1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr_remote.h" 23 #include "xfs_attr.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 31 32 /* 33 * xfs_attr_leaf.c 34 * 35 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 36 */ 37 38 /*======================================================================== 39 * Function prototypes for the kernel. 40 *========================================================================*/ 41 42 /* 43 * Routines used for growing the Btree. 44 */ 45 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 46 xfs_dablk_t which_block, struct xfs_buf **bpp); 47 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 48 struct xfs_attr3_icleaf_hdr *ichdr, 49 struct xfs_da_args *args, int freemap_index); 50 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 51 struct xfs_attr3_icleaf_hdr *ichdr, 52 struct xfs_buf *leaf_buffer); 53 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 54 xfs_da_state_blk_t *blk1, 55 xfs_da_state_blk_t *blk2); 56 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 57 xfs_da_state_blk_t *leaf_blk_1, 58 struct xfs_attr3_icleaf_hdr *ichdr1, 59 xfs_da_state_blk_t *leaf_blk_2, 60 struct xfs_attr3_icleaf_hdr *ichdr2, 61 int *number_entries_in_blk1, 62 int *number_usedbytes_in_blk1); 63 64 /* 65 * Utility routines. 66 */ 67 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 68 struct xfs_attr_leafblock *src_leaf, 69 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 70 struct xfs_attr_leafblock *dst_leaf, 71 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 72 int move_count); 73 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 74 75 /* 76 * attr3 block 'firstused' conversion helpers. 77 * 78 * firstused refers to the offset of the first used byte of the nameval region 79 * of an attr leaf block. The region starts at the tail of the block and expands 80 * backwards towards the middle. As such, firstused is initialized to the block 81 * size for an empty leaf block and is reduced from there. 82 * 83 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 84 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 85 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 86 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 87 * the attr block size. The following helpers manage the conversion between the 88 * in-core and on-disk formats. 89 */ 90 91 static void 92 xfs_attr3_leaf_firstused_from_disk( 93 struct xfs_da_geometry *geo, 94 struct xfs_attr3_icleaf_hdr *to, 95 struct xfs_attr_leafblock *from) 96 { 97 struct xfs_attr3_leaf_hdr *hdr3; 98 99 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 100 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 101 to->firstused = be16_to_cpu(hdr3->firstused); 102 } else { 103 to->firstused = be16_to_cpu(from->hdr.firstused); 104 } 105 106 /* 107 * Convert from the magic fsb size value to actual blocksize. This 108 * should only occur for empty blocks when the block size overflows 109 * 16-bits. 110 */ 111 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 112 ASSERT(!to->count && !to->usedbytes); 113 ASSERT(geo->blksize > USHRT_MAX); 114 to->firstused = geo->blksize; 115 } 116 } 117 118 static void 119 xfs_attr3_leaf_firstused_to_disk( 120 struct xfs_da_geometry *geo, 121 struct xfs_attr_leafblock *to, 122 struct xfs_attr3_icleaf_hdr *from) 123 { 124 struct xfs_attr3_leaf_hdr *hdr3; 125 uint32_t firstused; 126 127 /* magic value should only be seen on disk */ 128 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 129 130 /* 131 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 132 * value. This only overflows at the max supported value of 64k. Use the 133 * magic on-disk value to represent block size in this case. 134 */ 135 firstused = from->firstused; 136 if (firstused > USHRT_MAX) { 137 ASSERT(from->firstused == geo->blksize); 138 firstused = XFS_ATTR3_LEAF_NULLOFF; 139 } 140 141 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 142 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 143 hdr3->firstused = cpu_to_be16(firstused); 144 } else { 145 to->hdr.firstused = cpu_to_be16(firstused); 146 } 147 } 148 149 void 150 xfs_attr3_leaf_hdr_from_disk( 151 struct xfs_da_geometry *geo, 152 struct xfs_attr3_icleaf_hdr *to, 153 struct xfs_attr_leafblock *from) 154 { 155 int i; 156 157 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 158 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 159 160 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 161 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 162 163 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 164 to->back = be32_to_cpu(hdr3->info.hdr.back); 165 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 166 to->count = be16_to_cpu(hdr3->count); 167 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 168 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 169 to->holes = hdr3->holes; 170 171 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 172 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 173 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 174 } 175 return; 176 } 177 to->forw = be32_to_cpu(from->hdr.info.forw); 178 to->back = be32_to_cpu(from->hdr.info.back); 179 to->magic = be16_to_cpu(from->hdr.info.magic); 180 to->count = be16_to_cpu(from->hdr.count); 181 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 182 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 183 to->holes = from->hdr.holes; 184 185 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 186 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 187 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 188 } 189 } 190 191 void 192 xfs_attr3_leaf_hdr_to_disk( 193 struct xfs_da_geometry *geo, 194 struct xfs_attr_leafblock *to, 195 struct xfs_attr3_icleaf_hdr *from) 196 { 197 int i; 198 199 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 200 from->magic == XFS_ATTR3_LEAF_MAGIC); 201 202 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 203 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 204 205 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 206 hdr3->info.hdr.back = cpu_to_be32(from->back); 207 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 208 hdr3->count = cpu_to_be16(from->count); 209 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 210 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 211 hdr3->holes = from->holes; 212 hdr3->pad1 = 0; 213 214 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 215 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 216 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 217 } 218 return; 219 } 220 to->hdr.info.forw = cpu_to_be32(from->forw); 221 to->hdr.info.back = cpu_to_be32(from->back); 222 to->hdr.info.magic = cpu_to_be16(from->magic); 223 to->hdr.count = cpu_to_be16(from->count); 224 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 225 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 226 to->hdr.holes = from->holes; 227 to->hdr.pad1 = 0; 228 229 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 230 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 231 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 232 } 233 } 234 235 static xfs_failaddr_t 236 xfs_attr3_leaf_verify_entry( 237 struct xfs_mount *mp, 238 char *buf_end, 239 struct xfs_attr_leafblock *leaf, 240 struct xfs_attr3_icleaf_hdr *leafhdr, 241 struct xfs_attr_leaf_entry *ent, 242 int idx, 243 __u32 *last_hashval) 244 { 245 struct xfs_attr_leaf_name_local *lentry; 246 struct xfs_attr_leaf_name_remote *rentry; 247 char *name_end; 248 unsigned int nameidx; 249 unsigned int namesize; 250 __u32 hashval; 251 252 /* hash order check */ 253 hashval = be32_to_cpu(ent->hashval); 254 if (hashval < *last_hashval) 255 return __this_address; 256 *last_hashval = hashval; 257 258 nameidx = be16_to_cpu(ent->nameidx); 259 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 260 return __this_address; 261 262 /* 263 * Check the name information. The namelen fields are u8 so we can't 264 * possibly exceed the maximum name length of 255 bytes. 265 */ 266 if (ent->flags & XFS_ATTR_LOCAL) { 267 lentry = xfs_attr3_leaf_name_local(leaf, idx); 268 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 269 be16_to_cpu(lentry->valuelen)); 270 name_end = (char *)lentry + namesize; 271 if (lentry->namelen == 0) 272 return __this_address; 273 } else { 274 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 275 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 276 name_end = (char *)rentry + namesize; 277 if (rentry->namelen == 0) 278 return __this_address; 279 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 280 rentry->valueblk == 0) 281 return __this_address; 282 } 283 284 if (name_end > buf_end) 285 return __this_address; 286 287 return NULL; 288 } 289 290 static xfs_failaddr_t 291 xfs_attr3_leaf_verify( 292 struct xfs_buf *bp) 293 { 294 struct xfs_attr3_icleaf_hdr ichdr; 295 struct xfs_mount *mp = bp->b_mount; 296 struct xfs_attr_leafblock *leaf = bp->b_addr; 297 struct xfs_attr_leaf_entry *entries; 298 struct xfs_attr_leaf_entry *ent; 299 char *buf_end; 300 uint32_t end; /* must be 32bit - see below */ 301 __u32 last_hashval = 0; 302 int i; 303 xfs_failaddr_t fa; 304 305 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 306 307 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 308 if (fa) 309 return fa; 310 311 /* 312 * firstused is the block offset of the first name info structure. 313 * Make sure it doesn't go off the block or crash into the header. 314 */ 315 if (ichdr.firstused > mp->m_attr_geo->blksize) 316 return __this_address; 317 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 318 return __this_address; 319 320 /* Make sure the entries array doesn't crash into the name info. */ 321 entries = xfs_attr3_leaf_entryp(bp->b_addr); 322 if ((char *)&entries[ichdr.count] > 323 (char *)bp->b_addr + ichdr.firstused) 324 return __this_address; 325 326 /* 327 * NOTE: This verifier historically failed empty leaf buffers because 328 * we expect the fork to be in another format. Empty attr fork format 329 * conversions are possible during xattr set, however, and format 330 * conversion is not atomic with the xattr set that triggers it. We 331 * cannot assume leaf blocks are non-empty until that is addressed. 332 */ 333 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 334 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 335 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 336 ent, i, &last_hashval); 337 if (fa) 338 return fa; 339 } 340 341 /* 342 * Quickly check the freemap information. Attribute data has to be 343 * aligned to 4-byte boundaries, and likewise for the free space. 344 * 345 * Note that for 64k block size filesystems, the freemap entries cannot 346 * overflow as they are only be16 fields. However, when checking end 347 * pointer of the freemap, we have to be careful to detect overflows and 348 * so use uint32_t for those checks. 