1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_mount.h" 26 #include "xfs_btree.h" 27 #include "xfs_alloc_btree.h" 28 #include "xfs_alloc.h" 29 #include "xfs_extent_busy.h" 30 #include "xfs_error.h" 31 #include "xfs_trace.h" 32 #include "xfs_cksum.h" 33 #include "xfs_trans.h" 34 35 36 STATIC struct xfs_btree_cur * 37 xfs_allocbt_dup_cursor( 38 struct xfs_btree_cur *cur) 39 { 40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp, 41 cur->bc_private.a.agbp, cur->bc_private.a.agno, 42 cur->bc_btnum); 43 } 44 45 STATIC void 46 xfs_allocbt_set_root( 47 struct xfs_btree_cur *cur, 48 union xfs_btree_ptr *ptr, 49 int inc) 50 { 51 struct xfs_buf *agbp = cur->bc_private.a.agbp; 52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); 54 int btnum = cur->bc_btnum; 55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno); 56 57 ASSERT(ptr->s != 0); 58 59 agf->agf_roots[btnum] = ptr->s; 60 be32_add_cpu(&agf->agf_levels[btnum], inc); 61 pag->pagf_levels[btnum] += inc; 62 xfs_perag_put(pag); 63 64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); 65 } 66 67 STATIC int 68 xfs_allocbt_alloc_block( 69 struct xfs_btree_cur *cur, 70 union xfs_btree_ptr *start, 71 union xfs_btree_ptr *new, 72 int *stat) 73 { 74 int error; 75 xfs_agblock_t bno; 76 77 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 78 79 /* Allocate the new block from the freelist. If we can't, give up. */ 80 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, 81 &bno, 1); 82 if (error) { 83 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 84 return error; 85 } 86 87 if (bno == NULLAGBLOCK) { 88 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 89 *stat = 0; 90 return 0; 91 } 92 93 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false); 94 95 xfs_trans_agbtree_delta(cur->bc_tp, 1); 96 new->s = cpu_to_be32(bno); 97 98 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 99 *stat = 1; 100 return 0; 101 } 102 103 STATIC int 104 xfs_allocbt_free_block( 105 struct xfs_btree_cur *cur, 106 struct xfs_buf *bp) 107 { 108 struct xfs_buf *agbp = cur->bc_private.a.agbp; 109 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 110 xfs_agblock_t bno; 111 int error; 112 113 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp)); 114 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1); 115 if (error) 116 return error; 117 118 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1, 119 XFS_EXTENT_BUSY_SKIP_DISCARD); 120 xfs_trans_agbtree_delta(cur->bc_tp, -1); 121 return 0; 122 } 123 124 /* 125 * Update the longest extent in the AGF 126 */ 127 STATIC void 128 xfs_allocbt_update_lastrec( 129 struct xfs_btree_cur *cur, 130 struct xfs_btree_block *block, 131 union xfs_btree_rec *rec, 132 int ptr, 133 int reason) 134 { 135 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); 136 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); 137 struct xfs_perag *pag; 138 __be32 len; 139 int numrecs; 140 141 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT); 142 143 switch (reason) { 144 case LASTREC_UPDATE: 145 /* 146 * If this is the last leaf block and it's the last record, 147 * then update the size of the longest extent in the AG. 148 */ 149 if (ptr != xfs_btree_get_numrecs(block)) 150 return; 151 len = rec->alloc.ar_blockcount; 152 break; 153 case LASTREC_INSREC: 154 if (be32_to_cpu(rec->alloc.ar_blockcount) <= 155 be32_to_cpu(agf->agf_longest)) 156 return; 157 len = rec->alloc.ar_blockcount; 158 break; 159 case LASTREC_DELREC: 160 numrecs = xfs_btree_get_numrecs(block); 161 if (ptr <= numrecs) 162 return; 163 ASSERT(ptr == numrecs + 1); 164 165 if (numrecs) { 166 xfs_alloc_rec_t *rrp; 167 168 