1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr_remote.h" 23 #include "xfs_attr.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 31 32 /* 33 * xfs_attr_leaf.c 34 * 35 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 36 */ 37 38 /*======================================================================== 39 * Function prototypes for the kernel. 40 *========================================================================*/ 41 42 /* 43 * Routines used for growing the Btree. 44 */ 45 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 46 xfs_dablk_t which_block, struct xfs_buf **bpp); 47 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 48 struct xfs_attr3_icleaf_hdr *ichdr, 49 struct xfs_da_args *args, int freemap_index); 50 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 51 struct xfs_attr3_icleaf_hdr *ichdr, 52 struct xfs_buf *leaf_buffer); 53 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 54 xfs_da_state_blk_t *blk1, 55 xfs_da_state_blk_t *blk2); 56 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 57 xfs_da_state_blk_t *leaf_blk_1, 58 struct xfs_attr3_icleaf_hdr *ichdr1, 59 xfs_da_state_blk_t *leaf_blk_2, 60 struct xfs_attr3_icleaf_hdr *ichdr2, 61 int *number_entries_in_blk1, 62 int *number_usedbytes_in_blk1); 63 64 /* 65 * Utility routines. 66 */ 67 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 68 struct xfs_attr_leafblock *src_leaf, 69 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 70 struct xfs_attr_leafblock *dst_leaf, 71 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 72 int move_count); 73 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 74 75 /* 76 * attr3 block 'firstused' conversion helpers. 77 * 78 * firstused refers to the offset of the first used byte of the nameval region 79 * of an attr leaf block. The region starts at the tail of the block and expands 80 * backwards towards the middle. As such, firstused is initialized to the block 81 * size for an empty leaf block and is reduced from there. 82 * 83 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 84 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 85 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 86 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 87 * the attr block size. The following helpers manage the conversion between the 88 * in-core and on-disk formats. 89 */ 90 91 static void 92 xfs_attr3_leaf_firstused_from_disk( 93 struct xfs_da_geometry *geo, 94 struct xfs_attr3_icleaf_hdr *to, 95 struct xfs_attr_leafblock *from) 96 { 97 struct xfs_attr3_leaf_hdr *hdr3; 98 99 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 100 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 101 to->firstused = be16_to_cpu(hdr3->firstused); 102 } else { 103 to->firstused = be16_to_cpu(from->hdr.firstused); 104 } 105 106 /* 107 * Convert from the magic fsb size value to actual blocksize. This 108 * should only occur for empty blocks when the block size overflows 109 * 16-bits. 110 */ 111 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 112 ASSERT(!to->count && !to->usedbytes); 113 ASSERT(geo->blksize > USHRT_MAX); 114 to->firstused = geo->blksize; 115 } 116 } 117 118 static void 119 xfs_attr3_leaf_firstused_to_disk( 120 struct xfs_da_geometry *geo, 121 struct xfs_attr_leafblock *to, 122 struct xfs_attr3_icleaf_hdr *from) 123 { 124 struct xfs_attr3_leaf_hdr *hdr3; 125 uint32_t firstused; 126 127 /* magic value should only be seen on disk */ 128 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 129 130 /* 131 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 132 * value. This only overflows at the max supported value of 64k. Use the 133 * magic on-disk value to represent block size in this case. 134 */ 135 firstused = from->firstused; 136 if (firstused > USHRT_MAX) { 137 ASSERT(from->firstused == geo->blksize); 138 firstused = XFS_ATTR3_LEAF_NULLOFF; 139 } 140 141 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 142 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 143 hdr3->firstused = cpu_to_be16(firstused); 144 } else { 145 to->hdr.firstused = cpu_to_be16(firstused); 146 } 147 } 148 149 void 150 xfs_attr3_leaf_hdr_from_disk( 151 struct xfs_da_geometry *geo, 152 struct xfs_attr3_icleaf_hdr *to, 153 struct xfs_attr_leafblock *from) 154 { 155 int i; 156 157 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 158 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 159 160 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 161 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 162 163 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 164 to->back = be32_to_cpu(hdr3->info.hdr.back); 165 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 166 to->count = be16_to_cpu(hdr3->count); 167 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 168 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 169 to->holes = hdr3->holes; 170 171 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 172 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 173 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 174 } 175 return; 176 } 177 to->forw = be32_to_cpu(from->hdr.info.forw); 178 to->back = be32_to_cpu(from->hdr.info.back); 179 to->magic = be16_to_cpu(from->hdr.info.magic); 180 to->count = be16_to_cpu(from->hdr.count); 181 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 182 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 183 to->holes = from->hdr.holes; 184 185 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 186 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 187 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 188 } 189 } 190 191 void 192 xfs_attr3_leaf_hdr_to_disk( 193 struct xfs_da_geometry *geo, 194 struct xfs_attr_leafblock *to, 195 struct xfs_attr3_icleaf_hdr *from) 196 { 197 int i; 198 199 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 200 from->magic == XFS_ATTR3_LEAF_MAGIC); 201 202 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 203 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 204 205 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 206 hdr3->info.hdr.back = cpu_to_be32(from->back); 207 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 208 hdr3->count = cpu_to_be16(from->count); 209 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 210 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 211 hdr3->holes = from->holes; 212 hdr3->pad1 = 0; 213 214 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 215 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 216 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 217 } 218 return; 219 } 220 to->hdr.info.forw = cpu_to_be32(from->forw); 221 to->hdr.info.back = cpu_to_be32(from->back); 222 to->hdr.info.magic = cpu_to_be16(from->magic); 223 to->hdr.count = cpu_to_be16(from->count); 224 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 225 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 226 to->hdr.holes = from->holes; 227 to->hdr.pad1 = 0; 228 229 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 230 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 231 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 232 } 233 } 234 235 static xfs_failaddr_t 236 xfs_attr3_leaf_verify_entry( 237 struct xfs_mount *mp, 238 char *buf_end, 239 struct xfs_attr_leafblock *leaf, 240 struct xfs_attr3_icleaf_hdr *leafhdr, 241 struct xfs_attr_leaf_entry *ent, 242 int idx, 243 __u32 *last_hashval) 244 { 245 struct xfs_attr_leaf_name_local *lentry; 246 struct xfs_attr_leaf_name_remote *rentry; 247 char *name_end; 248 unsigned int nameidx; 249 unsigned int namesize; 250 __u32 hashval; 251 252 /* hash order check */ 253 hashval = be32_to_cpu(ent->hashval); 254 if (hashval < *last_hashval) 255 return __this_address; 256 *last_hashval = hashval; 257 258 nameidx = be16_to_cpu(ent->nameidx); 259 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 260 return __this_address; 261 262 /* 263 * Check the name information. The namelen fields are u8 so we can't 264 * possibly exceed the maximum name length of 255 bytes. 265 */ 266 if (ent->flags & XFS_ATTR_LOCAL) { 267 lentry = xfs_attr3_leaf_name_local(leaf, idx); 268 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 269 be16_to_cpu(lentry->valuelen)); 270 name_end = (char *)lentry + namesize; 271 if (lentry->namelen == 0) 272 return __this_address; 273 } else { 274 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 275 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 276 name_end = (char *)rentry + namesize; 277 if (rentry->namelen == 0) 278 return __this_address; 279 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 280 rentry->valueblk == 0) 281 return __this_address; 282 } 283 284 if (name_end > buf_end) 285 return __this_address; 286 287 return NULL; 288 } 289 290 static xfs_failaddr_t 291 xfs_attr3_leaf_verify( 292 struct xfs_buf *bp) 293 { 294 struct xfs_attr3_icleaf_hdr ichdr; 295 struct xfs_mount *mp = bp->b_mount; 296 struct xfs_attr_leafblock *leaf = bp->b_addr; 297 struct xfs_attr_leaf_entry *entries; 298 struct xfs_attr_leaf_entry *ent; 299 char *buf_end; 300 uint32_t end; /* must be 32bit - see below */ 301 __u32 last_hashval = 0; 302 int i; 303 xfs_failaddr_t fa; 304 305 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 306 307 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 308 if (fa) 309 return fa; 310 311 /* 312 * firstused is the block offset of the first name info structure. 313 * Make sure it doesn't go off the block or crash into the header. 314 */ 315 if (ichdr.firstused > mp->m_attr_geo->blksize) 316 return __this_address; 317 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 318 return __this_address; 319 320 /* Make sure the entries array doesn't crash into the name info. */ 321 entries = xfs_attr3_leaf_entryp(bp->b_addr); 322 if ((char *)&entries[ichdr.count] > 323 (char *)bp->b_addr + ichdr.firstused) 324 return __this_address; 325 326 /* 327 * NOTE: This verifier historically failed empty leaf buffers because 328 * we expect the fork to be in another format. Empty attr fork format 329 * conversions are possible during xattr set, however, and format 330 * conversion is not atomic with the xattr set that triggers it. We 331 * cannot assume leaf blocks are non-empty until that is addressed. 332 */ 333 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 334 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 335 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 336 ent, i, &last_hashval); 337 if (fa) 338 return fa; 339 } 340 341 /* 342 * Quickly check the freemap information. Attribute data has to be 343 * aligned to 4-byte boundaries, and likewise for the free space. 344 * 345 * Note that for 64k block size filesystems, the freemap entries cannot 346 * overflow as they are only be16 fields. However, when checking end 347 * pointer of the freemap, we have to be careful to detect overflows and 348 * so use uint32_t for those checks. 