1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 33 34 /* 35 * xfs_attr_leaf.c 36 * 37 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 38 */ 39 40 /*======================================================================== 41 * Function prototypes for the kernel. 42 *========================================================================*/ 43 44 /* 45 * Routines used for growing the Btree. 46 */ 47 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 48 xfs_dablk_t which_block, struct xfs_buf **bpp); 49 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 50 struct xfs_attr3_icleaf_hdr *ichdr, 51 struct xfs_da_args *args, int freemap_index); 52 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 53 struct xfs_attr3_icleaf_hdr *ichdr, 54 struct xfs_buf *leaf_buffer); 55 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 56 xfs_da_state_blk_t *blk1, 57 xfs_da_state_blk_t *blk2); 58 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 59 xfs_da_state_blk_t *leaf_blk_1, 60 struct xfs_attr3_icleaf_hdr *ichdr1, 61 xfs_da_state_blk_t *leaf_blk_2, 62 struct xfs_attr3_icleaf_hdr *ichdr2, 63 int *number_entries_in_blk1, 64 int *number_usedbytes_in_blk1); 65 66 /* 67 * Utility routines. 68 */ 69 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 70 struct xfs_attr_leafblock *src_leaf, 71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 72 struct xfs_attr_leafblock *dst_leaf, 73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 74 int move_count); 75 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 76 77 /* 78 * attr3 block 'firstused' conversion helpers. 79 * 80 * firstused refers to the offset of the first used byte of the nameval region 81 * of an attr leaf block. The region starts at the tail of the block and expands 82 * backwards towards the middle. As such, firstused is initialized to the block 83 * size for an empty leaf block and is reduced from there. 84 * 85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 89 * the attr block size. The following helpers manage the conversion between the 90 * in-core and on-disk formats. 91 */ 92 93 static void 94 xfs_attr3_leaf_firstused_from_disk( 95 struct xfs_da_geometry *geo, 96 struct xfs_attr3_icleaf_hdr *to, 97 struct xfs_attr_leafblock *from) 98 { 99 struct xfs_attr3_leaf_hdr *hdr3; 100 101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 102 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 103 to->firstused = be16_to_cpu(hdr3->firstused); 104 } else { 105 to->firstused = be16_to_cpu(from->hdr.firstused); 106 } 107 108 /* 109 * Convert from the magic fsb size value to actual blocksize. This 110 * should only occur for empty blocks when the block size overflows 111 * 16-bits. 112 */ 113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 114 ASSERT(!to->count && !to->usedbytes); 115 ASSERT(geo->blksize > USHRT_MAX); 116 to->firstused = geo->blksize; 117 } 118 } 119 120 static void 121 xfs_attr3_leaf_firstused_to_disk( 122 struct xfs_da_geometry *geo, 123 struct xfs_attr_leafblock *to, 124 struct xfs_attr3_icleaf_hdr *from) 125 { 126 struct xfs_attr3_leaf_hdr *hdr3; 127 uint32_t firstused; 128 129 /* magic value should only be seen on disk */ 130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 131 132 /* 133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 134 * value. This only overflows at the max supported value of 64k. Use the 135 * magic on-disk value to represent block size in this case. 136 */ 137 firstused = from->firstused; 138 if (firstused > USHRT_MAX) { 139 ASSERT(from->firstused == geo->blksize); 140 firstused = XFS_ATTR3_LEAF_NULLOFF; 141 } 142 143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 144 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 145 hdr3->firstused = cpu_to_be16(firstused); 146 } else { 147 to->hdr.firstused = cpu_to_be16(firstused); 148 } 149 } 150 151 void 152 xfs_attr3_leaf_hdr_from_disk( 153 struct xfs_da_geometry *geo, 154 struct xfs_attr3_icleaf_hdr *to, 155 struct xfs_attr_leafblock *from) 156 { 157 int i; 158 159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 161 162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 164 165 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 166 to->back = be32_to_cpu(hdr3->info.hdr.back); 167 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 168 to->count = be16_to_cpu(hdr3->count); 169 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 170 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 171 to->holes = hdr3->holes; 172 173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 176 } 177 return; 178 } 179 to->forw = be32_to_cpu(from->hdr.info.forw); 180 to->back = be32_to_cpu(from->hdr.info.back); 181 to->magic = be16_to_cpu(from->hdr.info.magic); 182 to->count = be16_to_cpu(from->hdr.count); 183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 184 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 185 to->holes = from->hdr.holes; 186 187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 190 } 191 } 192 193 void 194 xfs_attr3_leaf_hdr_to_disk( 195 struct xfs_da_geometry *geo, 196 struct xfs_attr_leafblock *to, 197 struct xfs_attr3_icleaf_hdr *from) 198 { 199 int i; 200 201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 202 from->magic == XFS_ATTR3_LEAF_MAGIC); 203 204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 206 207 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 208 hdr3->info.hdr.back = cpu_to_be32(from->back); 209 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 210 hdr3->count = cpu_to_be16(from->count); 211 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 212 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 213 hdr3->holes = from->holes; 214 hdr3->pad1 = 0; 215 216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 219 } 220 return; 221 } 222 to->hdr.info.forw = cpu_to_be32(from->forw); 223 to->hdr.info.back = cpu_to_be32(from->back); 224 to->hdr.info.magic = cpu_to_be16(from->magic); 225 to->hdr.count = cpu_to_be16(from->count); 226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 227 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 228 to->hdr.holes = from->holes; 229 to->hdr.pad1 = 0; 230 231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 234 } 235 } 236 237 static xfs_failaddr_t 238 xfs_attr3_leaf_verify_entry( 239 struct xfs_mount *mp, 240 char *buf_end, 241 struct xfs_attr_leafblock *leaf, 242 struct xfs_attr3_icleaf_hdr *leafhdr, 243 struct xfs_attr_leaf_entry *ent, 244 int idx, 245 __u32 *last_hashval) 246 { 247 struct xfs_attr_leaf_name_local *lentry; 248 struct xfs_attr_leaf_name_remote *rentry; 249 char *name_end; 250 unsigned int nameidx; 251 unsigned int namesize; 252 __u32 hashval; 253 254 /* hash order check */ 255 hashval = be32_to_cpu(ent->hashval); 256 if (hashval < *last_hashval) 257 return __this_address; 258 *last_hashval = hashval; 259 260 nameidx = be16_to_cpu(ent->nameidx); 261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 262 return __this_address; 263 264 /* 265 * Check the name information. The namelen fields are u8 so we can't 266 * possibly exceed the maximum name length of 255 bytes. 267 */ 268 if (ent->flags & XFS_ATTR_LOCAL) { 269 lentry = xfs_attr3_leaf_name_local(leaf, idx); 270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 271 be16_to_cpu(lentry->valuelen)); 272 name_end = (char *)lentry + namesize; 273 if (lentry->namelen == 0) 274 return __this_address; 275 } else { 276 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 278 name_end = (char *)rentry + namesize; 279 if (rentry->namelen == 0) 280 return __this_address; 281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 282 rentry->valueblk == 0) 283 return __this_address; 284 } 285 286 if (name_end > buf_end) 287 return __this_address; 288 289 return NULL; 290 } 291 292 static xfs_failaddr_t 293 xfs_attr3_leaf_verify( 294 struct xfs_buf *bp) 295 { 296 struct xfs_attr3_icleaf_hdr ichdr; 297 struct xfs_mount *mp = bp->b_mount; 298 struct xfs_attr_leafblock *leaf = bp->b_addr; 299 struct xfs_attr_leaf_entry *entries; 300 struct xfs_attr_leaf_entry *ent; 301 char *buf_end; 302 uint32_t end; /* must be 32bit - see below */ 303 __u32 last_hashval = 0; 304 int i; 305 xfs_failaddr_t fa; 306 307 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 308 309 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 310 if (fa) 311 return fa; 312 313 /* 314 * Empty leaf blocks should never occur; they imply the existence of a 315 * software bug that needs fixing. xfs_repair also flags them as a 316 * corruption that needs fixing, so we should never let these go to 317 * disk. 318 */ 319 if (ichdr.count == 0) 320 return __this_address; 321 322 /* 323 * firstused is the block offset of the first name info structure. 324 * Make sure it doesn't go off the block or crash into the header. 325 */ 326 if (ichdr.firstused > mp->m_attr_geo->blksize) 327 return __this_address; 328 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 329 return __this_address; 330 331 /* Make sure the entries array doesn't crash into the name info. */ 332 entries = xfs_attr3_leaf_entryp(bp->b_addr); 333 if ((char *)&entries[ichdr.count] > 334 (char *)bp->b_addr + ichdr.firstused) 335 return __this_address; 336 337 /* 338 * NOTE: This verifier historically failed empty leaf buffers because 339 * we expect the fork to be in another format. Empty attr fork format 340 * conversions are possible during xattr set, however, and format 341 * conversion is not atomic with the xattr set that triggers it. We 342 * cannot assume leaf blocks are non-empty until that is addressed. 343 */ 344 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 345 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 346 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 347 ent, i, &last_hashval); 348 if (fa) 349 return fa; 350 } 351 352 /* 353 * Quickly check the freemap information. Attribute data has to be 354 * aligned to 4-byte boundaries, and likewise for the free space. 355 * 356 * Note that for 64k block size filesystems, the freemap entries cannot 357 * overflow as they are only be16 fields. However, when checking end 358 * pointer of the freemap, we have to be careful to detect overflows and 359 * so use uint32_t for those checks. 