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs); 169 len = rrp->ar_blockcount; 170 } else { 171 len = 0; 172 } 173 174 break; 175 default: 176 ASSERT(0); 177 return; 178 } 179 180 agf->agf_longest = len; 181 pag = xfs_perag_get(cur->bc_mp, seqno); 182 pag->pagf_longest = be32_to_cpu(len); 183 xfs_perag_put(pag); 184 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST); 185 } 186 187 STATIC int 188 xfs_allocbt_get_minrecs( 189 struct xfs_btree_cur *cur, 190 int level) 191 { 192 return cur->bc_mp->m_alloc_mnr[level != 0]; 193 } 194 195 STATIC int 196 xfs_allocbt_get_maxrecs( 197 struct xfs_btree_cur *cur, 198 int level) 199 { 200 return cur->bc_mp->m_alloc_mxr[level != 0]; 201 } 202 203 STATIC void 204 xfs_allocbt_init_key_from_rec( 205 union xfs_btree_key *key, 206 union xfs_btree_rec *rec) 207 { 208 key->alloc.ar_startblock = rec->alloc.ar_startblock; 209 key->alloc.ar_blockcount = rec->alloc.ar_blockcount; 210 } 211 212 STATIC void 213 xfs_bnobt_init_high_key_from_rec( 214 union xfs_btree_key *key, 215 union xfs_btree_rec *rec) 216 { 217 __u32 x; 218 219 x = be32_to_cpu(rec->alloc.ar_startblock); 220 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1; 221 key->alloc.ar_startblock = cpu_to_be32(x); 222 key->alloc.ar_blockcount = 0; 223 } 224 225 STATIC void 226 xfs_cntbt_init_high_key_from_rec( 227 union xfs_btree_key *key, 228 union xfs_btree_rec *rec) 229 { 230 key->alloc.ar_blockcount = rec->alloc.ar_blockcount; 231 key->alloc.ar_startblock = 0; 232 } 233 234 STATIC void 235 xfs_allocbt_init_rec_from_cur( 236 struct xfs_btree_cur *cur, 237 union xfs_btree_rec *rec) 238 { 239 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock); 240 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount); 241 } 242 243 STATIC void 244 xfs_allocbt_init_ptr_from_cur( 245 struct xfs_btree_cur *cur, 246 union xfs_btree_ptr *ptr) 247 { 248 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); 249 250 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno)); 251 ASSERT(agf->agf_roots[cur->bc_btnum] != 0); 252 253 ptr->s = agf->agf_roots[cur->bc_btnum]; 254 } 255 256 STATIC int64_t 257 xfs_bnobt_key_diff( 258 struct xfs_btree_cur *cur, 259 union xfs_btree_key *key) 260 { 261 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a; 262 xfs_alloc_key_t *kp = &key->alloc; 263 264 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock; 265 } 266 267 STATIC int64_t 268 xfs_cntbt_key_diff( 269 struct xfs_btree_cur *cur, 270 union xfs_btree_key *key) 271 { 272 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a; 273 xfs_alloc_key_t *kp = &key->alloc; 274 int64_t diff; 275 276 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount; 277 if (diff) 278 return diff; 279 280 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock; 281 } 282 283 STATIC int64_t 284 xfs_bnobt_diff_two_keys( 285 struct xfs_btree_cur *cur, 286 union xfs_btree_key *k1, 287 union xfs_btree_key *k2) 288 { 289 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) - 290 be32_to_cpu(k2->alloc.ar_startblock); 291 } 292 293 STATIC int64_t 294 xfs_cntbt_diff_two_keys( 295 struct xfs_btree_cur *cur, 296 union xfs_btree_key *k1, 297 union xfs_btree_key *k2) 298 { 299 int64_t diff; 300 301 diff = be32_to_cpu(k1->alloc.ar_blockcount) - 302 be32_to_cpu(k2->alloc.ar_blockcount); 303 if (diff) 304 return diff; 305 306 return be32_to_cpu(k1->alloc.ar_startblock) - 307 be32_to_cpu(k2->alloc.ar_startblock); 308 } 309 310 static xfs_failaddr_t 311 xfs_allocbt_verify( 312 struct xfs_buf *bp) 313 { 314 struct xfs_mount *mp = bp->b_target->bt_mount; 315 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 316 struct xfs_perag *pag = bp->b_pag; 317 xfs_failaddr_t fa; 318 unsigned int level; 319 320 /* 321 * magic number and level verification 322 * 323 * During growfs operations, we can't verify the exact level or owner as 324 * the perag is not fully initialised and hence not attached to the 325 * buffer. In this case, check against the maximum tree depth. 