349 */ 350 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 351 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 352 return __this_address; 353 if (ichdr.freemap[i].base & 0x3) 354 return __this_address; 355 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 356 return __this_address; 357 if (ichdr.freemap[i].size & 0x3) 358 return __this_address; 359 360 /* be care of 16 bit overflows here */ 361 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 362 if (end < ichdr.freemap[i].base) 363 return __this_address; 364 if (end > mp->m_attr_geo->blksize) 365 return __this_address; 366 } 367 368 return NULL; 369 } 370 371 static void 372 xfs_attr3_leaf_write_verify( 373 struct xfs_buf *bp) 374 { 375 struct xfs_mount *mp = bp->b_mount; 376 struct xfs_buf_log_item *bip = bp->b_log_item; 377 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 378 xfs_failaddr_t fa; 379 380 fa = xfs_attr3_leaf_verify(bp); 381 if (fa) { 382 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 383 return; 384 } 385 386 if (!xfs_sb_version_hascrc(&mp->m_sb)) 387 return; 388 389 if (bip) 390 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 391 392 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 393 } 394 395 /* 396 * leaf/node format detection on trees is sketchy, so a node read can be done on 397 * leaf level blocks when detection identifies the tree as a node format tree 398 * incorrectly. In this case, we need to swap the verifier to match the correct 399 * format of the block being read. 400 */ 401 static void 402 xfs_attr3_leaf_read_verify( 403 struct xfs_buf *bp) 404 { 405 struct xfs_mount *mp = bp->b_mount; 406 xfs_failaddr_t fa; 407 408 if (xfs_sb_version_hascrc(&mp->m_sb) && 409 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 410 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 411 else { 412 fa = xfs_attr3_leaf_verify(bp); 413 if (fa) 414 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 415 } 416 } 417 418 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 419 .name = "xfs_attr3_leaf", 420 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 421 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 422 .verify_read = xfs_attr3_leaf_read_verify, 423 .verify_write = xfs_attr3_leaf_write_verify, 424 .verify_struct = xfs_attr3_leaf_verify, 425 }; 426 427 int 428 xfs_attr3_leaf_read( 429 struct xfs_trans *tp, 430 struct xfs_inode *dp, 431 xfs_dablk_t bno, 432 struct xfs_buf **bpp) 433 { 434 int err; 435 436 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 437 &xfs_attr3_leaf_buf_ops); 438 if (!err && tp && *bpp) 439 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 440 return err; 441 } 442 443 /*======================================================================== 444 * Namespace helper routines 445 *========================================================================*/ 446 447 static bool 448 xfs_attr_match( 449 struct xfs_da_args *args, 450 uint8_t namelen, 451 unsigned char *name, 452 int flags) 453 { 454 if (args->namelen != namelen) 455 return false; 456 if (memcmp(args->name, name, namelen) != 0) 457 return false; 458 /* 459 * If we are looking for incomplete entries, show only those, else only 460 * show complete entries. 461 */ 462 if (args->attr_filter != 463 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 464 return false; 465 return true; 466 } 467 468 static int 469 xfs_attr_copy_value( 470 struct xfs_da_args *args, 471 unsigned char *value, 472 int valuelen) 473 { 474 /* 475 * No copy if all we have to do is get the length 476 */ 477 if (!args->valuelen) { 478 args->valuelen = valuelen; 479 return 0; 480 } 481 482 /* 483 * No copy if the length of the existing buffer is too small 484 */ 485 if (args->valuelen < valuelen) { 486 args->valuelen = valuelen; 487 return -ERANGE; 488 } 489 490 if (!args->value) { 491 args->value = kmem_alloc_large(valuelen, KM_NOLOCKDEP); 492 if (!args->value) 493 return -ENOMEM; 494 } 495 args->valuelen = valuelen; 496 497 /* remote block xattr requires IO for copy-in */ 498 if (args->rmtblkno) 499 return xfs_attr_rmtval_get(args); 500 501 /* 502 * This is to prevent a GCC warning because the remote xattr case 503 * doesn't have a value to pass in. In that case, we never reach here, 504 * but GCC can't work that out and so throws a "passing NULL to 505 * memcpy" warning. 506 */ 507 if (!value) 508 return -EINVAL; 509 memcpy(args->value, value, valuelen); 510 return 0; 511 } 512 513 /*======================================================================== 514 * External routines when attribute fork size < XFS_LITINO(mp). 515 *========================================================================*/ 516 517 /* 518 * Query whether the requested number of additional bytes of extended 519 * attribute space will be able to fit inline. 520 * 521 * Returns zero if not, else the di_forkoff fork offset to be used in the 522 * literal area for attribute data once the new bytes have been added. 523 * 524 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 525 * special case for dev/uuid inodes, they have fixed size data forks. 526 */ 527 int 528 xfs_attr_shortform_bytesfit( 529 struct xfs_inode *dp, 530 int bytes) 531 { 532 struct xfs_mount *mp = dp->i_mount; 533 int64_t dsize; 534 int minforkoff; 535 int maxforkoff; 536 int offset; 537 538 /* rounded down */ 539 offset = (XFS_LITINO(mp) - bytes) >> 3; 540 541 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 542 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 543 return (offset >= minforkoff) ? minforkoff : 0; 544 } 545 546 /* 547 * If the requested numbers of bytes is smaller or equal to the 548 * current attribute fork size we can always proceed. 549 * 550 * Note that if_bytes in the data fork might actually be larger than 551 * the current data fork size is due to delalloc extents. In that 552 * case either the extent count will go down when they are converted 553 * to real extents, or the delalloc conversion will take care of the 554 * literal area rebalancing. 555 */ 556 if (bytes <= XFS_IFORK_ASIZE(dp)) 557 return dp->i_d.di_forkoff; 558 559 /* 560 * For attr2 we can try to move the forkoff if there is space in the 561 * literal area, but for the old format we are done if there is no 562 * space in the fixed attribute fork. 563 */ 564 if (!(mp->m_flags & XFS_MOUNT_ATTR2)) 565 return 0; 566 567 dsize = dp->i_df.if_bytes; 568 569 switch (dp->i_df.if_format) { 570 case XFS_DINODE_FMT_EXTENTS: 571 /* 572 * If there is no attr fork and the data fork is extents, 573 * determine if creating the default attr fork will result 574 * in the extents form migrating to btree. If so, the 575 * minimum offset only needs to be the space required for 576 * the btree root. 577 */ 578 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > 579 xfs_default_attroffset(dp)) 580 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 581 break; 582 case XFS_DINODE_FMT_BTREE: 583 /* 584 * If we have a data btree then keep forkoff if we have one, 585 * otherwise we are adding a new attr, so then we set 586 * minforkoff to where the btree root can finish so we have 587 * plenty of room for attrs 588 */ 589 if (dp->i_d.di_forkoff) { 590 if (offset < dp->i_d.di_forkoff) 591 return 0; 592 return dp->i_d.di_forkoff; 593 } 594 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 595 break; 596 } 597 598 /* 599 * A data fork btree root must have space for at least 600 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 601 */ 602 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 603 minforkoff = roundup(minforkoff, 8) >> 3; 604 605 /* attr fork btree root can have at least this many key/ptr pairs */ 606 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 607 maxforkoff = maxforkoff >> 3; /* rounded down */ 608 609 if (offset >= maxforkoff) 610 return maxforkoff; 611 if (offset >= minforkoff) 612 return offset; 613 return 0; 614 } 615 616 /* 617 * Switch on the ATTR2 superblock bit (implies also FEATURES2) 618 */ 619 STATIC void 620 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) 621 { 622 if ((mp->m_flags & XFS_MOUNT_ATTR2) && 623 !(xfs_sb_version_hasattr2(&mp->m_sb))) { 624 spin_lock(&mp->m_sb_lock); 625 if (!xfs_sb_version_hasattr2(&mp->m_sb)) { 626 xfs_sb_version_addattr2(&mp->m_sb); 627 spin_unlock(&mp->m_sb_lock); 628 xfs_log_sb(tp); 629 } else 630 spin_unlock(&mp->m_sb_lock); 631 } 632 } 633 634 /* 635 * Create the initial contents of a shortform attribute list. 636 */ 637 void 638 xfs_attr_shortform_create( 639 struct xfs_da_args *args) 640 { 641 struct xfs_inode *dp = args->dp; 642 struct xfs_ifork *ifp = dp->i_afp; 643 struct xfs_attr_sf_hdr *hdr; 644 645 trace_xfs_attr_sf_create(args); 646 647 ASSERT(ifp->if_bytes == 0); 648 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) { 649 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ 650 ifp->if_format = XFS_DINODE_FMT_LOCAL; 651 ifp->if_flags |= XFS_IFINLINE; 652 } else { 653 ASSERT(ifp->if_flags & XFS_IFINLINE); 654 } 655 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 656 hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; 657 hdr->count = 0; 658 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 659 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 660 } 661 662 /* 663 * Add a name/value pair to the shortform attribute list. 664 * Overflow from the inode has already been checked for. 665 */ 666 void 667 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) 668 { 669 xfs_attr_shortform_t *sf; 670 xfs_attr_sf_entry_t *sfe; 671 int i, offset, size; 672 xfs_mount_t *mp; 673 xfs_inode_t *dp; 674 struct xfs_ifork *ifp; 675 676 trace_xfs_attr_sf_add(args); 677 678 dp = args->dp; 679 mp = dp->i_mount; 680 dp->i_d.di_forkoff = forkoff; 681 682 ifp = dp->i_afp; 683 ASSERT(ifp->if_flags & XFS_IFINLINE); 684 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 685 sfe = &sf->list[0]; 686 for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { 687 ASSERT(!xfs_attr_match(args, sfe->namelen, sfe->nameval, 688 sfe->flags)); 689 } 690 691 offset = (char *)sfe - (char *)sf; 692 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); 693 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 694 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 695 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); 696 697 sfe->namelen = args->namelen; 698 sfe->valuelen = args->valuelen; 699 sfe->flags = args->attr_filter; 700 memcpy(sfe->nameval, args->name, args->namelen); 701 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 702 sf->hdr.count++; 703 be16_add_cpu(&sf->hdr.totsize, size); 704 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 705 706 xfs_sbversion_add_attr2(mp, args->trans); 707 } 708 709 /* 710 * After the last attribute is removed revert to original inode format, 711 * making all literal area available to the data fork once more. 712 */ 713 void 714 xfs_attr_fork_remove( 715 struct xfs_inode *ip, 716 struct xfs_trans *tp) 717 { 718 ASSERT(ip->i_afp->if_nextents == 0); 719 720 xfs_idestroy_fork(ip->i_afp); 721 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 722 ip->i_afp = NULL; 723 ip->i_d.di_forkoff = 0; 724 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 725 } 726 727 /* 728 * Remove an attribute from the shortform attribute list structure. 729 */ 730 int 731 xfs_attr_shortform_remove(xfs_da_args_t *args) 732 { 733 xfs_attr_shortform_t *sf; 734 xfs_attr_sf_entry_t *sfe; 735 int base, size=0, end, totsize, i; 736 xfs_mount_t *mp; 737 xfs_inode_t *dp; 738 739 trace_xfs_attr_sf_remove(args); 740 741 dp = args->dp; 742 mp = dp->i_mount; 743 base = sizeof(xfs_attr_sf_hdr_t); 744 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; 745 sfe = &sf->list[0]; 746 end = sf->hdr.count; 747 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), 748 base += size, i++) { 749 size = XFS_ATTR_SF_ENTSIZE(sfe); 750 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 751 sfe->flags)) 752 break; 753 } 754 if (i == end) 755 return -ENOATTR; 756 757 /* 758 * Fix up the attribute fork data, covering the hole 759 */ 760 end = base + size; 761 totsize = be16_to_cpu(sf->hdr.totsize); 762 if (end != totsize) 763 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); 764 sf->hdr.count--; 765 be16_add_cpu(&sf->hdr.totsize, -size); 766 767 /* 768 * Fix up the start offset of the attribute fork 769 */ 770 totsize -= size; 771 if (totsize == sizeof(xfs_attr_sf_hdr_t) && 772 (mp->m_flags & XFS_MOUNT_ATTR2) && 773 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 774 !