360 */ 361 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 362 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 363 return __this_address; 364 if (ichdr.freemap[i].base & 0x3) 365 return __this_address; 366 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 367 return __this_address; 368 if (ichdr.freemap[i].size & 0x3) 369 return __this_address; 370 371 /* be care of 16 bit overflows here */ 372 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 373 if (end < ichdr.freemap[i].base) 374 return __this_address; 375 if (end > mp->m_attr_geo->blksize) 376 return __this_address; 377 } 378 379 return NULL; 380 } 381 382 static void 383 xfs_attr3_leaf_write_verify( 384 struct xfs_buf *bp) 385 { 386 struct xfs_mount *mp = bp->b_mount; 387 struct xfs_buf_log_item *bip = bp->b_log_item; 388 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 389 xfs_failaddr_t fa; 390 391 fa = xfs_attr3_leaf_verify(bp); 392 if (fa) { 393 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 394 return; 395 } 396 397 if (!xfs_has_crc(mp)) 398 return; 399 400 if (bip) 401 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 402 403 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 404 } 405 406 /* 407 * leaf/node format detection on trees is sketchy, so a node read can be done on 408 * leaf level blocks when detection identifies the tree as a node format tree 409 * incorrectly. In this case, we need to swap the verifier to match the correct 410 * format of the block being read. 411 */ 412 static void 413 xfs_attr3_leaf_read_verify( 414 struct xfs_buf *bp) 415 { 416 struct xfs_mount *mp = bp->b_mount; 417 xfs_failaddr_t fa; 418 419 if (xfs_has_crc(mp) && 420 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 421 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 422 else { 423 fa = xfs_attr3_leaf_verify(bp); 424 if (fa) 425 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 426 } 427 } 428 429 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 430 .name = "xfs_attr3_leaf", 431 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 432 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 433 .verify_read = xfs_attr3_leaf_read_verify, 434 .verify_write = xfs_attr3_leaf_write_verify, 435 .verify_struct = xfs_attr3_leaf_verify, 436 }; 437 438 int 439 xfs_attr3_leaf_read( 440 struct xfs_trans *tp, 441 struct xfs_inode *dp, 442 xfs_dablk_t bno, 443 struct xfs_buf **bpp) 444 { 445 int err; 446 447 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 448 &xfs_attr3_leaf_buf_ops); 449 if (!err && tp && *bpp) 450 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 451 return err; 452 } 453 454 /*======================================================================== 455 * Namespace helper routines 456 *========================================================================*/ 457 458 /* 459 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 460 * flag on disk - if there's an incomplete attr then recovery needs to tear it 461 * down. If there's no incomplete attr, then recovery needs to tear that attr 462 * down to replace it with the attr that has been logged. In this case, the 463 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 464 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 465 */ 466 static bool 467 xfs_attr_match( 468 struct xfs_da_args *args, 469 uint8_t namelen, 470 unsigned char *name, 471 int flags) 472 { 473 474 if (args->namelen != namelen) 475 return false; 476 if (memcmp(args->name, name, namelen) != 0) 477 return false; 478 479 /* Recovery ignores the INCOMPLETE flag. */ 480 if ((args->op_flags & XFS_DA_OP_RECOVERY) && 481 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK)) 482 return true; 483 484 /* All remaining matches need to be filtered by INCOMPLETE state. */ 485 if (args->attr_filter != 486 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 487 return false; 488 return true; 489 } 490 491 static int 492 xfs_attr_copy_value( 493 struct xfs_da_args *args, 494 unsigned char *value, 495 int valuelen) 496 { 497 /* 498 * No copy if all we have to do is get the length 499 */ 500 if (!args->valuelen) { 501 args->valuelen = valuelen; 502 return 0; 503 } 504 505 /* 506 * No copy if the length of the existing buffer is too small 507 */ 508 if (args->valuelen < valuelen) { 509 args->valuelen = valuelen; 510 return -ERANGE; 511 } 512 513 if (!args->value) { 514 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 515 if (!args->value) 516 return -ENOMEM; 517 } 518 args->valuelen = valuelen; 519 520 /* remote block xattr requires IO for copy-in */ 521 if (args->rmtblkno) 522 return xfs_attr_rmtval_get(args); 523 524 /* 525 * This is to prevent a GCC warning because the remote xattr case 526 * doesn't have a value to pass in. In that case, we never reach here, 527 * but GCC can't work that out and so throws a "passing NULL to 528 * memcpy" warning. 529 */ 530 if (!value) 531 return -EINVAL; 532 memcpy(args->value, value, valuelen); 533 return 0; 534 } 535 536 /*======================================================================== 537 * External routines when attribute fork size < XFS_LITINO(mp). 538 *========================================================================*/ 539 540 /* 541 * Query whether the total requested number of attr fork bytes of extended 542 * attribute space will be able to fit inline. 543 * 544 * Returns zero if not, else the i_forkoff fork offset to be used in the 545 * literal area for attribute data once the new bytes have been added. 546 * 547 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 548 * special case for dev/uuid inodes, they have fixed size data forks. 549 */ 550 int 551 xfs_attr_shortform_bytesfit( 552 struct xfs_inode *dp, 553 int bytes) 554 { 555 struct xfs_mount *mp = dp->i_mount; 556 int64_t dsize; 557 int minforkoff; 558 int maxforkoff; 559 int offset; 560 561 /* 562 * Check if the new size could fit at all first: 563 */ 564 if (bytes > XFS_LITINO(mp)) 565 return 0; 566 567 /* rounded down */ 568 offset = (XFS_LITINO(mp) - bytes) >> 3; 569 570 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 571 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 572 return (offset >= minforkoff) ? minforkoff : 0; 573 } 574 575 /* 576 * If the requested numbers of bytes is smaller or equal to the 577 * current attribute fork size we can always proceed. 578 * 579 * Note that if_bytes in the data fork might actually be larger than 580 * the current data fork size is due to delalloc extents. In that 581 * case either the extent count will go down when they are converted 582 * to real extents, or the delalloc conversion will take care of the 583 * literal area rebalancing. 584 */ 585 if (bytes <= XFS_IFORK_ASIZE(dp)) 586 return dp->i_forkoff; 587 588 /* 589 * For attr2 we can try to move the forkoff if there is space in the 590 * literal area, but for the old format we are done if there is no 591 * space in the fixed attribute fork. 592 */ 593 if (!xfs_has_attr2(mp)) 594 return 0; 595 596 dsize = dp->i_df.if_bytes; 597 598 switch (dp->i_df.if_format) { 599 case XFS_DINODE_FMT_EXTENTS: 600 /* 601 * If there is no attr fork and the data fork is extents, 602 * determine if creating the default attr fork will result 603 * in the extents form migrating to btree. If so, the 604 * minimum offset only needs to be the space required for 605 * the btree root. 606 */ 607 if (!dp->i_forkoff && dp->i_df.if_bytes > 608 xfs_default_attroffset(dp)) 609 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 610 break; 611 case XFS_DINODE_FMT_BTREE: 612 /* 613 * If we have a data btree then keep forkoff if we have one, 614 * otherwise we are adding a new attr, so then we set 615 * minforkoff to where the btree root can finish so we have 616 * plenty of room for attrs 617 */ 618 if (dp->i_forkoff) { 619 if (offset < dp->i_forkoff) 620 return 0; 621 return dp->i_forkoff; 622 } 623 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 624 break; 625 } 626 627 /* 628 * A data fork btree root must have space for at least 629 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 630 */ 631 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 632 minforkoff = roundup(minforkoff, 8) >> 3; 633 634 /* attr fork btree root can have at least this many key/ptr pairs */ 635 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 636 maxforkoff = maxforkoff >> 3; /* rounded down */ 637 638 if (offset >= maxforkoff) 639 return maxforkoff; 640 if (offset >= minforkoff) 641 return offset; 642 return 0; 643 } 644 645 /* 646 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 647 * - noattr2 mount option is set, 648 * - on-disk version bit says it is already set, or 649 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 650 */ 651 STATIC void 652 xfs_sbversion_add_attr2( 653 struct xfs_mount *mp, 654 struct xfs_trans *tp) 655 { 656 if (xfs_has_noattr2(mp)) 657 return; 658 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 659 return; 660 if (!xfs_has_attr2(mp)) 661 return; 662 663 spin_lock(&mp->m_sb_lock); 664 xfs_add_attr2(mp); 665 spin_unlock(&mp->m_sb_lock); 666 xfs_log_sb(tp); 667 } 668 669 /* 670 * Create the initial contents of a shortform attribute list. 671 */ 672 void 673 xfs_attr_shortform_create( 674 struct xfs_da_args *args) 675 { 676 struct xfs_inode *dp = args->dp; 677 struct xfs_ifork *ifp = dp->i_afp; 678 struct xfs_attr_sf_hdr *hdr; 679 680 trace_xfs_attr_sf_create(args); 681 682 ASSERT(ifp->if_bytes == 0); 683 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 684 ifp->if_format = XFS_DINODE_FMT_LOCAL; 685 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 686 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data; 687 memset(hdr, 0, sizeof(*hdr)); 688 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 689 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 690 } 691 692 /* 693 * Return -EEXIST if attr is found, or -ENOATTR if not 694 * args: args containing attribute name and namelen 695 * sfep: If not null, pointer will be set to the last attr entry found on 696 -EEXIST. On -ENOATTR pointer is left at the last entry in the list 697 * basep: If not null, pointer is set to the byte offset of the entry in the 698 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of 699 * the last entry in the list 700 */ 701 int 702 xfs_attr_sf_findname( 703 struct xfs_da_args *args, 704 struct xfs_attr_sf_entry **sfep, 705 unsigned int *basep) 706 { 707 struct xfs_attr_shortform *sf; 708 struct xfs_attr_sf_entry *sfe; 709 unsigned int base = sizeof(struct xfs_attr_sf_hdr); 710 int size = 0; 711 int end; 712 int i; 713 714 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; 715 sfe = &sf->list[0]; 716 end = sf->hdr.count; 717 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe), 718 base += size, i++) { 719 size = xfs_attr_sf_entsize(sfe); 720 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval, 721 sfe->flags)) 722 continue; 723 break; 724 } 725 726 if (sfep != NULL) 727 *sfep = sfe; 728 729 if (basep != NULL) 730 *basep = base; 731 732 if (i == end) 733 return -ENOATTR; 734 return -EEXIST; 735 } 736 737 /* 738 * Add a name/value pair to the shortform attribute list. 739 * Overflow from the inode has already been checked for. 740 */ 741 void 742 xfs_attr_shortform_add( 743 struct xfs_da_args *args, 744 int forkoff) 745 { 746 struct xfs_attr_shortform *sf; 747 struct xfs_attr_sf_entry *sfe; 748 int offset, size; 749 struct xfs_mount *mp; 750 struct xfs_inode *dp; 751 struct xfs_ifork *ifp; 752 753 trace_xfs_attr_sf_add(args); 754 755 dp = args->dp; 756 mp = dp->i_mount; 757 dp->i_forkoff = forkoff; 758 759 ifp = dp->i_afp; 760 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 761 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 762 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST) 763 ASSERT(0); 764 765 offset = (char *)sfe - (char *)sf; 766 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 767 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 768 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 769 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset); 770 771 sfe->namelen = args->namelen; 772 sfe->valuelen = args->valuelen; 773 sfe->flags = args->attr_filter; 774 memcpy(sfe->nameval, args->name, args->namelen); 775 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 776 sf->hdr.count++; 777 be16_add_cpu(&sf->hdr.totsize, size); 778 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 779 780 xfs_sbversion_add_attr2(mp, args->trans); 781 } 782 783 /* 784 * After the last attribute is removed revert to original inode format, 785 * making all literal area available to the data fork once more. 786 */ 787 void 788 xfs_attr_fork_remove( 789 struct xfs_inode *ip, 790 struct xfs_trans *tp) 791 { 792 ASSERT(ip->i_afp->if_nextents == 0); 793 794 xfs_idestroy_fork(ip->i_afp); 795 kmem_cache_free(xfs_ifork_cache, ip->i_afp); 796 ip->i_afp = NULL; 797 ip->i_forkoff = 0; 798 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 799 } 800 801 /* 802 * Remove an attribute from the shortform attribute list structure. 