349 */ 350 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 351 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 352 return __this_address; 353 if (ichdr.freemap[i].base & 0x3) 354 return __this_address; 355 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 356 return __this_address; 357 if (ichdr.freemap[i].size & 0x3) 358 return __this_address; 359 360 /* be care of 16 bit overflows here */ 361 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 362 if (end < ichdr.freemap[i].base) 363 return __this_address; 364 if (end > mp->m_attr_geo->blksize) 365 return __this_address; 366 } 367 368 return NULL; 369 } 370 371 static void 372 xfs_attr3_leaf_write_verify( 373 struct xfs_buf *bp) 374 { 375 struct xfs_mount *mp = bp->b_mount; 376 struct xfs_buf_log_item *bip = bp->b_log_item; 377 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 378 xfs_failaddr_t fa; 379 380 fa = xfs_attr3_leaf_verify(bp); 381 if (fa) { 382 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 383 return; 384 } 385 386 if (!xfs_sb_version_hascrc(&mp->m_sb)) 387 return; 388 389 if (bip) 390 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 391 392 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 393 } 394 395 /* 396 * leaf/node format detection on trees is sketchy, so a node read can be done on 397 * leaf level blocks when detection identifies the tree as a node format tree 398 * incorrectly. In this case, we need to swap the verifier to match the correct 399 * format of the block being read. 400 */ 401 static void 402 xfs_attr3_leaf_read_verify( 403 struct xfs_buf *bp) 404 { 405 struct xfs_mount *mp = bp->b_mount; 406 xfs_failaddr_t fa; 407 408 if (xfs_sb_version_hascrc(&mp->m_sb) && 409 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 410 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 411 else { 412 fa = xfs_attr3_leaf_verify(bp); 413 if (fa) 414 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 415 } 416 } 417 418 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 419 .name = "xfs_attr3_leaf", 420 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 421 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 422 .verify_read = xfs_attr3_leaf_read_verify, 423 .verify_write = xfs_attr3_leaf_write_verify, 424 .verify_struct = xfs_attr3_leaf_verify, 425 }; 426 427 int 428 xfs_attr3_leaf_read( 429 struct xfs_trans *tp, 430 struct xfs_inode *dp, 431 xfs_dablk_t bno, 432 struct xfs_buf **bpp) 433 { 434 int err; 435 436 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 437 &xfs_attr3_leaf_buf_ops); 438 if (!err && tp && *bpp) 439 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 440 return err; 441 } 442 443 /*======================================================================== 444 * Namespace helper routines 445 *========================================================================*/ 446 447 static bool 448 xfs_attr_match( 449 struct xfs_da_args *args, 450 uint8_t namelen, 451 unsigned char *name, 452 int flags) 453 { 454 if (args->namelen != namelen) 455 return false; 456 if (memcmp(args->name, name, namelen) != 0) 457 return false; 458 /* 459 * If we are looking for incomplete entries, show only those, else only 460 * show complete entries. 461 */ 462 if (args->attr_filter != 463 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 464 return false; 465 return true; 466 } 467 468 static int 469 xfs_attr_copy_value( 470 struct xfs_da_args *args, 471 unsigned char *value, 472 int valuelen) 473 { 474 /* 475 * No copy if all we have to do is get the length 476 */ 477 if (!args->valuelen) { 478 args->valuelen = valuelen; 479 return 0; 480 } 481 482 /* 483 * No copy if the length of the existing buffer is too small 484 */ 485 if (args->valuelen < valuelen) { 486 args->valuelen = valuelen; 487 return -ERANGE; 488 } 489 490 if (!args->value) { 491 args->value = kmem_alloc_large(valuelen, KM_NOLOCKDEP); 492 if (!args->value) 493 return -ENOMEM; 494 } 495 args->valuelen = valuelen; 496 497 /* remote block xattr requires IO for copy-in */ 498 if (args->rmtblkno) 499 return xfs_attr_rmtval_get(args); 500 501 /* 502 * This is to prevent a GCC warning because the remote xattr case 503 * doesn't have a value to pass in. In that case, we never reach here, 504 * but GCC can't work that out and so throws a "passing NULL to 505 * memcpy" warning. 506 */ 507 if (!value) 508 return -EINVAL; 509 memcpy(args->value, value, valuelen); 510 return 0; 511 } 512 513 /*======================================================================== 514 * External routines when attribute fork size < XFS_LITINO(mp). 515 *========================================================================*/ 516 517 /* 518 * Query whether the requested number of additional bytes of extended 519 * attribute space will be able to fit inline. 520 * 521 * Returns zero if not, else the di_forkoff fork offset to be used in the 522 * literal area for attribute data once the new bytes have been added. 523 * 524 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 525 * special case for dev/uuid inodes, they have fixed size data forks. 526 */ 527 int 528 xfs_attr_shortform_bytesfit( 529 struct xfs_inode *dp, 530 int bytes) 531 { 532 struct xfs_mount *mp = dp->i_mount; 533 int64_t dsize; 534 int minforkoff; 535 int maxforkoff; 536 int offset; 537 538 /* rounded down */ 539 offset = (XFS_LITINO(mp) - bytes) >> 3; 540 541 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 542 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 543 return (offset >= minforkoff) ? minforkoff : 0; 544 } 545 546 /* 547 * If the requested numbers of bytes is smaller or equal to the 548 * current attribute fork size we can always proceed. 549 * 550 * Note that if_bytes in the data fork might actually be larger than 551 * the current data fork size is due to delalloc extents. In that 552 * case either the extent count will go down when they are converted 553 * to real extents, or the delalloc conversion will take care of the 554 * literal area rebalancing. 555 */ 556 if (bytes <= XFS_IFORK_ASIZE(dp)) 557 return dp->i_d.di_forkoff; 558 559 /* 560 * For attr2 we can try to move the forkoff if there is space in the 561 * literal area, but for the old format we are done if there is no 562 * space in the fixed attribute fork. 563 */ 564 if (!(mp->m_flags & XFS_MOUNT_ATTR2)) 565 return 0; 566 567 dsize = dp->i_df.if_bytes; 568 569 switch (dp->i_df.if_format) { 570 case XFS_DINODE_FMT_EXTENTS: 571 /* 572 * If there is no attr fork and the data fork is extents, 573 * determine if creating the default attr fork will result 574 * in the extents form migrating to btree. If so, the 575 * minimum offset only needs to be the space required for 576 * the btree root. 577 */ 578 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > 579 xfs_default_attroffset(dp)) 580 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 581 break; 582 case XFS_DINODE_FMT_BTREE: 583 /* 584 * If we have a data btree then keep forkoff if we have one, 585 * otherwise we are adding a new attr, so then we set 586 * minforkoff to where the btree root can finish so we have 587 * plenty of room for attrs 588 */ 589 if (dp->i_d.di_forkoff) { 590 if (offset < dp->i_d.di_forkoff) 591 return 0; 592 return dp->i_d.di_forkoff; 593 } 594 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 595 break; 596 } 597 598 /* 599 * A data fork btree root must have space for at least 600 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 601 */ 602 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 603 minforkoff = roundup(minforkoff, 8) >> 3; 604 605 /* attr fork btree root can have at least this many key/ptr pairs */ 606 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 607 maxforkoff = maxforkoff >> 3; /* rounded down */ 608 609 if (offset >= maxforkoff) 610 return maxforkoff; 611 if (offset >= minforkoff) 612 return offset; 613 return 0; 614 } 615 616 /* 617 * Switch on the ATTR2 superblock bit (implies also FEATURES2) 618 */ 619 STATIC void 620 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) 621 { 622 if ((mp->m_flags & XFS_MOUNT_ATTR2) && 623 !(xfs_sb_version_hasattr2(&mp->m_sb))) { 624 spin_lock(&mp->m_sb_lock); 625 if (!xfs_sb_version_hasattr2(&mp->m_sb)) { 626 xfs_sb_version_addattr2(&mp->m_sb); 627 spin_unlock(&mp->m_sb_lock); 628 xfs_log_sb(tp); 629 } else 630 spin_unlock(&mp->m_sb_lock); 631 } 632 } 633 634 /* 635 * Create the initial contents of a shortform attribute list. 636 */ 637 void 638 xfs_attr_shortform_create( 639 struct xfs_da_args *args) 640 { 641 struct xfs_inode *dp = args->dp; 642 struct xfs_ifork *ifp = dp->i_afp; 643 struct xfs_attr_sf_hdr *hdr; 644 645 trace_xfs_attr_sf_create(args); 646 647 ASSERT(ifp->if_bytes == 0); 648 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) { 649 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ 650 ifp->if_format = XFS_DINODE_FMT_LOCAL; 651 ifp->if_flags |= XFS_IFINLINE; 652 } else { 653 ASSERT(ifp->if_flags & XFS_IFINLINE); 654 } 655 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 656 hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; 657 hdr->count = 0; 658 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 659 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 660 } 661 662 /* 663 * Return -EEXIST if attr is found, or -ENOATTR if not 664 * args: args containing attribute name and namelen 665 * sfep: If not null, pointer will be set to the last attr entry found on 666 -EEXIST. On -ENOATTR pointer is left at the last entry in the list 667 * basep: If not null, pointer is set to the byte offset of the entry in the 668 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of 669 * the last entry in the list 670 */ 671 int 672 xfs_attr_sf_findname( 673 struct xfs_da_args *args, 674 struct xfs_attr_sf_entry **sfep, 675 unsigned int *basep) 676 { 677 struct xfs_attr_shortform *sf; 678 struct xfs_attr_sf_entry *sfe; 679 unsigned int base = sizeof(struct xfs_attr_sf_hdr); 680 int size = 0; 681 int end; 682 int i; 683 684 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; 685 sfe = &sf->list[0]; 686 end = sf->hdr.count; 687 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), 688 base += size, i++) { 689 size = XFS_ATTR_SF_ENTSIZE(sfe); 690 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval, 691 sfe->flags)) 692 continue; 693 break; 694 } 695 696 if (sfep != NULL) 697 *sfep = sfe; 698 699 if (basep != NULL) 700 *basep = base; 701 702 if (i == end) 703 return -ENOATTR; 704 return -EEXIST; 705 } 706 707 /* 708 * Add a name/value pair to the shortform attribute list. 709 * Overflow from the inode has already been checked for. 710 */ 711 void 712 xfs_attr_shortform_add( 713 struct xfs_da_args *args, 714 int forkoff) 715 { 716 struct xfs_attr_shortform *sf; 717 struct xfs_attr_sf_entry *sfe; 718 int offset, size; 719 struct xfs_mount *mp; 720 struct xfs_inode *dp; 721 struct xfs_ifork *ifp; 722 723 trace_xfs_attr_sf_add(args); 724 725 dp = args->dp; 726 mp = dp->i_mount; 727 dp->i_d.di_forkoff = forkoff; 728 729 ifp = dp->i_afp; 730 ASSERT(ifp->if_flags & XFS_IFINLINE); 731 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 732 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST) 733 ASSERT(0); 734 735 offset = (char *)sfe - (char *)sf; 736 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); 737 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 738 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 739 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); 740 741 sfe->namelen = args->namelen; 742 sfe->valuelen = args->valuelen; 743 sfe->flags = args->attr_filter; 744 memcpy(sfe->nameval, args->name, args->namelen); 745 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 746 sf->hdr.count++; 747 be16_add_cpu(&sf->hdr.totsize, size); 748 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 749 750 xfs_sbversion_add_attr2(mp, args->trans); 751 } 752 753 /* 754 * After the last attribute is removed revert to original inode format, 755 * making all literal area available to the data fork once more. 756 */ 757 void 758 xfs_attr_fork_remove( 759 struct xfs_inode *ip, 760 struct xfs_trans *tp) 761 { 762 ASSERT(ip->i_afp->if_nextents == 0); 763 764 xfs_idestroy_fork(ip->i_afp); 765 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 766 ip->i_afp = NULL; 767 ip->i_d.di_forkoff = 0; 768 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 769 } 770 771 /* 772 * Remove an attribute from the shortform attribute list structure. 