(args->op_flags & XFS_DA_OP_ADDNAME)) { 775 xfs_attr_fork_remove(dp, args->trans); 776 } else { 777 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 778 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 779 ASSERT(dp->i_d.di_forkoff); 780 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || 781 (args->op_flags & XFS_DA_OP_ADDNAME) || 782 !(mp->m_flags & XFS_MOUNT_ATTR2) || 783 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 784 xfs_trans_log_inode(args->trans, dp, 785 XFS_ILOG_CORE | XFS_ILOG_ADATA); 786 } 787 788 xfs_sbversion_add_attr2(mp, args->trans); 789 790 return 0; 791 } 792 793 /* 794 * Look up a name in a shortform attribute list structure. 795 */ 796 /*ARGSUSED*/ 797 int 798 xfs_attr_shortform_lookup(xfs_da_args_t *args) 799 { 800 xfs_attr_shortform_t *sf; 801 xfs_attr_sf_entry_t *sfe; 802 int i; 803 struct xfs_ifork *ifp; 804 805 trace_xfs_attr_sf_lookup(args); 806 807 ifp = args->dp->i_afp; 808 ASSERT(ifp->if_flags & XFS_IFINLINE); 809 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 810 sfe = &sf->list[0]; 811 for (i = 0; i < sf->hdr.count; 812 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { 813 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 814 sfe->flags)) 815 return -EEXIST; 816 } 817 return -ENOATTR; 818 } 819 820 /* 821 * Retrieve the attribute value and length. 822 * 823 * If args->valuelen is zero, only the length needs to be returned. Unlike a 824 * lookup, we only return an error if the attribute does not exist or we can't 825 * retrieve the value. 826 */ 827 int 828 xfs_attr_shortform_getvalue( 829 struct xfs_da_args *args) 830 { 831 struct xfs_attr_shortform *sf; 832 struct xfs_attr_sf_entry *sfe; 833 int i; 834 835 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); 836 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; 837 sfe = &sf->list[0]; 838 for (i = 0; i < sf->hdr.count; 839 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { 840 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 841 sfe->flags)) 842 return xfs_attr_copy_value(args, 843 &sfe->nameval[args->namelen], sfe->valuelen); 844 } 845 return -ENOATTR; 846 } 847 848 /* 849 * Convert from using the shortform to the leaf. On success, return the 850 * buffer so that we can keep it locked until we're totally done with it. 851 */ 852 int 853 xfs_attr_shortform_to_leaf( 854 struct xfs_da_args *args, 855 struct xfs_buf **leaf_bp) 856 { 857 struct xfs_inode *dp; 858 struct xfs_attr_shortform *sf; 859 struct xfs_attr_sf_entry *sfe; 860 struct xfs_da_args nargs; 861 char *tmpbuffer; 862 int error, i, size; 863 xfs_dablk_t blkno; 864 struct xfs_buf *bp; 865 struct xfs_ifork *ifp; 866 867 trace_xfs_attr_sf_to_leaf(args); 868 869 dp = args->dp; 870 ifp = dp->i_afp; 871 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 872 size = be16_to_cpu(sf->hdr.totsize); 873 tmpbuffer = kmem_alloc(size, 0); 874 ASSERT(tmpbuffer != NULL); 875 memcpy(tmpbuffer, ifp->if_u1.if_data, size); 876 sf = (xfs_attr_shortform_t *)tmpbuffer; 877 878 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 879 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 880 881 bp = NULL; 882 error = xfs_da_grow_inode(args, &blkno); 883 if (error) 884 goto out; 885 886 ASSERT(blkno == 0); 887 error = xfs_attr3_leaf_create(args, blkno, &bp); 888 if (error) 889 goto out; 890 891 memset((char *)&nargs, 0, sizeof(nargs)); 892 nargs.dp = dp; 893 nargs.geo = args->geo; 894 nargs.total = args->total; 895 nargs.whichfork = XFS_ATTR_FORK; 896 nargs.trans = args->trans; 897 nargs.op_flags = XFS_DA_OP_OKNOENT; 898 899 sfe = &sf->list[0]; 900 for (i = 0; i < sf->hdr.count; i++) { 901 nargs.name = sfe->nameval; 902 nargs.namelen = sfe->namelen; 903 nargs.value = &sfe->nameval[nargs.namelen]; 904 nargs.valuelen = sfe->valuelen; 905 nargs.hashval = xfs_da_hashname(sfe->nameval, 906 sfe->namelen); 907 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 908 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 909 ASSERT(error == -ENOATTR); 910 error = xfs_attr3_leaf_add(bp, &nargs); 911 ASSERT(error != -ENOSPC); 912 if (error) 913 goto out; 914 sfe = XFS_ATTR_SF_NEXTENTRY(sfe); 915 } 916 error = 0; 917 *leaf_bp = bp; 918 out: 919 kmem_free(tmpbuffer); 920 return error; 921 } 922 923 /* 924 * Check a leaf attribute block to see if all the entries would fit into 925 * a shortform attribute list. 926 */ 927 int 928 xfs_attr_shortform_allfit( 929 struct xfs_buf *bp, 930 struct xfs_inode *dp) 931 { 932 struct xfs_attr_leafblock *leaf; 933 struct xfs_attr_leaf_entry *entry; 934 xfs_attr_leaf_name_local_t *name_loc; 935 struct xfs_attr3_icleaf_hdr leafhdr; 936 int bytes; 937 int i; 938 struct xfs_mount *mp = bp->b_mount; 939 940 leaf = bp->b_addr; 941 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 942 entry = xfs_attr3_leaf_entryp(leaf); 943 944 bytes = sizeof(struct xfs_attr_sf_hdr); 945 for (i = 0; i < leafhdr.count; entry++, i++) { 946 if (entry->flags & XFS_ATTR_INCOMPLETE) 947 continue; /* don't copy partial entries */ 948 if (!(entry->flags & XFS_ATTR_LOCAL)) 949 return 0; 950 name_loc = xfs_attr3_leaf_name_local(leaf, i); 951 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 952 return 0; 953 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 954 return 0; 955 bytes += sizeof(struct xfs_attr_sf_entry) - 1 956 + name_loc->namelen 957 + be16_to_cpu(name_loc->valuelen); 958 } 959 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && 960 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 961 (bytes == sizeof(struct xfs_attr_sf_hdr))) 962 return -1; 963 return xfs_attr_shortform_bytesfit(dp, bytes); 964 } 965 966 /* Verify the consistency of an inline attribute fork. */ 967 xfs_failaddr_t 968 xfs_attr_shortform_verify( 969 struct xfs_inode *ip) 970 { 971 struct xfs_attr_shortform *sfp; 972 struct xfs_attr_sf_entry *sfep; 973 struct xfs_attr_sf_entry *next_sfep; 974 char *endp; 975 struct xfs_ifork *ifp; 976 int i; 977 int64_t size; 978 979 ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 980 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 981 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 982 size = ifp->if_bytes; 983 984 /* 985 * Give up if the attribute is way too short. 986 */ 987 if (size < sizeof(struct xfs_attr_sf_hdr)) 988 return __this_address; 989 990 endp = (char *)sfp + size; 991 992 /* Check all reported entries */ 993 sfep = &sfp->list[0]; 994 for (i = 0; i < sfp->hdr.count; i++) { 995 /* 996 * struct xfs_attr_sf_entry has a variable length. 997 * Check the fixed-offset parts of the structure are 998 * within the data buffer. 999 */ 1000 if (((char *)sfep + sizeof(*sfep)) >= endp) 1001 return __this_address; 1002 1003 /* Don't allow names with known bad length. */ 1004 if (sfep->namelen == 0) 1005 return __this_address; 1006 1007 /* 1008 * Check that the variable-length part of the structure is 1009 * within the data buffer. The next entry starts after the 1010 * name component, so nextentry is an acceptable test. 1011 */ 1012 next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep); 1013 if ((char *)next_sfep > endp) 1014 return __this_address; 1015 1016 /* 1017 * Check for unknown flags. Short form doesn't support 1018 * the incomplete or local bits, so we can use the namespace 1019 * mask here. 1020 */ 1021 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1022 return __this_address; 1023 1024 /* 1025 * Check for invalid namespace combinations. We only allow 1026 * one namespace flag per xattr, so we can just count the 1027 * bits (i.e. hweight) here. 1028 */ 1029 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1030 return __this_address; 1031 1032 sfep = next_sfep; 1033 } 1034 if ((void *)sfep != (void *)endp) 1035 return __this_address; 1036 1037 return NULL; 1038 } 1039 1040 /* 1041 * Convert a leaf attribute list to shortform attribute list 1042 */ 1043 int 1044 xfs_attr3_leaf_to_shortform( 1045 struct xfs_buf *bp, 1046 struct xfs_da_args *args, 1047 int forkoff) 1048 { 1049 struct xfs_attr_leafblock *leaf; 1050 struct xfs_attr3_icleaf_hdr ichdr; 1051 struct xfs_attr_leaf_entry *entry; 1052 struct xfs_attr_leaf_name_local *name_loc; 1053 struct xfs_da_args nargs; 1054 struct xfs_inode *dp = args->dp; 1055 char *tmpbuffer; 1056 int error; 1057 int i; 1058 1059 trace_xfs_attr_leaf_to_sf(args); 1060 1061 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1062 if (!tmpbuffer) 1063 return -ENOMEM; 1064 1065 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1066 1067 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1068 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1069 entry = xfs_attr3_leaf_entryp(leaf); 1070 1071 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1072 memset(bp->b_addr, 0, args->geo->blksize); 1073 1074 /* 1075 * Clean out the prior contents of the attribute list. 1076 */ 1077 error = xfs_da_shrink_inode(args, 0, bp); 1078 if (error) 1079 goto out; 1080 1081 if (forkoff == -1) { 1082 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); 1083 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1084 xfs_attr_fork_remove(dp, args->trans); 1085 goto out; 1086 } 1087 1088 xfs_attr_shortform_create(args); 1089 1090 /* 1091 * Copy the attributes 1092 */ 1093 memset((char *)&nargs, 0, sizeof(nargs)); 1094 nargs.geo = args->geo; 1095 nargs.dp = dp; 1096 nargs.total = args->total; 1097 nargs.whichfork = XFS_ATTR_FORK; 1098 nargs.trans = args->trans; 1099 nargs.op_flags = XFS_DA_OP_OKNOENT; 1100 1101 for (i = 0; i < ichdr.count; entry++, i++) { 1102 if (entry->flags & XFS_ATTR_INCOMPLETE) 1103 continue; /* don't copy partial entries */ 1104 if (!entry->nameidx) 1105 continue; 1106 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1107 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1108 nargs.name = name_loc->nameval; 1109 nargs.namelen = name_loc->namelen; 1110 nargs.value = &name_loc->nameval[nargs.namelen]; 1111 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1112 nargs.hashval = be32_to_cpu(entry->hashval); 1113 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1114 xfs_attr_shortform_add(&nargs, forkoff); 1115 } 1116 error = 0; 1117 1118 out: 1119 kmem_free(tmpbuffer); 1120 return error; 1121 } 1122 1123 /* 1124 * Convert from using a single leaf to a root node and a leaf. 1125 */ 1126 int 1127 xfs_attr3_leaf_to_node( 1128 struct xfs_da_args *args) 1129 { 1130 struct xfs_attr_leafblock *leaf; 1131 struct xfs_attr3_icleaf_hdr icleafhdr; 1132 struct xfs_attr_leaf_entry *entries; 1133 struct xfs_da3_icnode_hdr icnodehdr; 1134 struct xfs_da_intnode *node; 1135 struct xfs_inode *dp = args->dp; 1136 struct xfs_mount *mp = dp->i_mount; 1137 struct xfs_buf *bp1 = NULL; 1138 struct xfs_buf *bp2 = NULL; 1139 xfs_dablk_t blkno; 1140 int error; 1141 1142 trace_xfs_attr_leaf_to_node(args); 1143 1144 error = xfs_da_grow_inode(args, &blkno); 1145 if (error) 1146 goto out; 1147 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1148 if (error) 1149 goto out; 1150 1151 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1152 if (error) 1153 goto out; 1154 1155 /* copy leaf to new buffer, update identifiers */ 1156 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); 1157 bp2->b_ops = bp1->b_ops; 1158 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); 1159 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1160 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; 1161 hdr3->blkno = cpu_to_be64(bp2->b_bn); 1162 } 1163 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1164 1165 /* 1166 * Set up the new root node. 1167 */ 1168 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1169 if (error) 1170 goto out; 1171 node = bp1->b_addr; 1172 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1173 1174 leaf = bp2->b_addr; 1175 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1176 entries = xfs_attr3_leaf_entryp(leaf); 1177 1178 /* both on-disk, don't endian-flip twice */ 1179 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1180 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1181 icnodehdr.count = 1; 1182 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1183 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1184 error = 0; 1185 out: 1186 return error; 1187 } 1188 1189 /*======================================================================== 1190 * Routines used for growing the Btree. 