry *entries2;
1631 	int			count;
1632 	int			totallen;
1633 	int			max;
1634 	int			space;
1635 	int			swap;
1636 
1637 	/*
1638 	 * Set up environment.
1639 	 */
1640 	ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1641 	ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1642 	leaf1 = blk1->bp->b_addr;
1643 	leaf2 = blk2->bp->b_addr;
1644 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1645 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1646 	ASSERT(ichdr2.count == 0);
1647 	args = state->args;
1648 
1649 	trace_xfs_attr_leaf_rebalance(args);
1650 
1651 	/*
1652 	 * Check ordering of blocks, reverse if it makes things simpler.
1653 	 *
1654 	 * NOTE: Given that all (current) callers pass in an empty
1655 	 * second block, this code should never set "swap".
1656 	 */
1657 	swap = 0;
1658 	if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1659 		swap(blk1, blk2);
1660 
1661 		/* swap structures rather than reconverting them */
1662 		swap(ichdr1, ichdr2);
1663 
1664 		leaf1 = blk1->bp->b_addr;
1665 		leaf2 = blk2->bp->b_addr;
1666 		swap = 1;
1667 	}
1668 
1669 	/*
1670 	 * Examine entries until we reduce the absolute difference in
1671 	 * byte usage between the two blocks to a minimum.  Then get
1672 	 * the direction to copy and the number of elements to move.
1673 	 *
1674 	 * "inleaf" is true if the new entry should be inserted into blk1.
1675 	 * If "swap" is also true, then reverse the sense of "inleaf".
1676 	 */
1677 	state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1678 						      blk2, &ichdr2,
1679 						      &count, &totallen);
1680 	if (swap)
1681 		state->inleaf = !state->inleaf;
1682 
1683 	/*
1684 	 * Move any entries required from leaf to leaf:
1685 	 */
1686 	if (count < ichdr1.count) {
1687 		/*
1688 		 * Figure the total bytes to be added to the destination leaf.
1689 		 */
1690 		/* number entries being moved */
1691 		count = ichdr1.count - count;
1692 		space  = ichdr1.usedbytes - totallen;
1693 		space += count * sizeof(xfs_attr_leaf_entry_t);
1694 
1695 		/*
1696 		 * leaf2 is the destination, compact it if it looks tight.
1697 		 */
1698 		max  = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1699 		max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1700 		if (space > max)
1701 			xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1702 
1703 		/*
1704 		 * Move high entries from leaf1 to low end of leaf2.
1705 		 */
1706 		xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1707 				ichdr1.count - count, leaf2, &ichdr2, 0, count);
1708 
1709 	} else if (count > ichdr1.count) {
1710 		/*
1711 		 * I assert that since all callers pass in an empty
1712 		 * second buffer, this code should never execute.
1713 		 */
1714 		ASSERT(0);
1715 
1716 		/*
1717 		 * Figure the total bytes to be added to the destination leaf.
1718 		 */
1719 		/* number entries being moved */
1720 		count -= ichdr1.count;
1721 		space  = totallen - ichdr1.usedbytes;
1722 		space += count * sizeof(xfs_attr_leaf_entry_t);
1723 
1724 		/*
1725 		 * leaf1 is the destination, compact it if it looks tight.
1726 		 */
1727 		max  = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1728 		max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1729 		if (space > max)
1730 			xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1731 
1732 		/*
1733 		 * Move low entries from leaf2 to high end of leaf1.
1734 		 */
1735 		xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1736 					ichdr1.count, count);
1737 	}
1738 
1739 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1740 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1741 	xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1742 	xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1743 
1744 	/*
1745 	 * Copy out last hashval in each block for B-tree code.
1746 	 */
1747 	entries1 = xfs_attr3_leaf_entryp(leaf1);
1748 	entries2 = xfs_attr3_leaf_entryp(leaf2);
1749 	blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1750 	blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1751 
1752 	/*
1753 	 * Adjust the expected index for insertion.
1754 	 * NOTE: this code depends on the (current) situation that the
1755 	 * second block was originally empty.
1756 	 *
1757 	 * If the insertion point moved to the 2nd block, we must adjust
1758 	 * the index.  We must also track the entry just following the
1759 	 * new entry for use in an "atomic rename" operation, that entry
1760 	 * is always the "old" entry and the "new" entry is what we are
1761 	 * inserting.  The index/blkno fields refer to the "old" entry,
1762 	 * while the index2/blkno2 fields refer to the "new" entry.
1763 	 */
1764 	if (blk1->index > ichdr1.count) {
1765 		ASSERT(state->inleaf == 0);
1766 		blk2->index = blk1->index - ichdr1.count;
1767 		args->index = args->index2 = blk2->index;
1768 		args->blkno = args->blkno2 = blk2->blkno;
1769 	} else if (blk1->index == ichdr1.count) {
1770 		if (state->inleaf) {
1771 			args->index = blk1->index;
1772 			args->blkno = blk1->blkno;
1773 			args->index2 = 0;
1774 			args->blkno2 = blk2->blkno;
1775 		} else {
1776 			/*
1777 			 * On a double leaf split, the original attr location
1778 			 * is already stored in blkno2/index2, so don't
1779 			 * overwrite it overwise we corrupt the tree.
1780 			 */
1781 			blk2->index = blk1->index - ichdr1.count;
1782 			args->index = blk2->index;
1783 			args->blkno = blk2->blkno;
1784 			if (!state->extravalid) {
1785 				/*
1786 				 * set the new attr location to match the old
1787 				 * one and let the higher level split code
1788 				 * decide where in the leaf to place it.