773 */ 774 int 775 xfs_attr_shortform_remove( 776 struct xfs_da_args *args) 777 { 778 struct xfs_attr_shortform *sf; 779 struct xfs_attr_sf_entry *sfe; 780 int size = 0, end, totsize; 781 unsigned int base; 782 struct xfs_mount *mp; 783 struct xfs_inode *dp; 784 int error; 785 786 trace_xfs_attr_sf_remove(args); 787 788 dp = args->dp; 789 mp = dp->i_mount; 790 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; 791 792 error = xfs_attr_sf_findname(args, &sfe, &base); 793 if (error != -EEXIST) 794 return error; 795 size = XFS_ATTR_SF_ENTSIZE(sfe); 796 797 /* 798 * Fix up the attribute fork data, covering the hole 799 */ 800 end = base + size; 801 totsize = be16_to_cpu(sf->hdr.totsize); 802 if (end != totsize) 803 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); 804 sf->hdr.count--; 805 be16_add_cpu(&sf->hdr.totsize, -size); 806 807 /* 808 * Fix up the start offset of the attribute fork 809 */ 810 totsize -= size; 811 if (totsize == sizeof(xfs_attr_sf_hdr_t) && 812 (mp->m_flags & XFS_MOUNT_ATTR2) && 813 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 814 !(args->op_flags & XFS_DA_OP_ADDNAME)) { 815 xfs_attr_fork_remove(dp, args->trans); 816 } else { 817 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 818 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 819 ASSERT(dp->i_d.di_forkoff); 820 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || 821 (args->op_flags & XFS_DA_OP_ADDNAME) || 822 !(mp->m_flags & XFS_MOUNT_ATTR2) || 823 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 824 xfs_trans_log_inode(args->trans, dp, 825 XFS_ILOG_CORE | XFS_ILOG_ADATA); 826 } 827 828 xfs_sbversion_add_attr2(mp, args->trans); 829 830 return 0; 831 } 832 833 /* 834 * Look up a name in a shortform attribute list structure. 835 */ 836 /*ARGSUSED*/ 837 int 838 xfs_attr_shortform_lookup(xfs_da_args_t *args) 839 { 840 xfs_attr_shortform_t *sf; 841 xfs_attr_sf_entry_t *sfe; 842 int i; 843 struct xfs_ifork *ifp; 844 845 trace_xfs_attr_sf_lookup(args); 846 847 ifp = args->dp->i_afp; 848 ASSERT(ifp->if_flags & XFS_IFINLINE); 849 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 850 sfe = &sf->list[0]; 851 for (i = 0; i < sf->hdr.count; 852 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { 853 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 854 sfe->flags)) 855 return -EEXIST; 856 } 857 return -ENOATTR; 858 } 859 860 /* 861 * Retrieve the attribute value and length. 862 * 863 * If args->valuelen is zero, only the length needs to be returned. Unlike a 864 * lookup, we only return an error if the attribute does not exist or we can't 865 * retrieve the value. 866 */ 867 int 868 xfs_attr_shortform_getvalue( 869 struct xfs_da_args *args) 870 { 871 struct xfs_attr_shortform *sf; 872 struct xfs_attr_sf_entry *sfe; 873 int i; 874 875 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); 876 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; 877 sfe = &sf->list[0]; 878 for (i = 0; i < sf->hdr.count; 879 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { 880 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 881 sfe->flags)) 882 return xfs_attr_copy_value(args, 883 &sfe->nameval[args->namelen], sfe->valuelen); 884 } 885 return -ENOATTR; 886 } 887 888 /* 889 * Convert from using the shortform to the leaf. On success, return the 890 * buffer so that we can keep it locked until we're totally done with it. 891 */ 892 int 893 xfs_attr_shortform_to_leaf( 894 struct xfs_da_args *args, 895 struct xfs_buf **leaf_bp) 896 { 897 struct xfs_inode *dp; 898 struct xfs_attr_shortform *sf; 899 struct xfs_attr_sf_entry *sfe; 900 struct xfs_da_args nargs; 901 char *tmpbuffer; 902 int error, i, size; 903 xfs_dablk_t blkno; 904 struct xfs_buf *bp; 905 struct xfs_ifork *ifp; 906 907 trace_xfs_attr_sf_to_leaf(args); 908 909 dp = args->dp; 910 ifp = dp->i_afp; 911 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; 912 size = be16_to_cpu(sf->hdr.totsize); 913 tmpbuffer = kmem_alloc(size, 0); 914 ASSERT(tmpbuffer != NULL); 915 memcpy(tmpbuffer, ifp->if_u1.if_data, size); 916 sf = (xfs_attr_shortform_t *)tmpbuffer; 917 918 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 919 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 920 921 bp = NULL; 922 error = xfs_da_grow_inode(args, &blkno); 923 if (error) 924 goto out; 925 926 ASSERT(blkno == 0); 927 error = xfs_attr3_leaf_create(args, blkno, &bp); 928 if (error) 929 goto out; 930 931 memset((char *)&nargs, 0, sizeof(nargs)); 932 nargs.dp = dp; 933 nargs.geo = args->geo; 934 nargs.total = args->total; 935 nargs.whichfork = XFS_ATTR_FORK; 936 nargs.trans = args->trans; 937 nargs.op_flags = XFS_DA_OP_OKNOENT; 938 939 sfe = &sf->list[0]; 940 for (i = 0; i < sf->hdr.count; i++) { 941 nargs.name = sfe->nameval; 942 nargs.namelen = sfe->namelen; 943 nargs.value = &sfe->nameval[nargs.namelen]; 944 nargs.valuelen = sfe->valuelen; 945 nargs.hashval = xfs_da_hashname(sfe->nameval, 946 sfe->namelen); 947 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 948 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 949 ASSERT(error == -ENOATTR); 950 error = xfs_attr3_leaf_add(bp, &nargs); 951 ASSERT(error != -ENOSPC); 952 if (error) 953 goto out; 954 sfe = XFS_ATTR_SF_NEXTENTRY(sfe); 955 } 956 error = 0; 957 *leaf_bp = bp; 958 out: 959 kmem_free(tmpbuffer); 960 return error; 961 } 962 963 /* 964 * Check a leaf attribute block to see if all the entries would fit into 965 * a shortform attribute list. 966 */ 967 int 968 xfs_attr_shortform_allfit( 969 struct xfs_buf *bp, 970 struct xfs_inode *dp) 971 { 972 struct xfs_attr_leafblock *leaf; 973 struct xfs_attr_leaf_entry *entry; 974 xfs_attr_leaf_name_local_t *name_loc; 975 struct xfs_attr3_icleaf_hdr leafhdr; 976 int bytes; 977 int i; 978 struct xfs_mount *mp = bp->b_mount; 979 980 leaf = bp->b_addr; 981 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 982 entry = xfs_attr3_leaf_entryp(leaf); 983 984 bytes = sizeof(struct xfs_attr_sf_hdr); 985 for (i = 0; i < leafhdr.count; entry++, i++) { 986 if (entry->flags & XFS_ATTR_INCOMPLETE) 987 continue; /* don't copy partial entries */ 988 if (!(entry->flags & XFS_ATTR_LOCAL)) 989 return 0; 990 name_loc = xfs_attr3_leaf_name_local(leaf, i); 991 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 992 return 0; 993 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 994 return 0; 995 bytes += sizeof(struct xfs_attr_sf_entry) - 1 996 + name_loc->namelen 997 + be16_to_cpu(name_loc->valuelen); 998 } 999 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && 1000 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1001 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1002 return -1; 1003 return xfs_attr_shortform_bytesfit(dp, bytes); 1004 } 1005 1006 /* Verify the consistency of an inline attribute fork. */ 1007 xfs_failaddr_t 1008 xfs_attr_shortform_verify( 1009 struct xfs_inode *ip) 1010 { 1011 struct xfs_attr_shortform *sfp; 1012 struct xfs_attr_sf_entry *sfep; 1013 struct xfs_attr_sf_entry *next_sfep; 1014 char *endp; 1015 struct xfs_ifork *ifp; 1016 int i; 1017 int64_t size; 1018 1019 ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL); 1020 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 1021 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 1022 size = ifp->if_bytes; 1023 1024 /* 1025 * Give up if the attribute is way too short. 1026 */ 1027 if (size < sizeof(struct xfs_attr_sf_hdr)) 1028 return __this_address; 1029 1030 endp = (char *)sfp + size; 1031 1032 /* Check all reported entries */ 1033 sfep = &sfp->list[0]; 1034 for (i = 0; i < sfp->hdr.count; i++) { 1035 /* 1036 * struct xfs_attr_sf_entry has a variable length. 1037 * Check the fixed-offset parts of the structure are 1038 * within the data buffer. 1039 */ 1040 if (((char *)sfep + sizeof(*sfep)) >= endp) 1041 return __this_address; 1042 1043 /* Don't allow names with known bad length. */ 1044 if (sfep->namelen == 0) 1045 return __this_address; 1046 1047 /* 1048 * Check that the variable-length part of the structure is 1049 * within the data buffer. The next entry starts after the 1050 * name component, so nextentry is an acceptable test. 1051 */ 1052 next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep); 1053 if ((char *)next_sfep > endp) 1054 return __this_address; 1055 1056 /* 1057 * Check for unknown flags. Short form doesn't support 1058 * the incomplete or local bits, so we can use the namespace 1059 * mask here. 1060 */ 1061 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1062 return __this_address; 1063 1064 /* 1065 * Check for invalid namespace combinations. We only allow 1066 * one namespace flag per xattr, so we can just count the 1067 * bits (i.e. hweight) here. 1068 */ 1069 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1070 return __this_address; 1071 1072 sfep = next_sfep; 1073 } 1074 if ((void *)sfep != (void *)endp) 1075 return __this_address; 1076 1077 return NULL; 1078 } 1079 1080 /* 1081 * Convert a leaf attribute list to shortform attribute list 1082 */ 1083 int 1084 xfs_attr3_leaf_to_shortform( 1085 struct xfs_buf *bp, 1086 struct xfs_da_args *args, 1087 int forkoff) 1088 { 1089 struct xfs_attr_leafblock *leaf; 1090 struct xfs_attr3_icleaf_hdr ichdr; 1091 struct xfs_attr_leaf_entry *entry; 1092 struct xfs_attr_leaf_name_local *name_loc; 1093 struct xfs_da_args nargs; 1094 struct xfs_inode *dp = args->dp; 1095 char *tmpbuffer; 1096 int error; 1097 int i; 1098 1099 trace_xfs_attr_leaf_to_sf(args); 1100 1101 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1102 if (!tmpbuffer) 1103 return -ENOMEM; 1104 1105 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1106 1107 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1108 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1109 entry = xfs_attr3_leaf_entryp(leaf); 1110 1111 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1112 memset(bp->b_addr, 0, args->geo->blksize); 1113 1114 /* 1115 * Clean out the prior contents of the attribute list. 1116 */ 1117 error = xfs_da_shrink_inode(args, 0, bp); 1118 if (error) 1119 goto out; 1120 1121 if (forkoff == -1) { 1122 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); 1123 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1124 xfs_attr_fork_remove(dp, args->trans); 1125 goto out; 1126 } 1127 1128 xfs_attr_shortform_create(args); 1129 1130 /* 1131 * Copy the attributes 1132 */ 1133 memset((char *)&nargs, 0, sizeof(nargs)); 1134 nargs.geo = args->geo; 1135 nargs.dp = dp; 1136 nargs.total = args->total; 1137 nargs.whichfork = XFS_ATTR_FORK; 1138 nargs.trans = args->trans; 1139 nargs.op_flags = XFS_DA_OP_OKNOENT; 1140 1141 for (i = 0; i < ichdr.count; entry++, i++) { 1142 if (entry->flags & XFS_ATTR_INCOMPLETE) 1143 continue; /* don't copy partial entries */ 1144 if (!entry->nameidx) 1145 continue; 1146 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1147 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1148 nargs.name = name_loc->nameval; 1149 nargs.namelen = name_loc->namelen; 1150 nargs.value = &name_loc->nameval[nargs.namelen]; 1151 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1152 nargs.hashval = be32_to_cpu(entry->hashval); 1153 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1154 xfs_attr_shortform_add(&nargs, forkoff); 