1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 33 34 /* 35 * xfs_attr_leaf.c 36 * 37 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 38 */ 39 40 /*======================================================================== 41 * Function prototypes for the kernel. 42 *========================================================================*/ 43 44 /* 45 * Routines used for growing the Btree. 46 */ 47 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 48 xfs_dablk_t which_block, struct xfs_buf **bpp); 49 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 50 struct xfs_attr3_icleaf_hdr *ichdr, 51 struct xfs_da_args *args, int freemap_index); 52 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 53 struct xfs_attr3_icleaf_hdr *ichdr, 54 struct xfs_buf *leaf_buffer); 55 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 56 xfs_da_state_blk_t *blk1, 57 xfs_da_state_blk_t *blk2); 58 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 59 xfs_da_state_blk_t *leaf_blk_1, 60 struct xfs_attr3_icleaf_hdr *ichdr1, 61 xfs_da_state_blk_t *leaf_blk_2, 62 struct xfs_attr3_icleaf_hdr *ichdr2, 63 int *number_entries_in_blk1, 64 int *number_usedbytes_in_blk1); 65 66 /* 67 * Utility routines. 68 */ 69 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 70 struct xfs_attr_leafblock *src_leaf, 71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 72 struct xfs_attr_leafblock *dst_leaf, 73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 74 int move_count); 75 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 76 77 /* 78 * attr3 block 'firstused' conversion helpers. 79 * 80 * firstused refers to the offset of the first used byte of the nameval region 81 * of an attr leaf block. The region starts at the tail of the block and expands 82 * backwards towards the middle. As such, firstused is initialized to the block 83 * size for an empty leaf block and is reduced from there. 84 * 85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 89 * the attr block size. The following helpers manage the conversion between the 90 * in-core and on-disk formats. 91 */ 92 93 static void 94 xfs_attr3_leaf_firstused_from_disk( 95 struct xfs_da_geometry *geo, 96 struct xfs_attr3_icleaf_hdr *to, 97 struct xfs_attr_leafblock *from) 98 { 99 struct xfs_attr3_leaf_hdr *hdr3; 100 101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 102 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 103 to->firstused = be16_to_cpu(hdr3->firstused); 104 } else { 105 to->firstused = be16_to_cpu(from->hdr.firstused); 106 } 107 108 /* 109 * Convert from the magic fsb size value to actual blocksize. This 110 * should only occur for empty blocks when the block size overflows 111 * 16-bits. 112 */ 113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 114 ASSERT(!to->count && !to->usedbytes); 115 ASSERT(geo->blksize > USHRT_MAX); 116 to->firstused = geo->blksize; 117 } 118 } 119 120 static void 121 xfs_attr3_leaf_firstused_to_disk( 122 struct xfs_da_geometry *geo, 123 struct xfs_attr_leafblock *to, 124 struct xfs_attr3_icleaf_hdr *from) 125 { 126 struct xfs_attr3_leaf_hdr *hdr3; 127 uint32_t firstused; 128 129 /* magic value should only be seen on disk */ 130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 131 132 /* 133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 134 * value. This only overflows at the max supported value of 64k. Use the 135 * magic on-disk value to represent block size in this case. 136 */ 137 firstused = from->firstused; 138 if (firstused > USHRT_MAX) { 139 ASSERT(from->firstused == geo->blksize); 140 firstused = XFS_ATTR3_LEAF_NULLOFF; 141 } 142 143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 144 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 145 hdr3->firstused = cpu_to_be16(firstused); 146 } else { 147 to->hdr.firstused = cpu_to_be16(firstused); 148 } 149 } 150 151 void 152 xfs_attr3_leaf_hdr_from_disk( 153 struct xfs_da_geometry *geo, 154 struct xfs_attr3_icleaf_hdr *to, 155 struct xfs_attr_leafblock *from) 156 { 157 int i; 158 159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 161 162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 164 165 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 166 to->back = be32_to_cpu(hdr3->info.hdr.back); 167 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 168 to->count = be16_to_cpu(hdr3->count); 169 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 170 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 171 to->holes = hdr3->holes; 172 173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 176 } 177 return; 178 } 179 to->forw = be32_to_cpu(from->hdr.info.forw); 180 to->back = be32_to_cpu(from->hdr.info.back); 181 to->magic = be16_to_cpu(from->hdr.info.magic); 182 to->count = be16_to_cpu(from->hdr.count); 183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 184 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 185 to->holes = from->hdr.holes; 186 187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 190 } 191 } 192 193 void 194 xfs_attr3_leaf_hdr_to_disk( 195 struct xfs_da_geometry *geo, 196 struct xfs_attr_leafblock *to, 197 struct xfs_attr3_icleaf_hdr *from) 198 { 199 int i; 200 201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 202 from->magic == XFS_ATTR3_LEAF_MAGIC); 203 204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 206 207 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 208 hdr3->info.hdr.back = cpu_to_be32(from->back); 209 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 210 hdr3->count = cpu_to_be16(from->count); 211 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 212 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 213 hdr3->holes = from->holes; 214 hdr3->pad1 = 0; 215 216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 219 } 220 return; 221 } 222 to->hdr.info.forw = cpu_to_be32(from->forw); 223 to->hdr.info.back = cpu_to_be32(from->back); 224 to->hdr.info.magic = cpu_to_be16(from->magic); 225 to->hdr.count = cpu_to_be16(from->count); 226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 227 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 228 to->hdr.holes = from->holes; 229 to->hdr.pad1 = 0; 230 231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 234 } 235 } 236 237 static xfs_failaddr_t 238 xfs_attr3_leaf_verify_entry( 239 struct xfs_mount *mp, 240 char *buf_end, 241 struct xfs_attr_leafblock *leaf, 242 struct xfs_attr3_icleaf_hdr *leafhdr, 243 struct xfs_attr_leaf_entry *ent, 244 int idx, 245 __u32 *last_hashval) 246 { 247 struct xfs_attr_leaf_name_local *lentry; 248 struct xfs_attr_leaf_name_remote *rentry; 249 char *name_end; 250 unsigned int nameidx; 251 unsigned int namesize; 252 __u32 hashval; 253 254 /* hash order check */ 255 hashval = be32_to_cpu(ent->hashval); 256 if (hashval < *last_hashval) 257 return __this_address; 258 *last_hashval = hashval; 259 260 nameidx = be16_to_cpu(ent->nameidx); 261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 262 return __this_address; 263 264 /* 265 * Check the name information. The namelen fields are u8 so we can't 266 * possibly exceed the maximum name length of 255 bytes. 267 */ 268 if (ent->flags & XFS_ATTR_LOCAL) { 269 lentry = xfs_attr3_leaf_name_local(leaf, idx); 270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 271 be16_to_cpu(lentry->valuelen)); 272 name_end = (char *)lentry + namesize; 273 if (lentry->namelen == 0) 274 return __this_address; 275 } else { 276 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 278 name_end = (char *)rentry + namesize; 279 if (rentry->namelen == 0) 280 return __this_address; 281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 282 rentry->valueblk == 0) 283 return __this_address; 284 } 285 286 if (name_end > buf_end) 287 return __this_address; 288 289 return NULL; 290 } 291 292 /* 293 * Validate an attribute leaf block. 294 * 295 * Empty leaf blocks can occur under the following circumstances: 296 * 297 * 1. setxattr adds a new extended attribute to a file; 298 * 2. The file has zero existing attributes; 299 * 3. The attribute is too large to fit in the attribute fork; 300 * 4. The attribute is small enough to fit in a leaf block; 301 * 5. A log flush occurs after committing the transaction that creates 302 * the (empty) leaf block; and 303 * 6. The filesystem goes down after the log flush but before the new 304 * attribute can be committed to the leaf block. 305 * 306 * Hence we need to ensure that we don't fail the validation purely 307 * because the leaf is empty. 308 */ 309 static xfs_failaddr_t 310 xfs_attr3_leaf_verify( 311 struct xfs_buf *bp) 312 { 313 struct xfs_attr3_icleaf_hdr ichdr; 314 struct xfs_mount *mp = bp->b_mount; 315 struct xfs_attr_leafblock *leaf = bp->b_addr; 316 struct xfs_attr_leaf_entry *entries; 317 struct xfs_attr_leaf_entry *ent; 318 char *buf_end; 319 uint32_t end; /* must be 32bit - see below */ 320 __u32 last_hashval = 0; 321 int i; 322 xfs_failaddr_t fa; 323 324 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 325 326 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 327 if (fa) 328 return fa; 329 330 /* 331 * firstused is the block offset of the first name info structure. 332 * Make sure it doesn't go off the block or crash into the header. 333 */ 334 if (ichdr.firstused > mp->m_attr_geo->blksize) 335 return __this_address; 336 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 337 return __this_address; 338 339 /* Make sure the entries array doesn't crash into the name info. */ 340 entries = xfs_attr3_leaf_entryp(bp->b_addr); 341 if ((char *)&entries[ichdr.count] > 342 (char *)bp->b_addr + ichdr.firstused) 343 return __this_address; 344 345 /* 346 * NOTE: This verifier historically failed empty leaf buffers because 347 * we expect the fork to be in another format. Empty attr fork format 348 * conversions are possible during xattr set, however, and format 349 * conversion is not atomic with the xattr set that triggers it. We 350 * cannot assume leaf blocks are non-empty until that is addressed. 351 */ 352 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 353 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 354 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 355 ent, i, &last_hashval); 356 if (fa) 357 return fa; 358 } 359 360 /* 361 * Quickly check the freemap information. Attribute data has to be 362 * aligned to 4-byte boundaries, and likewise for the free space. 363 * 364 * Note that for 64k block size filesystems, the freemap entries cannot 365 * overflow as they are only be16 fields. However, when checking end 366 * pointer of the freemap, we have to be careful to detect overflows and 367 * so use uint32_t for those checks. 