1191 *========================================================================*/ 1192 1193 /* 1194 * Create the initial contents of a leaf attribute list 1195 * or a leaf in a node attribute list. 1196 */ 1197 STATIC int 1198 xfs_attr3_leaf_create( 1199 struct xfs_da_args *args, 1200 xfs_dablk_t blkno, 1201 struct xfs_buf **bpp) 1202 { 1203 struct xfs_attr_leafblock *leaf; 1204 struct xfs_attr3_icleaf_hdr ichdr; 1205 struct xfs_inode *dp = args->dp; 1206 struct xfs_mount *mp = dp->i_mount; 1207 struct xfs_buf *bp; 1208 int error; 1209 1210 trace_xfs_attr_leaf_create(args); 1211 1212 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1213 XFS_ATTR_FORK); 1214 if (error) 1215 return error; 1216 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1217 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1218 leaf = bp->b_addr; 1219 memset(leaf, 0, args->geo->blksize); 1220 1221 memset(&ichdr, 0, sizeof(ichdr)); 1222 ichdr.firstused = args->geo->blksize; 1223 1224 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1225 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1226 1227 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1228 1229 hdr3->blkno = cpu_to_be64(bp->b_bn); 1230 hdr3->owner = cpu_to_be64(dp->i_ino); 1231 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1232 1233 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1234 } else { 1235 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1236 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1237 } 1238 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1239 1240 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1241 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1242 1243 *bpp = bp; 1244 return 0; 1245 } 1246 1247 /* 1248 * Split the leaf node, rebalance, then add the new entry. 1249 */ 1250 int 1251 xfs_attr3_leaf_split( 1252 struct xfs_da_state *state, 1253 struct xfs_da_state_blk *oldblk, 1254 struct xfs_da_state_blk *newblk) 1255 { 1256 xfs_dablk_t blkno; 1257 int error; 1258 1259 trace_xfs_attr_leaf_split(state->args); 1260 1261 /* 1262 * Allocate space for a new leaf node. 1263 */ 1264 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1265 error = xfs_da_grow_inode(state->args, &blkno); 1266 if (error) 1267 return error; 1268 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1269 if (error) 1270 return error; 1271 newblk->blkno = blkno; 1272 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1273 1274 /* 1275 * Rebalance the entries across the two leaves. 1276 * NOTE: rebalance() currently depends on the 2nd block being empty. 1277 */ 1278 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1279 error = xfs_da3_blk_link(state, oldblk, newblk); 1280 if (error) 1281 return error; 1282 1283 /* 1284 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1285 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1286 * "new" attrs info. Will need the "old" info to remove it later. 1287 * 1288 * Insert the "new" entry in the correct block. 1289 */ 1290 if (state->inleaf) { 1291 trace_xfs_attr_leaf_add_old(state->args); 1292 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1293 } else { 1294 trace_xfs_attr_leaf_add_new(state->args); 1295 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1296 } 1297 1298 /* 1299 * Update last hashval in each block since we added the name. 1300 */ 1301 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1302 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1303 return error; 1304 } 1305 1306 /* 1307 * Add a name to the leaf attribute list structure. 1308 */ 1309 int 1310 xfs_attr3_leaf_add( 1311 struct xfs_buf *bp, 1312 struct xfs_da_args *args) 1313 { 1314 struct xfs_attr_leafblock *leaf; 1315 struct xfs_attr3_icleaf_hdr ichdr; 1316 int tablesize; 1317 int entsize; 1318 int sum; 1319 int tmp; 1320 int i; 1321 1322 trace_xfs_attr_leaf_add(args); 1323 1324 leaf = bp->b_addr; 1325 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1326 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1327 entsize = xfs_attr_leaf_newentsize(args, NULL); 1328 1329 /* 1330 * Search through freemap for first-fit on new name length. 1331 * (may need to figure in size of entry struct too) 1332 */ 1333 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1334 + xfs_attr3_leaf_hdr_size(leaf); 1335 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1336 if (tablesize > ichdr.firstused) { 1337 sum += ichdr.freemap[i].size; 1338 continue; 1339 } 1340 if (!ichdr.freemap[i].size) 1341 continue; /* no space in this map */ 1342 tmp = entsize; 1343 if (ichdr.freemap[i].base < ichdr.firstused) 1344 tmp += sizeof(xfs_attr_leaf_entry_t); 1345 if (ichdr.freemap[i].size >= tmp) { 1346 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1347 goto out_log_hdr; 1348 } 1349 sum += ichdr.freemap[i].size; 1350 } 1351 1352 /* 1353 * If there are no holes in the address space of the block, 1354 * and we don't have enough freespace, then compaction will do us 1355 * no good and we should just give up. 1356 */ 1357 if (!ichdr.holes && sum < entsize) 1358 return -ENOSPC; 1359 1360 /* 1361 * Compact the entries to coalesce free space. 1362 * This may change the hdr->count via dropping INCOMPLETE entries. 1363 */ 1364 xfs_attr3_leaf_compact(args, &ichdr, bp); 1365 1366 /* 1367 * After compaction, the block is guaranteed to have only one 1368 * free region, in freemap[0]. If it is not big enough, give up. 1369 */ 1370 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1371 tmp = -ENOSPC; 1372 goto out_log_hdr; 1373 } 1374 1375 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1376 1377 out_log_hdr: 1378 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1379 xfs_trans_log_buf(args->trans, bp, 1380 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1381 xfs_attr3_leaf_hdr_size(leaf))); 1382 return tmp; 1383 } 1384 1385 /* 1386 * Add a name to a leaf attribute list structure. 1387 */ 1388 STATIC int 1389 xfs_attr3_leaf_add_work( 1390 struct xfs_buf *bp, 1391 struct xfs_attr3_icleaf_hdr *ichdr, 1392 struct xfs_da_args *args, 1393 int mapindex) 1394 { 1395 struct xfs_attr_leafblock *leaf; 1396 struct xfs_attr_leaf_entry *entry; 1397 struct xfs_attr_leaf_name_local *name_loc; 1398 struct xfs_attr_leaf_name_remote *name_rmt; 1399 struct xfs_mount *mp; 1400 int tmp; 1401 int i; 1402 1403 trace_xfs_attr_leaf_add_work(args); 1404 1405 leaf = bp->b_addr; 1406 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1407 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1408 1409 /* 1410 * Force open some space in the entry array and fill it in. 1411 */ 1412 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1413 if (args->index < ichdr->count) { 1414 tmp = ichdr->count - args->index; 1415 tmp *= sizeof(xfs_attr_leaf_entry_t); 1416 memmove(entry + 1, entry, tmp); 1417 xfs_trans_log_buf(args->trans, bp, 1418 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1419 } 1420 ichdr->count++; 1421 1422 /* 1423 * Allocate space for the new string (at the end of the run). 1424 */ 1425 mp = args->trans->t_mountp; 1426 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1427 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1428 ASSERT(ichdr->freemap[mapindex].size >= 1429 xfs_attr_leaf_newentsize(args, NULL)); 1430 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1431 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1432 1433 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1434 1435 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1436 ichdr->freemap[mapindex].size); 1437 entry->hashval = cpu_to_be32(args->hashval); 1438 entry->flags = args->attr_filter; 1439 if (tmp) 1440 entry->flags |= XFS_ATTR_LOCAL; 1441 if (args->op_flags & XFS_DA_OP_RENAME) { 1442 entry->flags |= XFS_ATTR_INCOMPLETE; 1443 if ((args->blkno2 == args->blkno) && 1444 (args->index2 <= args->index)) { 1445 args->index2++; 1446 } 1447 } 1448 xfs_trans_log_buf(args->trans, bp, 1449 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1450 ASSERT((args->index == 0) || 1451 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1452 ASSERT((args->index == ichdr->count - 1) || 1453 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1454 1455 /* 1456 * For "remote" attribute values, simply note that we need to 1457 * allocate space for the "remote" value. We can't actually 1458 * allocate the extents in this transaction, and we can't decide 1459 * which blocks they should be as we might allocate more blocks 1460 * as part of this transaction (a split operation for example). 1461 */ 1462 if (entry->flags & XFS_ATTR_LOCAL) { 1463 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1464 name_loc->namelen = args->namelen; 1465 name_loc->valuelen = cpu_to_be16(args->valuelen); 1466 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1467 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1468 be16_to_cpu(name_loc->valuelen)); 1469 } else { 1470 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1471 name_rmt->namelen = args->namelen; 1472 memcpy((char *)name_rmt->name, args->name, args->namelen); 1473 entry->flags |= XFS_ATTR_INCOMPLETE; 1474 /* just in case */ 1475 name_rmt->valuelen = 0; 1476 name_rmt->valueblk = 0; 1477 args->rmtblkno = 1; 1478 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1479 args->rmtvaluelen = args->valuelen; 1480 } 1481 xfs_trans_log_buf(args->trans, bp, 1482 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1483 xfs_attr_leaf_entsize(leaf, args->index))); 1484 1485 /* 1486 * Update the control info for this leaf node 1487 */ 1488 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1489 ichdr->firstused = be16_to_cpu(entry->nameidx); 1490 1491 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1492 + xfs_attr3_leaf_hdr_size(leaf)); 1493 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1494 + xfs_attr3_leaf_hdr_size(leaf); 1495 1496 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1497 if (ichdr->freemap[i].base == tmp) { 1498 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1499 ichdr->freemap[i].size -= 1500 min_t(uint16_t, ichdr->freemap[i].size, 1501 sizeof(xfs_attr_leaf_entry_t)); 1502 } 1503 } 1504 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1505 return 0; 1506 } 1507 1508 /* 1509 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1510 */ 1511 STATIC void 1512 xfs_attr3_leaf_compact( 1513 struct xfs_da_args *args, 1514 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1515 struct xfs_buf *bp) 1516 { 1517 struct xfs_attr_leafblock *leaf_src; 1518 struct xfs_attr_leafblock *leaf_dst; 1519 struct xfs_attr3_icleaf_hdr ichdr_src; 1520 struct xfs_trans *trans = args->trans; 1521 char *tmpbuffer; 1522 1523 trace_xfs_attr_leaf_compact(args); 1524 1525 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1526 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1527 memset(bp->b_addr, 0, args->geo->blksize); 1528 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1529 leaf_dst = bp->b_addr; 1530 1531 /* 1532 * Copy the on-disk header back into the destination buffer to ensure 1533 * all the information in the header that is not part of the incore 1534 * header structure is preserved. 