1155 } 1156 error = 0; 1157 1158 out: 1159 kmem_free(tmpbuffer); 1160 return error; 1161 } 1162 1163 /* 1164 * Convert from using a single leaf to a root node and a leaf. 1165 */ 1166 int 1167 xfs_attr3_leaf_to_node( 1168 struct xfs_da_args *args) 1169 { 1170 struct xfs_attr_leafblock *leaf; 1171 struct xfs_attr3_icleaf_hdr icleafhdr; 1172 struct xfs_attr_leaf_entry *entries; 1173 struct xfs_da3_icnode_hdr icnodehdr; 1174 struct xfs_da_intnode *node; 1175 struct xfs_inode *dp = args->dp; 1176 struct xfs_mount *mp = dp->i_mount; 1177 struct xfs_buf *bp1 = NULL; 1178 struct xfs_buf *bp2 = NULL; 1179 xfs_dablk_t blkno; 1180 int error; 1181 1182 trace_xfs_attr_leaf_to_node(args); 1183 1184 error = xfs_da_grow_inode(args, &blkno); 1185 if (error) 1186 goto out; 1187 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1188 if (error) 1189 goto out; 1190 1191 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1192 if (error) 1193 goto out; 1194 1195 /* copy leaf to new buffer, update identifiers */ 1196 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); 1197 bp2->b_ops = bp1->b_ops; 1198 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); 1199 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1200 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; 1201 hdr3->blkno = cpu_to_be64(bp2->b_bn); 1202 } 1203 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1204 1205 /* 1206 * Set up the new root node. 1207 */ 1208 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1209 if (error) 1210 goto out; 1211 node = bp1->b_addr; 1212 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1213 1214 leaf = bp2->b_addr; 1215 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1216 entries = xfs_attr3_leaf_entryp(leaf); 1217 1218 /* both on-disk, don't endian-flip twice */ 1219 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1220 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1221 icnodehdr.count = 1; 1222 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1223 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1224 error = 0; 1225 out: 1226 return error; 1227 } 1228 1229 /*======================================================================== 1230 * Routines used for growing the Btree. 1231 *========================================================================*/ 1232 1233 /* 1234 * Create the initial contents of a leaf attribute list 1235 * or a leaf in a node attribute list. 1236 */ 1237 STATIC int 1238 xfs_attr3_leaf_create( 1239 struct xfs_da_args *args, 1240 xfs_dablk_t blkno, 1241 struct xfs_buf **bpp) 1242 { 1243 struct xfs_attr_leafblock *leaf; 1244 struct xfs_attr3_icleaf_hdr ichdr; 1245 struct xfs_inode *dp = args->dp; 1246 struct xfs_mount *mp = dp->i_mount; 1247 struct xfs_buf *bp; 1248 int error; 1249 1250 trace_xfs_attr_leaf_create(args); 1251 1252 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1253 XFS_ATTR_FORK); 1254 if (error) 1255 return error; 1256 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1257 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1258 leaf = bp->b_addr; 1259 memset(leaf, 0, args->geo->blksize); 1260 1261 memset(&ichdr, 0, sizeof(ichdr)); 1262 ichdr.firstused = args->geo->blksize; 1263 1264 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1265 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1266 1267 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1268 1269 hdr3->blkno = cpu_to_be64(bp->b_bn); 1270 hdr3->owner = cpu_to_be64(dp->i_ino); 1271 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1272 1273 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1274 } else { 1275 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1276 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1277 } 1278 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1279 1280 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1281 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1282 1283 *bpp = bp; 1284 return 0; 1285 } 1286 1287 /* 1288 * Split the leaf node, rebalance, then add the new entry. 1289 */ 1290 int 1291 xfs_attr3_leaf_split( 1292 struct xfs_da_state *state, 1293 struct xfs_da_state_blk *oldblk, 1294 struct xfs_da_state_blk *newblk) 1295 { 1296 xfs_dablk_t blkno; 1297 int error; 1298 1299 trace_xfs_attr_leaf_split(state->args); 1300 1301 /* 1302 * Allocate space for a new leaf node. 1303 */ 1304 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1305 error = xfs_da_grow_inode(state->args, &blkno); 1306 if (error) 1307 return error; 1308 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1309 if (error) 1310 return error; 1311 newblk->blkno = blkno; 1312 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1313 1314 /* 1315 * Rebalance the entries across the two leaves. 1316 * NOTE: rebalance() currently depends on the 2nd block being empty. 1317 */ 1318 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1319 error = xfs_da3_blk_link(state, oldblk, newblk); 1320 if (error) 1321 return error; 1322 1323 /* 1324 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1325 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1326 * "new" attrs info. Will need the "old" info to remove it later. 1327 * 1328 * Insert the "new" entry in the correct block. 1329 */ 1330 if (state->inleaf) { 1331 trace_xfs_attr_leaf_add_old(state->args); 1332 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1333 } else { 1334 trace_xfs_attr_leaf_add_new(state->args); 1335 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1336 } 1337 1338 /* 1339 * Update last hashval in each block since we added the name. 1340 */ 1341 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1342 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1343 return error; 1344 } 1345 1346 /* 1347 * Add a name to the leaf attribute list structure. 1348 */ 1349 int 1350 xfs_attr3_leaf_add( 1351 struct xfs_buf *bp, 1352 struct xfs_da_args *args) 1353 { 1354 struct xfs_attr_leafblock *leaf; 1355 struct xfs_attr3_icleaf_hdr ichdr; 1356 int tablesize; 1357 int entsize; 1358 int sum; 1359 int tmp; 1360 int i; 1361 1362 trace_xfs_attr_leaf_add(args); 1363 1364 leaf = bp->b_addr; 1365 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1366 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1367 entsize = xfs_attr_leaf_newentsize(args, NULL); 1368 1369 /* 1370 * Search through freemap for first-fit on new name length. 1371 * (may need to figure in size of entry struct too) 1372 */ 1373 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1374 + xfs_attr3_leaf_hdr_size(leaf); 1375 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1376 if (tablesize > ichdr.firstused) { 1377 sum += ichdr.freemap[i].size; 1378 continue; 1379 } 1380 if (!ichdr.freemap[i].size) 1381 continue; /* no space in this map */ 1382 tmp = entsize; 1383 if (ichdr.freemap[i].base < ichdr.firstused) 1384 tmp += sizeof(xfs_attr_leaf_entry_t); 1385 if (ichdr.freemap[i].size >= tmp) { 1386 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1387 goto out_log_hdr; 1388 } 1389 sum += ichdr.freemap[i].size; 1390 } 1391 1392 /* 1393 * If there are no holes in the address space of the block, 1394 * and we don't have enough freespace, then compaction will do us 1395 * no good and we should just give up. 1396 */ 1397 if (!ichdr.holes && sum < entsize) 1398 return -ENOSPC; 1399 1400 /* 1401 * Compact the entries to coalesce free space. 1402 * This may change the hdr->count via dropping INCOMPLETE entries. 1403 */ 1404 xfs_attr3_leaf_compact(args, &ichdr, bp); 1405 1406 /* 1407 * After compaction, the block is guaranteed to have only one 1408 * free region, in freemap[0]. If it is not big enough, give up. 1409 */ 1410 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1411 tmp = -ENOSPC; 1412 goto out_log_hdr; 1413 } 1414 1415 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1416 1417 out_log_hdr: 1418 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1419 xfs_trans_log_buf(args->trans, bp, 1420 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1421 xfs_attr3_leaf_hdr_size(leaf))); 1422 return tmp; 1423 } 1424 1425 /* 1426 * Add a name to a leaf attribute list structure. 1427 */ 1428 STATIC int 1429 xfs_attr3_leaf_add_work( 1430 struct xfs_buf *bp, 1431 struct xfs_attr3_icleaf_hdr *ichdr, 1432 struct xfs_da_args *args, 1433 int mapindex) 1434 { 1435 struct xfs_attr_leafblock *leaf; 1436 struct xfs_attr_leaf_entry *entry; 1437 struct xfs_attr_leaf_name_local *name_loc; 1438 struct xfs_attr_leaf_name_remote *name_rmt; 1439 struct xfs_mount *mp; 1440 int tmp; 1441 int i; 1442 1443 trace_xfs_attr_leaf_add_work(args); 1444 1445 leaf = bp->b_addr; 1446 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1447 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1448 1449 /* 1450 * Force open some space in the entry array and fill it in. 1451 */ 1452 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1453 if (args->index < ichdr->count) { 1454 tmp = ichdr->count - args->index; 1455 tmp *= sizeof(xfs_attr_leaf_entry_t); 1456 memmove(entry + 1, entry, tmp); 1457 xfs_trans_log_buf(args->trans, bp, 1458 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1459 } 1460 ichdr->count++; 1461 1462 /* 1463 * Allocate space for the new string (at the end of the run). 1464 */ 1465 mp = args->trans->t_mountp; 1466 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1467 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1468 ASSERT(ichdr->freemap[mapindex].size >= 1469 xfs_attr_leaf_newentsize(args, NULL)); 1470 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1471 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1472 1473 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1474 1475 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1476 ichdr->freemap[mapindex].size); 1477 entry->hashval = cpu_to_be32(args->hashval); 1478 entry->flags = args->attr_filter; 1479 if (tmp) 1480 entry->flags |= XFS_ATTR_LOCAL; 1481 if (args->op_flags & XFS_DA_OP_RENAME) { 1482 entry->flags |= XFS_ATTR_INCOMPLETE; 1483 if ((args->blkno2 == args->blkno) && 1484 (args->index2 <= args->index)) { 1485 args->index2++; 1486 } 1487 } 1488 xfs_trans_log_buf(args->trans, bp, 1489 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1490 ASSERT((args->index == 0) || 1491 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1492 ASSERT((args->index == ichdr->count - 1) || 1493 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1494 1495 /* 1496 * For "remote" attribute values, simply note that we need to 1497 * allocate space for the "remote" value. We can't actually 1498 * allocate the extents in this transaction, and we can't decide 1499 * which blocks they should be as we might allocate more blocks 1500 * as part of this transaction (a split operation for example). 