368 */ 369 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 370 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 371 return __this_address; 372 if (ichdr.freemap[i].base & 0x3) 373 return __this_address; 374 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 375 return __this_address; 376 if (ichdr.freemap[i].size & 0x3) 377 return __this_address; 378 379 /* be care of 16 bit overflows here */ 380 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 381 if (end < ichdr.freemap[i].base) 382 return __this_address; 383 if (end > mp->m_attr_geo->blksize) 384 return __this_address; 385 } 386 387 return NULL; 388 } 389 390 static void 391 xfs_attr3_leaf_write_verify( 392 struct xfs_buf *bp) 393 { 394 struct xfs_mount *mp = bp->b_mount; 395 struct xfs_buf_log_item *bip = bp->b_log_item; 396 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 397 xfs_failaddr_t fa; 398 399 fa = xfs_attr3_leaf_verify(bp); 400 if (fa) { 401 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 402 return; 403 } 404 405 if (!xfs_has_crc(mp)) 406 return; 407 408 if (bip) 409 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 410 411 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 412 } 413 414 /* 415 * leaf/node format detection on trees is sketchy, so a node read can be done on 416 * leaf level blocks when detection identifies the tree as a node format tree 417 * incorrectly. In this case, we need to swap the verifier to match the correct 418 * format of the block being read. 419 */ 420 static void 421 xfs_attr3_leaf_read_verify( 422 struct xfs_buf *bp) 423 { 424 struct xfs_mount *mp = bp->b_mount; 425 xfs_failaddr_t fa; 426 427 if (xfs_has_crc(mp) && 428 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 429 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 430 else { 431 fa = xfs_attr3_leaf_verify(bp); 432 if (fa) 433 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 434 } 435 } 436 437 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 438 .name = "xfs_attr3_leaf", 439 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 440 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 441 .verify_read = xfs_attr3_leaf_read_verify, 442 .verify_write = xfs_attr3_leaf_write_verify, 443 .verify_struct = xfs_attr3_leaf_verify, 444 }; 445 446 int 447 xfs_attr3_leaf_read( 448 struct xfs_trans *tp, 449 struct xfs_inode *dp, 450 xfs_dablk_t bno, 451 struct xfs_buf **bpp) 452 { 453 int err; 454 455 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 456 &xfs_attr3_leaf_buf_ops); 457 if (!err && tp && *bpp) 458 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 459 return err; 460 } 461 462 /*======================================================================== 463 * Namespace helper routines 464 *========================================================================*/ 465 466 /* 467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 468 * flag on disk - if there's an incomplete attr then recovery needs to tear it 469 * down. If there's no incomplete attr, then recovery needs to tear that attr 470 * down to replace it with the attr that has been logged. In this case, the 471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 472 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 473 */ 474 static bool 475 xfs_attr_match( 476 struct xfs_da_args *args, 477 uint8_t namelen, 478 unsigned char *name, 479 int flags) 480 { 481 482 if (args->namelen != namelen) 483 return false; 484 if (memcmp(args->name, name, namelen) != 0) 485 return false; 486 487 /* Recovery ignores the INCOMPLETE flag. */ 488 if ((args->op_flags & XFS_DA_OP_RECOVERY) && 489 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK)) 490 return true; 491 492 /* All remaining matches need to be filtered by INCOMPLETE state. */ 493 if (args->attr_filter != 494 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 495 return false; 496 return true; 497 } 498 499 static int 500 xfs_attr_copy_value( 501 struct xfs_da_args *args, 502 unsigned char *value, 503 int valuelen) 504 { 505 /* 506 * No copy if all we have to do is get the length 507 */ 508 if (!args->valuelen) { 509 args->valuelen = valuelen; 510 return 0; 511 } 512 513 /* 514 * No copy if the length of the existing buffer is too small 515 */ 516 if (args->valuelen < valuelen) { 517 args->valuelen = valuelen; 518 return -ERANGE; 519 } 520 521 if (!args->value) { 522 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 523 if (!args->value) 524 return -ENOMEM; 525 } 526 args->valuelen = valuelen; 527 528 /* remote block xattr requires IO for copy-in */ 529 if (args->rmtblkno) 530 return xfs_attr_rmtval_get(args); 531 532 /* 533 * This is to prevent a GCC warning because the remote xattr case 534 * doesn't have a value to pass in. In that case, we never reach here, 535 * but GCC can't work that out and so throws a "passing NULL to 536 * memcpy" warning. 537 */ 538 if (!value) 539 return -EINVAL; 540 memcpy(args->value, value, valuelen); 541 return 0; 542 } 543 544 /*======================================================================== 545 * External routines when attribute fork size < XFS_LITINO(mp). 546 *========================================================================*/ 547 548 /* 549 * Query whether the total requested number of attr fork bytes of extended 550 * attribute space will be able to fit inline. 551 * 552 * Returns zero if not, else the i_forkoff fork offset to be used in the 553 * literal area for attribute data once the new bytes have been added. 554 * 555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 556 * special case for dev/uuid inodes, they have fixed size data forks. 557 */ 558 int 559 xfs_attr_shortform_bytesfit( 560 struct xfs_inode *dp, 561 int bytes) 562 { 563 struct xfs_mount *mp = dp->i_mount; 564 int64_t dsize; 565 int minforkoff; 566 int maxforkoff; 567 int offset; 568 569 /* 570 * Check if the new size could fit at all first: 571 */ 572 if (bytes > XFS_LITINO(mp)) 573 return 0; 574 575 /* rounded down */ 576 offset = (XFS_LITINO(mp) - bytes) >> 3; 577 578 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 579 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 580 return (offset >= minforkoff) ? minforkoff : 0; 581 } 582 583 /* 584 * If the requested numbers of bytes is smaller or equal to the 585 * current attribute fork size we can always proceed. 586 * 587 * Note that if_bytes in the data fork might actually be larger than 588 * the current data fork size is due to delalloc extents. In that 589 * case either the extent count will go down when they are converted 590 * to real extents, or the delalloc conversion will take care of the 591 * literal area rebalancing. 592 */ 593 if (bytes <= XFS_IFORK_ASIZE(dp)) 594 return dp->i_forkoff; 595 596 /* 597 * For attr2 we can try to move the forkoff if there is space in the 598 * literal area, but for the old format we are done if there is no 599 * space in the fixed attribute fork. 600 */ 601 if (!xfs_has_attr2(mp)) 602 return 0; 603 604 dsize = dp->i_df.if_bytes; 605 606 switch (dp->i_df.if_format) { 607 case XFS_DINODE_FMT_EXTENTS: 608 /* 609 * If there is no attr fork and the data fork is extents, 610 * determine if creating the default attr fork will result 611 * in the extents form migrating to btree. If so, the 612 * minimum offset only needs to be the space required for 613 * the btree root. 614 */ 615 if (!dp->i_forkoff && dp->i_df.if_bytes > 616 xfs_default_attroffset(dp)) 617 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 618 break; 619 case XFS_DINODE_FMT_BTREE: 620 /* 621 * If we have a data btree then keep forkoff if we have one, 622 * otherwise we are adding a new attr, so then we set 623 * minforkoff to where the btree root can finish so we have 624 * plenty of room for attrs 625 */ 626 if (dp->i_forkoff) { 627 if (offset < dp->i_forkoff) 628 return 0; 629 return dp->i_forkoff; 630 } 631 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 632 break; 633 } 634 635 /* 636 * A data fork btree root must have space for at least 637 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 638 */ 639 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 640 minforkoff = roundup(minforkoff, 8) >> 3; 641 642 /* attr fork btree root can have at least this many key/ptr pairs */ 643 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 644 maxforkoff = maxforkoff >> 3; /* rounded down */ 645 646 if (offset >= maxforkoff) 647 return maxforkoff; 648 if (offset >= minforkoff) 649 return offset; 650 return 0; 651 } 652 653 /* 654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 655 * - noattr2 mount option is set, 656 * - on-disk version bit says it is already set, or 657 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 658 */ 659 STATIC void 660 xfs_sbversion_add_attr2( 661 struct xfs_mount *mp, 662 struct xfs_trans *tp) 663 { 664 if (xfs_has_noattr2(mp)) 665 return; 666 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 667 return; 668 if (!xfs_has_attr2(mp)) 669 return; 670 671 spin_lock(&mp->m_sb_lock); 672 xfs_add_attr2(mp); 673 spin_unlock(&mp->m_sb_lock); 674 xfs_log_sb(tp); 675 } 676 677 /* 678 * Create the initial contents of a shortform attribute list. 679 */ 680 void 681 xfs_attr_shortform_create( 682 struct xfs_da_args *args) 683 { 684 struct xfs_inode *dp = args->dp; 685 struct xfs_ifork *ifp = dp->i_afp; 686 struct xfs_attr_sf_hdr *hdr; 687 688 trace_xfs_attr_sf_create(args); 689 690 ASSERT(ifp->if_bytes == 0); 691 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 692 ifp->if_format = XFS_DINODE_FMT_LOCAL; 693 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 694 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data; 695 memset(hdr, 0, sizeof(*hdr)); 696 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 697 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 698 } 699 700 /* 701 * Return -EEXIST if attr is found, or -ENOATTR if not 702 * args: args containing attribute name and namelen 703 * sfep: If not null, pointer will be set to the last attr entry found on 704 -EEXIST. On -ENOATTR pointer is left at the last entry in the list 705 * basep: If not null, pointer is set to the byte offset of the entry in the 706 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of 707 * the last entry in the list 708 */ 709 int 710 xfs_attr_sf_findname( 711 struct xfs_da_args *args, 712 struct xfs_attr_sf_entry **sfep, 713 unsigned int *basep) 714 { 715 struct xfs_attr_shortform *sf; 716 struct xfs_attr_sf_entry *sfe; 717 unsigned int base = sizeof(struct xfs_attr_sf_hdr); 718 int size = 0; 719 int end; 720 int i; 721 722 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; 723 sfe = &sf->list[0]; 724 end = sf->hdr.count; 725 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe), 726 base += size, i++) { 727 size = xfs_attr_sf_entsize(sfe); 728 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval, 729 sfe->flags)) 730 continue; 731 break; 732 } 733 734 if (sfep != NULL) 735 *sfep = sfe; 736 737 if (basep != NULL) 738 *basep = base; 739 740 if (i == end) 741 return -ENOATTR; 742 return -EEXIST; 743 } 744 745 /* 746 * Add a name/value pair to the shortform attribute list. 747 * Overflow from the inode has already been checked for. 748 */ 749 void 750 xfs_attr_shortform_add( 751 struct xfs_da_args *args, 752 int forkoff) 753 { 754 struct xfs_attr_shortform *sf; 755 struct xfs_attr_sf_entry *sfe; 756 int offset, size; 757 struct xfs_mount *mp; 758 struct xfs_inode *dp; 759 struct xfs_ifork *ifp; 760 761 trace_xfs_attr_sf_add(args); 762 763 dp = args->dp; 764 mp = dp->i_mount; 765 dp->i_forkoff = forkoff; 766 767 ifp = dp->i_afp; 768 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 769 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 770 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST) 771 ASSERT(0); 772 773 offset = (char *)sfe - (char *)sf; 774 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 775 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 776 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 777 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset); 778 779 sfe->namelen = args->namelen; 780 sfe->valuelen = args->valuelen; 781 sfe->flags = args->attr_filter; 782 memcpy(sfe->nameval, args->name, args->namelen); 783 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 784 sf->hdr.count++; 785 be16_add_cpu(&sf->hdr.totsize, size); 786 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 787 788 xfs_sbversion_add_attr2(mp, args->trans); 789 } 790 791 /* 792 * After the last attribute is removed revert to original inode format, 793 * making all literal area available to the data fork once more. 794 */ 795 void 796 xfs_attr_fork_remove( 797 struct xfs_inode *ip, 798 struct xfs_trans *tp) 799 { 800 ASSERT(ip->i_afp->if_nextents == 0); 801 802 xfs_idestroy_fork(ip->i_afp); 803 kmem_cache_free(xfs_ifork_cache, ip->i_afp); 804 ip->i_afp = NULL; 805 ip->i_forkoff = 0; 806 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 807 } 808 809 /* 810 * Remove an attribute from the shortform attribute list structure. 