1789 				 */
1790 				args->index2 = blk2->index;
1791 				args->blkno2 = blk2->blkno;
1792 			}
1793 		}
1794 	} else {
1795 		ASSERT(state->inleaf == 1);
1796 		args->index = args->index2 = blk1->index;
1797 		args->blkno = args->blkno2 = blk1->blkno;
1798 	}
1799 }
1800 
1801 /*
1802  * Examine entries until we reduce the absolute difference in
1803  * byte usage between the two blocks to a minimum.
1804  * GROT: Is this really necessary?  With other than a 512 byte blocksize,
1805  * GROT: there will always be enough room in either block for a new entry.
1806  * GROT: Do a double-split for this case?
1807  */
1808 STATIC int
1809 xfs_attr3_leaf_figure_balance(
1810 	struct xfs_da_state		*state,
1811 	struct xfs_da_state_blk		*blk1,
1812 	struct xfs_attr3_icleaf_hdr	*ichdr1,
1813 	struct xfs_da_state_blk		*blk2,
1814 	struct xfs_attr3_icleaf_hdr	*ichdr2,
1815 	int				*countarg,
1816 	int				*usedbytesarg)
1817 {
1818 	struct xfs_attr_leafblock	*leaf1 = blk1->bp->b_addr;
1819 	struct xfs_attr_leafblock	*leaf2 = blk2->bp->b_addr;
1820 	struct xfs_attr_leaf_entry	*entry;
1821 	int				count;
1822 	int				max;
1823 	int				index;
1824 	int				totallen = 0;
1825 	int				half;
1826 	int				lastdelta;
1827 	int				foundit = 0;
1828 	int				tmp;
1829 
1830 	/*
1831 	 * Examine entries until we reduce the absolute difference in
1832 	 * byte usage between the two blocks to a minimum.
1833 	 */
1834 	max = ichdr1->count + ichdr2->count;
1835 	half = (max + 1) * sizeof(*entry);
1836 	half += ichdr1->usedbytes + ichdr2->usedbytes +
1837 			xfs_attr_leaf_newentsize(state->args, NULL);
1838 	half /= 2;
1839 	lastdelta = state->args->geo->blksize;
1840 	entry = xfs_attr3_leaf_entryp(leaf1);
1841 	for (count = index = 0; count < max; entry++, index++, count++) {
1842 
1843 #define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A))
1844 		/*
1845 		 * The new entry is in the first block, account for it.
1846 		 */
1847 		if (count == blk1->index) {
1848 			tmp = totallen + sizeof(*entry) +
1849 				xfs_attr_leaf_newentsize(state->args, NULL);
1850 			if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1851 				break;
1852 			lastdelta = XFS_ATTR_ABS(half - tmp);
1853 			totallen = tmp;
1854 			foundit = 1;
1855 		}
1856 
1857 		/*
1858 		 * Wrap around into the second block if necessary.
1859 		 */
1860 		if (count == ichdr1->count) {
1861 			leaf1 = leaf2;
1862 			entry = xfs_attr3_leaf_entryp(leaf1);
1863 			index = 0;
1864 		}
1865 
1866 		/*
1867 		 * Figure out if next leaf entry would be too much.
1868 		 */
1869 		tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1870 									index);
1871 		if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1872 			break;
1873 		lastdelta = XFS_ATTR_ABS(half - tmp);
1874 		totallen = tmp;
1875 #undef XFS_ATTR_ABS
1876 	}
1877 
1878 	/*
1879 	 * Calculate the number of usedbytes that will end up in lower block.
1880 	 * If new entry not in lower block, fix up the count.
1881 	 */
1882 	totallen -= count * sizeof(*entry);
1883 	if (foundit) {
1884 		totallen -= sizeof(*entry) +
1885 				xfs_attr_leaf_newentsize(state->args, NULL);
1886 	}
1887 
1888 	*countarg = count;
1889 	*usedbytesarg = totallen;
1890 	return foundit;
1891 }
1892 
1893 /*========================================================================
1894  * Routines used for shrinking the Btree.
1895  *========================================================================*/
1896 
1897 /*
1898  * Check a leaf block and its neighbors to see if the block should be
1899  * collapsed into one or the other neighbor.  Always keep the block
1900  * with the smaller block number.
1901  * If the current block is over 50% full, don't try to join it, return 0.
1902  * If the block is empty, fill in the state structure and return 2.
1903  * If it can be collapsed, fill in the state structure and return 1.
1904  * If nothing can be done, return 0.
1905  *
1906  * GROT: allow for INCOMPLETE entries in calculation.
1907  */
1908 int
1909 xfs_attr3_leaf_toosmall(
1910 	struct xfs_da_state	*state,
1911 	int			*action)
1912 {
1913 	struct xfs_attr_leafblock *leaf;
1914 	struct xfs_da_state_blk	*blk;
1915 	struct xfs_attr3_icleaf_hdr ichdr;
1916 	struct xfs_buf		*bp;
1917 	xfs_dablk_t		blkno;
1918 	int			bytes;
1919 	int			forward;
1920 	int			error;
1921 	int			retval;
1922 	int			i;
1923 
1924 	trace_xfs_attr_leaf_toosmall(state->args);
1925 
1926 	/*
1927 	 * Check for the degenerate case of the block being over 50% full.
1928 	 * If so, it's not worth even looking to see if we might be able
1929 	 * to coalesce with a sibling.
1930 	 */
1931 	blk = &state->path.blk[ state->path.active-1 ];
1932 	leaf = blk->bp->b_addr;
1933 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1934 	bytes = xfs_attr3_leaf_hdr_size(leaf) +
1935 		ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1936 		ichdr.usedbytes;
1937 	if (bytes > (state->args->geo->blksize >> 1)) {
1938 		*action = 0;	/* blk over 50%, don't try to join */
1939 		return 0;
1940 	}
1941 
1942 	/*
1943 	 * Check for the degenerate case of the block being empty.