1501 */ 1502 if (entry->flags & XFS_ATTR_LOCAL) { 1503 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1504 name_loc->namelen = args->namelen; 1505 name_loc->valuelen = cpu_to_be16(args->valuelen); 1506 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1507 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1508 be16_to_cpu(name_loc->valuelen)); 1509 } else { 1510 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1511 name_rmt->namelen = args->namelen; 1512 memcpy((char *)name_rmt->name, args->name, args->namelen); 1513 entry->flags |= XFS_ATTR_INCOMPLETE; 1514 /* just in case */ 1515 name_rmt->valuelen = 0; 1516 name_rmt->valueblk = 0; 1517 args->rmtblkno = 1; 1518 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1519 args->rmtvaluelen = args->valuelen; 1520 } 1521 xfs_trans_log_buf(args->trans, bp, 1522 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1523 xfs_attr_leaf_entsize(leaf, args->index))); 1524 1525 /* 1526 * Update the control info for this leaf node 1527 */ 1528 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1529 ichdr->firstused = be16_to_cpu(entry->nameidx); 1530 1531 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1532 + xfs_attr3_leaf_hdr_size(leaf)); 1533 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1534 + xfs_attr3_leaf_hdr_size(leaf); 1535 1536 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1537 if (ichdr->freemap[i].base == tmp) { 1538 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1539 ichdr->freemap[i].size -= 1540 min_t(uint16_t, ichdr->freemap[i].size, 1541 sizeof(xfs_attr_leaf_entry_t)); 1542 } 1543 } 1544 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1545 return 0; 1546 } 1547 1548 /* 1549 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1550 */ 1551 STATIC void 1552 xfs_attr3_leaf_compact( 1553 struct xfs_da_args *args, 1554 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1555 struct xfs_buf *bp) 1556 { 1557 struct xfs_attr_leafblock *leaf_src; 1558 struct xfs_attr_leafblock *leaf_dst; 1559 struct xfs_attr3_icleaf_hdr ichdr_src; 1560 struct xfs_trans *trans = args->trans; 1561 char *tmpbuffer; 1562 1563 trace_xfs_attr_leaf_compact(args); 1564 1565 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1566 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1567 memset(bp->b_addr, 0, args->geo->blksize); 1568 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1569 leaf_dst = bp->b_addr; 1570 1571 /* 1572 * Copy the on-disk header back into the destination buffer to ensure 1573 * all the information in the header that is not part of the incore 1574 * header structure is preserved. 1575 */ 1576 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1577 1578 /* Initialise the incore headers */ 1579 ichdr_src = *ichdr_dst; /* struct copy */ 1580 ichdr_dst->firstused = args->geo->blksize; 1581 ichdr_dst->usedbytes = 0; 1582 ichdr_dst->count = 0; 1583 ichdr_dst->holes = 0; 1584 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1585 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1586 ichdr_dst->freemap[0].base; 1587 1588 /* write the header back to initialise the underlying buffer */ 1589 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1590 1591 /* 1592 * Copy all entry's in the same (sorted) order, 1593 * but allocate name/value pairs packed and in sequence. 1594 */ 1595 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1596 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1597 /* 1598 * this logs the entire buffer, but the caller must write the header 1599 * back to the buffer when it is finished modifying it. 1600 */ 1601 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1602 1603 kmem_free(tmpbuffer); 1604 } 1605 1606 /* 1607 * Compare two leaf blocks "order". 1608 * Return 0 unless leaf2 should go before leaf1. 1609 */ 1610 static int 1611 xfs_attr3_leaf_order( 1612 struct xfs_buf *leaf1_bp, 1613 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1614 struct xfs_buf *leaf2_bp, 1615 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1616 { 1617 struct xfs_attr_leaf_entry *entries1; 1618 struct xfs_attr_leaf_entry *entries2; 1619 1620 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1621 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1622 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1623 ((be32_to_cpu(entries2[0].hashval) < 1624 be32_to_cpu(entries1[0].hashval)) || 1625 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1626 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1627 return 1; 1628 } 1629 return 0; 1630 } 1631 1632 int 1633 xfs_attr_leaf_order( 1634 struct xfs_buf *leaf1_bp, 1635 struct xfs_buf *leaf2_bp) 1636 { 1637 struct xfs_attr3_icleaf_hdr ichdr1; 1638 struct xfs_attr3_icleaf_hdr ichdr2; 1639 struct xfs_mount *mp = leaf1_bp->b_mount; 1640 1641 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1642 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1643 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1644 } 1645 1646 /* 1647 * Redistribute the attribute list entries between two leaf nodes, 1648 * taking into account the size of the new entry. 1649 * 1650 * NOTE: if new block is empty, then it will get the upper half of the 1651 * old block. At present, all (one) callers pass in an empty second block. 1652 * 1653 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1654 * to match what it is doing in splitting the attribute leaf block. Those 1655 * values are used in "atomic rename" operations on attributes. Note that 1656 * the "new" and "old" values can end up in different blocks. 1657 */ 1658 STATIC void 1659 xfs_attr3_leaf_rebalance( 1660 struct xfs_da_state *state, 1661 struct xfs_da_state_blk *blk1, 1662 struct xfs_da_state_blk *blk2) 1663 { 1664 struct xfs_da_args *args; 1665 struct xfs_attr_leafblock *leaf1; 1666 struct xfs_attr_leafblock *leaf2; 1667 struct xfs_attr3_icleaf_hdr ichdr1; 1668 struct xfs_attr3_icleaf_hdr ichdr2; 1669 struct xfs_attr_leaf_entry *entries1; 1670 struct xfs_attr_leaf_entry *entries2; 1671 int count; 1672 int totallen; 1673 int max; 1674 int space; 1675 int swap; 1676 1677 /* 1678 * Set up environment. 1679 */ 1680 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1681 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1682 leaf1 = blk1->bp->b_addr; 1683 leaf2 = blk2->bp->b_addr; 1684 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1685 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1686 ASSERT(ichdr2.count == 0); 1687 args = state->args; 1688 1689 trace_xfs_attr_leaf_rebalance(args); 1690 1691 /* 1692 * Check ordering of blocks, reverse if it makes things simpler. 1693 * 1694 * NOTE: Given that all (current) callers pass in an empty 1695 * second block, this code should never set "swap". 1696 */ 1697 swap = 0; 1698 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1699 swap(blk1, blk2); 1700 1701 /* swap structures rather than reconverting them */ 1702 swap(ichdr1, ichdr2); 1703 1704 leaf1 = blk1->bp->b_addr; 1705 leaf2 = blk2->bp->b_addr; 1706 swap = 1; 1707 } 1708 1709 /* 1710 * Examine entries until we reduce the absolute difference in 1711 * byte usage between the two blocks to a minimum. Then get 1712 * the direction to copy and the number of elements to move. 1713 * 1714 * "inleaf" is true if the new entry should be inserted into blk1. 1715 * If "swap" is also true, then reverse the sense of "inleaf". 1716 */ 1717 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1718 blk2, &ichdr2, 1719 &count, &totallen); 1720 if (swap) 1721 state->inleaf = !state->inleaf; 1722 1723 /* 1724 * Move any entries required from leaf to leaf: 1725 */ 1726 if (count < ichdr1.count) { 1727 /* 1728 * Figure the total bytes to be added to the destination leaf. 1729 */ 1730 /* number entries being moved */ 1731 count = ichdr1.count - count; 1732 space = ichdr1.usedbytes - totallen; 1733 space += count * sizeof(xfs_attr_leaf_entry_t); 1734 1735 /* 1736 * leaf2 is the destination, compact it if it looks tight. 1737 */ 1738 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1739 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1740 if (space > max) 1741 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1742 1743 /* 1744 * Move high entries from leaf1 to low end of leaf2. 1745 */ 1746 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1747 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1748 1749 } else if (count > ichdr1.count) { 1750 /* 1751 * I assert that since all callers pass in an empty 1752 * second buffer, this code should never execute. 1753 */ 1754 ASSERT(0); 1755 1756 /* 1757 * Figure the total bytes to be added to the destination leaf. 1758 */ 1759 /* number entries being moved */ 1760 count -= ichdr1.count; 1761 space = totallen - ichdr1.usedbytes; 1762 space += count * sizeof(xfs_attr_leaf_entry_t); 1763 1764 /* 1765 * leaf1 is the destination, compact it if it looks tight. 1766 */ 1767 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1768 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1769 if (space > max) 1770 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1771 1772 /* 1773 * Move low entries from leaf2 to high end of leaf1. 1774 */ 1775 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1776 ichdr1.count, count); 1777 } 1778 1779 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1780 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1781 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1782 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1783 1784 /* 1785 * Copy out last hashval in each block for B-tree code. 1786 */ 1787 entries1 = xfs_attr3_leaf_entryp(leaf1); 1788 entries2 = xfs_attr3_leaf_entryp(leaf2); 1789 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1790 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1791 1792 /* 1793 * Adjust the expected index for insertion. 1794 * NOTE: this code depends on the (current) situation that the 1795 * second block was originally empty. 1796 * 1797 * If the insertion point moved to the 2nd block, we must adjust 1798 * the index. We must also track the entry just following the 1799 * new entry for use in an "atomic rename" operation, that entry 1800 * is always the "old" entry and the "new" entry is what we are 1801 * inserting. The index/blkno fields refer to the "old" entry, 1802 * while the index2/blkno2 fields refer to the "new" entry. 1803 */ 1804 if (blk1->index > ichdr1.count) { 1805 ASSERT(state->inleaf == 0); 1806 blk2->index = blk1->index - ichdr1.count; 1807 args->index = args->index2 = blk2->index; 1808 args->blkno = args->blkno2 = blk2->blkno; 1809 } else if (blk1->index == ichdr1.count) { 1810 if (state->inleaf) { 1811 args->index = blk1->index; 1812 args->blkno = blk1->blkno; 1813 args->index2 = 0; 1814 args->blkno2 = blk2->blkno; 1815 } else { 1816 /* 1817 * On a double leaf split, the original attr location 1818 * is already stored in blkno2/index2, so don't 1819 * overwrite it overwise we corrupt the tree. 1820 */ 1821 blk2->index = blk1->index - ichdr1.count; 1822 args->index = blk2->index; 1823 args->blkno = blk2->blkno; 1824 if (!state->extravalid) { 1825 /* 1826 * set the new attr location to match the old 1827 * one and let the higher level split code 1828 * decide where in the leaf to place it. 1829 */ 1830 args->index2 = blk2->index; 1831 args->blkno2 = blk2->blkno; 1832 } 1833 } 1834 } else { 1835 ASSERT(state->inleaf == 1); 1836 args->index = args->index2 = blk1->index; 1837 args->blkno = args->blkno2 = blk1->blkno; 1838 } 1839 } 1840 1841 /* 1842 * Examine entries until we reduce the absolute difference in 1843 * byte usage between the two blocks to a minimum. 1844 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1845 * GROT: there will always be enough room in either block for a new entry. 1846 * GROT: Do a double-split for this case? 1847 */ 1848 STATIC int 1849 xfs_attr3_leaf_figure_balance( 1850 struct xfs_da_state *state, 1851 struct xfs_da_state_blk *blk1, 1852 struct xfs_attr3_icleaf_hdr *ichdr1, 1853 struct xfs_da_state_blk *blk2, 1854 struct xfs_attr3_icleaf_hdr *ichdr2, 1855 int *countarg, 1856 int *usedbytesarg) 1857 { 1858 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1859 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1860 struct xfs_attr_leaf_entry *entry; 1861 int count; 1862 int max; 1863 int index; 1864 int totallen = 0; 1865 int half; 1866 int lastdelta; 1867 int foundit = 0; 1868 int tmp; 1869 1870 /* 1871 * Examine entries until we reduce the absolute difference in 1872 * byte usage between the two blocks to a minimum. 