811 */ 812 int 813 xfs_attr_sf_removename( 814 struct xfs_da_args *args) 815 { 816 struct xfs_attr_shortform *sf; 817 struct xfs_attr_sf_entry *sfe; 818 int size = 0, end, totsize; 819 unsigned int base; 820 struct xfs_mount *mp; 821 struct xfs_inode *dp; 822 int error; 823 824 trace_xfs_attr_sf_remove(args); 825 826 dp = args->dp; 827 mp = dp->i_mount; 828 sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data; 829 830 error = xfs_attr_sf_findname(args, &sfe, &base); 831 832 /* 833 * If we are recovering an operation, finding nothing to 834 * remove is not an error - it just means there was nothing 835 * to clean up. 836 */ 837 if (error == -ENOATTR && (args->op_flags & XFS_DA_OP_RECOVERY)) 838 return 0; 839 if (error != -EEXIST) 840 return error; 841 size = xfs_attr_sf_entsize(sfe); 842 843 /* 844 * Fix up the attribute fork data, covering the hole 845 */ 846 end = base + size; 847 totsize = be16_to_cpu(sf->hdr.totsize); 848 if (end != totsize) 849 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); 850 sf->hdr.count--; 851 be16_add_cpu(&sf->hdr.totsize, -size); 852 853 /* 854 * Fix up the start offset of the attribute fork 855 */ 856 totsize -= size; 857 if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) && 858 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 859 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) { 860 xfs_attr_fork_remove(dp, args->trans); 861 } else { 862 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 863 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 864 ASSERT(dp->i_forkoff); 865 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || 866 (args->op_flags & XFS_DA_OP_ADDNAME) || 867 !xfs_has_attr2(mp) || 868 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 869 xfs_trans_log_inode(args->trans, dp, 870 XFS_ILOG_CORE | XFS_ILOG_ADATA); 871 } 872 873 xfs_sbversion_add_attr2(mp, args->trans); 874 875 return 0; 876 } 877 878 /* 879 * Look up a name in a shortform attribute list structure. 880 */ 881 /*ARGSUSED*/ 882 int 883 xfs_attr_shortform_lookup(xfs_da_args_t *args) 884 { 885 struct xfs_attr_shortform *sf; 886 struct xfs_attr_sf_entry *sfe; 887 int i; 888 struct xfs_ifork *ifp; 889 890 trace_xfs_attr_sf_lookup(args); 891 892 ifp = args->dp->i_afp; 893 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 894 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 895 sfe = &sf->list[0]; 896 for (i = 0; i < sf->hdr.count; 897 sfe = xfs_attr_sf_nextentry(sfe), i++) { 898 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 899 sfe->flags)) 900 return -EEXIST; 901 } 902 return -ENOATTR; 903 } 904 905 /* 906 * Retrieve the attribute value and length. 907 * 908 * If args->valuelen is zero, only the length needs to be returned. Unlike a 909 * lookup, we only return an error if the attribute does not exist or we can't 910 * retrieve the value. 911 */ 912 int 913 xfs_attr_shortform_getvalue( 914 struct xfs_da_args *args) 915 { 916 struct xfs_attr_shortform *sf; 917 struct xfs_attr_sf_entry *sfe; 918 int i; 919 920 ASSERT(args->dp->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 921 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; 922 sfe = &sf->list[0]; 923 for (i = 0; i < sf->hdr.count; 924 sfe = xfs_attr_sf_nextentry(sfe), i++) { 925 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 926 sfe->flags)) 927 return xfs_attr_copy_value(args, 928 &sfe->nameval[args->namelen], sfe->valuelen); 929 } 930 return -ENOATTR; 931 } 932 933 /* Convert from using the shortform to the leaf format. */ 934 int 935 xfs_attr_shortform_to_leaf( 936 struct xfs_da_args *args) 937 { 938 struct xfs_inode *dp; 939 struct xfs_attr_shortform *sf; 940 struct xfs_attr_sf_entry *sfe; 941 struct xfs_da_args nargs; 942 char *tmpbuffer; 943 int error, i, size; 944 xfs_dablk_t blkno; 945 struct xfs_buf *bp; 946 struct xfs_ifork *ifp; 947 948 trace_xfs_attr_sf_to_leaf(args); 949 950 dp = args->dp; 951 ifp = dp->i_afp; 952 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 953 size = be16_to_cpu(sf->hdr.totsize); 954 tmpbuffer = kmem_alloc(size, 0); 955 ASSERT(tmpbuffer != NULL); 956 memcpy(tmpbuffer, ifp->if_u1.if_data, size); 957 sf = (struct xfs_attr_shortform *)tmpbuffer; 958 959 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 960 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 961 962 bp = NULL; 963 error = xfs_da_grow_inode(args, &blkno); 964 if (error) 965 goto out; 966 967 ASSERT(blkno == 0); 968 error = xfs_attr3_leaf_create(args, blkno, &bp); 969 if (error) 970 goto out; 971 972 memset((char *)&nargs, 0, sizeof(nargs)); 973 nargs.dp = dp; 974 nargs.geo = args->geo; 975 nargs.total = args->total; 976 nargs.whichfork = XFS_ATTR_FORK; 977 nargs.trans = args->trans; 978 nargs.op_flags = XFS_DA_OP_OKNOENT; 979 980 sfe = &sf->list[0]; 981 for (i = 0; i < sf->hdr.count; i++) { 982 nargs.name = sfe->nameval; 983 nargs.namelen = sfe->namelen; 984 nargs.value = &sfe->nameval[nargs.namelen]; 985 nargs.valuelen = sfe->valuelen; 986 nargs.hashval = xfs_da_hashname(sfe->nameval, 987 sfe->namelen); 988 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 989 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 990 ASSERT(error == -ENOATTR); 991 error = xfs_attr3_leaf_add(bp, &nargs); 992 ASSERT(error != -ENOSPC); 993 if (error) 994 goto out; 995 sfe = xfs_attr_sf_nextentry(sfe); 996 } 997 error = 0; 998 out: 999 kmem_free(tmpbuffer); 1000 return error; 1001 } 1002 1003 /* 1004 * Check a leaf attribute block to see if all the entries would fit into 1005 * a shortform attribute list. 1006 */ 1007 int 1008 xfs_attr_shortform_allfit( 1009 struct xfs_buf *bp, 1010 struct xfs_inode *dp) 1011 { 1012 struct xfs_attr_leafblock *leaf; 1013 struct xfs_attr_leaf_entry *entry; 1014 xfs_attr_leaf_name_local_t *name_loc; 1015 struct xfs_attr3_icleaf_hdr leafhdr; 1016 int bytes; 1017 int i; 1018 struct xfs_mount *mp = bp->b_mount; 1019 1020 leaf = bp->b_addr; 1021 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 1022 entry = xfs_attr3_leaf_entryp(leaf); 1023 1024 bytes = sizeof(struct xfs_attr_sf_hdr); 1025 for (i = 0; i < leafhdr.count; entry++, i++) { 1026 if (entry->flags & XFS_ATTR_INCOMPLETE) 1027 continue; /* don't copy partial entries */ 1028 if (!(entry->flags & XFS_ATTR_LOCAL)) 1029 return 0; 1030 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1031 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 1032 return 0; 1033 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 1034 return 0; 1035 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 1036 be16_to_cpu(name_loc->valuelen)); 1037 } 1038 if (xfs_has_attr2(dp->i_mount) && 1039 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1040 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1041 return -1; 1042 return xfs_attr_shortform_bytesfit(dp, bytes); 1043 } 1044 1045 /* Verify the consistency of an inline attribute fork. */ 1046 xfs_failaddr_t 1047 xfs_attr_shortform_verify( 1048 struct xfs_inode *ip) 1049 { 1050 struct xfs_attr_shortform *sfp; 1051 struct xfs_attr_sf_entry *sfep; 1052 struct xfs_attr_sf_entry *next_sfep; 1053 char *endp; 1054 struct xfs_ifork *ifp; 1055 int i; 1056 int64_t size; 1057 1058 ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 1059 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 1060 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 1061 size = ifp->if_bytes; 1062 1063 /* 1064 * Give up if the attribute is way too short. 1065 */ 1066 if (size < sizeof(struct xfs_attr_sf_hdr)) 1067 return __this_address; 1068 1069 endp = (char *)sfp + size; 1070 1071 /* Check all reported entries */ 1072 sfep = &sfp->list[0]; 1073 for (i = 0; i < sfp->hdr.count; i++) { 1074 /* 1075 * struct xfs_attr_sf_entry has a variable length. 1076 * Check the fixed-offset parts of the structure are 1077 * within the data buffer. 1078 * xfs_attr_sf_entry is defined with a 1-byte variable 1079 * array at the end, so we must subtract that off. 1080 */ 1081 if (((char *)sfep + sizeof(*sfep)) >= endp) 1082 return __this_address; 1083 1084 /* Don't allow names with known bad length. */ 1085 if (sfep->namelen == 0) 1086 return __this_address; 1087 1088 /* 1089 * Check that the variable-length part of the structure is 1090 * within the data buffer. The next entry starts after the 1091 * name component, so nextentry is an acceptable test. 1092 */ 1093 next_sfep = xfs_attr_sf_nextentry(sfep); 1094 if ((char *)next_sfep > endp) 1095 return __this_address; 1096 1097 /* 1098 * Check for unknown flags. Short form doesn't support 1099 * the incomplete or local bits, so we can use the namespace 1100 * mask here. 1101 */ 1102 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1103 return __this_address; 1104 1105 /* 1106 * Check for invalid namespace combinations. We only allow 1107 * one namespace flag per xattr, so we can just count the 1108 * bits (i.e. hweight) here. 1109 */ 1110 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1111 return __this_address; 1112 1113 sfep = next_sfep; 1114 } 1115 if ((void *)sfep != (void *)endp) 1116 return __this_address; 1117 1118 return NULL; 1119 } 1120 1121 /* 1122 * Convert a leaf attribute list to shortform attribute list 1123 */ 1124 int 1125 xfs_attr3_leaf_to_shortform( 1126 struct xfs_buf *bp, 1127 struct xfs_da_args *args, 1128 int forkoff) 1129 { 1130 struct xfs_attr_leafblock *leaf; 1131 struct xfs_attr3_icleaf_hdr ichdr; 1132 struct xfs_attr_leaf_entry *entry; 1133 struct xfs_attr_leaf_name_local *name_loc; 1134 struct xfs_da_args nargs; 1135 struct xfs_inode *dp = args->dp; 1136 char *tmpbuffer; 1137 int error; 1138 int i; 1139 1140 trace_xfs_attr_leaf_to_sf(args); 1141 1142 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1143 if (!tmpbuffer) 1144 return -ENOMEM; 1145 1146 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1147 1148 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1149 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1150 entry = xfs_attr3_leaf_entryp(leaf); 1151 1152 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1153 memset(bp->b_addr, 0, args->geo->blksize); 1154 1155 /* 1156 * Clean out the prior contents of the attribute list. 1157 */ 1158 error = xfs_da_shrink_inode(args, 0, bp); 1159 if (error) 1160 goto out; 1161 1162 if (forkoff == -1) { 1163 /* 1164 * Don't remove the attr fork if this operation is the first 1165 * part of a attr replace operations. We're going to add a new 1166 * attr immediately, so we need to keep the attr fork around in 1167 * this case. 1168 */ 1169 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1170 ASSERT(xfs_has_attr2(dp->i_mount)); 1171 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1172 xfs_attr_fork_remove(dp, args->trans); 1173 } 1174 goto out; 1175 } 1176 1177 xfs_attr_shortform_create(args); 1178 1179 /* 1180 * Copy the attributes 1181 */ 1182 memset((char *)&nargs, 0, sizeof(nargs)); 1183 nargs.geo = args->geo; 1184 nargs.dp = dp; 1185 nargs.total = args->total; 1186 nargs.whichfork = XFS_ATTR_FORK; 1187 nargs.trans = args->trans; 1188 nargs.op_flags = XFS_DA_OP_OKNOENT; 1189 1190 for (i = 0; i < ichdr.count; entry++, i++) { 1191 if (entry->flags & XFS_ATTR_INCOMPLETE) 1192 continue; /* don't copy partial entries */ 1193 if (!entry->nameidx) 1194 continue; 