1944 	 * If the block is empty, we'll simply delete it, no need to
1945 	 * coalesce it with a sibling block.  We choose (arbitrarily)
1946 	 * to merge with the forward block unless it is NULL.
1947 	 */
1948 	if (ichdr.count == 0) {
1949 		/*
1950 		 * Make altpath point to the block we want to keep and
1951 		 * path point to the block we want to drop (this one).
1952 		 */
1953 		forward = (ichdr.forw != 0);
1954 		memcpy(&state->altpath, &state->path, sizeof(state->path));
1955 		error = xfs_da3_path_shift(state, &state->altpath, forward,
1956 						 0, &retval);
1957 		if (error)
1958 			return error;
1959 		if (retval) {
1960 			*action = 0;
1961 		} else {
1962 			*action = 2;
1963 		}
1964 		return 0;
1965 	}
1966 
1967 	/*
1968 	 * Examine each sibling block to see if we can coalesce with
1969 	 * at least 25% free space to spare.  We need to figure out
1970 	 * whether to merge with the forward or the backward block.
1971 	 * We prefer coalescing with the lower numbered sibling so as
1972 	 * to shrink an attribute list over time.
1973 	 */
1974 	/* start with smaller blk num */
1975 	forward = ichdr.forw < ichdr.back;
1976 	for (i = 0; i < 2; forward = !forward, i++) {
1977 		struct xfs_attr3_icleaf_hdr ichdr2;
1978 		if (forward)
1979 			blkno = ichdr.forw;
1980 		else
1981 			blkno = ichdr.back;
1982 		if (blkno == 0)
1983 			continue;
1984 		error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1985 					blkno, &bp);
1986 		if (error)
1987 			return error;
1988 
1989 		xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
1990 
1991 		bytes = state->args->geo->blksize -
1992 			(state->args->geo->blksize >> 2) -
1993 			ichdr.usedbytes - ichdr2.usedbytes -
1994 			((ichdr.count + ichdr2.count) *
1995 					sizeof(xfs_attr_leaf_entry_t)) -
1996 			xfs_attr3_leaf_hdr_size(leaf);
1997 
1998 		xfs_trans_brelse(state->args->trans, bp);
1999 		if (bytes >= 0)
2000 			break;	/* fits with at least 25% to spare */
2001 	}
2002 	if (i >= 2) {
2003 		*action = 0;
2004 		return 0;
2005 	}
2006 
2007 	/*
2008 	 * Make altpath point to the block we want to keep (the lower
2009 	 * numbered block) and path point to the block we want to drop.
2010 	 */
2011 	memcpy(&state->altpath, &state->path, sizeof(state->path));
2012 	if (blkno < blk->blkno) {
2013 		error = xfs_da3_path_shift(state, &state->altpath, forward,
2014 						 0, &retval);
2015 	} else {
2016 		error = xfs_da3_path_shift(state, &state->path, forward,
2017 						 0, &retval);
2018 	}
2019 	if (error)
2020 		return error;
2021 	if (retval) {
2022 		*action = 0;
2023 	} else {
2024 		*action = 1;
2025 	}
2026 	return 0;
2027 }
2028 
2029 /*
2030  * Remove a name from the leaf attribute list structure.
2031  *
2032  * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2033  * If two leaves are 37% full, when combined they will leave 25% free.
2034  */
2035 int
2036 xfs_attr3_leaf_remove(
2037 	struct xfs_buf		*bp,
2038 	struct xfs_da_args	*args)
2039 {
2040 	struct xfs_attr_leafblock *leaf;
2041 	struct xfs_attr3_icleaf_hdr ichdr;
2042 	struct xfs_attr_leaf_entry *entry;
2043 	int			before;
2044 	int			after;
2045 	int			smallest;
2046 	int			entsize;
2047 	int			tablesize;
2048 	int			tmp;
2049 	int			i;
2050 
2051 	trace_xfs_attr_leaf_remove(args);
2052 
2053 	leaf = bp->b_addr;
2054 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2055 
2056 	ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2057 	ASSERT(args->index >= 0 && args->index < ichdr.count);
2058 	ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2059 					xfs_attr3_leaf_hdr_size(leaf));
2060 
2061 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2062 
2063 	ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2064 	ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2065 
2066 	/*
2067 	 * Scan through free region table:
2068 	 *    check for adjacency of free'd entry with an existing one,
2069 	 *    find smallest free region in case we need to replace it,
2070 	 *    adjust any map that borders the entry table,
2071 	 */
2072 	tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2073 					+ xfs_attr3_leaf_hdr_size(leaf);
2074 	tmp = ichdr.freemap[0].size;
2075 	before = after = -1;
2076 	smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2077 	entsize = xfs_attr_leaf_entsize(leaf, args->index);
2078 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2079 		ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2080 		ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2081 		if (ichdr.freemap[i].base == tablesize) {
2082 			ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2083 			ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2084 		}
2085 
2086 		if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2087 				be16_to_cpu(entry->nameidx)) {
2088 			before = i;
2089 		} else if (ichdr.freemap[i].base ==
2090 				(be16_to_cpu(entry->nameidx) + entsize)) {
2091 			after = i;
2092 		} else if (ichdr.freemap[i].size < tmp) {
2093 			tmp = ichdr.freemap[i].size;
2094 			smallest = i;
2095 		}
2096 	}
2097 
2098 	/*
2099 	 * Coalesce adjacent freemap regions,
2100 	 * or replace the smallest region.