803 */ 804 int 805 xfs_attr_sf_removename( 806 struct xfs_da_args *args) 807 { 808 struct xfs_attr_shortform *sf; 809 struct xfs_attr_sf_entry *sfe; 810 int size = 0, end, totsize; 811 unsigned int base; 812 struct xfs_mount *mp; 813 struct xfs_inode *dp; 814 int error; 815 816 trace_xfs_attr_sf_remove(args); 817 818 dp = args->dp; 819 mp = dp->i_mount; 820 sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data; 821 822 error = xfs_attr_sf_findname(args, &sfe, &base); 823 824 /* 825 * If we are recovering an operation, finding nothing to 826 * remove is not an error - it just means there was nothing 827 * to clean up. 828 */ 829 if (error == -ENOATTR && (args->op_flags & XFS_DA_OP_RECOVERY)) 830 return 0; 831 if (error != -EEXIST) 832 return error; 833 size = xfs_attr_sf_entsize(sfe); 834 835 /* 836 * Fix up the attribute fork data, covering the hole 837 */ 838 end = base + size; 839 totsize = be16_to_cpu(sf->hdr.totsize); 840 if (end != totsize) 841 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); 842 sf->hdr.count--; 843 be16_add_cpu(&sf->hdr.totsize, -size); 844 845 /* 846 * Fix up the start offset of the attribute fork 847 */ 848 totsize -= size; 849 if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) && 850 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 851 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) { 852 xfs_attr_fork_remove(dp, args->trans); 853 } else { 854 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 855 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 856 ASSERT(dp->i_forkoff); 857 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || 858 (args->op_flags & XFS_DA_OP_ADDNAME) || 859 !xfs_has_attr2(mp) || 860 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 861 xfs_trans_log_inode(args->trans, dp, 862 XFS_ILOG_CORE | XFS_ILOG_ADATA); 863 } 864 865 xfs_sbversion_add_attr2(mp, args->trans); 866 867 return 0; 868 } 869 870 /* 871 * Look up a name in a shortform attribute list structure. 872 */ 873 /*ARGSUSED*/ 874 int 875 xfs_attr_shortform_lookup(xfs_da_args_t *args) 876 { 877 struct xfs_attr_shortform *sf; 878 struct xfs_attr_sf_entry *sfe; 879 int i; 880 struct xfs_ifork *ifp; 881 882 trace_xfs_attr_sf_lookup(args); 883 884 ifp = args->dp->i_afp; 885 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 886 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 887 sfe = &sf->list[0]; 888 for (i = 0; i < sf->hdr.count; 889 sfe = xfs_attr_sf_nextentry(sfe), i++) { 890 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 891 sfe->flags)) 892 return -EEXIST; 893 } 894 return -ENOATTR; 895 } 896 897 /* 898 * Retrieve the attribute value and length. 899 * 900 * If args->valuelen is zero, only the length needs to be returned. Unlike a 901 * lookup, we only return an error if the attribute does not exist or we can't 902 * retrieve the value. 903 */ 904 int 905 xfs_attr_shortform_getvalue( 906 struct xfs_da_args *args) 907 { 908 struct xfs_attr_shortform *sf; 909 struct xfs_attr_sf_entry *sfe; 910 int i; 911 912 ASSERT(args->dp->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 913 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; 914 sfe = &sf->list[0]; 915 for (i = 0; i < sf->hdr.count; 916 sfe = xfs_attr_sf_nextentry(sfe), i++) { 917 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 918 sfe->flags)) 919 return xfs_attr_copy_value(args, 920 &sfe->nameval[args->namelen], sfe->valuelen); 921 } 922 return -ENOATTR; 923 } 924 925 /* 926 * Convert from using the shortform to the leaf. On success, return the 927 * buffer so that we can keep it locked until we're totally done with it. 928 */ 929 int 930 xfs_attr_shortform_to_leaf( 931 struct xfs_da_args *args, 932 struct xfs_buf **leaf_bp) 933 { 934 struct xfs_inode *dp; 935 struct xfs_attr_shortform *sf; 936 struct xfs_attr_sf_entry *sfe; 937 struct xfs_da_args nargs; 938 char *tmpbuffer; 939 int error, i, size; 940 xfs_dablk_t blkno; 941 struct xfs_buf *bp; 942 struct xfs_ifork *ifp; 943 944 trace_xfs_attr_sf_to_leaf(args); 945 946 dp = args->dp; 947 ifp = dp->i_afp; 948 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 949 size = be16_to_cpu(sf->hdr.totsize); 950 tmpbuffer = kmem_alloc(size, 0); 951 ASSERT(tmpbuffer != NULL); 952 memcpy(tmpbuffer, ifp->if_u1.if_data, size); 953 sf = (struct xfs_attr_shortform *)tmpbuffer; 954 955 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 956 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 957 958 bp = NULL; 959 error = xfs_da_grow_inode(args, &blkno); 960 if (error) 961 goto out; 962 963 ASSERT(blkno == 0); 964 error = xfs_attr3_leaf_create(args, blkno, &bp); 965 if (error) 966 goto out; 967 968 memset((char *)&nargs, 0, sizeof(nargs)); 969 nargs.dp = dp; 970 nargs.geo = args->geo; 971 nargs.total = args->total; 972 nargs.whichfork = XFS_ATTR_FORK; 973 nargs.trans = args->trans; 974 nargs.op_flags = XFS_DA_OP_OKNOENT; 975 976 sfe = &sf->list[0]; 977 for (i = 0; i < sf->hdr.count; i++) { 978 nargs.name = sfe->nameval; 979 nargs.namelen = sfe->namelen; 980 nargs.value = &sfe->nameval[nargs.namelen]; 981 nargs.valuelen = sfe->valuelen; 982 nargs.hashval = xfs_da_hashname(sfe->nameval, 983 sfe->namelen); 984 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 985 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 986 ASSERT(error == -ENOATTR); 987 error = xfs_attr3_leaf_add(bp, &nargs); 988 ASSERT(error != -ENOSPC); 989 if (error) 990 goto out; 991 sfe = xfs_attr_sf_nextentry(sfe); 992 } 993 error = 0; 994 *leaf_bp = bp; 995 out: 996 kmem_free(tmpbuffer); 997 return error; 998 } 999 1000 /* 1001 * Check a leaf attribute block to see if all the entries would fit into 1002 * a shortform attribute list. 1003 */ 1004 int 1005 xfs_attr_shortform_allfit( 1006 struct xfs_buf *bp, 1007 struct xfs_inode *dp) 1008 { 1009 struct xfs_attr_leafblock *leaf; 1010 struct xfs_attr_leaf_entry *entry; 1011 xfs_attr_leaf_name_local_t *name_loc; 1012 struct xfs_attr3_icleaf_hdr leafhdr; 1013 int bytes; 1014 int i; 1015 struct xfs_mount *mp = bp->b_mount; 1016 1017 leaf = bp->b_addr; 1018 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 1019 entry = xfs_attr3_leaf_entryp(leaf); 1020 1021 bytes = sizeof(struct xfs_attr_sf_hdr); 1022 for (i = 0; i < leafhdr.count; entry++, i++) { 1023 if (entry->flags & XFS_ATTR_INCOMPLETE) 1024 continue; /* don't copy partial entries */ 1025 if (!(entry->flags & XFS_ATTR_LOCAL)) 1026 return 0; 1027 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1028 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 1029 return 0; 1030 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 1031 return 0; 1032 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 1033 be16_to_cpu(name_loc->valuelen)); 1034 } 1035 if (xfs_has_attr2(dp->i_mount) && 1036 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1037 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1038 return -1; 1039 return xfs_attr_shortform_bytesfit(dp, bytes); 1040 } 1041 1042 /* Verify the consistency of an inline attribute fork. */ 1043 xfs_failaddr_t 1044 xfs_attr_shortform_verify( 1045 struct xfs_inode *ip) 1046 { 1047 struct xfs_attr_shortform *sfp; 1048 struct xfs_attr_sf_entry *sfep; 1049 struct xfs_attr_sf_entry *next_sfep; 1050 char *endp; 1051 struct xfs_ifork *ifp; 1052 int i; 1053 int64_t size; 1054 1055 ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 1056 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 1057 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 1058 size = ifp->if_bytes; 1059 1060 /* 1061 * Give up if the attribute is way too short. 1062 */ 1063 if (size < sizeof(struct xfs_attr_sf_hdr)) 1064 return __this_address; 1065 1066 endp = (char *)sfp + size; 1067 1068 /* Check all reported entries */ 1069 sfep = &sfp->list[0]; 1070 for (i = 0; i < sfp->hdr.count; i++) { 1071 /* 1072 * struct xfs_attr_sf_entry has a variable length. 1073 * Check the fixed-offset parts of the structure are 1074 * within the data buffer. 1075 * xfs_attr_sf_entry is defined with a 1-byte variable 1076 * array at the end, so we must subtract that off. 1077 */ 1078 if (((char *)sfep + sizeof(*sfep)) >= endp) 1079 return __this_address; 1080 1081 /* Don't allow names with known bad length. */ 1082 if (sfep->namelen == 0) 1083 return __this_address; 1084 1085 /* 1086 * Check that the variable-length part of the structure is 1087 * within the data buffer. The next entry starts after the 1088 * name component, so nextentry is an acceptable test. 1089 */ 1090 next_sfep = xfs_attr_sf_nextentry(sfep); 1091 if ((char *)next_sfep > endp) 1092 return __this_address; 1093 1094 /* 1095 * Check for unknown flags. Short form doesn't support 1096 * the incomplete or local bits, so we can use the namespace 1097 * mask here. 1098 */ 1099 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1100 return __this_address; 1101 1102 /* 1103 * Check for invalid namespace combinations. We only allow 1104 * one namespace flag per xattr, so we can just count the 1105 * bits (i.e. hweight) here. 1106 */ 1107 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1108 return __this_address; 1109 1110 sfep = next_sfep; 1111 } 1112 if ((void *)sfep != (void *)endp) 1113 return __this_address; 1114 1115 return NULL; 1116 } 1117 1118 /* 1119 * Convert a leaf attribute list to shortform attribute list 1120 */ 1121 int 1122 xfs_attr3_leaf_to_shortform( 1123 struct xfs_buf *bp, 1124 struct xfs_da_args *args, 1125 int forkoff) 1126 { 1127 struct xfs_attr_leafblock *leaf; 1128 struct xfs_attr3_icleaf_hdr ichdr; 1129 struct xfs_attr_leaf_entry *entry; 1130 struct xfs_attr_leaf_name_local *name_loc; 1131 struct xfs_da_args nargs; 1132 struct xfs_inode *dp = args->dp; 1133 char *tmpbuffer; 1134 int error; 1135 int i; 1136 1137 trace_xfs_attr_leaf_to_sf(args); 1138 1139 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1140 if (!tmpbuffer) 1141 return -ENOMEM; 1142 1143 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1144 1145 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1146 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1147 entry = xfs_attr3_leaf_entryp(leaf); 1148 1149 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1150 memset(bp->b_addr, 0, args->geo->blksize); 1151 1152 /* 1153 * Clean out the prior contents of the attribute list. 1154 */ 1155 error = xfs_da_shrink_inode(args, 0, bp); 1156 if (error) 1157 goto out; 1158 1159 if (forkoff == -1) { 1160 /* 1161 * Don't remove the attr fork if this operation is the first 1162 * part of a attr replace operations. We're going to add a new 1163 * attr immediately, so we need to keep the attr fork around in 1164 * this case. 1165 */ 1166 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1167 ASSERT(xfs_has_attr2(dp->i_mount)); 1168 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1169 xfs_attr_fork_remove(dp, args->trans); 1170 } 1171 goto out; 1172 } 1173 1174 xfs_attr_shortform_create(args); 1175 1176 /* 1177 * Copy the attributes 1178 */ 1179 memset((char *)&nargs, 0, sizeof(nargs)); 1180 nargs.geo = args->geo; 1181 nargs.dp = dp; 1182 nargs.total = args->total; 1183 nargs.whichfork = XFS_ATTR_FORK; 1184 nargs.trans = args->trans; 1185 nargs.op_flags = XFS_DA_OP_OKNOENT; 1186 1187 for (i = 0; i < ichdr.count; entry++, i++) { 1188 if (entry->flags & XFS_ATTR_INCOMPLETE) 1189 continue; /* don't copy partial entries */ 1190 if (!entry->nameidx) 1191 continue; 1192 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1193 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1194 nargs.name = name_loc->nameval; 