1195 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1196 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1197 nargs.name = name_loc->nameval; 1198 nargs.namelen = name_loc->namelen; 1199 nargs.value = &name_loc->nameval[nargs.namelen]; 1200 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1201 nargs.hashval = be32_to_cpu(entry->hashval); 1202 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1203 xfs_attr_shortform_add(&nargs, forkoff); 1204 } 1205 error = 0; 1206 1207 out: 1208 kmem_free(tmpbuffer); 1209 return error; 1210 } 1211 1212 /* 1213 * Convert from using a single leaf to a root node and a leaf. 1214 */ 1215 int 1216 xfs_attr3_leaf_to_node( 1217 struct xfs_da_args *args) 1218 { 1219 struct xfs_attr_leafblock *leaf; 1220 struct xfs_attr3_icleaf_hdr icleafhdr; 1221 struct xfs_attr_leaf_entry *entries; 1222 struct xfs_da3_icnode_hdr icnodehdr; 1223 struct xfs_da_intnode *node; 1224 struct xfs_inode *dp = args->dp; 1225 struct xfs_mount *mp = dp->i_mount; 1226 struct xfs_buf *bp1 = NULL; 1227 struct xfs_buf *bp2 = NULL; 1228 xfs_dablk_t blkno; 1229 int error; 1230 1231 trace_xfs_attr_leaf_to_node(args); 1232 1233 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1234 error = -EIO; 1235 goto out; 1236 } 1237 1238 error = xfs_da_grow_inode(args, &blkno); 1239 if (error) 1240 goto out; 1241 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1242 if (error) 1243 goto out; 1244 1245 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1246 if (error) 1247 goto out; 1248 1249 /* copy leaf to new buffer, update identifiers */ 1250 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); 1251 bp2->b_ops = bp1->b_ops; 1252 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); 1253 if (xfs_has_crc(mp)) { 1254 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; 1255 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2)); 1256 } 1257 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1258 1259 /* 1260 * Set up the new root node. 1261 */ 1262 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1263 if (error) 1264 goto out; 1265 node = bp1->b_addr; 1266 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1267 1268 leaf = bp2->b_addr; 1269 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1270 entries = xfs_attr3_leaf_entryp(leaf); 1271 1272 /* both on-disk, don't endian-flip twice */ 1273 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1274 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1275 icnodehdr.count = 1; 1276 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1277 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1278 error = 0; 1279 out: 1280 return error; 1281 } 1282 1283 /*======================================================================== 1284 * Routines used for growing the Btree. 1285 *========================================================================*/ 1286 1287 /* 1288 * Create the initial contents of a leaf attribute list 1289 * or a leaf in a node attribute list. 1290 */ 1291 STATIC int 1292 xfs_attr3_leaf_create( 1293 struct xfs_da_args *args, 1294 xfs_dablk_t blkno, 1295 struct xfs_buf **bpp) 1296 { 1297 struct xfs_attr_leafblock *leaf; 1298 struct xfs_attr3_icleaf_hdr ichdr; 1299 struct xfs_inode *dp = args->dp; 1300 struct xfs_mount *mp = dp->i_mount; 1301 struct xfs_buf *bp; 1302 int error; 1303 1304 trace_xfs_attr_leaf_create(args); 1305 1306 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1307 XFS_ATTR_FORK); 1308 if (error) 1309 return error; 1310 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1311 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1312 leaf = bp->b_addr; 1313 memset(leaf, 0, args->geo->blksize); 1314 1315 memset(&ichdr, 0, sizeof(ichdr)); 1316 ichdr.firstused = args->geo->blksize; 1317 1318 if (xfs_has_crc(mp)) { 1319 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1320 1321 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1322 1323 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1324 hdr3->owner = cpu_to_be64(dp->i_ino); 1325 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1326 1327 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1328 } else { 1329 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1330 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1331 } 1332 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1333 1334 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1335 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1336 1337 *bpp = bp; 1338 return 0; 1339 } 1340 1341 /* 1342 * Split the leaf node, rebalance, then add the new entry. 1343 */ 1344 int 1345 xfs_attr3_leaf_split( 1346 struct xfs_da_state *state, 1347 struct xfs_da_state_blk *oldblk, 1348 struct xfs_da_state_blk *newblk) 1349 { 1350 xfs_dablk_t blkno; 1351 int error; 1352 1353 trace_xfs_attr_leaf_split(state->args); 1354 1355 /* 1356 * Allocate space for a new leaf node. 1357 */ 1358 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1359 error = xfs_da_grow_inode(state->args, &blkno); 1360 if (error) 1361 return error; 1362 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1363 if (error) 1364 return error; 1365 newblk->blkno = blkno; 1366 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1367 1368 /* 1369 * Rebalance the entries across the two leaves. 1370 * NOTE: rebalance() currently depends on the 2nd block being empty. 1371 */ 1372 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1373 error = xfs_da3_blk_link(state, oldblk, newblk); 1374 if (error) 1375 return error; 1376 1377 /* 1378 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1379 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1380 * "new" attrs info. Will need the "old" info to remove it later. 1381 * 1382 * Insert the "new" entry in the correct block. 1383 */ 1384 if (state->inleaf) { 1385 trace_xfs_attr_leaf_add_old(state->args); 1386 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1387 } else { 1388 trace_xfs_attr_leaf_add_new(state->args); 1389 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1390 } 1391 1392 /* 1393 * Update last hashval in each block since we added the name. 1394 */ 1395 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1396 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1397 return error; 1398 } 1399 1400 /* 1401 * Add a name to the leaf attribute list structure. 1402 */ 1403 int 1404 xfs_attr3_leaf_add( 1405 struct xfs_buf *bp, 1406 struct xfs_da_args *args) 1407 { 1408 struct xfs_attr_leafblock *leaf; 1409 struct xfs_attr3_icleaf_hdr ichdr; 1410 int tablesize; 1411 int entsize; 1412 int sum; 1413 int tmp; 1414 int i; 1415 1416 trace_xfs_attr_leaf_add(args); 1417 1418 leaf = bp->b_addr; 1419 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1420 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1421 entsize = xfs_attr_leaf_newentsize(args, NULL); 1422 1423 /* 1424 * Search through freemap for first-fit on new name length. 1425 * (may need to figure in size of entry struct too) 1426 */ 1427 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1428 + xfs_attr3_leaf_hdr_size(leaf); 1429 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1430 if (tablesize > ichdr.firstused) { 1431 sum += ichdr.freemap[i].size; 1432 continue; 1433 } 1434 if (!ichdr.freemap[i].size) 1435 continue; /* no space in this map */ 1436 tmp = entsize; 1437 if (ichdr.freemap[i].base < ichdr.firstused) 1438 tmp += sizeof(xfs_attr_leaf_entry_t); 1439 if (ichdr.freemap[i].size >= tmp) { 1440 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1441 goto out_log_hdr; 1442 } 1443 sum += ichdr.freemap[i].size; 1444 } 1445 1446 /* 1447 * If there are no holes in the address space of the block, 1448 * and we don't have enough freespace, then compaction will do us 1449 * no good and we should just give up. 1450 */ 1451 if (!ichdr.holes && sum < entsize) 1452 return -ENOSPC; 1453 1454 /* 1455 * Compact the entries to coalesce free space. 1456 * This may change the hdr->count via dropping INCOMPLETE entries. 1457 */ 1458 xfs_attr3_leaf_compact(args, &ichdr, bp); 1459 1460 /* 1461 * After compaction, the block is guaranteed to have only one 1462 * free region, in freemap[0]. If it is not big enough, give up. 1463 */ 1464 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1465 tmp = -ENOSPC; 1466 goto out_log_hdr; 1467 } 1468 1469 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1470 1471 out_log_hdr: 1472 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1473 xfs_trans_log_buf(args->trans, bp, 1474 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1475 xfs_attr3_leaf_hdr_size(leaf))); 1476 return tmp; 1477 } 1478 1479 /* 1480 * Add a name to a leaf attribute list structure. 1481 */ 1482 STATIC int 1483 xfs_attr3_leaf_add_work( 1484 struct xfs_buf *bp, 1485 struct xfs_attr3_icleaf_hdr *ichdr, 1486 struct xfs_da_args *args, 1487 int mapindex) 1488 { 1489 struct xfs_attr_leafblock *leaf; 1490 struct xfs_attr_leaf_entry *entry; 1491 struct xfs_attr_leaf_name_local *name_loc; 1492 struct xfs_attr_leaf_name_remote *name_rmt; 1493 struct xfs_mount *mp; 1494 int tmp; 1495 int i; 1496 1497 trace_xfs_attr_leaf_add_work(args); 1498 1499 leaf = bp->b_addr; 1500 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1501 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1502 1503 /* 1504 * Force open some space in the entry array and fill it in. 1505 */ 1506 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1507 if (args->index < ichdr->count) { 1508 tmp = ichdr->count - args->index; 1509 tmp *= sizeof(xfs_attr_leaf_entry_t); 1510 memmove(entry + 1, entry, tmp); 1511 xfs_trans_log_buf(args->trans, bp, 1512 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1513 } 1514 ichdr->count++; 1515 1516 /* 1517 * Allocate space for the new string (at the end of the run). 1518 */ 1519 mp = args->trans->t_mountp; 1520 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1521 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1522 ASSERT(ichdr->freemap[mapindex].size >= 1523 xfs_attr_leaf_newentsize(args, NULL)); 1524 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1525 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1526 1527 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1528 1529 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1530 ichdr->freemap[mapindex].size); 1531 entry->hashval = cpu_to_be32(args->hashval); 1532 entry->flags = args->attr_filter; 1533 if (tmp) 1534 entry->flags |= XFS_ATTR_LOCAL; 1535 if (args->op_flags & XFS_DA_OP_REPLACE) { 1536 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1537 entry->flags |= XFS_ATTR_INCOMPLETE; 1538 if ((args->blkno2 == args->blkno) && 1539 (args->index2 <= args->index)) { 1540 args->index2++; 1541 } 1542 } 1543 xfs_trans_log_buf(args->trans, bp, 1544 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1545 ASSERT((args->index == 0) || 1546 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1547 ASSERT((args->index == ichdr->count - 1) || 1548 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1549 1550 /* 1551 * For "remote" attribute values, simply note that we need to 1552 * allocate space for the "remote" value. We can't actually 1553 * allocate the extents in this transaction, and we can't decide 1554 * which blocks they should be as we might allocate more blocks 1555 * as part of this transaction (a split operation for example). 