326 * 327 * Similarly, during log recovery we will have a perag structure 328 * attached, but the agf information will not yet have been initialised 329 * from the on disk AGF. Again, we can only check against maximum limits 330 * in this case. 331 */ 332 level = be16_to_cpu(block->bb_level); 333 switch (block->bb_magic) { 334 case cpu_to_be32(XFS_ABTB_CRC_MAGIC): 335 fa = xfs_btree_sblock_v5hdr_verify(bp); 336 if (fa) 337 return fa; 338 /* fall through */ 339 case cpu_to_be32(XFS_ABTB_MAGIC): 340 if (pag && pag->pagf_init) { 341 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi]) 342 return __this_address; 343 } else if (level >= mp->m_ag_maxlevels) 344 return __this_address; 345 break; 346 case cpu_to_be32(XFS_ABTC_CRC_MAGIC): 347 fa = xfs_btree_sblock_v5hdr_verify(bp); 348 if (fa) 349 return fa; 350 /* fall through */ 351 case cpu_to_be32(XFS_ABTC_MAGIC): 352 if (pag && pag->pagf_init) { 353 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi]) 354 return __this_address; 355 } else if (level >= mp->m_ag_maxlevels) 356 return __this_address; 357 break; 358 default: 359 return __this_address; 360 } 361 362 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]); 363 } 364 365 static void 366 xfs_allocbt_read_verify( 367 struct xfs_buf *bp) 368 { 369 xfs_failaddr_t fa; 370 371 if (!xfs_btree_sblock_verify_crc(bp)) 372 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 373 else { 374 fa = xfs_allocbt_verify(bp); 375 if (fa) 376 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 377 } 378 379 if (bp->b_error) 380 trace_xfs_btree_corrupt(bp, _RET_IP_); 381 } 382 383 static void 384 xfs_allocbt_write_verify( 385 struct xfs_buf *bp) 386 { 387 xfs_failaddr_t fa; 388 389 fa = xfs_allocbt_verify(bp); 390 if (fa) { 391 trace_xfs_btree_corrupt(bp, _RET_IP_); 392 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 393 return; 394 } 395 xfs_btree_sblock_calc_crc(bp); 396 397 } 398 399 const struct xfs_buf_ops xfs_allocbt_buf_ops = { 400 .name = "xfs_allocbt", 401 .verify_read = xfs_allocbt_read_verify, 402 .verify_write = xfs_allocbt_write_verify, 403 .verify_struct = xfs_allocbt_verify, 404 }; 405 406 407 STATIC int 408 xfs_bnobt_keys_inorder( 409 struct xfs_btree_cur *cur, 410 union xfs_btree_key *k1, 411 union xfs_btree_key *k2) 412 { 413 return be32_to_cpu(k1->alloc.ar_startblock) < 414 be32_to_cpu(k2->alloc.ar_startblock); 415 } 416 417 STATIC int 418 xfs_bnobt_recs_inorder( 419 struct xfs_btree_cur *cur, 420 union xfs_btree_rec *r1, 421 union xfs_btree_rec *r2) 422 { 423 return be32_to_cpu(r1->alloc.ar_startblock) + 424 be32_to_cpu(r1->alloc.ar_blockcount) <= 425 be32_to_cpu(r2->alloc.ar_startblock); 426 } 427 428 STATIC int 429 xfs_cntbt_keys_inorder( 430 struct xfs_btree_cur *cur, 431 union xfs_btree_key *k1, 432 union xfs_btree_key *k2) 433 { 434 return be32_to_cpu(k1->alloc.ar_blockcount) < 435 be32_to_cpu(k2->alloc.ar_blockcount) || 436 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount && 437 be32_to_cpu(k1->alloc.ar_startblock) < 438 be32_to_cpu(k2->alloc.ar_startblock)); 439 } 440 441 STATIC int 442 xfs_cntbt_recs_inorder( 443 struct xfs_btree_cur *cur, 444 union xfs_btree_rec *r1, 445 union xfs_btree_rec *r2) 446 { 447 return be32_to_cpu(r1->alloc.ar_blockcount) < 448 be32_to_cpu(r2->alloc.ar_blockcount) || 449 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount && 450 be32_to_cpu(r1->alloc.ar_startblock) < 451 be32_to_cpu(r2->alloc.ar_startblock)); 452 } 453 454 static const struct xfs_btree_ops xfs_bnobt_ops = { 455 .rec_len = sizeof(xfs_alloc_rec_t), 456 .key_len = sizeof(xfs_alloc_key_t), 457 458 .dup_cursor = xfs_allocbt_dup_cursor, 459 .set_root = xfs_allocbt_set_root, 460 .alloc_block = xfs_allocbt_alloc_block, 461 .free_block = xfs_allocbt_free_block, 462 .update_lastrec = xfs_allocbt_update_lastrec, 463 .get_minrecs = xfs_allocbt_get_minrecs, 464 .get_maxrecs = xfs_allocbt_get_maxrecs, 465 .init_key_from_rec = xfs_allocbt_init_key_from_rec, 466 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec, 467 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur, 468 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur, 469 .key_diff = xfs_bnobt_key_diff, 470 .buf_ops = &xfs_allocbt_buf_ops, 471 .diff_two_keys = xfs_bnobt_diff_two_keys, 472 .keys_inorder = xfs_bnobt_keys_inorder, 473 .recs_inorder = xfs_bnobt_recs_inorder, 474 }; 475 476 static const struct xfs_btree_ops xfs_cntbt_ops = { 477 .rec_len = sizeof(xfs_alloc_rec_t), 478 .key_len = sizeof(xfs_alloc_key_t), 479 480 .dup_cursor = xfs_allocbt_dup_cursor, 481 .set_root = xfs_allocbt_set_root, 482 .alloc_block = xfs_allocbt_alloc_block, 483 .free_block = xfs_allocbt_free_block, 484 .update_lastrec = xfs_allocbt_update_lastrec, 485 .get_minrecs = xfs_allocbt_get_minrecs, 486 .get_maxrecs = xfs_allocbt_get_maxrecs, 487 .init_key_from_rec = xfs_allocbt_init_key_from_rec, 488 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec, 489 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur, 490 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur, 491 .key_diff = xfs_cntbt_key_diff, 492 .buf_ops = &xfs_allocbt_buf_ops, 493 .diff_two_keys = xfs_cntbt_diff_two_keys, 494 .keys_inorder = xfs_cntbt_keys_inorder, 495 .recs_inorder = xfs_cntbt_recs_inorder, 496 }; 497 498 /* 499 * Allocate a new allocation btree cursor. 500 */ 501 struct xfs_btree_cur * /* new alloc btree cursor */ 502 xfs_allocbt_init_cursor( 503 struct xfs_mount *mp, /* file system mount point */ 504 struct xfs_trans *tp, /* transaction pointer */ 505 struct xfs_buf *agbp, /* buffer for agf structure */ 506 xfs_agnumber_t agno, /* allocation group number */ 507 xfs_btnum_t btnum) /* btree identifier */ 508 { 509 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 510 struct xfs_btree_cur *cur; 511 512 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT); 513 514 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 515 516 cur->bc_tp = tp; 517 cur->bc_mp = mp; 518 cur->bc_btnum = btnum; 519 cur->bc_blocklog = mp->m_sb.sb_blocklog; 520 521 if (btnum == XFS_BTNUM_CNT) { 522 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2); 523 cur->bc_ops = &xfs_cntbt_ops; 524 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]); 525 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE; 526 } else { 527 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2); 528 cur->bc_ops = &xfs_bnobt_ops; 529 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]); 530 } 531 532 cur->bc_private.a.agbp = agbp; 533 cur->bc_private.a.agno = agno; 534 535 if (xfs_sb_version_hascrc(&mp->m_sb)) 536 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 537 538 return cur; 539 } 540 541 /* 542 * Calculate number of records in an alloc btree block. 543 */ 544 int 545 xfs_allocbt_maxrecs( 546 struct xfs_mount *mp, 547 int blocklen, 548 int leaf) 549 { 550 blocklen -= XFS_ALLOC_BLOCK_LEN(mp); 551 552 if (leaf) 553 return blocklen / sizeof(xfs_alloc_rec_t); 554 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t)); 555 } 556