1195 nargs.namelen = name_loc->namelen; 1196 nargs.value = &name_loc->nameval[nargs.namelen]; 1197 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1198 nargs.hashval = be32_to_cpu(entry->hashval); 1199 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1200 xfs_attr_shortform_add(&nargs, forkoff); 1201 } 1202 error = 0; 1203 1204 out: 1205 kmem_free(tmpbuffer); 1206 return error; 1207 } 1208 1209 /* 1210 * Convert from using a single leaf to a root node and a leaf. 1211 */ 1212 int 1213 xfs_attr3_leaf_to_node( 1214 struct xfs_da_args *args) 1215 { 1216 struct xfs_attr_leafblock *leaf; 1217 struct xfs_attr3_icleaf_hdr icleafhdr; 1218 struct xfs_attr_leaf_entry *entries; 1219 struct xfs_da3_icnode_hdr icnodehdr; 1220 struct xfs_da_intnode *node; 1221 struct xfs_inode *dp = args->dp; 1222 struct xfs_mount *mp = dp->i_mount; 1223 struct xfs_buf *bp1 = NULL; 1224 struct xfs_buf *bp2 = NULL; 1225 xfs_dablk_t blkno; 1226 int error; 1227 1228 trace_xfs_attr_leaf_to_node(args); 1229 1230 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1231 error = -EIO; 1232 goto out; 1233 } 1234 1235 error = xfs_da_grow_inode(args, &blkno); 1236 if (error) 1237 goto out; 1238 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1239 if (error) 1240 goto out; 1241 1242 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1243 if (error) 1244 goto out; 1245 1246 /* copy leaf to new buffer, update identifiers */ 1247 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); 1248 bp2->b_ops = bp1->b_ops; 1249 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); 1250 if (xfs_has_crc(mp)) { 1251 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; 1252 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2)); 1253 } 1254 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1255 1256 /* 1257 * Set up the new root node. 1258 */ 1259 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1260 if (error) 1261 goto out; 1262 node = bp1->b_addr; 1263 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1264 1265 leaf = bp2->b_addr; 1266 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1267 entries = xfs_attr3_leaf_entryp(leaf); 1268 1269 /* both on-disk, don't endian-flip twice */ 1270 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1271 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1272 icnodehdr.count = 1; 1273 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1274 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1275 error = 0; 1276 out: 1277 return error; 1278 } 1279 1280 /*======================================================================== 1281 * Routines used for growing the Btree. 1282 *========================================================================*/ 1283 1284 /* 1285 * Create the initial contents of a leaf attribute list 1286 * or a leaf in a node attribute list. 1287 */ 1288 STATIC int 1289 xfs_attr3_leaf_create( 1290 struct xfs_da_args *args, 1291 xfs_dablk_t blkno, 1292 struct xfs_buf **bpp) 1293 { 1294 struct xfs_attr_leafblock *leaf; 1295 struct xfs_attr3_icleaf_hdr ichdr; 1296 struct xfs_inode *dp = args->dp; 1297 struct xfs_mount *mp = dp->i_mount; 1298 struct xfs_buf *bp; 1299 int error; 1300 1301 trace_xfs_attr_leaf_create(args); 1302 1303 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1304 XFS_ATTR_FORK); 1305 if (error) 1306 return error; 1307 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1308 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1309 leaf = bp->b_addr; 1310 memset(leaf, 0, args->geo->blksize); 1311 1312 memset(&ichdr, 0, sizeof(ichdr)); 1313 ichdr.firstused = args->geo->blksize; 1314 1315 if (xfs_has_crc(mp)) { 1316 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1317 1318 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1319 1320 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1321 hdr3->owner = cpu_to_be64(dp->i_ino); 1322 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1323 1324 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1325 } else { 1326 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1327 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1328 } 1329 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1330 1331 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1332 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1333 1334 *bpp = bp; 1335 return 0; 1336 } 1337 1338 /* 1339 * Split the leaf node, rebalance, then add the new entry. 1340 */ 1341 int 1342 xfs_attr3_leaf_split( 1343 struct xfs_da_state *state, 1344 struct xfs_da_state_blk *oldblk, 1345 struct xfs_da_state_blk *newblk) 1346 { 1347 xfs_dablk_t blkno; 1348 int error; 1349 1350 trace_xfs_attr_leaf_split(state->args); 1351 1352 /* 1353 * Allocate space for a new leaf node. 1354 */ 1355 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1356 error = xfs_da_grow_inode(state->args, &blkno); 1357 if (error) 1358 return error; 1359 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1360 if (error) 1361 return error; 1362 newblk->blkno = blkno; 1363 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1364 1365 /* 1366 * Rebalance the entries across the two leaves. 1367 * NOTE: rebalance() currently depends on the 2nd block being empty. 1368 */ 1369 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1370 error = xfs_da3_blk_link(state, oldblk, newblk); 1371 if (error) 1372 return error; 1373 1374 /* 1375 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1376 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1377 * "new" attrs info. Will need the "old" info to remove it later. 1378 * 1379 * Insert the "new" entry in the correct block. 1380 */ 1381 if (state->inleaf) { 1382 trace_xfs_attr_leaf_add_old(state->args); 1383 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1384 } else { 1385 trace_xfs_attr_leaf_add_new(state->args); 1386 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1387 } 1388 1389 /* 1390 * Update last hashval in each block since we added the name. 1391 */ 1392 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1393 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1394 return error; 1395 } 1396 1397 /* 1398 * Add a name to the leaf attribute list structure. 1399 */ 1400 int 1401 xfs_attr3_leaf_add( 1402 struct xfs_buf *bp, 1403 struct xfs_da_args *args) 1404 { 1405 struct xfs_attr_leafblock *leaf; 1406 struct xfs_attr3_icleaf_hdr ichdr; 1407 int tablesize; 1408 int entsize; 1409 int sum; 1410 int tmp; 1411 int i; 1412 1413 trace_xfs_attr_leaf_add(args); 1414 1415 leaf = bp->b_addr; 1416 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1417 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1418 entsize = xfs_attr_leaf_newentsize(args, NULL); 1419 1420 /* 1421 * Search through freemap for first-fit on new name length. 1422 * (may need to figure in size of entry struct too) 1423 */ 1424 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1425 + xfs_attr3_leaf_hdr_size(leaf); 1426 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1427 if (tablesize > ichdr.firstused) { 1428 sum += ichdr.freemap[i].size; 1429 continue; 1430 } 1431 if (!ichdr.freemap[i].size) 1432 continue; /* no space in this map */ 1433 tmp = entsize; 1434 if (ichdr.freemap[i].base < ichdr.firstused) 1435 tmp += sizeof(xfs_attr_leaf_entry_t); 1436 if (ichdr.freemap[i].size >= tmp) { 1437 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1438 goto out_log_hdr; 1439 } 1440 sum += ichdr.freemap[i].size; 1441 } 1442 1443 /* 1444 * If there are no holes in the address space of the block, 1445 * and we don't have enough freespace, then compaction will do us 1446 * no good and we should just give up. 1447 */ 1448 if (!ichdr.holes && sum < entsize) 1449 return -ENOSPC; 1450 1451 /* 1452 * Compact the entries to coalesce free space. 1453 * This may change the hdr->count via dropping INCOMPLETE entries. 1454 */ 1455 xfs_attr3_leaf_compact(args, &ichdr, bp); 1456 1457 /* 1458 * After compaction, the block is guaranteed to have only one 1459 * free region, in freemap[0]. If it is not big enough, give up. 1460 */ 1461 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1462 tmp = -ENOSPC; 1463 goto out_log_hdr; 1464 } 1465 1466 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1467 1468 out_log_hdr: 1469 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1470 xfs_trans_log_buf(args->trans, bp, 1471 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1472 xfs_attr3_leaf_hdr_size(leaf))); 1473 return tmp; 1474 } 1475 1476 /* 1477 * Add a name to a leaf attribute list structure. 1478 */ 1479 STATIC int 1480 xfs_attr3_leaf_add_work( 1481 struct xfs_buf *bp, 1482 struct xfs_attr3_icleaf_hdr *ichdr, 1483 struct xfs_da_args *args, 1484 int mapindex) 1485 { 1486 struct xfs_attr_leafblock *leaf; 1487 struct xfs_attr_leaf_entry *entry; 1488 struct xfs_attr_leaf_name_local *name_loc; 1489 struct xfs_attr_leaf_name_remote *name_rmt; 1490 struct xfs_mount *mp; 1491 int tmp; 1492 int i; 1493 1494 trace_xfs_attr_leaf_add_work(args); 1495 1496 leaf = bp->b_addr; 1497 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1498 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1499 1500 /* 1501 * Force open some space in the entry array and fill it in. 1502 */ 1503 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1504 if (args->index < ichdr->count) { 1505 tmp = ichdr->count - args->index; 1506 tmp *= sizeof(xfs_attr_leaf_entry_t); 1507 memmove(entry + 1, entry, tmp); 1508 xfs_trans_log_buf(args->trans, bp, 1509 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1510 } 1511 ichdr->count++; 1512 1513 /* 1514 * Allocate space for the new string (at the end of the run). 1515 */ 1516 mp = args->trans->t_mountp; 1517 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1518 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1519 ASSERT(ichdr->freemap[mapindex].size >= 1520 xfs_attr_leaf_newentsize(args, NULL)); 1521 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1522 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1523 1524 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1525 1526 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1527 ichdr->freemap[mapindex].size); 1528 entry->hashval = cpu_to_be32(args->hashval); 1529 entry->flags = args->attr_filter; 1530 if (tmp) 1531 entry->flags |= XFS_ATTR_LOCAL; 1532 if (args->op_flags & XFS_DA_OP_REPLACE) { 1533 if (!xfs_has_larp(mp)) 1534 entry->flags |= XFS_ATTR_INCOMPLETE; 1535 if ((args->blkno2 == args->blkno) && 1536 (args->index2 <= args->index)) { 1537 args->index2++; 1538 } 1539 } 1540 xfs_trans_log_buf(args->trans, bp, 1541 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1542 ASSERT((args->index == 0) || 1543 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1544 ASSERT((args->index == ichdr->count - 1) || 1545 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1546 1547 /* 1548 * For "remote" attribute values, simply note that we need to 1549 * allocate space for the "remote" value. We can't actually 1550 * allocate the extents in this transaction, and we can't decide 1551 * which blocks they should be as we might allocate more blocks 1552 * as part of this transaction (a split operation for example). 