2101 	 */
2102 	if ((before >= 0) || (after >= 0)) {
2103 		if ((before >= 0) && (after >= 0)) {
2104 			ichdr.freemap[before].size += entsize;
2105 			ichdr.freemap[before].size += ichdr.freemap[after].size;
2106 			ichdr.freemap[after].base = 0;
2107 			ichdr.freemap[after].size = 0;
2108 		} else if (before >= 0) {
2109 			ichdr.freemap[before].size += entsize;
2110 		} else {
2111 			ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2112 			ichdr.freemap[after].size += entsize;
2113 		}
2114 	} else {
2115 		/*
2116 		 * Replace smallest region (if it is smaller than free'd entry)
2117 		 */
2118 		if (ichdr.freemap[smallest].size < entsize) {
2119 			ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2120 			ichdr.freemap[smallest].size = entsize;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * Did we remove the first entry?
2126 	 */
2127 	if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2128 		smallest = 1;
2129 	else
2130 		smallest = 0;
2131 
2132 	/*
2133 	 * Compress the remaining entries and zero out the removed stuff.
2134 	 */
2135 	memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2136 	ichdr.usedbytes -= entsize;
2137 	xfs_trans_log_buf(args->trans, bp,
2138 	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2139 				   entsize));
2140 
2141 	tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2142 	memmove(entry, entry + 1, tmp);
2143 	ichdr.count--;
2144 	xfs_trans_log_buf(args->trans, bp,
2145 	    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2146 
2147 	entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2148 	memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2149 
2150 	/*
2151 	 * If we removed the first entry, re-find the first used byte
2152 	 * in the name area.  Note that if the entry was the "firstused",
2153 	 * then we don't have a "hole" in our block resulting from
2154 	 * removing the name.
2155 	 */
2156 	if (smallest) {
2157 		tmp = args->geo->blksize;
2158 		entry = xfs_attr3_leaf_entryp(leaf);
2159 		for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2160 			ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2161 			ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2162 
2163 			if (be16_to_cpu(entry->nameidx) < tmp)
2164 				tmp = be16_to_cpu(entry->nameidx);
2165 		}
2166 		ichdr.firstused = tmp;
2167 		ASSERT(ichdr.firstused != 0);
2168 	} else {
2169 		ichdr.holes = 1;	/* mark as needing compaction */
2170 	}
2171 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2172 	xfs_trans_log_buf(args->trans, bp,
2173 			  XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2174 					  xfs_attr3_leaf_hdr_size(leaf)));
2175 
2176 	/*
2177 	 * Check if leaf is less than 50% full, caller may want to
2178 	 * "join" the leaf with a sibling if so.
2179 	 */
2180 	tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2181 	      ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2182 
2183 	return tmp < args->geo->magicpct; /* leaf is < 37% full */
2184 }
2185 
2186 /*
2187  * Move all the attribute list entries from drop_leaf into save_leaf.
2188  */
2189 void
2190 xfs_attr3_leaf_unbalance(
2191 	struct xfs_da_state	*state,
2192 	struct xfs_da_state_blk	*drop_blk,
2193 	struct xfs_da_state_blk	*save_blk)
2194 {
2195 	struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2196 	struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2197 	struct xfs_attr3_icleaf_hdr drophdr;
2198 	struct xfs_attr3_icleaf_hdr savehdr;
2199 	struct xfs_attr_leaf_entry *entry;
2200 
2201 	trace_xfs_attr_leaf_unbalance(state->args);
2202 
2203 	drop_leaf = drop_blk->bp->b_addr;
2204 	save_leaf = save_blk->bp->b_addr;
2205 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2206 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2207 	entry = xfs_attr3_leaf_entryp(drop_leaf);
2208 
2209 	/*
2210 	 * Save last hashval from dying block for later Btree fixup.
2211 	 */
2212 	drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2213 
2214 	/*
2215 	 * Check if we need a temp buffer, or can we do it in place.
2216 	 * Note that we don't check "leaf" for holes because we will
2217 	 * always be dropping it, toosmall() decided that for us already.
2218 	 */
2219 	if (savehdr.holes == 0) {
2220 		/*
2221 		 * dest leaf has no holes, so we add there.  May need
2222 		 * to make some room in the entry array.
2223 		 */
2224 		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2225 					 drop_blk->bp, &drophdr)) {
2226 			xfs_attr3_leaf_moveents(state->args,
2227 						drop_leaf, &drophdr, 0,
2228 						save_leaf, &savehdr, 0,
2229 						drophdr.count);
2230 		} else {
2231 			xfs_attr3_leaf_moveents(state->args,
2232 						drop_leaf, &drophdr, 0,
2233 						save_leaf, &savehdr,
2234 						savehdr.count, drophdr.count);
2235 		}
2236 	} else {
2237 		/*
2238 		 * Destination has holes, so we make a temporary copy
2239 		 * of the leaf and add them both to that.
2240 		 */
2241 		struct xfs_attr_leafblock *tmp_leaf;
2242 		struct xfs_attr3_icleaf_hdr tmphdr;
2243 
2244 		tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2245 
2246 		/*
2247 		 * Copy the header into the temp leaf so that all the stuff
2248 		 * not in the incore header is present and gets copied back in
2249 		 * once we've moved all the entries.