1556 */ 1557 if (entry->flags & XFS_ATTR_LOCAL) { 1558 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1559 name_loc->namelen = args->namelen; 1560 name_loc->valuelen = cpu_to_be16(args->valuelen); 1561 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1562 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1563 be16_to_cpu(name_loc->valuelen)); 1564 } else { 1565 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1566 name_rmt->namelen = args->namelen; 1567 memcpy((char *)name_rmt->name, args->name, args->namelen); 1568 entry->flags |= XFS_ATTR_INCOMPLETE; 1569 /* just in case */ 1570 name_rmt->valuelen = 0; 1571 name_rmt->valueblk = 0; 1572 args->rmtblkno = 1; 1573 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1574 args->rmtvaluelen = args->valuelen; 1575 } 1576 xfs_trans_log_buf(args->trans, bp, 1577 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1578 xfs_attr_leaf_entsize(leaf, args->index))); 1579 1580 /* 1581 * Update the control info for this leaf node 1582 */ 1583 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1584 ichdr->firstused = be16_to_cpu(entry->nameidx); 1585 1586 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1587 + xfs_attr3_leaf_hdr_size(leaf)); 1588 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1589 + xfs_attr3_leaf_hdr_size(leaf); 1590 1591 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1592 if (ichdr->freemap[i].base == tmp) { 1593 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1594 ichdr->freemap[i].size -= 1595 min_t(uint16_t, ichdr->freemap[i].size, 1596 sizeof(xfs_attr_leaf_entry_t)); 1597 } 1598 } 1599 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1600 return 0; 1601 } 1602 1603 /* 1604 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1605 */ 1606 STATIC void 1607 xfs_attr3_leaf_compact( 1608 struct xfs_da_args *args, 1609 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1610 struct xfs_buf *bp) 1611 { 1612 struct xfs_attr_leafblock *leaf_src; 1613 struct xfs_attr_leafblock *leaf_dst; 1614 struct xfs_attr3_icleaf_hdr ichdr_src; 1615 struct xfs_trans *trans = args->trans; 1616 char *tmpbuffer; 1617 1618 trace_xfs_attr_leaf_compact(args); 1619 1620 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1621 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1622 memset(bp->b_addr, 0, args->geo->blksize); 1623 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1624 leaf_dst = bp->b_addr; 1625 1626 /* 1627 * Copy the on-disk header back into the destination buffer to ensure 1628 * all the information in the header that is not part of the incore 1629 * header structure is preserved. 1630 */ 1631 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1632 1633 /* Initialise the incore headers */ 1634 ichdr_src = *ichdr_dst; /* struct copy */ 1635 ichdr_dst->firstused = args->geo->blksize; 1636 ichdr_dst->usedbytes = 0; 1637 ichdr_dst->count = 0; 1638 ichdr_dst->holes = 0; 1639 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1640 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1641 ichdr_dst->freemap[0].base; 1642 1643 /* write the header back to initialise the underlying buffer */ 1644 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1645 1646 /* 1647 * Copy all entry's in the same (sorted) order, 1648 * but allocate name/value pairs packed and in sequence. 1649 */ 1650 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1651 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1652 /* 1653 * this logs the entire buffer, but the caller must write the header 1654 * back to the buffer when it is finished modifying it. 1655 */ 1656 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1657 1658 kmem_free(tmpbuffer); 1659 } 1660 1661 /* 1662 * Compare two leaf blocks "order". 1663 * Return 0 unless leaf2 should go before leaf1. 1664 */ 1665 static int 1666 xfs_attr3_leaf_order( 1667 struct xfs_buf *leaf1_bp, 1668 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1669 struct xfs_buf *leaf2_bp, 1670 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1671 { 1672 struct xfs_attr_leaf_entry *entries1; 1673 struct xfs_attr_leaf_entry *entries2; 1674 1675 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1676 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1677 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1678 ((be32_to_cpu(entries2[0].hashval) < 1679 be32_to_cpu(entries1[0].hashval)) || 1680 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1681 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1682 return 1; 1683 } 1684 return 0; 1685 } 1686 1687 int 1688 xfs_attr_leaf_order( 1689 struct xfs_buf *leaf1_bp, 1690 struct xfs_buf *leaf2_bp) 1691 { 1692 struct xfs_attr3_icleaf_hdr ichdr1; 1693 struct xfs_attr3_icleaf_hdr ichdr2; 1694 struct xfs_mount *mp = leaf1_bp->b_mount; 1695 1696 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1697 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1698 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1699 } 1700 1701 /* 1702 * Redistribute the attribute list entries between two leaf nodes, 1703 * taking into account the size of the new entry. 1704 * 1705 * NOTE: if new block is empty, then it will get the upper half of the 1706 * old block. At present, all (one) callers pass in an empty second block. 1707 * 1708 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1709 * to match what it is doing in splitting the attribute leaf block. Those 1710 * values are used in "atomic rename" operations on attributes. Note that 1711 * the "new" and "old" values can end up in different blocks. 1712 */ 1713 STATIC void 1714 xfs_attr3_leaf_rebalance( 1715 struct xfs_da_state *state, 1716 struct xfs_da_state_blk *blk1, 1717 struct xfs_da_state_blk *blk2) 1718 { 1719 struct xfs_da_args *args; 1720 struct xfs_attr_leafblock *leaf1; 1721 struct xfs_attr_leafblock *leaf2; 1722 struct xfs_attr3_icleaf_hdr ichdr1; 1723 struct xfs_attr3_icleaf_hdr ichdr2; 1724 struct xfs_attr_leaf_entry *entries1; 1725 struct xfs_attr_leaf_entry *entries2; 1726 int count; 1727 int totallen; 1728 int max; 1729 int space; 1730 int swap; 1731 1732 /* 1733 * Set up environment. 1734 */ 1735 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1736 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1737 leaf1 = blk1->bp->b_addr; 1738 leaf2 = blk2->bp->b_addr; 1739 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1740 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1741 ASSERT(ichdr2.count == 0); 1742 args = state->args; 1743 1744 trace_xfs_attr_leaf_rebalance(args); 1745 1746 /* 1747 * Check ordering of blocks, reverse if it makes things simpler. 1748 * 1749 * NOTE: Given that all (current) callers pass in an empty 1750 * second block, this code should never set "swap". 1751 */ 1752 swap = 0; 1753 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1754 swap(blk1, blk2); 1755 1756 /* swap structures rather than reconverting them */ 1757 swap(ichdr1, ichdr2); 1758 1759 leaf1 = blk1->bp->b_addr; 1760 leaf2 = blk2->bp->b_addr; 1761 swap = 1; 1762 } 1763 1764 /* 1765 * Examine entries until we reduce the absolute difference in 1766 * byte usage between the two blocks to a minimum. Then get 1767 * the direction to copy and the number of elements to move. 1768 * 1769 * "inleaf" is true if the new entry should be inserted into blk1. 1770 * If "swap" is also true, then reverse the sense of "inleaf". 1771 */ 1772 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1773 blk2, &ichdr2, 1774 &count, &totallen); 1775 if (swap) 1776 state->inleaf = !state->inleaf; 1777 1778 /* 1779 * Move any entries required from leaf to leaf: 1780 */ 1781 if (count < ichdr1.count) { 1782 /* 1783 * Figure the total bytes to be added to the destination leaf. 1784 */ 1785 /* number entries being moved */ 1786 count = ichdr1.count - count; 1787 space = ichdr1.usedbytes - totallen; 1788 space += count * sizeof(xfs_attr_leaf_entry_t); 1789 1790 /* 1791 * leaf2 is the destination, compact it if it looks tight. 1792 */ 1793 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1794 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1795 if (space > max) 1796 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1797 1798 /* 1799 * Move high entries from leaf1 to low end of leaf2. 1800 */ 1801 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1802 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1803 1804 } else if (count > ichdr1.count) { 1805 /* 1806 * I assert that since all callers pass in an empty 1807 * second buffer, this code should never execute. 1808 */ 1809 ASSERT(0); 1810 1811 /* 1812 * Figure the total bytes to be added to the destination leaf. 1813 */ 1814 /* number entries being moved */ 1815 count -= ichdr1.count; 1816 space = totallen - ichdr1.usedbytes; 1817 space += count * sizeof(xfs_attr_leaf_entry_t); 1818 1819 /* 1820 * leaf1 is the destination, compact it if it looks tight. 1821 */ 1822 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1823 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1824 if (space > max) 1825 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1826 1827 /* 1828 * Move low entries from leaf2 to high end of leaf1. 1829 */ 1830 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1831 ichdr1.count, count); 1832 } 1833 1834 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1835 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1836 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1837 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1838 1839 /* 1840 * Copy out last hashval in each block for B-tree code. 1841 */ 1842 entries1 = xfs_attr3_leaf_entryp(leaf1); 1843 entries2 = xfs_attr3_leaf_entryp(leaf2); 1844 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1845 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1846 1847 /* 1848 * Adjust the expected index for insertion. 1849 * NOTE: this code depends on the (current) situation that the 1850 * second block was originally empty. 1851 * 1852 * If the insertion point moved to the 2nd block, we must adjust 1853 * the index. We must also track the entry just following the 1854 * new entry for use in an "atomic rename" operation, that entry 1855 * is always the "old" entry and the "new" entry is what we are 1856 * inserting. The index/blkno fields refer to the "old" entry, 1857 * while the index2/blkno2 fields refer to the "new" entry. 1858 */ 1859 if (blk1->index > ichdr1.count) { 1860 ASSERT(state->inleaf == 0); 1861 blk2->index = blk1->index - ichdr1.count; 1862 args->index = args->index2 = blk2->index; 1863 args->blkno = args->blkno2 = blk2->blkno; 1864 } else if (blk1->index == ichdr1.count) { 1865 if (state->inleaf) { 1866 args->index = blk1->index; 1867 args->blkno = blk1->blkno; 1868 args->index2 = 0; 1869 args->blkno2 = blk2->blkno; 1870 } else { 1871 /* 1872 * On a double leaf split, the original attr location 1873 * is already stored in blkno2/index2, so don't 1874 * overwrite it overwise we corrupt the tree. 1875 */ 1876 blk2->index = blk1->index - ichdr1.count; 1877 args->index = blk2->index; 1878 args->blkno = blk2->blkno; 1879 if (!state->extravalid) { 1880 /* 1881 * set the new attr location to match the old 1882 * one and let the higher level split code 1883 * decide where in the leaf to place it. 1884 */ 1885 args->index2 = blk2->index; 1886 args->blkno2 = blk2->blkno; 1887 } 1888 } 1889 } else { 1890 ASSERT(state->inleaf == 1); 1891 args->index = args->index2 = blk1->index; 1892 args->blkno = args->blkno2 = blk1->blkno; 1893 } 1894 } 1895 1896 /* 1897 * Examine entries until we reduce the absolute difference in 1898 * byte usage between the two blocks to a minimum. 1899 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1900 * GROT: there will always be enough room in either block for a new entry. 