1553 */ 1554 if (entry->flags & XFS_ATTR_LOCAL) { 1555 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1556 name_loc->namelen = args->namelen; 1557 name_loc->valuelen = cpu_to_be16(args->valuelen); 1558 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1559 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1560 be16_to_cpu(name_loc->valuelen)); 1561 } else { 1562 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1563 name_rmt->namelen = args->namelen; 1564 memcpy((char *)name_rmt->name, args->name, args->namelen); 1565 entry->flags |= XFS_ATTR_INCOMPLETE; 1566 /* just in case */ 1567 name_rmt->valuelen = 0; 1568 name_rmt->valueblk = 0; 1569 args->rmtblkno = 1; 1570 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1571 args->rmtvaluelen = args->valuelen; 1572 } 1573 xfs_trans_log_buf(args->trans, bp, 1574 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1575 xfs_attr_leaf_entsize(leaf, args->index))); 1576 1577 /* 1578 * Update the control info for this leaf node 1579 */ 1580 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1581 ichdr->firstused = be16_to_cpu(entry->nameidx); 1582 1583 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1584 + xfs_attr3_leaf_hdr_size(leaf)); 1585 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1586 + xfs_attr3_leaf_hdr_size(leaf); 1587 1588 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1589 if (ichdr->freemap[i].base == tmp) { 1590 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1591 ichdr->freemap[i].size -= 1592 min_t(uint16_t, ichdr->freemap[i].size, 1593 sizeof(xfs_attr_leaf_entry_t)); 1594 } 1595 } 1596 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1597 return 0; 1598 } 1599 1600 /* 1601 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1602 */ 1603 STATIC void 1604 xfs_attr3_leaf_compact( 1605 struct xfs_da_args *args, 1606 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1607 struct xfs_buf *bp) 1608 { 1609 struct xfs_attr_leafblock *leaf_src; 1610 struct xfs_attr_leafblock *leaf_dst; 1611 struct xfs_attr3_icleaf_hdr ichdr_src; 1612 struct xfs_trans *trans = args->trans; 1613 char *tmpbuffer; 1614 1615 trace_xfs_attr_leaf_compact(args); 1616 1617 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1618 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1619 memset(bp->b_addr, 0, args->geo->blksize); 1620 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1621 leaf_dst = bp->b_addr; 1622 1623 /* 1624 * Copy the on-disk header back into the destination buffer to ensure 1625 * all the information in the header that is not part of the incore 1626 * header structure is preserved. 1627 */ 1628 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1629 1630 /* Initialise the incore headers */ 1631 ichdr_src = *ichdr_dst; /* struct copy */ 1632 ichdr_dst->firstused = args->geo->blksize; 1633 ichdr_dst->usedbytes = 0; 1634 ichdr_dst->count = 0; 1635 ichdr_dst->holes = 0; 1636 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1637 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1638 ichdr_dst->freemap[0].base; 1639 1640 /* write the header back to initialise the underlying buffer */ 1641 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1642 1643 /* 1644 * Copy all entry's in the same (sorted) order, 1645 * but allocate name/value pairs packed and in sequence. 1646 */ 1647 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1648 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1649 /* 1650 * this logs the entire buffer, but the caller must write the header 1651 * back to the buffer when it is finished modifying it. 1652 */ 1653 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1654 1655 kmem_free(tmpbuffer); 1656 } 1657 1658 /* 1659 * Compare two leaf blocks "order". 1660 * Return 0 unless leaf2 should go before leaf1. 1661 */ 1662 static int 1663 xfs_attr3_leaf_order( 1664 struct xfs_buf *leaf1_bp, 1665 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1666 struct xfs_buf *leaf2_bp, 1667 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1668 { 1669 struct xfs_attr_leaf_entry *entries1; 1670 struct xfs_attr_leaf_entry *entries2; 1671 1672 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1673 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1674 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1675 ((be32_to_cpu(entries2[0].hashval) < 1676 be32_to_cpu(entries1[0].hashval)) || 1677 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1678 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1679 return 1; 1680 } 1681 return 0; 1682 } 1683 1684 int 1685 xfs_attr_leaf_order( 1686 struct xfs_buf *leaf1_bp, 1687 struct xfs_buf *leaf2_bp) 1688 { 1689 struct xfs_attr3_icleaf_hdr ichdr1; 1690 struct xfs_attr3_icleaf_hdr ichdr2; 1691 struct xfs_mount *mp = leaf1_bp->b_mount; 1692 1693 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1694 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1695 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1696 } 1697 1698 /* 1699 * Redistribute the attribute list entries between two leaf nodes, 1700 * taking into account the size of the new entry. 1701 * 1702 * NOTE: if new block is empty, then it will get the upper half of the 1703 * old block. At present, all (one) callers pass in an empty second block. 1704 * 1705 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1706 * to match what it is doing in splitting the attribute leaf block. Those 1707 * values are used in "atomic rename" operations on attributes. Note that 1708 * the "new" and "old" values can end up in different blocks. 1709 */ 1710 STATIC void 1711 xfs_attr3_leaf_rebalance( 1712 struct xfs_da_state *state, 1713 struct xfs_da_state_blk *blk1, 1714 struct xfs_da_state_blk *blk2) 1715 { 1716 struct xfs_da_args *args; 1717 struct xfs_attr_leafblock *leaf1; 1718 struct xfs_attr_leafblock *leaf2; 1719 struct xfs_attr3_icleaf_hdr ichdr1; 1720 struct xfs_attr3_icleaf_hdr ichdr2; 1721 struct xfs_attr_leaf_entry *entries1; 1722 struct xfs_attr_leaf_entry *entries2; 1723 int count; 1724 int totallen; 1725 int max; 1726 int space; 1727 int swap; 1728 1729 /* 1730 * Set up environment. 1731 */ 1732 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1733 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1734 leaf1 = blk1->bp->b_addr; 1735 leaf2 = blk2->bp->b_addr; 1736 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1737 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1738 ASSERT(ichdr2.count == 0); 1739 args = state->args; 1740 1741 trace_xfs_attr_leaf_rebalance(args); 1742 1743 /* 1744 * Check ordering of blocks, reverse if it makes things simpler. 1745 * 1746 * NOTE: Given that all (current) callers pass in an empty 1747 * second block, this code should never set "swap". 1748 */ 1749 swap = 0; 1750 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1751 swap(blk1, blk2); 1752 1753 /* swap structures rather than reconverting them */ 1754 swap(ichdr1, ichdr2); 1755 1756 leaf1 = blk1->bp->b_addr; 1757 leaf2 = blk2->bp->b_addr; 1758 swap = 1; 1759 } 1760 1761 /* 1762 * Examine entries until we reduce the absolute difference in 1763 * byte usage between the two blocks to a minimum. Then get 1764 * the direction to copy and the number of elements to move. 1765 * 1766 * "inleaf" is true if the new entry should be inserted into blk1. 1767 * If "swap" is also true, then reverse the sense of "inleaf". 1768 */ 1769 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1770 blk2, &ichdr2, 1771 &count, &totallen); 1772 if (swap) 1773 state->inleaf = !state->inleaf; 1774 1775 /* 1776 * Move any entries required from leaf to leaf: 1777 */ 1778 if (count < ichdr1.count) { 1779 /* 1780 * Figure the total bytes to be added to the destination leaf. 1781 */ 1782 /* number entries being moved */ 1783 count = ichdr1.count - count; 1784 space = ichdr1.usedbytes - totallen; 1785 space += count * sizeof(xfs_attr_leaf_entry_t); 1786 1787 /* 1788 * leaf2 is the destination, compact it if it looks tight. 1789 */ 1790 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1791 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1792 if (space > max) 1793 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1794 1795 /* 1796 * Move high entries from leaf1 to low end of leaf2. 1797 */ 1798 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1799 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1800 1801 } else if (count > ichdr1.count) { 1802 /* 1803 * I assert that since all callers pass in an empty 1804 * second buffer, this code should never execute. 1805 */ 1806 ASSERT(0); 1807 1808 /* 1809 * Figure the total bytes to be added to the destination leaf. 1810 */ 1811 /* number entries being moved */ 1812 count -= ichdr1.count; 1813 space = totallen - ichdr1.usedbytes; 1814 space += count * sizeof(xfs_attr_leaf_entry_t); 1815 1816 /* 1817 * leaf1 is the destination, compact it if it looks tight. 1818 */ 1819 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1820 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1821 if (space > max) 1822 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1823 1824 /* 1825 * Move low entries from leaf2 to high end of leaf1. 1826 */ 1827 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1828 ichdr1.count, count); 1829 } 1830 1831 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1832 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1833 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1834 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1835 1836 /* 1837 * Copy out last hashval in each block for B-tree code. 1838 */ 1839 entries1 = xfs_attr3_leaf_entryp(leaf1); 1840 entries2 = xfs_attr3_leaf_entryp(leaf2); 1841 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1842 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1843 1844 /* 1845 * Adjust the expected index for insertion. 1846 * NOTE: this code depends on the (current) situation that the 1847 * second block was originally empty. 1848 * 1849 * If the insertion point moved to the 2nd block, we must adjust 1850 * the index. We must also track the entry just following the 1851 * new entry for use in an "atomic rename" operation, that entry 1852 * is always the "old" entry and the "new" entry is what we are 1853 * inserting. The index/blkno fields refer to the "old" entry, 1854 * while the index2/blkno2 fields refer to the "new" entry. 1855 */ 1856 if (blk1->index > ichdr1.count) { 1857 ASSERT(state->inleaf == 0); 1858 blk2->index = blk1->index - ichdr1.count; 1859 args->index = args->index2 = blk2->index; 1860 args->blkno = args->blkno2 = blk2->blkno; 1861 } else if (blk1->index == ichdr1.count) { 1862 if (state->inleaf) { 1863 args->index = blk1->index; 1864 args->blkno = blk1->blkno; 1865 args->index2 = 0; 1866 args->blkno2 = blk2->blkno; 1867 } else { 1868 /* 1869 * On a double leaf split, the original attr location 1870 * is already stored in blkno2/index2, so don't 1871 * overwrite it overwise we corrupt the tree. 1872 */ 1873 blk2->index = blk1->index - ichdr1.count; 1874 args->index = blk2->index; 1875 args->blkno = blk2->blkno; 1876 if (!state->extravalid) { 1877 /* 1878 * set the new attr location to match the old 1879 * one and let the higher level split code 1880 * decide where in the leaf to place it. 1881 */ 1882 args->index2 = blk2->index; 1883 args->blkno2 = blk2->blkno; 1884 } 1885 } 1886 } else { 1887 ASSERT(state->inleaf == 1); 1888 args->index = args->index2 = blk1->index; 1889 args->blkno = args->blkno2 = blk1->blkno; 1890 } 1891 } 1892 1893 /* 1894 * Examine entries until we reduce the absolute difference in 1895 * byte usage between the two blocks to a minimum. 1896 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1897 * GROT: there will always be enough room in either block for a new entry. 