1535 */ 1536 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1537 1538 /* Initialise the incore headers */ 1539 ichdr_src = *ichdr_dst; /* struct copy */ 1540 ichdr_dst->firstused = args->geo->blksize; 1541 ichdr_dst->usedbytes = 0; 1542 ichdr_dst->count = 0; 1543 ichdr_dst->holes = 0; 1544 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1545 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1546 ichdr_dst->freemap[0].base; 1547 1548 /* write the header back to initialise the underlying buffer */ 1549 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1550 1551 /* 1552 * Copy all entry's in the same (sorted) order, 1553 * but allocate name/value pairs packed and in sequence. 1554 */ 1555 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1556 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1557 /* 1558 * this logs the entire buffer, but the caller must write the header 1559 * back to the buffer when it is finished modifying it. 1560 */ 1561 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1562 1563 kmem_free(tmpbuffer); 1564 } 1565 1566 /* 1567 * Compare two leaf blocks "order". 1568 * Return 0 unless leaf2 should go before leaf1. 1569 */ 1570 static int 1571 xfs_attr3_leaf_order( 1572 struct xfs_buf *leaf1_bp, 1573 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1574 struct xfs_buf *leaf2_bp, 1575 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1576 { 1577 struct xfs_attr_leaf_entry *entries1; 1578 struct xfs_attr_leaf_entry *entries2; 1579 1580 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1581 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1582 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1583 ((be32_to_cpu(entries2[0].hashval) < 1584 be32_to_cpu(entries1[0].hashval)) || 1585 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1586 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1587 return 1; 1588 } 1589 return 0; 1590 } 1591 1592 int 1593 xfs_attr_leaf_order( 1594 struct xfs_buf *leaf1_bp, 1595 struct xfs_buf *leaf2_bp) 1596 { 1597 struct xfs_attr3_icleaf_hdr ichdr1; 1598 struct xfs_attr3_icleaf_hdr ichdr2; 1599 struct xfs_mount *mp = leaf1_bp->b_mount; 1600 1601 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1602 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1603 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1604 } 1605 1606 /* 1607 * Redistribute the attribute list entries between two leaf nodes, 1608 * taking into account the size of the new entry. 1609 * 1610 * NOTE: if new block is empty, then it will get the upper half of the 1611 * old block. At present, all (one) callers pass in an empty second block. 1612 * 1613 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1614 * to match what it is doing in splitting the attribute leaf block. Those 1615 * values are used in "atomic rename" operations on attributes. Note that 1616 * the "new" and "old" values can end up in different blocks. 1617 */ 1618 STATIC void 1619 xfs_attr3_leaf_rebalance( 1620 struct xfs_da_state *state, 1621 struct xfs_da_state_blk *blk1, 1622 struct xfs_da_state_blk *blk2) 1623 { 1624 struct xfs_da_args *args; 1625 struct xfs_attr_leafblock *leaf1; 1626 struct xfs_attr_leafblock *leaf2; 1627 struct xfs_attr3_icleaf_hdr ichdr1; 1628 struct xfs_attr3_icleaf_hdr ichdr2; 1629 struct xfs_attr_leaf_entry *entries1; 1630 struct xfs_attr_leaf_entry *entries2; 1631 int count; 1632 int totallen; 1633 int max; 1634 int space; 1635 int swap; 1636 1637 /* 1638 * Set up environment. 1639 */ 1640 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1641 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1642 leaf1 = blk1->bp->b_addr; 1643 leaf2 = blk2->bp->b_addr; 1644 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1645 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1646 ASSERT(ichdr2.count == 0); 1647 args = state->args; 1648 1649 trace_xfs_attr_leaf_rebalance(args); 1650 1651 /* 1652 * Check ordering of blocks, reverse if it makes things simpler. 1653 * 1654 * NOTE: Given that all (current) callers pass in an empty 1655 * second block, this code should never set "swap". 1656 */ 1657 swap = 0; 1658 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1659 swap(blk1, blk2); 1660 1661 /* swap structures rather than reconverting them */ 1662 swap(ichdr1, ichdr2); 1663 1664 leaf1 = blk1->bp->b_addr; 1665 leaf2 = blk2->bp->b_addr; 1666 swap = 1; 1667 } 1668 1669 /* 1670 * Examine entries until we reduce the absolute difference in 1671 * byte usage between the two blocks to a minimum. Then get 1672 * the direction to copy and the number of elements to move. 1673 * 1674 * "inleaf" is true if the new entry should be inserted into blk1. 1675 * If "swap" is also true, then reverse the sense of "inleaf". 1676 */ 1677 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1678 blk2, &ichdr2, 1679 &count, &totallen); 1680 if (swap) 1681 state->inleaf = !state->inleaf; 1682 1683 /* 1684 * Move any entries required from leaf to leaf: 1685 */ 1686 if (count < ichdr1.count) { 1687 /* 1688 * Figure the total bytes to be added to the destination leaf. 1689 */ 1690 /* number entries being moved */ 1691 count = ichdr1.count - count; 1692 space = ichdr1.usedbytes - totallen; 1693 space += count * sizeof(xfs_attr_leaf_entry_t); 1694 1695 /* 1696 * leaf2 is the destination, compact it if it looks tight. 1697 */ 1698 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1699 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1700 if (space > max) 1701 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1702 1703 /* 1704 * Move high entries from leaf1 to low end of leaf2. 1705 */ 1706 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1707 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1708 1709 } else if (count > ichdr1.count) { 1710 /* 1711 * I assert that since all callers pass in an empty 1712 * second buffer, this code should never execute. 1713 */ 1714 ASSERT(0); 1715 1716 /* 1717 * Figure the total bytes to be added to the destination leaf. 1718 */ 1719 /* number entries being moved */ 1720 count -= ichdr1.count; 1721 space = totallen - ichdr1.usedbytes; 1722 space += count * sizeof(xfs_attr_leaf_entry_t); 1723 1724 /* 1725 * leaf1 is the destination, compact it if it looks tight. 1726 */ 1727 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1728 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1729 if (space > max) 1730 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1731 1732 /* 1733 * Move low entries from leaf2 to high end of leaf1. 1734 */ 1735 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1736 ichdr1.count, count); 1737 } 1738 1739 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1740 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1741 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1742 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1743 1744 /* 1745 * Copy out last hashval in each block for B-tree code. 1746 */ 1747 entries1 = xfs_attr3_leaf_entryp(leaf1); 1748 entries2 = xfs_attr3_leaf_entryp(leaf2); 1749 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1750 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1751 1752 /* 1753 * Adjust the expected index for insertion. 1754 * NOTE: this code depends on the (current) situation that the 1755 * second block was originally empty. 1756 * 1757 * If the insertion point moved to the 2nd block, we must adjust 1758 * the index. We must also track the entry just following the 1759 * new entry for use in an "atomic rename" operation, that entry 1760 * is always the "old" entry and the "new" entry is what we are 1761 * inserting. The index/blkno fields refer to the "old" entry, 1762 * while the index2/blkno2 fields refer to the "new" entry. 1763 */ 1764 if (blk1->index > ichdr1.count) { 1765 ASSERT(state->inleaf == 0); 1766 blk2->index = blk1->index - ichdr1.count; 1767 args->index = args->index2 = blk2->index; 1768 args->blkno = args->blkno2 = blk2->blkno; 1769 } else if (blk1->index == ichdr1.count) { 1770 if (state->inleaf) { 1771 args->index = blk1->index; 1772 args->blkno = blk1->blkno; 1773 args->index2 = 0; 1774 args->blkno2 = blk2->blkno; 1775 } else { 1776 /* 1777 * On a double leaf split, the original attr location 1778 * is already stored in blkno2/index2, so don't 1779 * overwrite it overwise we corrupt the tree. 1780 */ 1781 blk2->index = blk1->index - ichdr1.count; 1782 args->index = blk2->index; 1783 args->blkno = blk2->blkno; 1784 if (!state->extravalid) { 1785 /* 1786 * set the new attr location to match the old 1787 * one and let the higher level split code 1788 * decide where in the leaf to place it. 1789 */ 1790 args->index2 = blk2->index; 1791 args->blkno2 = blk2->blkno; 1792 } 1793 } 1794 } else { 1795 ASSERT(state->inleaf == 1); 1796 args->index = args->index2 = blk1->index; 1797 args->blkno = args->blkno2 = blk1->blkno; 1798 } 1799 } 1800 1801 /* 1802 * Examine entries until we reduce the absolute difference in 1803 * byte usage between the two blocks to a minimum. 1804 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1805 * GROT: there will always be enough room in either block for a new entry. 1806 * GROT: Do a double-split for this case? 1807 */ 1808 STATIC int 1809 xfs_attr3_leaf_figure_balance( 1810 struct xfs_da_state *state, 1811 struct xfs_da_state_blk *blk1, 1812 struct xfs_attr3_icleaf_hdr *ichdr1, 1813 struct xfs_da_state_blk *blk2, 1814 struct xfs_attr3_icleaf_hdr *ichdr2, 1815 int *countarg, 1816 int *usedbytesarg) 1817 { 1818 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1819 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1820 struct xfs_attr_leaf_entry *entry; 1821 int count; 1822 int max; 1823 int index; 1824 int totallen = 0; 1825 int half; 1826 int lastdelta; 1827 int foundit = 0; 1828 int tmp; 1829 1830 /* 1831 * Examine entries until we reduce the absolute difference in 1832 * byte usage between the two blocks to a minimum. 1833 */ 1834 max = ichdr1->count + ichdr2->count; 1835 half = (max + 1) * sizeof(*entry); 1836 half += ichdr1->usedbytes + ichdr2->usedbytes + 1837 xfs_attr_leaf_newentsize(state->args, NULL); 1838 half /= 2; 1839 lastdelta = state->args->geo->blksize; 1840 entry = xfs_attr3_leaf_entryp(leaf1); 1841 for (count = index = 0; count < max; entry++, index++, count++) { 1842 1843 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1844 /* 1845 * The new entry is in the first block, account for it. 1846 */ 1847 if (count == blk1->index) { 1848 tmp = totallen + sizeof(*entry) + 1849 xfs_attr_leaf_newentsize(state->args, NULL); 1850 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1851 break; 1852 lastdelta = XFS_ATTR_ABS(half - tmp); 1853 totallen = tmp; 1854 foundit = 1; 1855 } 1856 1857 /* 1858 * Wrap around into the second block if necessary. 