1901 * GROT: Do a double-split for this case? 1902 */ 1903 STATIC int 1904 xfs_attr3_leaf_figure_balance( 1905 struct xfs_da_state *state, 1906 struct xfs_da_state_blk *blk1, 1907 struct xfs_attr3_icleaf_hdr *ichdr1, 1908 struct xfs_da_state_blk *blk2, 1909 struct xfs_attr3_icleaf_hdr *ichdr2, 1910 int *countarg, 1911 int *usedbytesarg) 1912 { 1913 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1914 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1915 struct xfs_attr_leaf_entry *entry; 1916 int count; 1917 int max; 1918 int index; 1919 int totallen = 0; 1920 int half; 1921 int lastdelta; 1922 int foundit = 0; 1923 int tmp; 1924 1925 /* 1926 * Examine entries until we reduce the absolute difference in 1927 * byte usage between the two blocks to a minimum. 1928 */ 1929 max = ichdr1->count + ichdr2->count; 1930 half = (max + 1) * sizeof(*entry); 1931 half += ichdr1->usedbytes + ichdr2->usedbytes + 1932 xfs_attr_leaf_newentsize(state->args, NULL); 1933 half /= 2; 1934 lastdelta = state->args->geo->blksize; 1935 entry = xfs_attr3_leaf_entryp(leaf1); 1936 for (count = index = 0; count < max; entry++, index++, count++) { 1937 1938 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1939 /* 1940 * The new entry is in the first block, account for it. 1941 */ 1942 if (count == blk1->index) { 1943 tmp = totallen + sizeof(*entry) + 1944 xfs_attr_leaf_newentsize(state->args, NULL); 1945 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1946 break; 1947 lastdelta = XFS_ATTR_ABS(half - tmp); 1948 totallen = tmp; 1949 foundit = 1; 1950 } 1951 1952 /* 1953 * Wrap around into the second block if necessary. 1954 */ 1955 if (count == ichdr1->count) { 1956 leaf1 = leaf2; 1957 entry = xfs_attr3_leaf_entryp(leaf1); 1958 index = 0; 1959 } 1960 1961 /* 1962 * Figure out if next leaf entry would be too much. 1963 */ 1964 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1965 index); 1966 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1967 break; 1968 lastdelta = XFS_ATTR_ABS(half - tmp); 1969 totallen = tmp; 1970 #undef XFS_ATTR_ABS 1971 } 1972 1973 /* 1974 * Calculate the number of usedbytes that will end up in lower block. 1975 * If new entry not in lower block, fix up the count. 1976 */ 1977 totallen -= count * sizeof(*entry); 1978 if (foundit) { 1979 totallen -= sizeof(*entry) + 1980 xfs_attr_leaf_newentsize(state->args, NULL); 1981 } 1982 1983 *countarg = count; 1984 *usedbytesarg = totallen; 1985 return foundit; 1986 } 1987 1988 /*======================================================================== 1989 * Routines used for shrinking the Btree. 1990 *========================================================================*/ 1991 1992 /* 1993 * Check a leaf block and its neighbors to see if the block should be 1994 * collapsed into one or the other neighbor. Always keep the block 1995 * with the smaller block number. 1996 * If the current block is over 50% full, don't try to join it, return 0. 1997 * If the block is empty, fill in the state structure and return 2. 1998 * If it can be collapsed, fill in the state structure and return 1. 1999 * If nothing can be done, return 0. 2000 * 2001 * GROT: allow for INCOMPLETE entries in calculation. 2002 */ 2003 int 2004 xfs_attr3_leaf_toosmall( 2005 struct xfs_da_state *state, 2006 int *action) 2007 { 2008 struct xfs_attr_leafblock *leaf; 2009 struct xfs_da_state_blk *blk; 2010 struct xfs_attr3_icleaf_hdr ichdr; 2011 struct xfs_buf *bp; 2012 xfs_dablk_t blkno; 2013 int bytes; 2014 int forward; 2015 int error; 2016 int retval; 2017 int i; 2018 2019 trace_xfs_attr_leaf_toosmall(state->args); 2020 2021 /* 2022 * Check for the degenerate case of the block being over 50% full. 2023 * If so, it's not worth even looking to see if we might be able 2024 * to coalesce with a sibling. 2025 */ 2026 blk = &state->path.blk[ state->path.active-1 ]; 2027 leaf = blk->bp->b_addr; 2028 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 2029 bytes = xfs_attr3_leaf_hdr_size(leaf) + 2030 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 2031 ichdr.usedbytes; 2032 if (bytes > (state->args->geo->blksize >> 1)) { 2033 *action = 0; /* blk over 50%, don't try to join */ 2034 return 0; 2035 } 2036 2037 /* 2038 * Check for the degenerate case of the block being empty. 2039 * If the block is empty, we'll simply delete it, no need to 2040 * coalesce it with a sibling block. We choose (arbitrarily) 2041 * to merge with the forward block unless it is NULL. 2042 */ 2043 if (ichdr.count == 0) { 2044 /* 2045 * Make altpath point to the block we want to keep and 2046 * path point to the block we want to drop (this one). 2047 */ 2048 forward = (ichdr.forw != 0); 2049 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2050 error = xfs_da3_path_shift(state, &state->altpath, forward, 2051 0, &retval); 2052 if (error) 2053 return error; 2054 if (retval) { 2055 *action = 0; 2056 } else { 2057 *action = 2; 2058 } 2059 return 0; 2060 } 2061 2062 /* 2063 * Examine each sibling block to see if we can coalesce with 2064 * at least 25% free space to spare. We need to figure out 2065 * whether to merge with the forward or the backward block. 2066 * We prefer coalescing with the lower numbered sibling so as 2067 * to shrink an attribute list over time. 2068 */ 2069 /* start with smaller blk num */ 2070 forward = ichdr.forw < ichdr.back; 2071 for (i = 0; i < 2; forward = !forward, i++) { 2072 struct xfs_attr3_icleaf_hdr ichdr2; 2073 if (forward) 2074 blkno = ichdr.forw; 2075 else 2076 blkno = ichdr.back; 2077 if (blkno == 0) 2078 continue; 2079 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2080 blkno, &bp); 2081 if (error) 2082 return error; 2083 2084 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2085 2086 bytes = state->args->geo->blksize - 2087 (state->args->geo->blksize >> 2) - 2088 ichdr.usedbytes - ichdr2.usedbytes - 2089 ((ichdr.count + ichdr2.count) * 2090 sizeof(xfs_attr_leaf_entry_t)) - 2091 xfs_attr3_leaf_hdr_size(leaf); 2092 2093 xfs_trans_brelse(state->args->trans, bp); 2094 if (bytes >= 0) 2095 break; /* fits with at least 25% to spare */ 2096 } 2097 if (i >= 2) { 2098 *action = 0; 2099 return 0; 2100 } 2101 2102 /* 2103 * Make altpath point to the block we want to keep (the lower 2104 * numbered block) and path point to the block we want to drop. 2105 */ 2106 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2107 if (blkno < blk->blkno) { 2108 error = xfs_da3_path_shift(state, &state->altpath, forward, 2109 0, &retval); 2110 } else { 2111 error = xfs_da3_path_shift(state, &state->path, forward, 2112 0, &retval); 2113 } 2114 if (error) 2115 return error; 2116 if (retval) { 2117 *action = 0; 2118 } else { 2119 *action = 1; 2120 } 2121 return 0; 2122 } 2123 2124 /* 2125 * Remove a name from the leaf attribute list structure. 2126 * 2127 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2128 * If two leaves are 37% full, when combined they will leave 25% free. 2129 */ 2130 int 2131 xfs_attr3_leaf_remove( 2132 struct xfs_buf *bp, 2133 struct xfs_da_args *args) 2134 { 2135 struct xfs_attr_leafblock *leaf; 2136 struct xfs_attr3_icleaf_hdr ichdr; 2137 struct xfs_attr_leaf_entry *entry; 2138 int before; 2139 int after; 2140 int smallest; 2141 int entsize; 2142 int tablesize; 2143 int tmp; 2144 int i; 2145 2146 trace_xfs_attr_leaf_remove(args); 2147 2148 leaf = bp->b_addr; 2149 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2150 2151 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2152 ASSERT(args->index >= 0 && args->index < ichdr.count); 2153 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2154 xfs_attr3_leaf_hdr_size(leaf)); 2155 2156 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2157 2158 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2159 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2160 2161 /* 2162 * Scan through free region table: 2163 * check for adjacency of free'd entry with an existing one, 2164 * find smallest free region in case we need to replace it, 2165 * adjust any map that borders the entry table, 2166 */ 2167 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2168 + xfs_attr3_leaf_hdr_size(leaf); 2169 tmp = ichdr.freemap[0].size; 2170 before = after = -1; 2171 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2172 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2174 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2175 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2176 if (ichdr.freemap[i].base == tablesize) { 2177 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2178 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2179 } 2180 2181 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2182 be16_to_cpu(entry->nameidx)) { 2183 before = i; 2184 } else if (ichdr.freemap[i].base == 2185 (be16_to_cpu(entry->nameidx) + entsize)) { 2186 after = i; 2187 } else if (ichdr.freemap[i].size < tmp) { 2188 tmp = ichdr.freemap[i].size; 2189 smallest = i; 2190 } 2191 } 2192 2193 /* 2194 * Coalesce adjacent freemap regions, 2195 * or replace the smallest region. 2196 */ 2197 if ((before >= 0) || (after >= 0)) { 2198 if ((before >= 0) && (after >= 0)) { 2199 ichdr.freemap[before].size += entsize; 2200 ichdr.freemap[before].size += ichdr.freemap[after].size; 2201 ichdr.freemap[after].base = 0; 2202 ichdr.freemap[after].size = 0; 2203 } else if (before >= 0) { 2204 ichdr.freemap[before].size += entsize; 2205 } else { 2206 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2207 ichdr.freemap[after].size += entsize; 2208 } 2209 } else { 2210 /* 2211 * Replace smallest region (if it is smaller than free'd entry) 2212 */ 2213 if (ichdr.freemap[smallest].size < entsize) { 2214 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2215 ichdr.freemap[smallest].size = entsize; 2216 } 2217 } 2218 2219 /* 2220 * Did we remove the first entry? 2221 */ 2222 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2223 smallest = 1; 2224 else 2225 smallest = 0; 2226 2227 /* 2228 * Compress the remaining entries and zero out the removed stuff. 2229 */ 2230 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2231 ichdr.usedbytes -= entsize; 2232 xfs_trans_log_buf(args->trans, bp, 2233 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2234 entsize)); 2235 2236 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2237 memmove(entry, entry + 1, tmp); 2238 ichdr.count--; 2239 xfs_trans_log_buf(args->trans, bp, 2240 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2241 2242 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2243 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2244 2245 /* 2246 * If we removed the first entry, re-find the first used byte 2247 * in the name area. Note that if the entry was the "firstused", 2248 * then we don't have a "hole" in our block resulting from 2249 * removing the name. 2250 */ 2251 if (smallest) { 2252 tmp = args->geo->blksize; 2253 entry = xfs_attr3_leaf_entryp(leaf); 2254 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2255 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2256 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2257 2258 if (be16_to_cpu(entry->nameidx) < tmp) 2259 tmp = be16_to_cpu(entry->nameidx); 2260 } 2261 ichdr.firstused = tmp; 2262 ASSERT(ichdr.firstused != 0); 2263 } else { 2264 ichdr.holes = 1; /* mark as needing compaction */ 2265 } 2266 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2267 xfs_trans_log_buf(args->trans, bp, 2268 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2269 xfs_attr3_leaf_hdr_size(leaf))); 2270 2271 /* 2272 * Check if leaf is less than 50% full, caller may want to 2273 * "join" the leaf with a sibling if so. 2274 */ 2275 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2276 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2277 2278 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2279 } 2280 2281 /* 2282 * Move all the attribute list entries from drop_leaf into save_leaf. 2283 */ 2284 void 2285 xfs_attr3_leaf_unbalance( 2286 struct xfs_da_state *state, 2287 struct xfs_da_state_blk *drop_blk, 2288 struct xfs_da_state_blk *save_blk) 2289 { 2290 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2291 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2292 struct xfs_attr3_icleaf_hdr drophdr; 2293 struct xfs_attr3_icleaf_hdr savehdr; 2294 struct xfs_attr_leaf_entry *entry; 2295 2296 trace_xfs_attr_leaf_unbalance(state->args); 2297 2298 drop_leaf = drop_blk->bp->b_addr; 2299 save_leaf = save_blk->bp->b_addr; 2300 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2301 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2302 entry = xfs_attr3_leaf_entryp(drop_leaf); 2303 2304 /* 2305 * Save last hashval from dying block for later Btree fixup. 