1873 */ 1874 max = ichdr1->count + ichdr2->count; 1875 half = (max + 1) * sizeof(*entry); 1876 half += ichdr1->usedbytes + ichdr2->usedbytes + 1877 xfs_attr_leaf_newentsize(state->args, NULL); 1878 half /= 2; 1879 lastdelta = state->args->geo->blksize; 1880 entry = xfs_attr3_leaf_entryp(leaf1); 1881 for (count = index = 0; count < max; entry++, index++, count++) { 1882 1883 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1884 /* 1885 * The new entry is in the first block, account for it. 1886 */ 1887 if (count == blk1->index) { 1888 tmp = totallen + sizeof(*entry) + 1889 xfs_attr_leaf_newentsize(state->args, NULL); 1890 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1891 break; 1892 lastdelta = XFS_ATTR_ABS(half - tmp); 1893 totallen = tmp; 1894 foundit = 1; 1895 } 1896 1897 /* 1898 * Wrap around into the second block if necessary. 1899 */ 1900 if (count == ichdr1->count) { 1901 leaf1 = leaf2; 1902 entry = xfs_attr3_leaf_entryp(leaf1); 1903 index = 0; 1904 } 1905 1906 /* 1907 * Figure out if next leaf entry would be too much. 1908 */ 1909 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1910 index); 1911 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1912 break; 1913 lastdelta = XFS_ATTR_ABS(half - tmp); 1914 totallen = tmp; 1915 #undef XFS_ATTR_ABS 1916 } 1917 1918 /* 1919 * Calculate the number of usedbytes that will end up in lower block. 1920 * If new entry not in lower block, fix up the count. 1921 */ 1922 totallen -= count * sizeof(*entry); 1923 if (foundit) { 1924 totallen -= sizeof(*entry) + 1925 xfs_attr_leaf_newentsize(state->args, NULL); 1926 } 1927 1928 *countarg = count; 1929 *usedbytesarg = totallen; 1930 return foundit; 1931 } 1932 1933 /*======================================================================== 1934 * Routines used for shrinking the Btree. 1935 *========================================================================*/ 1936 1937 /* 1938 * Check a leaf block and its neighbors to see if the block should be 1939 * collapsed into one or the other neighbor. Always keep the block 1940 * with the smaller block number. 1941 * If the current block is over 50% full, don't try to join it, return 0. 1942 * If the block is empty, fill in the state structure and return 2. 1943 * If it can be collapsed, fill in the state structure and return 1. 1944 * If nothing can be done, return 0. 1945 * 1946 * GROT: allow for INCOMPLETE entries in calculation. 1947 */ 1948 int 1949 xfs_attr3_leaf_toosmall( 1950 struct xfs_da_state *state, 1951 int *action) 1952 { 1953 struct xfs_attr_leafblock *leaf; 1954 struct xfs_da_state_blk *blk; 1955 struct xfs_attr3_icleaf_hdr ichdr; 1956 struct xfs_buf *bp; 1957 xfs_dablk_t blkno; 1958 int bytes; 1959 int forward; 1960 int error; 1961 int retval; 1962 int i; 1963 1964 trace_xfs_attr_leaf_toosmall(state->args); 1965 1966 /* 1967 * Check for the degenerate case of the block being over 50% full. 1968 * If so, it's not worth even looking to see if we might be able 1969 * to coalesce with a sibling. 1970 */ 1971 blk = &state->path.blk[ state->path.active-1 ]; 1972 leaf = blk->bp->b_addr; 1973 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 1974 bytes = xfs_attr3_leaf_hdr_size(leaf) + 1975 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 1976 ichdr.usedbytes; 1977 if (bytes > (state->args->geo->blksize >> 1)) { 1978 *action = 0; /* blk over 50%, don't try to join */ 1979 return 0; 1980 } 1981 1982 /* 1983 * Check for the degenerate case of the block being empty. 1984 * If the block is empty, we'll simply delete it, no need to 1985 * coalesce it with a sibling block. We choose (arbitrarily) 1986 * to merge with the forward block unless it is NULL. 1987 */ 1988 if (ichdr.count == 0) { 1989 /* 1990 * Make altpath point to the block we want to keep and 1991 * path point to the block we want to drop (this one). 1992 */ 1993 forward = (ichdr.forw != 0); 1994 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1995 error = xfs_da3_path_shift(state, &state->altpath, forward, 1996 0, &retval); 1997 if (error) 1998 return error; 1999 if (retval) { 2000 *action = 0; 2001 } else { 2002 *action = 2; 2003 } 2004 return 0; 2005 } 2006 2007 /* 2008 * Examine each sibling block to see if we can coalesce with 2009 * at least 25% free space to spare. We need to figure out 2010 * whether to merge with the forward or the backward block. 2011 * We prefer coalescing with the lower numbered sibling so as 2012 * to shrink an attribute list over time. 2013 */ 2014 /* start with smaller blk num */ 2015 forward = ichdr.forw < ichdr.back; 2016 for (i = 0; i < 2; forward = !forward, i++) { 2017 struct xfs_attr3_icleaf_hdr ichdr2; 2018 if (forward) 2019 blkno = ichdr.forw; 2020 else 2021 blkno = ichdr.back; 2022 if (blkno == 0) 2023 continue; 2024 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2025 blkno, &bp); 2026 if (error) 2027 return error; 2028 2029 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2030 2031 bytes = state->args->geo->blksize - 2032 (state->args->geo->blksize >> 2) - 2033 ichdr.usedbytes - ichdr2.usedbytes - 2034 ((ichdr.count + ichdr2.count) * 2035 sizeof(xfs_attr_leaf_entry_t)) - 2036 xfs_attr3_leaf_hdr_size(leaf); 2037 2038 xfs_trans_brelse(state->args->trans, bp); 2039 if (bytes >= 0) 2040 break; /* fits with at least 25% to spare */ 2041 } 2042 if (i >= 2) { 2043 *action = 0; 2044 return 0; 2045 } 2046 2047 /* 2048 * Make altpath point to the block we want to keep (the lower 2049 * numbered block) and path point to the block we want to drop. 2050 */ 2051 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2052 if (blkno < blk->blkno) { 2053 error = xfs_da3_path_shift(state, &state->altpath, forward, 2054 0, &retval); 2055 } else { 2056 error = xfs_da3_path_shift(state, &state->path, forward, 2057 0, &retval); 2058 } 2059 if (error) 2060 return error; 2061 if (retval) { 2062 *action = 0; 2063 } else { 2064 *action = 1; 2065 } 2066 return 0; 2067 } 2068 2069 /* 2070 * Remove a name from the leaf attribute list structure. 2071 * 2072 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2073 * If two leaves are 37% full, when combined they will leave 25% free. 2074 */ 2075 int 2076 xfs_attr3_leaf_remove( 2077 struct xfs_buf *bp, 2078 struct xfs_da_args *args) 2079 { 2080 struct xfs_attr_leafblock *leaf; 2081 struct xfs_attr3_icleaf_hdr ichdr; 2082 struct xfs_attr_leaf_entry *entry; 2083 int before; 2084 int after; 2085 int smallest; 2086 int entsize; 2087 int tablesize; 2088 int tmp; 2089 int i; 2090 2091 trace_xfs_attr_leaf_remove(args); 2092 2093 leaf = bp->b_addr; 2094 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2095 2096 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2097 ASSERT(args->index >= 0 && args->index < ichdr.count); 2098 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2099 xfs_attr3_leaf_hdr_size(leaf)); 2100 2101 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2102 2103 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2104 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2105 2106 /* 2107 * Scan through free region table: 2108 * check for adjacency of free'd entry with an existing one, 2109 * find smallest free region in case we need to replace it, 2110 * adjust any map that borders the entry table, 2111 */ 2112 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2113 + xfs_attr3_leaf_hdr_size(leaf); 2114 tmp = ichdr.freemap[0].size; 2115 before = after = -1; 2116 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2117 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2118 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2119 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2120 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2121 if (ichdr.freemap[i].base == tablesize) { 2122 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2123 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2124 } 2125 2126 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2127 be16_to_cpu(entry->nameidx)) { 2128 before = i; 2129 } else if (ichdr.freemap[i].base == 2130 (be16_to_cpu(entry->nameidx) + entsize)) { 2131 after = i; 2132 } else if (ichdr.freemap[i].size < tmp) { 2133 tmp = ichdr.freemap[i].size; 2134 smallest = i; 2135 } 2136 } 2137 2138 /* 2139 * Coalesce adjacent freemap regions, 2140 * or replace the smallest region. 2141 */ 2142 if ((before >= 0) || (after >= 0)) { 2143 if ((before >= 0) && (after >= 0)) { 2144 ichdr.freemap[before].size += entsize; 2145 ichdr.freemap[before].size += ichdr.freemap[after].size; 2146 ichdr.freemap[after].base = 0; 2147 ichdr.freemap[after].size = 0; 2148 } else if (before >= 0) { 2149 ichdr.freemap[before].size += entsize; 2150 } else { 2151 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2152 ichdr.freemap[after].size += entsize; 2153 } 2154 } else { 2155 /* 2156 * Replace smallest region (if it is smaller than free'd entry) 2157 */ 2158 if (ichdr.freemap[smallest].size < entsize) { 2159 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2160 ichdr.freemap[smallest].size = entsize; 2161 } 2162 } 2163 2164 /* 2165 * Did we remove the first entry? 2166 */ 2167 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2168 smallest = 1; 2169 else 2170 smallest = 0; 2171 2172 /* 2173 * Compress the remaining entries and zero out the removed stuff. 2174 */ 2175 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2176 ichdr.usedbytes -= entsize; 2177 xfs_trans_log_buf(args->trans, bp, 2178 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2179 entsize)); 2180 2181 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2182 memmove(entry, entry + 1, tmp); 2183 ichdr.count--; 2184 xfs_trans_log_buf(args->trans, bp, 2185 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2186 2187 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2188 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2189 2190 /* 2191 * If we removed the first entry, re-find the first used byte 2192 * in the name area. Note that if the entry was the "firstused", 2193 * then we don't have a "hole" in our block resulting from 2194 * removing the name. 2195 */ 2196 if (smallest) { 2197 tmp = args->geo->blksize; 2198 entry = xfs_attr3_leaf_entryp(leaf); 2199 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2200 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2201 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2202 2203 if (be16_to_cpu(entry->nameidx) < tmp) 2204 tmp = be16_to_cpu(entry->nameidx); 2205 } 2206 ichdr.firstused = tmp; 2207 ASSERT(ichdr.firstused != 0); 2208 } else { 2209 ichdr.holes = 1; /* mark as needing compaction */ 2210 } 2211 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2212 xfs_trans_log_buf(args->trans, bp, 2213 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2214 xfs_attr3_leaf_hdr_size(leaf))); 2215 2216 /* 2217 * Check if leaf is less than 50% full, caller may want to 2218 * "join" the leaf with a sibling if so. 2219 */ 2220 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2221 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2222 2223 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2224 } 2225 2226 /* 2227 * Move all the attribute list entries from drop_leaf into save_leaf. 2228 */ 2229 void 2230 xfs_attr3_leaf_unbalance( 2231 struct xfs_da_state *state, 2232 struct xfs_da_state_blk *drop_blk, 2233 struct xfs_da_state_blk *save_blk) 2234 { 2235 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2236 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2237 struct xfs_attr3_icleaf_hdr drophdr; 2238 struct xfs_attr3_icleaf_hdr savehdr; 2239 struct xfs_attr_leaf_entry *entry; 2240 2241 trace_xfs_attr_leaf_unbalance(state->args); 2242 2243 drop_leaf = drop_blk->bp->b_addr; 2244 save_leaf = save_blk->bp->b_addr; 2245 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2246 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2247 entry = xfs_attr3_leaf_entryp(drop_leaf); 2248 2249 /* 2250 * Save last hashval from dying block for later Btree fixup. 