2250 		 */
2251 		memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2252 
2253 		memset(&tmphdr, 0, sizeof(tmphdr));
2254 		tmphdr.magic = savehdr.magic;
2255 		tmphdr.forw = savehdr.forw;
2256 		tmphdr.back = savehdr.back;
2257 		tmphdr.firstused = state->args->geo->blksize;
2258 
2259 		/* write the header to the temp buffer to initialise it */
2260 		xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2261 
2262 		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2263 					 drop_blk->bp, &drophdr)) {
2264 			xfs_attr3_leaf_moveents(state->args,
2265 						drop_leaf, &drophdr, 0,
2266 						tmp_leaf, &tmphdr, 0,
2267 						drophdr.count);
2268 			xfs_attr3_leaf_moveents(state->args,
2269 						save_leaf, &savehdr, 0,
2270 						tmp_leaf, &tmphdr, tmphdr.count,
2271 						savehdr.count);
2272 		} else {
2273 			xfs_attr3_leaf_moveents(state->args,
2274 						save_leaf, &savehdr, 0,
2275 						tmp_leaf, &tmphdr, 0,
2276 						savehdr.count);
2277 			xfs_attr3_leaf_moveents(state->args,
2278 						drop_leaf, &drophdr, 0,
2279 						tmp_leaf, &tmphdr, tmphdr.count,
2280 						drophdr.count);
2281 		}
2282 		memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2283 		savehdr = tmphdr; /* struct copy */
2284 		kmem_free(tmp_leaf);
2285 	}
2286 
2287 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2288 	xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2289 					   state->args->geo->blksize - 1);
2290 
2291 	/*
2292 	 * Copy out last hashval in each block for B-tree code.
2293 	 */
2294 	entry = xfs_attr3_leaf_entryp(save_leaf);
2295 	save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2296 }
2297 
2298 /*========================================================================
2299  * Routines used for finding things in the Btree.
2300  *========================================================================*/
2301 
2302 /*
2303  * Look up a name in a leaf attribute list structure.
2304  * This is the internal routine, it uses the caller's buffer.
2305  *
2306  * Note that duplicate keys are allowed, but only check within the
2307  * current leaf node.  The Btree code must check in adjacent leaf nodes.
2308  *
2309  * Return in args->index the index into the entry[] array of either
2310  * the found entry, or where the entry should have been (insert before
2311  * that entry).
2312  *
2313  * Don't change the args->value unless we find the attribute.
2314  */
2315 int
2316 xfs_attr3_leaf_lookup_int(
2317 	struct xfs_buf		*bp,
2318 	struct xfs_da_args	*args)
2319 {
2320 	struct xfs_attr_leafblock *leaf;
2321 	struct xfs_attr3_icleaf_hdr ichdr;
2322 	struct xfs_attr_leaf_entry *entry;
2323 	struct xfs_attr_leaf_entry *entries;
2324 	struct xfs_attr_leaf_name_local *name_loc;
2325 	struct xfs_attr_leaf_name_remote *name_rmt;
2326 	xfs_dahash_t		hashval;
2327 	int			probe;
2328 	int			span;
2329 
2330 	trace_xfs_attr_leaf_lookup(args);
2331 
2332 	leaf = bp->b_addr;
2333 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2334 	entries = xfs_attr3_leaf_entryp(leaf);
2335 	if (ichdr.count >= args->geo->blksize / 8) {
2336 		xfs_buf_mark_corrupt(bp);
2337 		return -EFSCORRUPTED;
2338 	}
2339 
2340 	/*
2341 	 * Binary search.  (note: small blocks will skip this loop)
2342 	 */
2343 	hashval = args->hashval;
2344 	probe = span = ichdr.count / 2;
2345 	for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2346 		span /= 2;
2347 		if (be32_to_cpu(entry->hashval) < hashval)
2348 			probe += span;
2349 		else if (be32_to_cpu(entry->hashval) > hashval)
2350 			probe -= span;
2351 		else
2352 			break;
2353 	}
2354 	if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2355 		xfs_buf_mark_corrupt(bp);
2356 		return -EFSCORRUPTED;
2357 	}
2358 	if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2359 		xfs_buf_mark_corrupt(bp);
2360 		return -EFSCORRUPTED;
2361 	}
2362 
2363 	/*
2364 	 * Since we may have duplicate hashval's, find the first matching
2365 	 * hashval in the leaf.
2366 	 */
2367 	while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2368 		entry--;
2369 		probe--;
2370 	}
2371 	while (probe < ichdr.count &&
2372 	       be32_to_cpu(entry->hashval) < hashval) {
2373 		entry++;
2374 		probe++;
2375 	}
2376 	if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2377 		args->index = probe;
2378 		return -ENOATTR;
2379 	}
2380 
2381 	/*
2382 	 * Duplicate keys may be present, so search all of them for a match.
2383 	 */
2384 	for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2385 			entry++, probe++) {
2386 /*
2387  * GROT: Add code to remove incomplete entries.
2388  */
2389 		if (entry->flags & XFS_ATTR_LOCAL) {
2390 			name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2391 			if (!xfs_attr_match(args, name_loc->namelen,
2392 					name_loc->nameval, entry->flags))
2393 				continue;
2394 			args->index = probe;
2395 			return -EEXIST;
2396 		} else {
2397 			name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2398 			if (!xfs_attr_match(args, name_rmt->namelen,
2399 					name_rmt->name, entry->flags))
2400 				continue;
2401 			args->index = probe;
2402 			args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2403 			args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2404 			args->rmtblkcnt = xfs_attr3_rmt_blocks(
2405 							args->dp->i_mount,
2406 							args->rmtvaluelen);
2407 			return -EEXIST;
2408 		}
2409 	}
2410 	args->index = probe;
2411 	return -ENOATTR;
2412 }
2413 
2414 /*
2415  * Get the value associated with an attribute name from a leaf attribute
2416  * list structure.