2306 */ 2307 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2308 2309 /* 2310 * Check if we need a temp buffer, or can we do it in place. 2311 * Note that we don't check "leaf" for holes because we will 2312 * always be dropping it, toosmall() decided that for us already. 2313 */ 2314 if (savehdr.holes == 0) { 2315 /* 2316 * dest leaf has no holes, so we add there. May need 2317 * to make some room in the entry array. 2318 */ 2319 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2320 drop_blk->bp, &drophdr)) { 2321 xfs_attr3_leaf_moveents(state->args, 2322 drop_leaf, &drophdr, 0, 2323 save_leaf, &savehdr, 0, 2324 drophdr.count); 2325 } else { 2326 xfs_attr3_leaf_moveents(state->args, 2327 drop_leaf, &drophdr, 0, 2328 save_leaf, &savehdr, 2329 savehdr.count, drophdr.count); 2330 } 2331 } else { 2332 /* 2333 * Destination has holes, so we make a temporary copy 2334 * of the leaf and add them both to that. 2335 */ 2336 struct xfs_attr_leafblock *tmp_leaf; 2337 struct xfs_attr3_icleaf_hdr tmphdr; 2338 2339 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2340 2341 /* 2342 * Copy the header into the temp leaf so that all the stuff 2343 * not in the incore header is present and gets copied back in 2344 * once we've moved all the entries. 2345 */ 2346 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2347 2348 memset(&tmphdr, 0, sizeof(tmphdr)); 2349 tmphdr.magic = savehdr.magic; 2350 tmphdr.forw = savehdr.forw; 2351 tmphdr.back = savehdr.back; 2352 tmphdr.firstused = state->args->geo->blksize; 2353 2354 /* write the header to the temp buffer to initialise it */ 2355 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2356 2357 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2358 drop_blk->bp, &drophdr)) { 2359 xfs_attr3_leaf_moveents(state->args, 2360 drop_leaf, &drophdr, 0, 2361 tmp_leaf, &tmphdr, 0, 2362 drophdr.count); 2363 xfs_attr3_leaf_moveents(state->args, 2364 save_leaf, &savehdr, 0, 2365 tmp_leaf, &tmphdr, tmphdr.count, 2366 savehdr.count); 2367 } else { 2368 xfs_attr3_leaf_moveents(state->args, 2369 save_leaf, &savehdr, 0, 2370 tmp_leaf, &tmphdr, 0, 2371 savehdr.count); 2372 xfs_attr3_leaf_moveents(state->args, 2373 drop_leaf, &drophdr, 0, 2374 tmp_leaf, &tmphdr, tmphdr.count, 2375 drophdr.count); 2376 } 2377 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2378 savehdr = tmphdr; /* struct copy */ 2379 kmem_free(tmp_leaf); 2380 } 2381 2382 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2383 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2384 state->args->geo->blksize - 1); 2385 2386 /* 2387 * Copy out last hashval in each block for B-tree code. 2388 */ 2389 entry = xfs_attr3_leaf_entryp(save_leaf); 2390 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2391 } 2392 2393 /*======================================================================== 2394 * Routines used for finding things in the Btree. 2395 *========================================================================*/ 2396 2397 /* 2398 * Look up a name in a leaf attribute list structure. 2399 * This is the internal routine, it uses the caller's buffer. 2400 * 2401 * Note that duplicate keys are allowed, but only check within the 2402 * current leaf node. The Btree code must check in adjacent leaf nodes. 2403 * 2404 * Return in args->index the index into the entry[] array of either 2405 * the found entry, or where the entry should have been (insert before 2406 * that entry). 2407 * 2408 * Don't change the args->value unless we find the attribute. 2409 */ 2410 int 2411 xfs_attr3_leaf_lookup_int( 2412 struct xfs_buf *bp, 2413 struct xfs_da_args *args) 2414 { 2415 struct xfs_attr_leafblock *leaf; 2416 struct xfs_attr3_icleaf_hdr ichdr; 2417 struct xfs_attr_leaf_entry *entry; 2418 struct xfs_attr_leaf_entry *entries; 2419 struct xfs_attr_leaf_name_local *name_loc; 2420 struct xfs_attr_leaf_name_remote *name_rmt; 2421 xfs_dahash_t hashval; 2422 int probe; 2423 int span; 2424 2425 trace_xfs_attr_leaf_lookup(args); 2426 2427 leaf = bp->b_addr; 2428 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2429 entries = xfs_attr3_leaf_entryp(leaf); 2430 if (ichdr.count >= args->geo->blksize / 8) { 2431 xfs_buf_mark_corrupt(bp); 2432 return -EFSCORRUPTED; 2433 } 2434 2435 /* 2436 * Binary search. (note: small blocks will skip this loop) 2437 */ 2438 hashval = args->hashval; 2439 probe = span = ichdr.count / 2; 2440 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2441 span /= 2; 2442 if (be32_to_cpu(entry->hashval) < hashval) 2443 probe += span; 2444 else if (be32_to_cpu(entry->hashval) > hashval) 2445 probe -= span; 2446 else 2447 break; 2448 } 2449 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2450 xfs_buf_mark_corrupt(bp); 2451 return -EFSCORRUPTED; 2452 } 2453 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2454 xfs_buf_mark_corrupt(bp); 2455 return -EFSCORRUPTED; 2456 } 2457 2458 /* 2459 * Since we may have duplicate hashval's, find the first matching 2460 * hashval in the leaf. 2461 */ 2462 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2463 entry--; 2464 probe--; 2465 } 2466 while (probe < ichdr.count && 2467 be32_to_cpu(entry->hashval) < hashval) { 2468 entry++; 2469 probe++; 2470 } 2471 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2472 args->index = probe; 2473 return -ENOATTR; 2474 } 2475 2476 /* 2477 * Duplicate keys may be present, so search all of them for a match. 2478 */ 2479 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2480 entry++, probe++) { 2481 /* 2482 * GROT: Add code to remove incomplete entries. 2483 */ 2484 if (entry->flags & XFS_ATTR_LOCAL) { 2485 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2486 if (!xfs_attr_match(args, name_loc->namelen, 2487 name_loc->nameval, entry->flags)) 2488 continue; 2489 args->index = probe; 2490 return -EEXIST; 2491 } else { 2492 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2493 if (!xfs_attr_match(args, name_rmt->namelen, 2494 name_rmt->name, entry->flags)) 2495 continue; 2496 args->index = probe; 2497 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2498 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2499 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2500 args->dp->i_mount, 2501 args->rmtvaluelen); 2502 return -EEXIST; 2503 } 2504 } 2505 args->index = probe; 2506 return -ENOATTR; 2507 } 2508 2509 /* 2510 * Get the value associated with an attribute name from a leaf attribute 2511 * list structure. 2512 * 2513 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2514 * lookup, we only return an error if the attribute does not exist or we can't 2515 * retrieve the value. 2516 */ 2517 int 2518 xfs_attr3_leaf_getvalue( 2519 struct xfs_buf *bp, 2520 struct xfs_da_args *args) 2521 { 2522 struct xfs_attr_leafblock *leaf; 2523 struct xfs_attr3_icleaf_hdr ichdr; 2524 struct xfs_attr_leaf_entry *entry; 2525 struct xfs_attr_leaf_name_local *name_loc; 2526 struct xfs_attr_leaf_name_remote *name_rmt; 2527 2528 leaf = bp->b_addr; 2529 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2530 ASSERT(ichdr.count < args->geo->blksize / 8); 2531 ASSERT(args->index < ichdr.count); 2532 2533 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2534 if (entry->flags & XFS_ATTR_LOCAL) { 2535 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2536 ASSERT(name_loc->namelen == args->namelen); 2537 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2538 return xfs_attr_copy_value(args, 2539 &name_loc->nameval[args->namelen], 2540 be16_to_cpu(name_loc->valuelen)); 2541 } 2542 2543 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2544 ASSERT(name_rmt->namelen == args->namelen); 2545 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2546 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2547 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2548 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2549 args->rmtvaluelen); 2550 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2551 } 2552 2553 /*======================================================================== 2554 * Utility routines. 2555 *========================================================================*/ 2556 2557 /* 2558 * Move the indicated entries from one leaf to another. 2559 * NOTE: this routine modifies both source and destination leaves. 2560 */ 2561 /*ARGSUSED*/ 2562 STATIC void 2563 xfs_attr3_leaf_moveents( 2564 struct xfs_da_args *args, 2565 struct xfs_attr_leafblock *leaf_s, 2566 struct xfs_attr3_icleaf_hdr *ichdr_s, 2567 int start_s, 2568 struct xfs_attr_leafblock *leaf_d, 2569 struct xfs_attr3_icleaf_hdr *ichdr_d, 2570 int start_d, 2571 int count) 2572 { 2573 struct xfs_attr_leaf_entry *entry_s; 2574 struct xfs_attr_leaf_entry *entry_d; 2575 int desti; 2576 int tmp; 2577 int i; 2578 2579 /* 2580 * Check for nothing to do. 2581 */ 2582 if (count == 0) 2583 return; 2584 2585 /* 2586 * Set up environment. 2587 */ 2588 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2589 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2590 ASSERT(ichdr_s->magic == ichdr_d->magic); 2591 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2592 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2593 + xfs_attr3_leaf_hdr_size(leaf_s)); 2594 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2595 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2596 + xfs_attr3_leaf_hdr_size(leaf_d)); 2597 2598 ASSERT(start_s < ichdr_s->count); 2599 ASSERT(start_d <= ichdr_d->count); 2600 ASSERT(count <= ichdr_s->count); 2601 2602 2603 /* 2604 * Move the entries in the destination leaf up to make a hole? 2605 */ 2606 if (start_d < ichdr_d->count) { 2607 tmp = ichdr_d->count - start_d; 2608 tmp *= sizeof(xfs_attr_leaf_entry_t); 2609 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2610 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2611 memmove(entry_d, entry_s, tmp); 2612 } 2613 2614 /* 2615 * Copy all entry's in the same (sorted) order, 2616 * but allocate attribute info packed and in sequence. 2617 */ 2618 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2619 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2620 desti = start_d; 2621 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2622 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2623 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2624 #ifdef GROT 2625 /* 2626 * Code to drop INCOMPLETE entries. Difficult to use as we 2627 * may also need to change the insertion index. Code turned 2628 * off for 6.2, should be revisited later. 