2251 */ 2252 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2253 2254 /* 2255 * Check if we need a temp buffer, or can we do it in place. 2256 * Note that we don't check "leaf" for holes because we will 2257 * always be dropping it, toosmall() decided that for us already. 2258 */ 2259 if (savehdr.holes == 0) { 2260 /* 2261 * dest leaf has no holes, so we add there. May need 2262 * to make some room in the entry array. 2263 */ 2264 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2265 drop_blk->bp, &drophdr)) { 2266 xfs_attr3_leaf_moveents(state->args, 2267 drop_leaf, &drophdr, 0, 2268 save_leaf, &savehdr, 0, 2269 drophdr.count); 2270 } else { 2271 xfs_attr3_leaf_moveents(state->args, 2272 drop_leaf, &drophdr, 0, 2273 save_leaf, &savehdr, 2274 savehdr.count, drophdr.count); 2275 } 2276 } else { 2277 /* 2278 * Destination has holes, so we make a temporary copy 2279 * of the leaf and add them both to that. 2280 */ 2281 struct xfs_attr_leafblock *tmp_leaf; 2282 struct xfs_attr3_icleaf_hdr tmphdr; 2283 2284 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2285 2286 /* 2287 * Copy the header into the temp leaf so that all the stuff 2288 * not in the incore header is present and gets copied back in 2289 * once we've moved all the entries. 2290 */ 2291 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2292 2293 memset(&tmphdr, 0, sizeof(tmphdr)); 2294 tmphdr.magic = savehdr.magic; 2295 tmphdr.forw = savehdr.forw; 2296 tmphdr.back = savehdr.back; 2297 tmphdr.firstused = state->args->geo->blksize; 2298 2299 /* write the header to the temp buffer to initialise it */ 2300 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2301 2302 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2303 drop_blk->bp, &drophdr)) { 2304 xfs_attr3_leaf_moveents(state->args, 2305 drop_leaf, &drophdr, 0, 2306 tmp_leaf, &tmphdr, 0, 2307 drophdr.count); 2308 xfs_attr3_leaf_moveents(state->args, 2309 save_leaf, &savehdr, 0, 2310 tmp_leaf, &tmphdr, tmphdr.count, 2311 savehdr.count); 2312 } else { 2313 xfs_attr3_leaf_moveents(state->args, 2314 save_leaf, &savehdr, 0, 2315 tmp_leaf, &tmphdr, 0, 2316 savehdr.count); 2317 xfs_attr3_leaf_moveents(state->args, 2318 drop_leaf, &drophdr, 0, 2319 tmp_leaf, &tmphdr, tmphdr.count, 2320 drophdr.count); 2321 } 2322 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2323 savehdr = tmphdr; /* struct copy */ 2324 kmem_free(tmp_leaf); 2325 } 2326 2327 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2328 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2329 state->args->geo->blksize - 1); 2330 2331 /* 2332 * Copy out last hashval in each block for B-tree code. 2333 */ 2334 entry = xfs_attr3_leaf_entryp(save_leaf); 2335 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2336 } 2337 2338 /*======================================================================== 2339 * Routines used for finding things in the Btree. 2340 *========================================================================*/ 2341 2342 /* 2343 * Look up a name in a leaf attribute list structure. 2344 * This is the internal routine, it uses the caller's buffer. 2345 * 2346 * Note that duplicate keys are allowed, but only check within the 2347 * current leaf node. The Btree code must check in adjacent leaf nodes. 2348 * 2349 * Return in args->index the index into the entry[] array of either 2350 * the found entry, or where the entry should have been (insert before 2351 * that entry). 2352 * 2353 * Don't change the args->value unless we find the attribute. 2354 */ 2355 int 2356 xfs_attr3_leaf_lookup_int( 2357 struct xfs_buf *bp, 2358 struct xfs_da_args *args) 2359 { 2360 struct xfs_attr_leafblock *leaf; 2361 struct xfs_attr3_icleaf_hdr ichdr; 2362 struct xfs_attr_leaf_entry *entry; 2363 struct xfs_attr_leaf_entry *entries; 2364 struct xfs_attr_leaf_name_local *name_loc; 2365 struct xfs_attr_leaf_name_remote *name_rmt; 2366 xfs_dahash_t hashval; 2367 int probe; 2368 int span; 2369 2370 trace_xfs_attr_leaf_lookup(args); 2371 2372 leaf = bp->b_addr; 2373 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2374 entries = xfs_attr3_leaf_entryp(leaf); 2375 if (ichdr.count >= args->geo->blksize / 8) { 2376 xfs_buf_mark_corrupt(bp); 2377 return -EFSCORRUPTED; 2378 } 2379 2380 /* 2381 * Binary search. (note: small blocks will skip this loop) 2382 */ 2383 hashval = args->hashval; 2384 probe = span = ichdr.count / 2; 2385 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2386 span /= 2; 2387 if (be32_to_cpu(entry->hashval) < hashval) 2388 probe += span; 2389 else if (be32_to_cpu(entry->hashval) > hashval) 2390 probe -= span; 2391 else 2392 break; 2393 } 2394 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2395 xfs_buf_mark_corrupt(bp); 2396 return -EFSCORRUPTED; 2397 } 2398 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2399 xfs_buf_mark_corrupt(bp); 2400 return -EFSCORRUPTED; 2401 } 2402 2403 /* 2404 * Since we may have duplicate hashval's, find the first matching 2405 * hashval in the leaf. 2406 */ 2407 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2408 entry--; 2409 probe--; 2410 } 2411 while (probe < ichdr.count && 2412 be32_to_cpu(entry->hashval) < hashval) { 2413 entry++; 2414 probe++; 2415 } 2416 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2417 args->index = probe; 2418 return -ENOATTR; 2419 } 2420 2421 /* 2422 * Duplicate keys may be present, so search all of them for a match. 2423 */ 2424 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2425 entry++, probe++) { 2426 /* 2427 * GROT: Add code to remove incomplete entries. 2428 */ 2429 if (entry->flags & XFS_ATTR_LOCAL) { 2430 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2431 if (!xfs_attr_match(args, name_loc->namelen, 2432 name_loc->nameval, entry->flags)) 2433 continue; 2434 args->index = probe; 2435 return -EEXIST; 2436 } else { 2437 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2438 if (!xfs_attr_match(args, name_rmt->namelen, 2439 name_rmt->name, entry->flags)) 2440 continue; 2441 args->index = probe; 2442 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2443 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2444 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2445 args->dp->i_mount, 2446 args->rmtvaluelen); 2447 return -EEXIST; 2448 } 2449 } 2450 args->index = probe; 2451 return -ENOATTR; 2452 } 2453 2454 /* 2455 * Get the value associated with an attribute name from a leaf attribute 2456 * list structure. 2457 * 2458 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2459 * lookup, we only return an error if the attribute does not exist or we can't 2460 * retrieve the value. 2461 */ 2462 int 2463 xfs_attr3_leaf_getvalue( 2464 struct xfs_buf *bp, 2465 struct xfs_da_args *args) 2466 { 2467 struct xfs_attr_leafblock *leaf; 2468 struct xfs_attr3_icleaf_hdr ichdr; 2469 struct xfs_attr_leaf_entry *entry; 2470 struct xfs_attr_leaf_name_local *name_loc; 2471 struct xfs_attr_leaf_name_remote *name_rmt; 2472 2473 leaf = bp->b_addr; 2474 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2475 ASSERT(ichdr.count < args->geo->blksize / 8); 2476 ASSERT(args->index < ichdr.count); 2477 2478 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2479 if (entry->flags & XFS_ATTR_LOCAL) { 2480 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2481 ASSERT(name_loc->namelen == args->namelen); 2482 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2483 return xfs_attr_copy_value(args, 2484 &name_loc->nameval[args->namelen], 2485 be16_to_cpu(name_loc->valuelen)); 2486 } 2487 2488 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2489 ASSERT(name_rmt->namelen == args->namelen); 2490 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2491 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2492 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2493 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2494 args->rmtvaluelen); 2495 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2496 } 2497 2498 /*======================================================================== 2499 * Utility routines. 2500 *========================================================================*/ 2501 2502 /* 2503 * Move the indicated entries from one leaf to another. 2504 * NOTE: this routine modifies both source and destination leaves. 2505 */ 2506 /*ARGSUSED*/ 2507 STATIC void 2508 xfs_attr3_leaf_moveents( 2509 struct xfs_da_args *args, 2510 struct xfs_attr_leafblock *leaf_s, 2511 struct xfs_attr3_icleaf_hdr *ichdr_s, 2512 int start_s, 2513 struct xfs_attr_leafblock *leaf_d, 2514 struct xfs_attr3_icleaf_hdr *ichdr_d, 2515 int start_d, 2516 int count) 2517 { 2518 struct xfs_attr_leaf_entry *entry_s; 2519 struct xfs_attr_leaf_entry *entry_d; 2520 int desti; 2521 int tmp; 2522 int i; 2523 2524 /* 2525 * Check for nothing to do. 2526 */ 2527 if (count == 0) 2528 return; 2529 2530 /* 2531 * Set up environment. 2532 */ 2533 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2534 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2535 ASSERT(ichdr_s->magic == ichdr_d->magic); 2536 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2537 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2538 + xfs_attr3_leaf_hdr_size(leaf_s)); 2539 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2540 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2541 + xfs_attr3_leaf_hdr_size(leaf_d)); 2542 2543 ASSERT(start_s < ichdr_s->count); 2544 ASSERT(start_d <= ichdr_d->count); 2545 ASSERT(count <= ichdr_s->count); 2546 2547 2548 /* 2549 * Move the entries in the destination leaf up to make a hole? 2550 */ 2551 if (start_d < ichdr_d->count) { 2552 tmp = ichdr_d->count - start_d; 2553 tmp *= sizeof(xfs_attr_leaf_entry_t); 2554 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2555 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2556 memmove(entry_d, entry_s, tmp); 2557 } 2558 2559 /* 2560 * Copy all entry's in the same (sorted) order, 2561 * but allocate attribute info packed and in sequence. 2562 */ 2563 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2564 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2565 desti = start_d; 2566 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2567 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2568 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2569 #ifdef GROT 2570 /* 2571 * Code to drop INCOMPLETE entries. Difficult to use as we 2572 * may also need to change the insertion index. Code turned 2573 * off for 6.2, should be revisited later. 