2417  *
2418  * If args->valuelen is zero, only the length needs to be returned.  Unlike a
2419  * lookup, we only return an error if the attribute does not exist or we can't
2420  * retrieve the value.
2421  */
2422 int
2423 xfs_attr3_leaf_getvalue(
2424 	struct xfs_buf		*bp,
2425 	struct xfs_da_args	*args)
2426 {
2427 	struct xfs_attr_leafblock *leaf;
2428 	struct xfs_attr3_icleaf_hdr ichdr;
2429 	struct xfs_attr_leaf_entry *entry;
2430 	struct xfs_attr_leaf_name_local *name_loc;
2431 	struct xfs_attr_leaf_name_remote *name_rmt;
2432 
2433 	leaf = bp->b_addr;
2434 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2435 	ASSERT(ichdr.count < args->geo->blksize / 8);
2436 	ASSERT(args->index < ichdr.count);
2437 
2438 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2439 	if (entry->flags & XFS_ATTR_LOCAL) {
2440 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2441 		ASSERT(name_loc->namelen == args->namelen);
2442 		ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2443 		return xfs_attr_copy_value(args,
2444 					&name_loc->nameval[args->namelen],
2445 					be16_to_cpu(name_loc->valuelen));
2446 	}
2447 
2448 	name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2449 	ASSERT(name_rmt->namelen == args->namelen);
2450 	ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2451 	args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2452 	args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2453 	args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2454 					       args->rmtvaluelen);
2455 	return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2456 }
2457 
2458 /*========================================================================
2459  * Utility routines.
2460  *========================================================================*/
2461 
2462 /*
2463  * Move the indicated entries from one leaf to another.
2464  * NOTE: this routine modifies both source and destination leaves.
2465  */
2466 /*ARGSUSED*/
2467 STATIC void
2468 xfs_attr3_leaf_moveents(
2469 	struct xfs_da_args		*args,
2470 	struct xfs_attr_leafblock	*leaf_s,
2471 	struct xfs_attr3_icleaf_hdr	*ichdr_s,
2472 	int				start_s,
2473 	struct xfs_attr_leafblock	*leaf_d,
2474 	struct xfs_attr3_icleaf_hdr	*ichdr_d,
2475 	int				start_d,
2476 	int				count)
2477 {
2478 	struct xfs_attr_leaf_entry	*entry_s;
2479 	struct xfs_attr_leaf_entry	*entry_d;
2480 	int				desti;
2481 	int				tmp;
2482 	int				i;
2483 
2484 	/*
2485 	 * Check for nothing to do.
2486 	 */
2487 	if (count == 0)
2488 		return;
2489 
2490 	/*
2491 	 * Set up environment.
2492 	 */
2493 	ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2494 	       ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2495 	ASSERT(ichdr_s->magic == ichdr_d->magic);
2496 	ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2497 	ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2498 					+ xfs_attr3_leaf_hdr_size(leaf_s));
2499 	ASSERT(ichdr_d->count < args->geo->blksize / 8);
2500 	ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2501 					+ xfs_attr3_leaf_hdr_size(leaf_d));
2502 
2503 	ASSERT(start_s < ichdr_s->count);
2504 	ASSERT(start_d <= ichdr_d->count);
2505 	ASSERT(count <= ichdr_s->count);
2506 
2507 
2508 	/*
2509 	 * Move the entries in the destination leaf up to make a hole?
2510 	 */
2511 	if (start_d < ichdr_d->count) {
2512 		tmp  = ichdr_d->count - start_d;
2513 		tmp *= sizeof(xfs_attr_leaf_entry_t);
2514 		entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2515 		entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2516 		memmove(entry_d, entry_s, tmp);
2517 	}
2518 
2519 	/*
2520 	 * Copy all entry's in the same (sorted) order,
2521 	 * but allocate attribute info packed and in sequence.
2522 	 */
2523 	entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2524 	entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2525 	desti = start_d;
2526 	for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2527 		ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2528 		tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2529 #ifdef GROT
2530 		/*
2531 		 * Code to drop INCOMPLETE entries.  Difficult to use as we
2532 		 * may also need to change the insertion index.  Code turned
2533 		 * off for 6.2, should be revisited later.
2534 		 */
2535 		if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2536 			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2537 			ichdr_s->usedbytes -= tmp;
2538 			ichdr_s->count -= 1;
2539 			entry_d--;	/* to compensate for ++ in loop hdr */
2540 			desti--;
2541 			if ((start_s + i) < offset)
2542 				result++;	/* insertion index adjustment */
2543 		} else {
2544 #endif /* GROT */
2545 			ichdr_d->firstused -= tmp;
2546 			/* both on-disk, don't endian flip twice */
2547 			entry_d->hashval = entry_s->hashval;
2548 			entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2549 			entry_d->flags = entry_s->flags;
2550 			ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2551 							<= args->geo->blksize);
2552 			memmove(xfs_attr3_leaf_name(leaf_d, desti),
2553 				xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2554 			ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2555 							<= args->geo->blksize);
2556 			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2557 			ichdr_s->usedbytes -= tmp;
2558 			ichdr_d->usedbytes += tmp;
2559 			ichdr_s->count -= 1;
2560 			ichdr_d->count += 1;
2561 			tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2562 					+ xfs_attr3_leaf_hdr_size(leaf_d);
2563 			ASSERT(ichdr_d->firstused >= tmp);
2564 #ifdef GROT
2565 		}
2566 #endif /* GROT */
2567 	}
2568 
2569 	/*
2570 	 * Zero out the entries we just copied.