1859 */ 1860 if (count == ichdr1->count) { 1861 leaf1 = leaf2; 1862 entry = xfs_attr3_leaf_entryp(leaf1); 1863 index = 0; 1864 } 1865 1866 /* 1867 * Figure out if next leaf entry would be too much. 1868 */ 1869 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1870 index); 1871 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1872 break; 1873 lastdelta = XFS_ATTR_ABS(half - tmp); 1874 totallen = tmp; 1875 #undef XFS_ATTR_ABS 1876 } 1877 1878 /* 1879 * Calculate the number of usedbytes that will end up in lower block. 1880 * If new entry not in lower block, fix up the count. 1881 */ 1882 totallen -= count * sizeof(*entry); 1883 if (foundit) { 1884 totallen -= sizeof(*entry) + 1885 xfs_attr_leaf_newentsize(state->args, NULL); 1886 } 1887 1888 *countarg = count; 1889 *usedbytesarg = totallen; 1890 return foundit; 1891 } 1892 1893 /*======================================================================== 1894 * Routines used for shrinking the Btree. 1895 *========================================================================*/ 1896 1897 /* 1898 * Check a leaf block and its neighbors to see if the block should be 1899 * collapsed into one or the other neighbor. Always keep the block 1900 * with the smaller block number. 1901 * If the current block is over 50% full, don't try to join it, return 0. 1902 * If the block is empty, fill in the state structure and return 2. 1903 * If it can be collapsed, fill in the state structure and return 1. 1904 * If nothing can be done, return 0. 1905 * 1906 * GROT: allow for INCOMPLETE entries in calculation. 1907 */ 1908 int 1909 xfs_attr3_leaf_toosmall( 1910 struct xfs_da_state *state, 1911 int *action) 1912 { 1913 struct xfs_attr_leafblock *leaf; 1914 struct xfs_da_state_blk *blk; 1915 struct xfs_attr3_icleaf_hdr ichdr; 1916 struct xfs_buf *bp; 1917 xfs_dablk_t blkno; 1918 int bytes; 1919 int forward; 1920 int error; 1921 int retval; 1922 int i; 1923 1924 trace_xfs_attr_leaf_toosmall(state->args); 1925 1926 /* 1927 * Check for the degenerate case of the block being over 50% full. 1928 * If so, it's not worth even looking to see if we might be able 1929 * to coalesce with a sibling. 1930 */ 1931 blk = &state->path.blk[ state->path.active-1 ]; 1932 leaf = blk->bp->b_addr; 1933 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 1934 bytes = xfs_attr3_leaf_hdr_size(leaf) + 1935 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 1936 ichdr.usedbytes; 1937 if (bytes > (state->args->geo->blksize >> 1)) { 1938 *action = 0; /* blk over 50%, don't try to join */ 1939 return 0; 1940 } 1941 1942 /* 1943 * Check for the degenerate case of the block being empty. 1944 * If the block is empty, we'll simply delete it, no need to 1945 * coalesce it with a sibling block. We choose (arbitrarily) 1946 * to merge with the forward block unless it is NULL. 1947 */ 1948 if (ichdr.count == 0) { 1949 /* 1950 * Make altpath point to the block we want to keep and 1951 * path point to the block we want to drop (this one). 1952 */ 1953 forward = (ichdr.forw != 0); 1954 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1955 error = xfs_da3_path_shift(state, &state->altpath, forward, 1956 0, &retval); 1957 if (error) 1958 return error; 1959 if (retval) { 1960 *action = 0; 1961 } else { 1962 *action = 2; 1963 } 1964 return 0; 1965 } 1966 1967 /* 1968 * Examine each sibling block to see if we can coalesce with 1969 * at least 25% free space to spare. We need to figure out 1970 * whether to merge with the forward or the backward block. 1971 * We prefer coalescing with the lower numbered sibling so as 1972 * to shrink an attribute list over time. 1973 */ 1974 /* start with smaller blk num */ 1975 forward = ichdr.forw < ichdr.back; 1976 for (i = 0; i < 2; forward = !forward, i++) { 1977 struct xfs_attr3_icleaf_hdr ichdr2; 1978 if (forward) 1979 blkno = ichdr.forw; 1980 else 1981 blkno = ichdr.back; 1982 if (blkno == 0) 1983 continue; 1984 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 1985 blkno, &bp); 1986 if (error) 1987 return error; 1988 1989 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 1990 1991 bytes = state->args->geo->blksize - 1992 (state->args->geo->blksize >> 2) - 1993 ichdr.usedbytes - ichdr2.usedbytes - 1994 ((ichdr.count + ichdr2.count) * 1995 sizeof(xfs_attr_leaf_entry_t)) - 1996 xfs_attr3_leaf_hdr_size(leaf); 1997 1998 xfs_trans_brelse(state->args->trans, bp); 1999 if (bytes >= 0) 2000 break; /* fits with at least 25% to spare */ 2001 } 2002 if (i >= 2) { 2003 *action = 0; 2004 return 0; 2005 } 2006 2007 /* 2008 * Make altpath point to the block we want to keep (the lower 2009 * numbered block) and path point to the block we want to drop. 2010 */ 2011 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2012 if (blkno < blk->blkno) { 2013 error = xfs_da3_path_shift(state, &state->altpath, forward, 2014 0, &retval); 2015 } else { 2016 error = xfs_da3_path_shift(state, &state->path, forward, 2017 0, &retval); 2018 } 2019 if (error) 2020 return error; 2021 if (retval) { 2022 *action = 0; 2023 } else { 2024 *action = 1; 2025 } 2026 return 0; 2027 } 2028 2029 /* 2030 * Remove a name from the leaf attribute list structure. 2031 * 2032 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2033 * If two leaves are 37% full, when combined they will leave 25% free. 2034 */ 2035 int 2036 xfs_attr3_leaf_remove( 2037 struct xfs_buf *bp, 2038 struct xfs_da_args *args) 2039 { 2040 struct xfs_attr_leafblock *leaf; 2041 struct xfs_attr3_icleaf_hdr ichdr; 2042 struct xfs_attr_leaf_entry *entry; 2043 int before; 2044 int after; 2045 int smallest; 2046 int entsize; 2047 int tablesize; 2048 int tmp; 2049 int i; 2050 2051 trace_xfs_attr_leaf_remove(args); 2052 2053 leaf = bp->b_addr; 2054 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2055 2056 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2057 ASSERT(args->index >= 0 && args->index < ichdr.count); 2058 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2059 xfs_attr3_leaf_hdr_size(leaf)); 2060 2061 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2062 2063 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2064 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2065 2066 /* 2067 * Scan through free region table: 2068 * check for adjacency of free'd entry with an existing one, 2069 * find smallest free region in case we need to replace it, 2070 * adjust any map that borders the entry table, 2071 */ 2072 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2073 + xfs_attr3_leaf_hdr_size(leaf); 2074 tmp = ichdr.freemap[0].size; 2075 before = after = -1; 2076 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2077 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2078 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2079 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2080 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2081 if (ichdr.freemap[i].base == tablesize) { 2082 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2083 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2084 } 2085 2086 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2087 be16_to_cpu(entry->nameidx)) { 2088 before = i; 2089 } else if (ichdr.freemap[i].base == 2090 (be16_to_cpu(entry->nameidx) + entsize)) { 2091 after = i; 2092 } else if (ichdr.freemap[i].size < tmp) { 2093 tmp = ichdr.freemap[i].size; 2094 smallest = i; 2095 } 2096 } 2097 2098 /* 2099 * Coalesce adjacent freemap regions, 2100 * or replace the smallest region. 2101 */ 2102 if ((before >= 0) || (after >= 0)) { 2103 if ((before >= 0) && (after >= 0)) { 2104 ichdr.freemap[before].size += entsize; 2105 ichdr.freemap[before].size += ichdr.freemap[after].size; 2106 ichdr.freemap[after].base = 0; 2107 ichdr.freemap[after].size = 0; 2108 } else if (before >= 0) { 2109 ichdr.freemap[before].size += entsize; 2110 } else { 2111 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2112 ichdr.freemap[after].size += entsize; 2113 } 2114 } else { 2115 /* 2116 * Replace smallest region (if it is smaller than free'd entry) 2117 */ 2118 if (ichdr.freemap[smallest].size < entsize) { 2119 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2120 ichdr.freemap[smallest].size = entsize; 2121 } 2122 } 2123 2124 /* 2125 * Did we remove the first entry? 2126 */ 2127 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2128 smallest = 1; 2129 else 2130 smallest = 0; 2131 2132 /* 2133 * Compress the remaining entries and zero out the removed stuff. 2134 */ 2135 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2136 ichdr.usedbytes -= entsize; 2137 xfs_trans_log_buf(args->trans, bp, 2138 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2139 entsize)); 2140 2141 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2142 memmove(entry, entry + 1, tmp); 2143 ichdr.count--; 2144 xfs_trans_log_buf(args->trans, bp, 2145 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2146 2147 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2148 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2149 2150 /* 2151 * If we removed the first entry, re-find the first used byte 2152 * in the name area. Note that if the entry was the "firstused", 2153 * then we don't have a "hole" in our block resulting from 2154 * removing the name. 2155 */ 2156 if (smallest) { 2157 tmp = args->geo->blksize; 2158 entry = xfs_attr3_leaf_entryp(leaf); 2159 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2160 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2161 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2162 2163 if (be16_to_cpu(entry->nameidx) < tmp) 2164 tmp = be16_to_cpu(entry->nameidx); 2165 } 2166 ichdr.firstused = tmp; 2167 ASSERT(ichdr.firstused != 0); 2168 } else { 2169 ichdr.holes = 1; /* mark as needing compaction */ 2170 } 2171 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2172 xfs_trans_log_buf(args->trans, bp, 2173 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2174 xfs_attr3_leaf_hdr_size(leaf))); 2175 2176 /* 2177 * Check if leaf is less than 50% full, caller may want to 2178 * "join" the leaf with a sibling if so. 2179 */ 2180 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2181 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2182 2183 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2184 } 2185 2186 /* 2187 * Move all the attribute list entries from drop_leaf into save_leaf. 2188 */ 2189 void 2190 xfs_attr3_leaf_unbalance( 2191 struct xfs_da_state *state, 2192 struct xfs_da_state_blk *drop_blk, 2193 struct xfs_da_state_blk *save_blk) 2194 { 2195 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2196 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2197 struct xfs_attr3_icleaf_hdr drophdr; 2198 struct xfs_attr3_icleaf_hdr savehdr; 2199 struct xfs_attr_leaf_entry *entry; 2200 2201 trace_xfs_attr_leaf_unbalance(state->args); 2202 2203 drop_leaf = drop_blk->bp->b_addr; 2204 save_leaf = save_blk->bp->b_addr; 2205 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2206 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2207 entry = xfs_attr3_leaf_entryp(drop_leaf); 2208 2209 /* 2210 * Save last hashval from dying block for later Btree fixup. 