1898 * GROT: Do a double-split for this case? 1899 */ 1900 STATIC int 1901 xfs_attr3_leaf_figure_balance( 1902 struct xfs_da_state *state, 1903 struct xfs_da_state_blk *blk1, 1904 struct xfs_attr3_icleaf_hdr *ichdr1, 1905 struct xfs_da_state_blk *blk2, 1906 struct xfs_attr3_icleaf_hdr *ichdr2, 1907 int *countarg, 1908 int *usedbytesarg) 1909 { 1910 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1911 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1912 struct xfs_attr_leaf_entry *entry; 1913 int count; 1914 int max; 1915 int index; 1916 int totallen = 0; 1917 int half; 1918 int lastdelta; 1919 int foundit = 0; 1920 int tmp; 1921 1922 /* 1923 * Examine entries until we reduce the absolute difference in 1924 * byte usage between the two blocks to a minimum. 1925 */ 1926 max = ichdr1->count + ichdr2->count; 1927 half = (max + 1) * sizeof(*entry); 1928 half += ichdr1->usedbytes + ichdr2->usedbytes + 1929 xfs_attr_leaf_newentsize(state->args, NULL); 1930 half /= 2; 1931 lastdelta = state->args->geo->blksize; 1932 entry = xfs_attr3_leaf_entryp(leaf1); 1933 for (count = index = 0; count < max; entry++, index++, count++) { 1934 1935 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1936 /* 1937 * The new entry is in the first block, account for it. 1938 */ 1939 if (count == blk1->index) { 1940 tmp = totallen + sizeof(*entry) + 1941 xfs_attr_leaf_newentsize(state->args, NULL); 1942 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1943 break; 1944 lastdelta = XFS_ATTR_ABS(half - tmp); 1945 totallen = tmp; 1946 foundit = 1; 1947 } 1948 1949 /* 1950 * Wrap around into the second block if necessary. 1951 */ 1952 if (count == ichdr1->count) { 1953 leaf1 = leaf2; 1954 entry = xfs_attr3_leaf_entryp(leaf1); 1955 index = 0; 1956 } 1957 1958 /* 1959 * Figure out if next leaf entry would be too much. 1960 */ 1961 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1962 index); 1963 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1964 break; 1965 lastdelta = XFS_ATTR_ABS(half - tmp); 1966 totallen = tmp; 1967 #undef XFS_ATTR_ABS 1968 } 1969 1970 /* 1971 * Calculate the number of usedbytes that will end up in lower block. 1972 * If new entry not in lower block, fix up the count. 1973 */ 1974 totallen -= count * sizeof(*entry); 1975 if (foundit) { 1976 totallen -= sizeof(*entry) + 1977 xfs_attr_leaf_newentsize(state->args, NULL); 1978 } 1979 1980 *countarg = count; 1981 *usedbytesarg = totallen; 1982 return foundit; 1983 } 1984 1985 /*======================================================================== 1986 * Routines used for shrinking the Btree. 1987 *========================================================================*/ 1988 1989 /* 1990 * Check a leaf block and its neighbors to see if the block should be 1991 * collapsed into one or the other neighbor. Always keep the block 1992 * with the smaller block number. 1993 * If the current block is over 50% full, don't try to join it, return 0. 1994 * If the block is empty, fill in the state structure and return 2. 1995 * If it can be collapsed, fill in the state structure and return 1. 1996 * If nothing can be done, return 0. 1997 * 1998 * GROT: allow for INCOMPLETE entries in calculation. 1999 */ 2000 int 2001 xfs_attr3_leaf_toosmall( 2002 struct xfs_da_state *state, 2003 int *action) 2004 { 2005 struct xfs_attr_leafblock *leaf; 2006 struct xfs_da_state_blk *blk; 2007 struct xfs_attr3_icleaf_hdr ichdr; 2008 struct xfs_buf *bp; 2009 xfs_dablk_t blkno; 2010 int bytes; 2011 int forward; 2012 int error; 2013 int retval; 2014 int i; 2015 2016 trace_xfs_attr_leaf_toosmall(state->args); 2017 2018 /* 2019 * Check for the degenerate case of the block being over 50% full. 2020 * If so, it's not worth even looking to see if we might be able 2021 * to coalesce with a sibling. 2022 */ 2023 blk = &state->path.blk[ state->path.active-1 ]; 2024 leaf = blk->bp->b_addr; 2025 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 2026 bytes = xfs_attr3_leaf_hdr_size(leaf) + 2027 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 2028 ichdr.usedbytes; 2029 if (bytes > (state->args->geo->blksize >> 1)) { 2030 *action = 0; /* blk over 50%, don't try to join */ 2031 return 0; 2032 } 2033 2034 /* 2035 * Check for the degenerate case of the block being empty. 2036 * If the block is empty, we'll simply delete it, no need to 2037 * coalesce it with a sibling block. We choose (arbitrarily) 2038 * to merge with the forward block unless it is NULL. 2039 */ 2040 if (ichdr.count == 0) { 2041 /* 2042 * Make altpath point to the block we want to keep and 2043 * path point to the block we want to drop (this one). 2044 */ 2045 forward = (ichdr.forw != 0); 2046 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2047 error = xfs_da3_path_shift(state, &state->altpath, forward, 2048 0, &retval); 2049 if (error) 2050 return error; 2051 if (retval) { 2052 *action = 0; 2053 } else { 2054 *action = 2; 2055 } 2056 return 0; 2057 } 2058 2059 /* 2060 * Examine each sibling block to see if we can coalesce with 2061 * at least 25% free space to spare. We need to figure out 2062 * whether to merge with the forward or the backward block. 2063 * We prefer coalescing with the lower numbered sibling so as 2064 * to shrink an attribute list over time. 2065 */ 2066 /* start with smaller blk num */ 2067 forward = ichdr.forw < ichdr.back; 2068 for (i = 0; i < 2; forward = !forward, i++) { 2069 struct xfs_attr3_icleaf_hdr ichdr2; 2070 if (forward) 2071 blkno = ichdr.forw; 2072 else 2073 blkno = ichdr.back; 2074 if (blkno == 0) 2075 continue; 2076 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2077 blkno, &bp); 2078 if (error) 2079 return error; 2080 2081 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2082 2083 bytes = state->args->geo->blksize - 2084 (state->args->geo->blksize >> 2) - 2085 ichdr.usedbytes - ichdr2.usedbytes - 2086 ((ichdr.count + ichdr2.count) * 2087 sizeof(xfs_attr_leaf_entry_t)) - 2088 xfs_attr3_leaf_hdr_size(leaf); 2089 2090 xfs_trans_brelse(state->args->trans, bp); 2091 if (bytes >= 0) 2092 break; /* fits with at least 25% to spare */ 2093 } 2094 if (i >= 2) { 2095 *action = 0; 2096 return 0; 2097 } 2098 2099 /* 2100 * Make altpath point to the block we want to keep (the lower 2101 * numbered block) and path point to the block we want to drop. 2102 */ 2103 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2104 if (blkno < blk->blkno) { 2105 error = xfs_da3_path_shift(state, &state->altpath, forward, 2106 0, &retval); 2107 } else { 2108 error = xfs_da3_path_shift(state, &state->path, forward, 2109 0, &retval); 2110 } 2111 if (error) 2112 return error; 2113 if (retval) { 2114 *action = 0; 2115 } else { 2116 *action = 1; 2117 } 2118 return 0; 2119 } 2120 2121 /* 2122 * Remove a name from the leaf attribute list structure. 2123 * 2124 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2125 * If two leaves are 37% full, when combined they will leave 25% free. 2126 */ 2127 int 2128 xfs_attr3_leaf_remove( 2129 struct xfs_buf *bp, 2130 struct xfs_da_args *args) 2131 { 2132 struct xfs_attr_leafblock *leaf; 2133 struct xfs_attr3_icleaf_hdr ichdr; 2134 struct xfs_attr_leaf_entry *entry; 2135 int before; 2136 int after; 2137 int smallest; 2138 int entsize; 2139 int tablesize; 2140 int tmp; 2141 int i; 2142 2143 trace_xfs_attr_leaf_remove(args); 2144 2145 leaf = bp->b_addr; 2146 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2147 2148 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2149 ASSERT(args->index >= 0 && args->index < ichdr.count); 2150 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2151 xfs_attr3_leaf_hdr_size(leaf)); 2152 2153 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2154 2155 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2156 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2157 2158 /* 2159 * Scan through free region table: 2160 * check for adjacency of free'd entry with an existing one, 2161 * find smallest free region in case we need to replace it, 2162 * adjust any map that borders the entry table, 2163 */ 2164 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2165 + xfs_attr3_leaf_hdr_size(leaf); 2166 tmp = ichdr.freemap[0].size; 2167 before = after = -1; 2168 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2169 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2170 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2171 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2172 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2173 if (ichdr.freemap[i].base == tablesize) { 2174 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2175 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2176 } 2177 2178 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2179 be16_to_cpu(entry->nameidx)) { 2180 before = i; 2181 } else if (ichdr.freemap[i].base == 2182 (be16_to_cpu(entry->nameidx) + entsize)) { 2183 after = i; 2184 } else if (ichdr.freemap[i].size < tmp) { 2185 tmp = ichdr.freemap[i].size; 2186 smallest = i; 2187 } 2188 } 2189 2190 /* 2191 * Coalesce adjacent freemap regions, 2192 * or replace the smallest region. 2193 */ 2194 if ((before >= 0) || (after >= 0)) { 2195 if ((before >= 0) && (after >= 0)) { 2196 ichdr.freemap[before].size += entsize; 2197 ichdr.freemap[before].size += ichdr.freemap[after].size; 2198 ichdr.freemap[after].base = 0; 2199 ichdr.freemap[after].size = 0; 2200 } else if (before >= 0) { 2201 ichdr.freemap[before].size += entsize; 2202 } else { 2203 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2204 ichdr.freemap[after].size += entsize; 2205 } 2206 } else { 2207 /* 2208 * Replace smallest region (if it is smaller than free'd entry) 2209 */ 2210 if (ichdr.freemap[smallest].size < entsize) { 2211 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2212 ichdr.freemap[smallest].size = entsize; 2213 } 2214 } 2215 2216 /* 2217 * Did we remove the first entry? 2218 */ 2219 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2220 smallest = 1; 2221 else 2222 smallest = 0; 2223 2224 /* 2225 * Compress the remaining entries and zero out the removed stuff. 2226 */ 2227 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2228 ichdr.usedbytes -= entsize; 2229 xfs_trans_log_buf(args->trans, bp, 2230 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2231 entsize)); 2232 2233 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2234 memmove(entry, entry + 1, tmp); 2235 ichdr.count--; 2236 xfs_trans_log_buf(args->trans, bp, 2237 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2238 2239 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2240 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2241 2242 /* 2243 * If we removed the first entry, re-find the first used byte 2244 * in the name area. Note that if the entry was the "firstused", 2245 * then we don't have a "hole" in our block resulting from 2246 * removing the name. 2247 */ 2248 if (smallest) { 2249 tmp = args->geo->blksize; 2250 entry = xfs_attr3_leaf_entryp(leaf); 2251 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2252 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2253 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2254 2255 if (be16_to_cpu(entry->nameidx) < tmp) 2256 tmp = be16_to_cpu(entry->nameidx); 2257 } 2258 ichdr.firstused = tmp; 2259 ASSERT(ichdr.firstused != 0); 2260 } else { 2261 ichdr.holes = 1; /* mark as needing compaction */ 2262 } 2263 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2264 xfs_trans_log_buf(args->trans, bp, 2265 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2266 xfs_attr3_leaf_hdr_size(leaf))); 2267 2268 /* 2269 * Check if leaf is less than 50% full, caller may want to 2270 * "join" the leaf with a sibling if so. 2271 */ 2272 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2273 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2274 2275 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2276 } 2277 2278 /* 2279 * Move all the attribute list entries from drop_leaf into save_leaf. 2280 */ 2281 void 2282 xfs_attr3_leaf_unbalance( 2283 struct xfs_da_state *state, 2284 struct xfs_da_state_blk *drop_blk, 2285 struct xfs_da_state_blk *save_blk) 2286 { 2287 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2288 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2289 struct xfs_attr3_icleaf_hdr drophdr; 2290 struct xfs_attr3_icleaf_hdr savehdr; 2291 struct xfs_attr_leaf_entry *entry; 2292 2293 trace_xfs_attr_leaf_unbalance(state->args); 2294 2295 drop_leaf = drop_blk->bp->b_addr; 2296 save_leaf = save_blk->bp->b_addr; 2297 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2298 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2299 entry = xfs_attr3_leaf_entryp(drop_leaf); 2300 2301 /* 2302 * Save last hashval from dying block for later Btree fixup. 