2629 */ 2630 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2631 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2632 ichdr_s->usedbytes -= tmp; 2633 ichdr_s->count -= 1; 2634 entry_d--; /* to compensate for ++ in loop hdr */ 2635 desti--; 2636 if ((start_s + i) < offset) 2637 result++; /* insertion index adjustment */ 2638 } else { 2639 #endif /* GROT */ 2640 ichdr_d->firstused -= tmp; 2641 /* both on-disk, don't endian flip twice */ 2642 entry_d->hashval = entry_s->hashval; 2643 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2644 entry_d->flags = entry_s->flags; 2645 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2646 <= args->geo->blksize); 2647 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2648 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2649 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2650 <= args->geo->blksize); 2651 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2652 ichdr_s->usedbytes -= tmp; 2653 ichdr_d->usedbytes += tmp; 2654 ichdr_s->count -= 1; 2655 ichdr_d->count += 1; 2656 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2657 + xfs_attr3_leaf_hdr_size(leaf_d); 2658 ASSERT(ichdr_d->firstused >= tmp); 2659 #ifdef GROT 2660 } 2661 #endif /* GROT */ 2662 } 2663 2664 /* 2665 * Zero out the entries we just copied. 2666 */ 2667 if (start_s == ichdr_s->count) { 2668 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2669 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2670 ASSERT(((char *)entry_s + tmp) <= 2671 ((char *)leaf_s + args->geo->blksize)); 2672 memset(entry_s, 0, tmp); 2673 } else { 2674 /* 2675 * Move the remaining entries down to fill the hole, 2676 * then zero the entries at the top. 2677 */ 2678 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2679 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2680 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2681 memmove(entry_d, entry_s, tmp); 2682 2683 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2684 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2685 ASSERT(((char *)entry_s + tmp) <= 2686 ((char *)leaf_s + args->geo->blksize)); 2687 memset(entry_s, 0, tmp); 2688 } 2689 2690 /* 2691 * Fill in the freemap information 2692 */ 2693 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2694 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2695 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2696 ichdr_d->freemap[1].base = 0; 2697 ichdr_d->freemap[2].base = 0; 2698 ichdr_d->freemap[1].size = 0; 2699 ichdr_d->freemap[2].size = 0; 2700 ichdr_s->holes = 1; /* leaf may not be compact */ 2701 } 2702 2703 /* 2704 * Pick up the last hashvalue from a leaf block. 2705 */ 2706 xfs_dahash_t 2707 xfs_attr_leaf_lasthash( 2708 struct xfs_buf *bp, 2709 int *count) 2710 { 2711 struct xfs_attr3_icleaf_hdr ichdr; 2712 struct xfs_attr_leaf_entry *entries; 2713 struct xfs_mount *mp = bp->b_mount; 2714 2715 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2716 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2717 if (count) 2718 *count = ichdr.count; 2719 if (!ichdr.count) 2720 return 0; 2721 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2722 } 2723 2724 /* 2725 * Calculate the number of bytes used to store the indicated attribute 2726 * (whether local or remote only calculate bytes in this block). 2727 */ 2728 STATIC int 2729 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2730 { 2731 struct xfs_attr_leaf_entry *entries; 2732 xfs_attr_leaf_name_local_t *name_loc; 2733 xfs_attr_leaf_name_remote_t *name_rmt; 2734 int size; 2735 2736 entries = xfs_attr3_leaf_entryp(leaf); 2737 if (entries[index].flags & XFS_ATTR_LOCAL) { 2738 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2739 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2740 be16_to_cpu(name_loc->valuelen)); 2741 } else { 2742 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2743 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2744 } 2745 return size; 2746 } 2747 2748 /* 2749 * Calculate the number of bytes that would be required to store the new 2750 * attribute (whether local or remote only calculate bytes in this block). 2751 * This routine decides as a side effect whether the attribute will be 2752 * a "local" or a "remote" attribute. 2753 */ 2754 int 2755 xfs_attr_leaf_newentsize( 2756 struct xfs_da_args *args, 2757 int *local) 2758 { 2759 int size; 2760 2761 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2762 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2763 if (local) 2764 *local = 1; 2765 return size; 2766 } 2767 if (local) 2768 *local = 0; 2769 return xfs_attr_leaf_entsize_remote(args->namelen); 2770 } 2771 2772 2773 /*======================================================================== 2774 * Manage the INCOMPLETE flag in a leaf entry 2775 *========================================================================*/ 2776 2777 /* 2778 * Clear the INCOMPLETE flag on an entry in a leaf block. 2779 */ 2780 int 2781 xfs_attr3_leaf_clearflag( 2782 struct xfs_da_args *args) 2783 { 2784 struct xfs_attr_leafblock *leaf; 2785 struct xfs_attr_leaf_entry *entry; 2786 struct xfs_attr_leaf_name_remote *name_rmt; 2787 struct xfs_buf *bp; 2788 int error; 2789 #ifdef DEBUG 2790 struct xfs_attr3_icleaf_hdr ichdr; 2791 xfs_attr_leaf_name_local_t *name_loc; 2792 int namelen; 2793 char *name; 2794 #endif /* DEBUG */ 2795 2796 trace_xfs_attr_leaf_clearflag(args); 2797 /* 2798 * Set up the operation. 2799 */ 2800 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2801 if (error) 2802 return error; 2803 2804 leaf = bp->b_addr; 2805 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2806 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2807 2808 #ifdef DEBUG 2809 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2810 ASSERT(args->index < ichdr.count); 2811 ASSERT(args->index >= 0); 2812 2813 if (entry->flags & XFS_ATTR_LOCAL) { 2814 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2815 namelen = name_loc->namelen; 2816 name = (char *)name_loc->nameval; 2817 } else { 2818 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2819 namelen = name_rmt->namelen; 2820 name = (char *)name_rmt->name; 2821 } 2822 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2823 ASSERT(namelen == args->namelen); 2824 ASSERT(memcmp(name, args->name, namelen) == 0); 2825 #endif /* DEBUG */ 2826 2827 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2828 xfs_trans_log_buf(args->trans, bp, 2829 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2830 2831 if (args->rmtblkno) { 2832 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2833 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2834 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2835 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2836 xfs_trans_log_buf(args->trans, bp, 2837 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2838 } 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Set the INCOMPLETE flag on an entry in a leaf block. 2845 */ 2846 int 2847 xfs_attr3_leaf_setflag( 2848 struct xfs_da_args *args) 2849 { 2850 struct xfs_attr_leafblock *leaf; 2851 struct xfs_attr_leaf_entry *entry; 2852 struct xfs_attr_leaf_name_remote *name_rmt; 2853 struct xfs_buf *bp; 2854 int error; 2855 #ifdef DEBUG 2856 struct xfs_attr3_icleaf_hdr ichdr; 2857 #endif 2858 2859 trace_xfs_attr_leaf_setflag(args); 2860 2861 /* 2862 * Set up the operation. 2863 */ 2864 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2865 if (error) 2866 return error; 2867 2868 leaf = bp->b_addr; 2869 #ifdef DEBUG 2870 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2871 ASSERT(args->index < ichdr.count); 2872 ASSERT(args->index >= 0); 2873 #endif 2874 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2875 2876 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2877 entry->flags |= XFS_ATTR_INCOMPLETE; 2878 xfs_trans_log_buf(args->trans, bp, 2879 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2880 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2881 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2882 name_rmt->valueblk = 0; 2883 name_rmt->valuelen = 0; 2884 xfs_trans_log_buf(args->trans, bp, 2885 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2886 } 2887 2888 return 0; 2889 } 2890 2891 /* 2892 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2893 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2894 * entry given by args->blkno2/index2. 2895 * 2896 * Note that they could be in different blocks, or in the same block. 2897 */ 2898 int 2899 xfs_attr3_leaf_flipflags( 2900 struct xfs_da_args *args) 2901 { 2902 struct xfs_attr_leafblock *leaf1; 2903 struct xfs_attr_leafblock *leaf2; 2904 struct xfs_attr_leaf_entry *entry1; 2905 struct xfs_attr_leaf_entry *entry2; 2906 struct xfs_attr_leaf_name_remote *name_rmt; 2907 struct xfs_buf *bp1; 2908 struct xfs_buf *bp2; 2909 int error; 2910 #ifdef DEBUG 2911 struct xfs_attr3_icleaf_hdr ichdr1; 2912 struct xfs_attr3_icleaf_hdr ichdr2; 2913 xfs_attr_leaf_name_local_t *name_loc; 2914 int namelen1, namelen2; 2915 char *name1, *name2; 2916 #endif /* DEBUG */ 2917 2918 trace_xfs_attr_leaf_flipflags(args); 2919 2920 /* 2921 * Read the block containing the "old" attr 2922 */ 2923 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2924 if (error) 2925 return error; 2926 2927 /* 2928 * Read the block containing the "new" attr, if it is different 2929 */ 2930 if (args->blkno2 != args->blkno) { 2931 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2932 &bp2); 2933 if (error) 2934 return error; 2935 } else { 2936 bp2 = bp1; 2937 } 2938 2939 leaf1 = bp1->b_addr; 2940 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2941 2942 leaf2 = bp2->b_addr; 2943 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2944 2945 #ifdef DEBUG 2946 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2947 ASSERT(args->index < ichdr1.count); 2948 ASSERT(args->index >= 0); 2949 2950 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2951 ASSERT(args->index2 < ichdr2.count); 2952 ASSERT(args->index2 >= 0); 2953 2954 if (entry1->flags & XFS_ATTR_LOCAL) { 2955 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2956 namelen1 = name_loc->namelen; 2957 name1 = (char *)name_loc->nameval; 2958 } else { 2959 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2960 namelen1 = name_rmt->namelen; 2961 name1 = (char *)name_rmt->name; 2962 } 2963 if (entry2->flags & XFS_ATTR_LOCAL) { 2964 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2965 namelen2 = name_loc->namelen; 2966 name2 = (char *)name_loc->nameval; 2967 } else { 2968 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2969 namelen2 = name_rmt->namelen; 2970 name2 = (char *)name_rmt->name; 2971 } 2972 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2973 ASSERT(namelen1 == namelen2); 2974 ASSERT(memcmp(name1, name2, namelen1) == 0); 2975 #endif /* DEBUG */ 2976 2977 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2978 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2979 2980 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2981 xfs_trans_log_buf(args->trans, bp1, 2982 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2983 if (args->rmtblkno) { 2984 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2985 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2986 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2987 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2988 xfs_trans_log_buf(args->trans, bp1, 2989 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2990 } 2991 2992 entry2->flags |= XFS_ATTR_INCOMPLETE; 2993 xfs_trans_log_buf(args->trans, bp2, 2994 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2995 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2996 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2997 name_rmt->valueblk = 0; 2998 name_rmt->valuelen = 0; 2999 xfs_trans_log_buf(args->trans, bp2, 3000 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 3001 } 3002 3003 return 0; 3004 } 3005