2574 */ 2575 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2576 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2577 ichdr_s->usedbytes -= tmp; 2578 ichdr_s->count -= 1; 2579 entry_d--; /* to compensate for ++ in loop hdr */ 2580 desti--; 2581 if ((start_s + i) < offset) 2582 result++; /* insertion index adjustment */ 2583 } else { 2584 #endif /* GROT */ 2585 ichdr_d->firstused -= tmp; 2586 /* both on-disk, don't endian flip twice */ 2587 entry_d->hashval = entry_s->hashval; 2588 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2589 entry_d->flags = entry_s->flags; 2590 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2591 <= args->geo->blksize); 2592 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2593 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2594 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2595 <= args->geo->blksize); 2596 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2597 ichdr_s->usedbytes -= tmp; 2598 ichdr_d->usedbytes += tmp; 2599 ichdr_s->count -= 1; 2600 ichdr_d->count += 1; 2601 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2602 + xfs_attr3_leaf_hdr_size(leaf_d); 2603 ASSERT(ichdr_d->firstused >= tmp); 2604 #ifdef GROT 2605 } 2606 #endif /* GROT */ 2607 } 2608 2609 /* 2610 * Zero out the entries we just copied. 2611 */ 2612 if (start_s == ichdr_s->count) { 2613 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2614 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2615 ASSERT(((char *)entry_s + tmp) <= 2616 ((char *)leaf_s + args->geo->blksize)); 2617 memset(entry_s, 0, tmp); 2618 } else { 2619 /* 2620 * Move the remaining entries down to fill the hole, 2621 * then zero the entries at the top. 2622 */ 2623 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2624 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2625 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2626 memmove(entry_d, entry_s, tmp); 2627 2628 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2629 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2630 ASSERT(((char *)entry_s + tmp) <= 2631 ((char *)leaf_s + args->geo->blksize)); 2632 memset(entry_s, 0, tmp); 2633 } 2634 2635 /* 2636 * Fill in the freemap information 2637 */ 2638 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2639 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2640 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2641 ichdr_d->freemap[1].base = 0; 2642 ichdr_d->freemap[2].base = 0; 2643 ichdr_d->freemap[1].size = 0; 2644 ichdr_d->freemap[2].size = 0; 2645 ichdr_s->holes = 1; /* leaf may not be compact */ 2646 } 2647 2648 /* 2649 * Pick up the last hashvalue from a leaf block. 2650 */ 2651 xfs_dahash_t 2652 xfs_attr_leaf_lasthash( 2653 struct xfs_buf *bp, 2654 int *count) 2655 { 2656 struct xfs_attr3_icleaf_hdr ichdr; 2657 struct xfs_attr_leaf_entry *entries; 2658 struct xfs_mount *mp = bp->b_mount; 2659 2660 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2661 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2662 if (count) 2663 *count = ichdr.count; 2664 if (!ichdr.count) 2665 return 0; 2666 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2667 } 2668 2669 /* 2670 * Calculate the number of bytes used to store the indicated attribute 2671 * (whether local or remote only calculate bytes in this block). 2672 */ 2673 STATIC int 2674 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2675 { 2676 struct xfs_attr_leaf_entry *entries; 2677 xfs_attr_leaf_name_local_t *name_loc; 2678 xfs_attr_leaf_name_remote_t *name_rmt; 2679 int size; 2680 2681 entries = xfs_attr3_leaf_entryp(leaf); 2682 if (entries[index].flags & XFS_ATTR_LOCAL) { 2683 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2684 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2685 be16_to_cpu(name_loc->valuelen)); 2686 } else { 2687 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2688 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2689 } 2690 return size; 2691 } 2692 2693 /* 2694 * Calculate the number of bytes that would be required to store the new 2695 * attribute (whether local or remote only calculate bytes in this block). 2696 * This routine decides as a side effect whether the attribute will be 2697 * a "local" or a "remote" attribute. 2698 */ 2699 int 2700 xfs_attr_leaf_newentsize( 2701 struct xfs_da_args *args, 2702 int *local) 2703 { 2704 int size; 2705 2706 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2707 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2708 if (local) 2709 *local = 1; 2710 return size; 2711 } 2712 if (local) 2713 *local = 0; 2714 return xfs_attr_leaf_entsize_remote(args->namelen); 2715 } 2716 2717 2718 /*======================================================================== 2719 * Manage the INCOMPLETE flag in a leaf entry 2720 *========================================================================*/ 2721 2722 /* 2723 * Clear the INCOMPLETE flag on an entry in a leaf block. 2724 */ 2725 int 2726 xfs_attr3_leaf_clearflag( 2727 struct xfs_da_args *args) 2728 { 2729 struct xfs_attr_leafblock *leaf; 2730 struct xfs_attr_leaf_entry *entry; 2731 struct xfs_attr_leaf_name_remote *name_rmt; 2732 struct xfs_buf *bp; 2733 int error; 2734 #ifdef DEBUG 2735 struct xfs_attr3_icleaf_hdr ichdr; 2736 xfs_attr_leaf_name_local_t *name_loc; 2737 int namelen; 2738 char *name; 2739 #endif /* DEBUG */ 2740 2741 trace_xfs_attr_leaf_clearflag(args); 2742 /* 2743 * Set up the operation. 2744 */ 2745 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2746 if (error) 2747 return error; 2748 2749 leaf = bp->b_addr; 2750 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2751 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2752 2753 #ifdef DEBUG 2754 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2755 ASSERT(args->index < ichdr.count); 2756 ASSERT(args->index >= 0); 2757 2758 if (entry->flags & XFS_ATTR_LOCAL) { 2759 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2760 namelen = name_loc->namelen; 2761 name = (char *)name_loc->nameval; 2762 } else { 2763 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2764 namelen = name_rmt->namelen; 2765 name = (char *)name_rmt->name; 2766 } 2767 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2768 ASSERT(namelen == args->namelen); 2769 ASSERT(memcmp(name, args->name, namelen) == 0); 2770 #endif /* DEBUG */ 2771 2772 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2773 xfs_trans_log_buf(args->trans, bp, 2774 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2775 2776 if (args->rmtblkno) { 2777 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2778 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2779 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2780 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2781 xfs_trans_log_buf(args->trans, bp, 2782 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2783 } 2784 2785 return 0; 2786 } 2787 2788 /* 2789 * Set the INCOMPLETE flag on an entry in a leaf block. 2790 */ 2791 int 2792 xfs_attr3_leaf_setflag( 2793 struct xfs_da_args *args) 2794 { 2795 struct xfs_attr_leafblock *leaf; 2796 struct xfs_attr_leaf_entry *entry; 2797 struct xfs_attr_leaf_name_remote *name_rmt; 2798 struct xfs_buf *bp; 2799 int error; 2800 #ifdef DEBUG 2801 struct xfs_attr3_icleaf_hdr ichdr; 2802 #endif 2803 2804 trace_xfs_attr_leaf_setflag(args); 2805 2806 /* 2807 * Set up the operation. 2808 */ 2809 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2810 if (error) 2811 return error; 2812 2813 leaf = bp->b_addr; 2814 #ifdef DEBUG 2815 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2816 ASSERT(args->index < ichdr.count); 2817 ASSERT(args->index >= 0); 2818 #endif 2819 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2820 2821 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2822 entry->flags |= XFS_ATTR_INCOMPLETE; 2823 xfs_trans_log_buf(args->trans, bp, 2824 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2825 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2826 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2827 name_rmt->valueblk = 0; 2828 name_rmt->valuelen = 0; 2829 xfs_trans_log_buf(args->trans, bp, 2830 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2831 } 2832 2833 return 0; 2834 } 2835 2836 /* 2837 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2838 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2839 * entry given by args->blkno2/index2. 2840 * 2841 * Note that they could be in different blocks, or in the same block. 2842 */ 2843 int 2844 xfs_attr3_leaf_flipflags( 2845 struct xfs_da_args *args) 2846 { 2847 struct xfs_attr_leafblock *leaf1; 2848 struct xfs_attr_leafblock *leaf2; 2849 struct xfs_attr_leaf_entry *entry1; 2850 struct xfs_attr_leaf_entry *entry2; 2851 struct xfs_attr_leaf_name_remote *name_rmt; 2852 struct xfs_buf *bp1; 2853 struct xfs_buf *bp2; 2854 int error; 2855 #ifdef DEBUG 2856 struct xfs_attr3_icleaf_hdr ichdr1; 2857 struct xfs_attr3_icleaf_hdr ichdr2; 2858 xfs_attr_leaf_name_local_t *name_loc; 2859 int namelen1, namelen2; 2860 char *name1, *name2; 2861 #endif /* DEBUG */ 2862 2863 trace_xfs_attr_leaf_flipflags(args); 2864 2865 /* 2866 * Read the block containing the "old" attr 2867 */ 2868 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2869 if (error) 2870 return error; 2871 2872 /* 2873 * Read the block containing the "new" attr, if it is different 2874 */ 2875 if (args->blkno2 != args->blkno) { 2876 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2877 &bp2); 2878 if (error) 2879 return error; 2880 } else { 2881 bp2 = bp1; 2882 } 2883 2884 leaf1 = bp1->b_addr; 2885 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2886 2887 leaf2 = bp2->b_addr; 2888 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2889 2890 #ifdef DEBUG 2891 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2892 ASSERT(args->index < ichdr1.count); 2893 ASSERT(args->index >= 0); 2894 2895 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2896 ASSERT(args->index2 < ichdr2.count); 2897 ASSERT(args->index2 >= 0); 2898 2899 if (entry1->flags & XFS_ATTR_LOCAL) { 2900 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2901 namelen1 = name_loc->namelen; 2902 name1 = (char *)name_loc->nameval; 2903 } else { 2904 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2905 namelen1 = name_rmt->namelen; 2906 name1 = (char *)name_rmt->name; 2907 } 2908 if (entry2->flags & XFS_ATTR_LOCAL) { 2909 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2910 namelen2 = name_loc->namelen; 2911 name2 = (char *)name_loc->nameval; 2912 } else { 2913 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2914 namelen2 = name_rmt->namelen; 2915 name2 = (char *)name_rmt->name; 2916 } 2917 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2918 ASSERT(namelen1 == namelen2); 2919 ASSERT(memcmp(name1, name2, namelen1) == 0); 2920 #endif /* DEBUG */ 2921 2922 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2923 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2924 2925 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2926 xfs_trans_log_buf(args->trans, bp1, 2927 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2928 if (args->rmtblkno) { 2929 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2930 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2931 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2932 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2933 xfs_trans_log_buf(args->trans, bp1, 2934 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2935 } 2936 2937 entry2->flags |= XFS_ATTR_INCOMPLETE; 2938 xfs_trans_log_buf(args->trans, bp2, 2939 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2940 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2941 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2942 name_rmt->valueblk = 0; 2943 name_rmt->valuelen = 0; 2944 xfs_trans_log_buf(args->trans, bp2, 2945 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2946 } 2947 2948 return 0; 2949 } 2950