2571 	 */
2572 	if (start_s == ichdr_s->count) {
2573 		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2574 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2575 		ASSERT(((char *)entry_s + tmp) <=
2576 		       ((char *)leaf_s + args->geo->blksize));
2577 		memset(entry_s, 0, tmp);
2578 	} else {
2579 		/*
2580 		 * Move the remaining entries down to fill the hole,
2581 		 * then zero the entries at the top.
2582 		 */
2583 		tmp  = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2584 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2585 		entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2586 		memmove(entry_d, entry_s, tmp);
2587 
2588 		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2589 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2590 		ASSERT(((char *)entry_s + tmp) <=
2591 		       ((char *)leaf_s + args->geo->blksize));
2592 		memset(entry_s, 0, tmp);
2593 	}
2594 
2595 	/*
2596 	 * Fill in the freemap information
2597 	 */
2598 	ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2599 	ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2600 	ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2601 	ichdr_d->freemap[1].base = 0;
2602 	ichdr_d->freemap[2].base = 0;
2603 	ichdr_d->freemap[1].size = 0;
2604 	ichdr_d->freemap[2].size = 0;
2605 	ichdr_s->holes = 1;	/* leaf may not be compact */
2606 }
2607 
2608 /*
2609  * Pick up the last hashvalue from a leaf block.
2610  */
2611 xfs_dahash_t
2612 xfs_attr_leaf_lasthash(
2613 	struct xfs_buf	*bp,
2614 	int		*count)
2615 {
2616 	struct xfs_attr3_icleaf_hdr ichdr;
2617 	struct xfs_attr_leaf_entry *entries;
2618 	struct xfs_mount *mp = bp->b_mount;
2619 
2620 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2621 	entries = xfs_attr3_leaf_entryp(bp->b_addr);
2622 	if (count)
2623 		*count = ichdr.count;
2624 	if (!ichdr.count)
2625 		return 0;
2626 	return be32_to_cpu(entries[ichdr.count - 1].hashval);
2627 }
2628 
2629 /*
2630  * Calculate the number of bytes used to store the indicated attribute
2631  * (whether local or remote only calculate bytes in this block).
2632  */
2633 STATIC int
2634 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2635 {
2636 	struct xfs_attr_leaf_entry *entries;
2637 	xfs_attr_leaf_name_local_t *name_loc;
2638 	xfs_attr_leaf_name_remote_t *name_rmt;
2639 	int size;
2640 
2641 	entries = xfs_attr3_leaf_entryp(leaf);
2642 	if (entries[index].flags & XFS_ATTR_LOCAL) {
2643 		name_loc = xfs_attr3_leaf_name_local(leaf, index);
2644 		size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2645 						   be16_to_cpu(name_loc->valuelen));
2646 	} else {
2647 		name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2648 		size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2649 	}
2650 	return size;
2651 }
2652 
2653 /*
2654  * Calculate the number of bytes that would be required to store the new
2655  * attribute (whether local or remote only calculate bytes in this block).
2656  * This routine decides as a side effect whether the attribute will be
2657  * a "local" or a "remote" attribute.
2658  */
2659 int
2660 xfs_attr_leaf_newentsize(
2661 	struct xfs_da_args	*args,
2662 	int			*local)
2663 {
2664 	int			size;
2665 
2666 	size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2667 	if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2668 		if (local)
2669 			*local = 1;
2670 		return size;
2671 	}
2672 	if (local)
2673 		*local = 0;
2674 	return xfs_attr_leaf_entsize_remote(args->namelen);
2675 }
2676 
2677 
2678 /*========================================================================
2679  * Manage the INCOMPLETE flag in a leaf entry
2680  *========================================================================*/
2681 
2682 /*
2683  * Clear the INCOMPLETE flag on an entry in a leaf block.
2684  */
2685 int
2686 xfs_attr3_leaf_clearflag(
2687 	struct xfs_da_args	*args)
2688 {
2689 	struct xfs_attr_leafblock *leaf;
2690 	struct xfs_attr_leaf_entry *entry;
2691 	struct xfs_attr_leaf_name_remote *name_rmt;
2692 	struct xfs_buf		*bp;
2693 	int			error;
2694 #ifdef DEBUG
2695 	struct xfs_attr3_icleaf_hdr ichdr;
2696 	xfs_attr_leaf_name_local_t *name_loc;
2697 	int namelen;
2698 	char *name;
2699 #endif /* DEBUG */
2700 
2701 	trace_xfs_attr_leaf_clearflag(args);
2702 	/*
2703 	 * Set up the operation.
2704 	 */
2705 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2706 	if (error)
2707 		return error;
2708 
2709 	leaf = bp->b_addr;
2710 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2711 	ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2712 
2713 #ifdef DEBUG
2714 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2715 	ASSERT(args->index < ichdr.count);
2716 	ASSERT(args->index >= 0);
2717 
2718 	if (entry->flags & XFS_ATTR_LOCAL) {
2719 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2720 		namelen = name_loc->namelen;
2721 		name = (char *)name_loc->nameval;
2722 	} else {
2723 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2724 		namelen = name_rmt->namelen;
2725 		name = (char *)name_rmt->name;
2726 	}
2727 	ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2728 	ASSERT(namelen == args->namelen);
2729 	ASSERT(memcmp(name, args->name, namelen) == 0);
2730 #endif /* DEBUG */
2731 
2732 	entry->flags &= ~XFS_ATTR_INCOMPLETE;
2733 	xfs_trans_log_buf(args->trans, bp,
2734 			 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2735 
2736 	if (args->rmtblkno) {
2737 		ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2738 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2739 		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2740 		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2741 		xfs_trans_log_buf(args->trans, bp,
2742 			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2743 	}
2744 
2745 	/*
2746 	 * Commit the flag value change and start the next trans in series.