2303 */ 2304 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2305 2306 /* 2307 * Check if we need a temp buffer, or can we do it in place. 2308 * Note that we don't check "leaf" for holes because we will 2309 * always be dropping it, toosmall() decided that for us already. 2310 */ 2311 if (savehdr.holes == 0) { 2312 /* 2313 * dest leaf has no holes, so we add there. May need 2314 * to make some room in the entry array. 2315 */ 2316 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2317 drop_blk->bp, &drophdr)) { 2318 xfs_attr3_leaf_moveents(state->args, 2319 drop_leaf, &drophdr, 0, 2320 save_leaf, &savehdr, 0, 2321 drophdr.count); 2322 } else { 2323 xfs_attr3_leaf_moveents(state->args, 2324 drop_leaf, &drophdr, 0, 2325 save_leaf, &savehdr, 2326 savehdr.count, drophdr.count); 2327 } 2328 } else { 2329 /* 2330 * Destination has holes, so we make a temporary copy 2331 * of the leaf and add them both to that. 2332 */ 2333 struct xfs_attr_leafblock *tmp_leaf; 2334 struct xfs_attr3_icleaf_hdr tmphdr; 2335 2336 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2337 2338 /* 2339 * Copy the header into the temp leaf so that all the stuff 2340 * not in the incore header is present and gets copied back in 2341 * once we've moved all the entries. 2342 */ 2343 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2344 2345 memset(&tmphdr, 0, sizeof(tmphdr)); 2346 tmphdr.magic = savehdr.magic; 2347 tmphdr.forw = savehdr.forw; 2348 tmphdr.back = savehdr.back; 2349 tmphdr.firstused = state->args->geo->blksize; 2350 2351 /* write the header to the temp buffer to initialise it */ 2352 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2353 2354 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2355 drop_blk->bp, &drophdr)) { 2356 xfs_attr3_leaf_moveents(state->args, 2357 drop_leaf, &drophdr, 0, 2358 tmp_leaf, &tmphdr, 0, 2359 drophdr.count); 2360 xfs_attr3_leaf_moveents(state->args, 2361 save_leaf, &savehdr, 0, 2362 tmp_leaf, &tmphdr, tmphdr.count, 2363 savehdr.count); 2364 } else { 2365 xfs_attr3_leaf_moveents(state->args, 2366 save_leaf, &savehdr, 0, 2367 tmp_leaf, &tmphdr, 0, 2368 savehdr.count); 2369 xfs_attr3_leaf_moveents(state->args, 2370 drop_leaf, &drophdr, 0, 2371 tmp_leaf, &tmphdr, tmphdr.count, 2372 drophdr.count); 2373 } 2374 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2375 savehdr = tmphdr; /* struct copy */ 2376 kmem_free(tmp_leaf); 2377 } 2378 2379 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2380 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2381 state->args->geo->blksize - 1); 2382 2383 /* 2384 * Copy out last hashval in each block for B-tree code. 2385 */ 2386 entry = xfs_attr3_leaf_entryp(save_leaf); 2387 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2388 } 2389 2390 /*======================================================================== 2391 * Routines used for finding things in the Btree. 2392 *========================================================================*/ 2393 2394 /* 2395 * Look up a name in a leaf attribute list structure. 2396 * This is the internal routine, it uses the caller's buffer. 2397 * 2398 * Note that duplicate keys are allowed, but only check within the 2399 * current leaf node. The Btree code must check in adjacent leaf nodes. 2400 * 2401 * Return in args->index the index into the entry[] array of either 2402 * the found entry, or where the entry should have been (insert before 2403 * that entry). 2404 * 2405 * Don't change the args->value unless we find the attribute. 2406 */ 2407 int 2408 xfs_attr3_leaf_lookup_int( 2409 struct xfs_buf *bp, 2410 struct xfs_da_args *args) 2411 { 2412 struct xfs_attr_leafblock *leaf; 2413 struct xfs_attr3_icleaf_hdr ichdr; 2414 struct xfs_attr_leaf_entry *entry; 2415 struct xfs_attr_leaf_entry *entries; 2416 struct xfs_attr_leaf_name_local *name_loc; 2417 struct xfs_attr_leaf_name_remote *name_rmt; 2418 xfs_dahash_t hashval; 2419 int probe; 2420 int span; 2421 2422 trace_xfs_attr_leaf_lookup(args); 2423 2424 leaf = bp->b_addr; 2425 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2426 entries = xfs_attr3_leaf_entryp(leaf); 2427 if (ichdr.count >= args->geo->blksize / 8) { 2428 xfs_buf_mark_corrupt(bp); 2429 return -EFSCORRUPTED; 2430 } 2431 2432 /* 2433 * Binary search. (note: small blocks will skip this loop) 2434 */ 2435 hashval = args->hashval; 2436 probe = span = ichdr.count / 2; 2437 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2438 span /= 2; 2439 if (be32_to_cpu(entry->hashval) < hashval) 2440 probe += span; 2441 else if (be32_to_cpu(entry->hashval) > hashval) 2442 probe -= span; 2443 else 2444 break; 2445 } 2446 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2447 xfs_buf_mark_corrupt(bp); 2448 return -EFSCORRUPTED; 2449 } 2450 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2451 xfs_buf_mark_corrupt(bp); 2452 return -EFSCORRUPTED; 2453 } 2454 2455 /* 2456 * Since we may have duplicate hashval's, find the first matching 2457 * hashval in the leaf. 2458 */ 2459 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2460 entry--; 2461 probe--; 2462 } 2463 while (probe < ichdr.count && 2464 be32_to_cpu(entry->hashval) < hashval) { 2465 entry++; 2466 probe++; 2467 } 2468 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2469 args->index = probe; 2470 return -ENOATTR; 2471 } 2472 2473 /* 2474 * Duplicate keys may be present, so search all of them for a match. 2475 */ 2476 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2477 entry++, probe++) { 2478 /* 2479 * GROT: Add code to remove incomplete entries. 2480 */ 2481 if (entry->flags & XFS_ATTR_LOCAL) { 2482 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2483 if (!xfs_attr_match(args, name_loc->namelen, 2484 name_loc->nameval, entry->flags)) 2485 continue; 2486 args->index = probe; 2487 return -EEXIST; 2488 } else { 2489 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2490 if (!xfs_attr_match(args, name_rmt->namelen, 2491 name_rmt->name, entry->flags)) 2492 continue; 2493 args->index = probe; 2494 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2495 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2496 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2497 args->dp->i_mount, 2498 args->rmtvaluelen); 2499 return -EEXIST; 2500 } 2501 } 2502 args->index = probe; 2503 return -ENOATTR; 2504 } 2505 2506 /* 2507 * Get the value associated with an attribute name from a leaf attribute 2508 * list structure. 2509 * 2510 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2511 * lookup, we only return an error if the attribute does not exist or we can't 2512 * retrieve the value. 2513 */ 2514 int 2515 xfs_attr3_leaf_getvalue( 2516 struct xfs_buf *bp, 2517 struct xfs_da_args *args) 2518 { 2519 struct xfs_attr_leafblock *leaf; 2520 struct xfs_attr3_icleaf_hdr ichdr; 2521 struct xfs_attr_leaf_entry *entry; 2522 struct xfs_attr_leaf_name_local *name_loc; 2523 struct xfs_attr_leaf_name_remote *name_rmt; 2524 2525 leaf = bp->b_addr; 2526 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2527 ASSERT(ichdr.count < args->geo->blksize / 8); 2528 ASSERT(args->index < ichdr.count); 2529 2530 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2531 if (entry->flags & XFS_ATTR_LOCAL) { 2532 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2533 ASSERT(name_loc->namelen == args->namelen); 2534 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2535 return xfs_attr_copy_value(args, 2536 &name_loc->nameval[args->namelen], 2537 be16_to_cpu(name_loc->valuelen)); 2538 } 2539 2540 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2541 ASSERT(name_rmt->namelen == args->namelen); 2542 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2543 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2544 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2545 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2546 args->rmtvaluelen); 2547 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2548 } 2549 2550 /*======================================================================== 2551 * Utility routines. 2552 *========================================================================*/ 2553 2554 /* 2555 * Move the indicated entries from one leaf to another. 2556 * NOTE: this routine modifies both source and destination leaves. 2557 */ 2558 /*ARGSUSED*/ 2559 STATIC void 2560 xfs_attr3_leaf_moveents( 2561 struct xfs_da_args *args, 2562 struct xfs_attr_leafblock *leaf_s, 2563 struct xfs_attr3_icleaf_hdr *ichdr_s, 2564 int start_s, 2565 struct xfs_attr_leafblock *leaf_d, 2566 struct xfs_attr3_icleaf_hdr *ichdr_d, 2567 int start_d, 2568 int count) 2569 { 2570 struct xfs_attr_leaf_entry *entry_s; 2571 struct xfs_attr_leaf_entry *entry_d; 2572 int desti; 2573 int tmp; 2574 int i; 2575 2576 /* 2577 * Check for nothing to do. 2578 */ 2579 if (count == 0) 2580 return; 2581 2582 /* 2583 * Set up environment. 2584 */ 2585 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2586 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2587 ASSERT(ichdr_s->magic == ichdr_d->magic); 2588 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2589 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2590 + xfs_attr3_leaf_hdr_size(leaf_s)); 2591 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2592 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2593 + xfs_attr3_leaf_hdr_size(leaf_d)); 2594 2595 ASSERT(start_s < ichdr_s->count); 2596 ASSERT(start_d <= ichdr_d->count); 2597 ASSERT(count <= ichdr_s->count); 2598 2599 2600 /* 2601 * Move the entries in the destination leaf up to make a hole? 2602 */ 2603 if (start_d < ichdr_d->count) { 2604 tmp = ichdr_d->count - start_d; 2605 tmp *= sizeof(xfs_attr_leaf_entry_t); 2606 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2607 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2608 memmove(entry_d, entry_s, tmp); 2609 } 2610 2611 /* 2612 * Copy all entry's in the same (sorted) order, 2613 * but allocate attribute info packed and in sequence. 2614 */ 2615 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2616 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2617 desti = start_d; 2618 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2619 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2620 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2621 #ifdef GROT 2622 /* 2623 * Code to drop INCOMPLETE entries. Difficult to use as we 2624 * may also need to change the insertion index. Code turned 2625 * off for 6.2, should be revisited later. 