2211 */ 2212 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2213 2214 /* 2215 * Check if we need a temp buffer, or can we do it in place. 2216 * Note that we don't check "leaf" for holes because we will 2217 * always be dropping it, toosmall() decided that for us already. 2218 */ 2219 if (savehdr.holes == 0) { 2220 /* 2221 * dest leaf has no holes, so we add there. May need 2222 * to make some room in the entry array. 2223 */ 2224 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2225 drop_blk->bp, &drophdr)) { 2226 xfs_attr3_leaf_moveents(state->args, 2227 drop_leaf, &drophdr, 0, 2228 save_leaf, &savehdr, 0, 2229 drophdr.count); 2230 } else { 2231 xfs_attr3_leaf_moveents(state->args, 2232 drop_leaf, &drophdr, 0, 2233 save_leaf, &savehdr, 2234 savehdr.count, drophdr.count); 2235 } 2236 } else { 2237 /* 2238 * Destination has holes, so we make a temporary copy 2239 * of the leaf and add them both to that. 2240 */ 2241 struct xfs_attr_leafblock *tmp_leaf; 2242 struct xfs_attr3_icleaf_hdr tmphdr; 2243 2244 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2245 2246 /* 2247 * Copy the header into the temp leaf so that all the stuff 2248 * not in the incore header is present and gets copied back in 2249 * once we've moved all the entries. 2250 */ 2251 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2252 2253 memset(&tmphdr, 0, sizeof(tmphdr)); 2254 tmphdr.magic = savehdr.magic; 2255 tmphdr.forw = savehdr.forw; 2256 tmphdr.back = savehdr.back; 2257 tmphdr.firstused = state->args->geo->blksize; 2258 2259 /* write the header to the temp buffer to initialise it */ 2260 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2261 2262 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2263 drop_blk->bp, &drophdr)) { 2264 xfs_attr3_leaf_moveents(state->args, 2265 drop_leaf, &drophdr, 0, 2266 tmp_leaf, &tmphdr, 0, 2267 drophdr.count); 2268 xfs_attr3_leaf_moveents(state->args, 2269 save_leaf, &savehdr, 0, 2270 tmp_leaf, &tmphdr, tmphdr.count, 2271 savehdr.count); 2272 } else { 2273 xfs_attr3_leaf_moveents(state->args, 2274 save_leaf, &savehdr, 0, 2275 tmp_leaf, &tmphdr, 0, 2276 savehdr.count); 2277 xfs_attr3_leaf_moveents(state->args, 2278 drop_leaf, &drophdr, 0, 2279 tmp_leaf, &tmphdr, tmphdr.count, 2280 drophdr.count); 2281 } 2282 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2283 savehdr = tmphdr; /* struct copy */ 2284 kmem_free(tmp_leaf); 2285 } 2286 2287 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2288 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2289 state->args->geo->blksize - 1); 2290 2291 /* 2292 * Copy out last hashval in each block for B-tree code. 2293 */ 2294 entry = xfs_attr3_leaf_entryp(save_leaf); 2295 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2296 } 2297 2298 /*======================================================================== 2299 * Routines used for finding things in the Btree. 2300 *========================================================================*/ 2301 2302 /* 2303 * Look up a name in a leaf attribute list structure. 2304 * This is the internal routine, it uses the caller's buffer. 2305 * 2306 * Note that duplicate keys are allowed, but only check within the 2307 * current leaf node. The Btree code must check in adjacent leaf nodes. 2308 * 2309 * Return in args->index the index into the entry[] array of either 2310 * the found entry, or where the entry should have been (insert before 2311 * that entry). 2312 * 2313 * Don't change the args->value unless we find the attribute. 2314 */ 2315 int 2316 xfs_attr3_leaf_lookup_int( 2317 struct xfs_buf *bp, 2318 struct xfs_da_args *args) 2319 { 2320 struct xfs_attr_leafblock *leaf; 2321 struct xfs_attr3_icleaf_hdr ichdr; 2322 struct xfs_attr_leaf_entry *entry; 2323 struct xfs_attr_leaf_entry *entries; 2324 struct xfs_attr_leaf_name_local *name_loc; 2325 struct xfs_attr_leaf_name_remote *name_rmt; 2326 xfs_dahash_t hashval; 2327 int probe; 2328 int span; 2329 2330 trace_xfs_attr_leaf_lookup(args); 2331 2332 leaf = bp->b_addr; 2333 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2334 entries = xfs_attr3_leaf_entryp(leaf); 2335 if (ichdr.count >= args->geo->blksize / 8) { 2336 xfs_buf_mark_corrupt(bp); 2337 return -EFSCORRUPTED; 2338 } 2339 2340 /* 2341 * Binary search. (note: small blocks will skip this loop) 2342 */ 2343 hashval = args->hashval; 2344 probe = span = ichdr.count / 2; 2345 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2346 span /= 2; 2347 if (be32_to_cpu(entry->hashval) < hashval) 2348 probe += span; 2349 else if (be32_to_cpu(entry->hashval) > hashval) 2350 probe -= span; 2351 else 2352 break; 2353 } 2354 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2355 xfs_buf_mark_corrupt(bp); 2356 return -EFSCORRUPTED; 2357 } 2358 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2359 xfs_buf_mark_corrupt(bp); 2360 return -EFSCORRUPTED; 2361 } 2362 2363 /* 2364 * Since we may have duplicate hashval's, find the first matching 2365 * hashval in the leaf. 2366 */ 2367 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2368 entry--; 2369 probe--; 2370 } 2371 while (probe < ichdr.count && 2372 be32_to_cpu(entry->hashval) < hashval) { 2373 entry++; 2374 probe++; 2375 } 2376 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2377 args->index = probe; 2378 return -ENOATTR; 2379 } 2380 2381 /* 2382 * Duplicate keys may be present, so search all of them for a match. 2383 */ 2384 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2385 entry++, probe++) { 2386 /* 2387 * GROT: Add code to remove incomplete entries. 2388 */ 2389 if (entry->flags & XFS_ATTR_LOCAL) { 2390 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2391 if (!xfs_attr_match(args, name_loc->namelen, 2392 name_loc->nameval, entry->flags)) 2393 continue; 2394 args->index = probe; 2395 return -EEXIST; 2396 } else { 2397 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2398 if (!xfs_attr_match(args, name_rmt->namelen, 2399 name_rmt->name, entry->flags)) 2400 continue; 2401 args->index = probe; 2402 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2403 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2404 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2405 args->dp->i_mount, 2406 args->rmtvaluelen); 2407 return -EEXIST; 2408 } 2409 } 2410 args->index = probe; 2411 return -ENOATTR; 2412 } 2413 2414 /* 2415 * Get the value associated with an attribute name from a leaf attribute 2416 * list structure. 2417 * 2418 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2419 * lookup, we only return an error if the attribute does not exist or we can't 2420 * retrieve the value. 2421 */ 2422 int 2423 xfs_attr3_leaf_getvalue( 2424 struct xfs_buf *bp, 2425 struct xfs_da_args *args) 2426 { 2427 struct xfs_attr_leafblock *leaf; 2428 struct xfs_attr3_icleaf_hdr ichdr; 2429 struct xfs_attr_leaf_entry *entry; 2430 struct xfs_attr_leaf_name_local *name_loc; 2431 struct xfs_attr_leaf_name_remote *name_rmt; 2432 2433 leaf = bp->b_addr; 2434 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2435 ASSERT(ichdr.count < args->geo->blksize / 8); 2436 ASSERT(args->index < ichdr.count); 2437 2438 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2439 if (entry->flags & XFS_ATTR_LOCAL) { 2440 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2441 ASSERT(name_loc->namelen == args->namelen); 2442 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2443 return xfs_attr_copy_value(args, 2444 &name_loc->nameval[args->namelen], 2445 be16_to_cpu(name_loc->valuelen)); 2446 } 2447 2448 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2449 ASSERT(name_rmt->namelen == args->namelen); 2450 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2451 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2452 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2453 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2454 args->rmtvaluelen); 2455 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2456 } 2457 2458 /*======================================================================== 2459 * Utility routines. 2460 *========================================================================*/ 2461 2462 /* 2463 * Move the indicated entries from one leaf to another. 2464 * NOTE: this routine modifies both source and destination leaves. 2465 */ 2466 /*ARGSUSED*/ 2467 STATIC void 2468 xfs_attr3_leaf_moveents( 2469 struct xfs_da_args *args, 2470 struct xfs_attr_leafblock *leaf_s, 2471 struct xfs_attr3_icleaf_hdr *ichdr_s, 2472 int start_s, 2473 struct xfs_attr_leafblock *leaf_d, 2474 struct xfs_attr3_icleaf_hdr *ichdr_d, 2475 int start_d, 2476 int count) 2477 { 2478 struct xfs_attr_leaf_entry *entry_s; 2479 struct xfs_attr_leaf_entry *entry_d; 2480 int desti; 2481 int tmp; 2482 int i; 2483 2484 /* 2485 * Check for nothing to do. 2486 */ 2487 if (count == 0) 2488 return; 2489 2490 /* 2491 * Set up environment. 2492 */ 2493 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2494 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2495 ASSERT(ichdr_s->magic == ichdr_d->magic); 2496 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2497 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2498 + xfs_attr3_leaf_hdr_size(leaf_s)); 2499 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2500 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2501 + xfs_attr3_leaf_hdr_size(leaf_d)); 2502 2503 ASSERT(start_s < ichdr_s->count); 2504 ASSERT(start_d <= ichdr_d->count); 2505 ASSERT(count <= ichdr_s->count); 2506 2507 2508 /* 2509 * Move the entries in the destination leaf up to make a hole? 2510 */ 2511 if (start_d < ichdr_d->count) { 2512 tmp = ichdr_d->count - start_d; 2513 tmp *= sizeof(xfs_attr_leaf_entry_t); 2514 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2515 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2516 memmove(entry_d, entry_s, tmp); 2517 } 2518 2519 /* 2520 * Copy all entry's in the same (sorted) order, 2521 * but allocate attribute info packed and in sequence. 2522 */ 2523 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2524 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2525 desti = start_d; 2526 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2527 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2528 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2529 #ifdef GROT 2530 /* 2531 * Code to drop INCOMPLETE entries. Difficult to use as we 2532 * may also need to change the insertion index. Code turned 2533 * off for 6.2, should be revisited later. 2534 */ 2535 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2536 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2537 ichdr_s->usedbytes -= tmp; 2538 ichdr_s->count -= 1; 2539 entry_d--; /* to compensate for ++ in loop hdr */ 2540 desti--; 2541 if ((start_s + i) < offset) 2542 result++; /* insertion index adjustment */ 2543 } else { 2544 #endif /* GROT */ 2545 ichdr_d->firstused -= tmp; 2546 /* both on-disk, don't endian flip twice */ 2547 entry_d->hashval = entry_s->hashval; 2548 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2549 entry_d->flags = entry_s->flags; 2550 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2551 <= args->geo->blksize); 2552 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2553 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2554 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2555 <= args->geo->blksize); 2556 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2557 ichdr_s->usedbytes -= tmp; 2558 ichdr_d->usedbytes += tmp; 2559 ichdr_s->count -= 1; 2560 ichdr_d->count += 1; 2561 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2562 + xfs_attr3_leaf_hdr_size(leaf_d); 2563 ASSERT(ichdr_d->firstused >= tmp); 2564 #ifdef GROT 2565 } 2566 #endif /* GROT */ 2567 } 2568 2569 /* 2570 * Zero out the entries we just copied. 