2747 	 */
2748 	return xfs_trans_roll_inode(&args->trans, args->dp);
2749 }
2750 
2751 /*
2752  * Set the INCOMPLETE flag on an entry in a leaf block.
2753  */
2754 int
2755 xfs_attr3_leaf_setflag(
2756 	struct xfs_da_args	*args)
2757 {
2758 	struct xfs_attr_leafblock *leaf;
2759 	struct xfs_attr_leaf_entry *entry;
2760 	struct xfs_attr_leaf_name_remote *name_rmt;
2761 	struct xfs_buf		*bp;
2762 	int error;
2763 #ifdef DEBUG
2764 	struct xfs_attr3_icleaf_hdr ichdr;
2765 #endif
2766 
2767 	trace_xfs_attr_leaf_setflag(args);
2768 
2769 	/*
2770 	 * Set up the operation.
2771 	 */
2772 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2773 	if (error)
2774 		return error;
2775 
2776 	leaf = bp->b_addr;
2777 #ifdef DEBUG
2778 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2779 	ASSERT(args->index < ichdr.count);
2780 	ASSERT(args->index >= 0);
2781 #endif
2782 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2783 
2784 	ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2785 	entry->flags |= XFS_ATTR_INCOMPLETE;
2786 	xfs_trans_log_buf(args->trans, bp,
2787 			XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2788 	if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2789 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2790 		name_rmt->valueblk = 0;
2791 		name_rmt->valuelen = 0;
2792 		xfs_trans_log_buf(args->trans, bp,
2793 			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2794 	}
2795 
2796 	/*
2797 	 * Commit the flag value change and start the next trans in series.
2798 	 */
2799 	return xfs_trans_roll_inode(&args->trans, args->dp);
2800 }
2801 
2802 /*
2803  * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2804  * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2805  * entry given by args->blkno2/index2.
2806  *
2807  * Note that they could be in different blocks, or in the same block.
2808  */
2809 int
2810 xfs_attr3_leaf_flipflags(
2811 	struct xfs_da_args	*args)
2812 {
2813 	struct xfs_attr_leafblock *leaf1;
2814 	struct xfs_attr_leafblock *leaf2;
2815 	struct xfs_attr_leaf_entry *entry1;
2816 	struct xfs_attr_leaf_entry *entry2;
2817 	struct xfs_attr_leaf_name_remote *name_rmt;
2818 	struct xfs_buf		*bp1;
2819 	struct xfs_buf		*bp2;
2820 	int error;
2821 #ifdef DEBUG
2822 	struct xfs_attr3_icleaf_hdr ichdr1;
2823 	struct xfs_attr3_icleaf_hdr ichdr2;
2824 	xfs_attr_leaf_name_local_t *name_loc;
2825 	int namelen1, namelen2;
2826 	char *name1, *name2;
2827 #endif /* DEBUG */
2828 
2829 	trace_xfs_attr_leaf_flipflags(args);
2830 
2831 	/*
2832 	 * Read the block containing the "old" attr
2833 	 */
2834 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2835 	if (error)
2836 		return error;
2837 
2838 	/*
2839 	 * Read the block containing the "new" attr, if it is different
2840 	 */
2841 	if (args->blkno2 != args->blkno) {
2842 		error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2843 					   &bp2);
2844 		if (error)
2845 			return error;
2846 	} else {
2847 		bp2 = bp1;
2848 	}
2849 
2850 	leaf1 = bp1->b_addr;
2851 	entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2852 
2853 	leaf2 = bp2->b_addr;
2854 	entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2855 
2856 #ifdef DEBUG
2857 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2858 	ASSERT(args->index < ichdr1.count);
2859 	ASSERT(args->index >= 0);
2860 
2861 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2862 	ASSERT(args->index2 < ichdr2.count);
2863 	ASSERT(args->index2 >= 0);
2864 
2865 	if (entry1->flags & XFS_ATTR_LOCAL) {
2866 		name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2867 		namelen1 = name_loc->namelen;
2868 		name1 = (char *)name_loc->nameval;
2869 	} else {
2870 		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2871 		namelen1 = name_rmt->namelen;
2872 		name1 = (char *)name_rmt->name;
2873 	}
2874 	if (entry2->flags & XFS_ATTR_LOCAL) {
2875 		name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2876 		namelen2 = name_loc->namelen;
2877 		name2 = (char *)name_loc->nameval;
2878 	} else {
2879 		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2880 		namelen2 = name_rmt->namelen;
2881 		name2 = (char *)name_rmt->name;
2882 	}
2883 	ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2884 	ASSERT(namelen1 == namelen2);
2885 	ASSERT(memcmp(name1, name2, namelen1) == 0);
2886 #endif /* DEBUG */
2887 
2888 	ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2889 	ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2890 
2891 	entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2892 	xfs_trans_log_buf(args->trans, bp1,
2893 			  XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2894 	if (args->rmtblkno) {
2895 		ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2896 		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2897 		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2898 		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2899 		xfs_trans_log_buf(args->trans, bp1,
2900 			 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2901 	}
2902 
2903 	entry2->flags |= XFS_ATTR_INCOMPLETE;
2904 	xfs_trans_log_buf(args->trans, bp2,
2905 			  XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2906 	if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2907 		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2908 		name_rmt->valueblk = 0;
2909 		name_rmt->valuelen = 0;
2910 		xfs_trans_log_buf(args->trans, bp2,
2911 			 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2912 	}
2913 
2914 	/*
2915 	 * Commit the flag value change and start the next trans in series.
2916 	 */
2917 	error = xfs_trans_roll_inode(&args->trans, args->dp);
2918 
2919 	return error;
2920 }
2921