2626 */ 2627 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2628 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2629 ichdr_s->usedbytes -= tmp; 2630 ichdr_s->count -= 1; 2631 entry_d--; /* to compensate for ++ in loop hdr */ 2632 desti--; 2633 if ((start_s + i) < offset) 2634 result++; /* insertion index adjustment */ 2635 } else { 2636 #endif /* GROT */ 2637 ichdr_d->firstused -= tmp; 2638 /* both on-disk, don't endian flip twice */ 2639 entry_d->hashval = entry_s->hashval; 2640 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2641 entry_d->flags = entry_s->flags; 2642 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2643 <= args->geo->blksize); 2644 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2645 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2646 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2647 <= args->geo->blksize); 2648 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2649 ichdr_s->usedbytes -= tmp; 2650 ichdr_d->usedbytes += tmp; 2651 ichdr_s->count -= 1; 2652 ichdr_d->count += 1; 2653 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2654 + xfs_attr3_leaf_hdr_size(leaf_d); 2655 ASSERT(ichdr_d->firstused >= tmp); 2656 #ifdef GROT 2657 } 2658 #endif /* GROT */ 2659 } 2660 2661 /* 2662 * Zero out the entries we just copied. 2663 */ 2664 if (start_s == ichdr_s->count) { 2665 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2666 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2667 ASSERT(((char *)entry_s + tmp) <= 2668 ((char *)leaf_s + args->geo->blksize)); 2669 memset(entry_s, 0, tmp); 2670 } else { 2671 /* 2672 * Move the remaining entries down to fill the hole, 2673 * then zero the entries at the top. 2674 */ 2675 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2676 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2677 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2678 memmove(entry_d, entry_s, tmp); 2679 2680 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2681 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2682 ASSERT(((char *)entry_s + tmp) <= 2683 ((char *)leaf_s + args->geo->blksize)); 2684 memset(entry_s, 0, tmp); 2685 } 2686 2687 /* 2688 * Fill in the freemap information 2689 */ 2690 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2691 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2692 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2693 ichdr_d->freemap[1].base = 0; 2694 ichdr_d->freemap[2].base = 0; 2695 ichdr_d->freemap[1].size = 0; 2696 ichdr_d->freemap[2].size = 0; 2697 ichdr_s->holes = 1; /* leaf may not be compact */ 2698 } 2699 2700 /* 2701 * Pick up the last hashvalue from a leaf block. 2702 */ 2703 xfs_dahash_t 2704 xfs_attr_leaf_lasthash( 2705 struct xfs_buf *bp, 2706 int *count) 2707 { 2708 struct xfs_attr3_icleaf_hdr ichdr; 2709 struct xfs_attr_leaf_entry *entries; 2710 struct xfs_mount *mp = bp->b_mount; 2711 2712 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2713 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2714 if (count) 2715 *count = ichdr.count; 2716 if (!ichdr.count) 2717 return 0; 2718 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2719 } 2720 2721 /* 2722 * Calculate the number of bytes used to store the indicated attribute 2723 * (whether local or remote only calculate bytes in this block). 2724 */ 2725 STATIC int 2726 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2727 { 2728 struct xfs_attr_leaf_entry *entries; 2729 xfs_attr_leaf_name_local_t *name_loc; 2730 xfs_attr_leaf_name_remote_t *name_rmt; 2731 int size; 2732 2733 entries = xfs_attr3_leaf_entryp(leaf); 2734 if (entries[index].flags & XFS_ATTR_LOCAL) { 2735 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2736 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2737 be16_to_cpu(name_loc->valuelen)); 2738 } else { 2739 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2740 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2741 } 2742 return size; 2743 } 2744 2745 /* 2746 * Calculate the number of bytes that would be required to store the new 2747 * attribute (whether local or remote only calculate bytes in this block). 2748 * This routine decides as a side effect whether the attribute will be 2749 * a "local" or a "remote" attribute. 2750 */ 2751 int 2752 xfs_attr_leaf_newentsize( 2753 struct xfs_da_args *args, 2754 int *local) 2755 { 2756 int size; 2757 2758 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2759 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2760 if (local) 2761 *local = 1; 2762 return size; 2763 } 2764 if (local) 2765 *local = 0; 2766 return xfs_attr_leaf_entsize_remote(args->namelen); 2767 } 2768 2769 2770 /*======================================================================== 2771 * Manage the INCOMPLETE flag in a leaf entry 2772 *========================================================================*/ 2773 2774 /* 2775 * Clear the INCOMPLETE flag on an entry in a leaf block. 2776 */ 2777 int 2778 xfs_attr3_leaf_clearflag( 2779 struct xfs_da_args *args) 2780 { 2781 struct xfs_attr_leafblock *leaf; 2782 struct xfs_attr_leaf_entry *entry; 2783 struct xfs_attr_leaf_name_remote *name_rmt; 2784 struct xfs_buf *bp; 2785 int error; 2786 #ifdef DEBUG 2787 struct xfs_attr3_icleaf_hdr ichdr; 2788 xfs_attr_leaf_name_local_t *name_loc; 2789 int namelen; 2790 char *name; 2791 #endif /* DEBUG */ 2792 2793 trace_xfs_attr_leaf_clearflag(args); 2794 /* 2795 * Set up the operation. 2796 */ 2797 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2798 if (error) 2799 return error; 2800 2801 leaf = bp->b_addr; 2802 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2803 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2804 2805 #ifdef DEBUG 2806 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2807 ASSERT(args->index < ichdr.count); 2808 ASSERT(args->index >= 0); 2809 2810 if (entry->flags & XFS_ATTR_LOCAL) { 2811 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2812 namelen = name_loc->namelen; 2813 name = (char *)name_loc->nameval; 2814 } else { 2815 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2816 namelen = name_rmt->namelen; 2817 name = (char *)name_rmt->name; 2818 } 2819 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2820 ASSERT(namelen == args->namelen); 2821 ASSERT(memcmp(name, args->name, namelen) == 0); 2822 #endif /* DEBUG */ 2823 2824 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2825 xfs_trans_log_buf(args->trans, bp, 2826 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2827 2828 if (args->rmtblkno) { 2829 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2830 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2831 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2832 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2833 xfs_trans_log_buf(args->trans, bp, 2834 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2835 } 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * Set the INCOMPLETE flag on an entry in a leaf block. 2842 */ 2843 int 2844 xfs_attr3_leaf_setflag( 2845 struct xfs_da_args *args) 2846 { 2847 struct xfs_attr_leafblock *leaf; 2848 struct xfs_attr_leaf_entry *entry; 2849 struct xfs_attr_leaf_name_remote *name_rmt; 2850 struct xfs_buf *bp; 2851 int error; 2852 #ifdef DEBUG 2853 struct xfs_attr3_icleaf_hdr ichdr; 2854 #endif 2855 2856 trace_xfs_attr_leaf_setflag(args); 2857 2858 /* 2859 * Set up the operation. 2860 */ 2861 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2862 if (error) 2863 return error; 2864 2865 leaf = bp->b_addr; 2866 #ifdef DEBUG 2867 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2868 ASSERT(args->index < ichdr.count); 2869 ASSERT(args->index >= 0); 2870 #endif 2871 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2872 2873 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2874 entry->flags |= XFS_ATTR_INCOMPLETE; 2875 xfs_trans_log_buf(args->trans, bp, 2876 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2877 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2878 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2879 name_rmt->valueblk = 0; 2880 name_rmt->valuelen = 0; 2881 xfs_trans_log_buf(args->trans, bp, 2882 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2883 } 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2890 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2891 * entry given by args->blkno2/index2. 2892 * 2893 * Note that they could be in different blocks, or in the same block. 2894 */ 2895 int 2896 xfs_attr3_leaf_flipflags( 2897 struct xfs_da_args *args) 2898 { 2899 struct xfs_attr_leafblock *leaf1; 2900 struct xfs_attr_leafblock *leaf2; 2901 struct xfs_attr_leaf_entry *entry1; 2902 struct xfs_attr_leaf_entry *entry2; 2903 struct xfs_attr_leaf_name_remote *name_rmt; 2904 struct xfs_buf *bp1; 2905 struct xfs_buf *bp2; 2906 int error; 2907 #ifdef DEBUG 2908 struct xfs_attr3_icleaf_hdr ichdr1; 2909 struct xfs_attr3_icleaf_hdr ichdr2; 2910 xfs_attr_leaf_name_local_t *name_loc; 2911 int namelen1, namelen2; 2912 char *name1, *name2; 2913 #endif /* DEBUG */ 2914 2915 trace_xfs_attr_leaf_flipflags(args); 2916 2917 /* 2918 * Read the block containing the "old" attr 2919 */ 2920 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2921 if (error) 2922 return error; 2923 2924 /* 2925 * Read the block containing the "new" attr, if it is different 2926 */ 2927 if (args->blkno2 != args->blkno) { 2928 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2929 &bp2); 2930 if (error) 2931 return error; 2932 } else { 2933 bp2 = bp1; 2934 } 2935 2936 leaf1 = bp1->b_addr; 2937 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2938 2939 leaf2 = bp2->b_addr; 2940 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2941 2942 #ifdef DEBUG 2943 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2944 ASSERT(args->index < ichdr1.count); 2945 ASSERT(args->index >= 0); 2946 2947 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2948 ASSERT(args->index2 < ichdr2.count); 2949 ASSERT(args->index2 >= 0); 2950 2951 if (entry1->flags & XFS_ATTR_LOCAL) { 2952 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2953 namelen1 = name_loc->namelen; 2954 name1 = (char *)name_loc->nameval; 2955 } else { 2956 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2957 namelen1 = name_rmt->namelen; 2958 name1 = (char *)name_rmt->name; 2959 } 2960 if (entry2->flags & XFS_ATTR_LOCAL) { 2961 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2962 namelen2 = name_loc->namelen; 2963 name2 = (char *)name_loc->nameval; 2964 } else { 2965 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2966 namelen2 = name_rmt->namelen; 2967 name2 = (char *)name_rmt->name; 2968 } 2969 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2970 ASSERT(namelen1 == namelen2); 2971 ASSERT(memcmp(name1, name2, namelen1) == 0); 2972 #endif /* DEBUG */ 2973 2974 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2975 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2976 2977 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2978 xfs_trans_log_buf(args->trans, bp1, 2979 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2980 if (args->rmtblkno) { 2981 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2982 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2983 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2984 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2985 xfs_trans_log_buf(args->trans, bp1, 2986 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2987 } 2988 2989 entry2->flags |= XFS_ATTR_INCOMPLETE; 2990 xfs_trans_log_buf(args->trans, bp2, 2991 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2992 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2993 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2994 name_rmt->valueblk = 0; 2995 name_rmt->valuelen = 0; 2996 xfs_trans_log_buf(args->trans, bp2, 2997 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2998 } 2999 3000 return 0; 3001 } 3002