2571 */ 2572 if (start_s == ichdr_s->count) { 2573 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2574 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2575 ASSERT(((char *)entry_s + tmp) <= 2576 ((char *)leaf_s + args->geo->blksize)); 2577 memset(entry_s, 0, tmp); 2578 } else { 2579 /* 2580 * Move the remaining entries down to fill the hole, 2581 * then zero the entries at the top. 2582 */ 2583 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2584 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2585 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2586 memmove(entry_d, entry_s, tmp); 2587 2588 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2589 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2590 ASSERT(((char *)entry_s + tmp) <= 2591 ((char *)leaf_s + args->geo->blksize)); 2592 memset(entry_s, 0, tmp); 2593 } 2594 2595 /* 2596 * Fill in the freemap information 2597 */ 2598 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2599 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2600 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2601 ichdr_d->freemap[1].base = 0; 2602 ichdr_d->freemap[2].base = 0; 2603 ichdr_d->freemap[1].size = 0; 2604 ichdr_d->freemap[2].size = 0; 2605 ichdr_s->holes = 1; /* leaf may not be compact */ 2606 } 2607 2608 /* 2609 * Pick up the last hashvalue from a leaf block. 2610 */ 2611 xfs_dahash_t 2612 xfs_attr_leaf_lasthash( 2613 struct xfs_buf *bp, 2614 int *count) 2615 { 2616 struct xfs_attr3_icleaf_hdr ichdr; 2617 struct xfs_attr_leaf_entry *entries; 2618 struct xfs_mount *mp = bp->b_mount; 2619 2620 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2621 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2622 if (count) 2623 *count = ichdr.count; 2624 if (!ichdr.count) 2625 return 0; 2626 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2627 } 2628 2629 /* 2630 * Calculate the number of bytes used to store the indicated attribute 2631 * (whether local or remote only calculate bytes in this block). 2632 */ 2633 STATIC int 2634 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2635 { 2636 struct xfs_attr_leaf_entry *entries; 2637 xfs_attr_leaf_name_local_t *name_loc; 2638 xfs_attr_leaf_name_remote_t *name_rmt; 2639 int size; 2640 2641 entries = xfs_attr3_leaf_entryp(leaf); 2642 if (entries[index].flags & XFS_ATTR_LOCAL) { 2643 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2644 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2645 be16_to_cpu(name_loc->valuelen)); 2646 } else { 2647 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2648 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2649 } 2650 return size; 2651 } 2652 2653 /* 2654 * Calculate the number of bytes that would be required to store the new 2655 * attribute (whether local or remote only calculate bytes in this block). 2656 * This routine decides as a side effect whether the attribute will be 2657 * a "local" or a "remote" attribute. 2658 */ 2659 int 2660 xfs_attr_leaf_newentsize( 2661 struct xfs_da_args *args, 2662 int *local) 2663 { 2664 int size; 2665 2666 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2667 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2668 if (local) 2669 *local = 1; 2670 return size; 2671 } 2672 if (local) 2673 *local = 0; 2674 return xfs_attr_leaf_entsize_remote(args->namelen); 2675 } 2676 2677 2678 /*======================================================================== 2679 * Manage the INCOMPLETE flag in a leaf entry 2680 *========================================================================*/ 2681 2682 /* 2683 * Clear the INCOMPLETE flag on an entry in a leaf block. 2684 */ 2685 int 2686 xfs_attr3_leaf_clearflag( 2687 struct xfs_da_args *args) 2688 { 2689 struct xfs_attr_leafblock *leaf; 2690 struct xfs_attr_leaf_entry *entry; 2691 struct xfs_attr_leaf_name_remote *name_rmt; 2692 struct xfs_buf *bp; 2693 int error; 2694 #ifdef DEBUG 2695 struct xfs_attr3_icleaf_hdr ichdr; 2696 xfs_attr_leaf_name_local_t *name_loc; 2697 int namelen; 2698 char *name; 2699 #endif /* DEBUG */ 2700 2701 trace_xfs_attr_leaf_clearflag(args); 2702 /* 2703 * Set up the operation. 2704 */ 2705 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2706 if (error) 2707 return error; 2708 2709 leaf = bp->b_addr; 2710 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2711 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2712 2713 #ifdef DEBUG 2714 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2715 ASSERT(args->index < ichdr.count); 2716 ASSERT(args->index >= 0); 2717 2718 if (entry->flags & XFS_ATTR_LOCAL) { 2719 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2720 namelen = name_loc->namelen; 2721 name = (char *)name_loc->nameval; 2722 } else { 2723 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2724 namelen = name_rmt->namelen; 2725 name = (char *)name_rmt->name; 2726 } 2727 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2728 ASSERT(namelen == args->namelen); 2729 ASSERT(memcmp(name, args->name, namelen) == 0); 2730 #endif /* DEBUG */ 2731 2732 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2733 xfs_trans_log_buf(args->trans, bp, 2734 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2735 2736 if (args->rmtblkno) { 2737 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2738 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2739 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2740 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2741 xfs_trans_log_buf(args->trans, bp, 2742 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2743 } 2744 2745 /* 2746 * Commit the flag value change and start the next trans in series. 2747 */ 2748 return xfs_trans_roll_inode(&args->trans, args->dp); 2749 } 2750 2751 /* 2752 * Set the INCOMPLETE flag on an entry in a leaf block. 2753 */ 2754 int 2755 xfs_attr3_leaf_setflag( 2756 struct xfs_da_args *args) 2757 { 2758 struct xfs_attr_leafblock *leaf; 2759 struct xfs_attr_leaf_entry *entry; 2760 struct xfs_attr_leaf_name_remote *name_rmt; 2761 struct xfs_buf *bp; 2762 int error; 2763 #ifdef DEBUG 2764 struct xfs_attr3_icleaf_hdr ichdr; 2765 #endif 2766 2767 trace_xfs_attr_leaf_setflag(args); 2768 2769 /* 2770 * Set up the operation. 2771 */ 2772 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2773 if (error) 2774 return error; 2775 2776 leaf = bp->b_addr; 2777 #ifdef DEBUG 2778 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2779 ASSERT(args->index < ichdr.count); 2780 ASSERT(args->index >= 0); 2781 #endif 2782 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2783 2784 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2785 entry->flags |= XFS_ATTR_INCOMPLETE; 2786 xfs_trans_log_buf(args->trans, bp, 2787 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2788 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2789 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2790 name_rmt->valueblk = 0; 2791 name_rmt->valuelen = 0; 2792 xfs_trans_log_buf(args->trans, bp, 2793 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2794 } 2795 2796 /* 2797 * Commit the flag value change and start the next trans in series. 2798 */ 2799 return xfs_trans_roll_inode(&args->trans, args->dp); 2800 } 2801 2802 /* 2803 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2804 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2805 * entry given by args->blkno2/index2. 2806 * 2807 * Note that they could be in different blocks, or in the same block. 2808 */ 2809 int 2810 xfs_attr3_leaf_flipflags( 2811 struct xfs_da_args *args) 2812 { 2813 struct xfs_attr_leafblock *leaf1; 2814 struct xfs_attr_leafblock *leaf2; 2815 struct xfs_attr_leaf_entry *entry1; 2816 struct xfs_attr_leaf_entry *entry2; 2817 struct xfs_attr_leaf_name_remote *name_rmt; 2818 struct xfs_buf *bp1; 2819 struct xfs_buf *bp2; 2820 int error; 2821 #ifdef DEBUG 2822 struct xfs_attr3_icleaf_hdr ichdr1; 2823 struct xfs_attr3_icleaf_hdr ichdr2; 2824 xfs_attr_leaf_name_local_t *name_loc; 2825 int namelen1, namelen2; 2826 char *name1, *name2; 2827 #endif /* DEBUG */ 2828 2829 trace_xfs_attr_leaf_flipflags(args); 2830 2831 /* 2832 * Read the block containing the "old" attr 2833 */ 2834 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2835 if (error) 2836 return error; 2837 2838 /* 2839 * Read the block containing the "new" attr, if it is different 2840 */ 2841 if (args->blkno2 != args->blkno) { 2842 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2843 &bp2); 2844 if (error) 2845 return error; 2846 } else { 2847 bp2 = bp1; 2848 } 2849 2850 leaf1 = bp1->b_addr; 2851 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2852 2853 leaf2 = bp2->b_addr; 2854 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2855 2856 #ifdef DEBUG 2857 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2858 ASSERT(args->index < ichdr1.count); 2859 ASSERT(args->index >= 0); 2860 2861 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2862 ASSERT(args->index2 < ichdr2.count); 2863 ASSERT(args->index2 >= 0); 2864 2865 if (entry1->flags & XFS_ATTR_LOCAL) { 2866 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2867 namelen1 = name_loc->namelen; 2868 name1 = (char *)name_loc->nameval; 2869 } else { 2870 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2871 namelen1 = name_rmt->namelen; 2872 name1 = (char *)name_rmt->name; 2873 } 2874 if (entry2->flags & XFS_ATTR_LOCAL) { 2875 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2876 namelen2 = name_loc->namelen; 2877 name2 = (char *)name_loc->nameval; 2878 } else { 2879 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2880 namelen2 = name_rmt->namelen; 2881 name2 = (char *)name_rmt->name; 2882 } 2883 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2884 ASSERT(namelen1 == namelen2); 2885 ASSERT(memcmp(name1, name2, namelen1) == 0); 2886 #endif /* DEBUG */ 2887 2888 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2889 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2890 2891 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2892 xfs_trans_log_buf(args->trans, bp1, 2893 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2894 if (args->rmtblkno) { 2895 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2896 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2897 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2898 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2899 xfs_trans_log_buf(args->trans, bp1, 2900 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2901 } 2902 2903 entry2->flags |= XFS_ATTR_INCOMPLETE; 2904 xfs_trans_log_buf(args->trans, bp2, 2905 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2906 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2907 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2908 name_rmt->valueblk = 0; 2909 name_rmt->valuelen = 0; 2910 xfs_trans_log_buf(args->trans, bp2, 2911 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2912 } 2913 2914 /* 2915 * Commit the flag value change and start the next trans in series. 2916 */ 2917 error = xfs_trans_roll_inode(&args->trans, args->dp); 2918 2919 return error; 2920 } 2921