xref: /openbmc/linux/fs/xfs/libxfs/xfs_alloc_btree.c (revision 9fb29c73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_cksum.h"
21 #include "xfs_trans.h"
22 
23 
24 STATIC struct xfs_btree_cur *
25 xfs_allocbt_dup_cursor(
26 	struct xfs_btree_cur	*cur)
27 {
28 	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 			cur->bc_private.a.agbp, cur->bc_private.a.agno,
30 			cur->bc_btnum);
31 }
32 
33 STATIC void
34 xfs_allocbt_set_root(
35 	struct xfs_btree_cur	*cur,
36 	union xfs_btree_ptr	*ptr,
37 	int			inc)
38 {
39 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
40 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
41 	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
42 	int			btnum = cur->bc_btnum;
43 	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
44 
45 	ASSERT(ptr->s != 0);
46 
47 	agf->agf_roots[btnum] = ptr->s;
48 	be32_add_cpu(&agf->agf_levels[btnum], inc);
49 	pag->pagf_levels[btnum] += inc;
50 	xfs_perag_put(pag);
51 
52 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
53 }
54 
55 STATIC int
56 xfs_allocbt_alloc_block(
57 	struct xfs_btree_cur	*cur,
58 	union xfs_btree_ptr	*start,
59 	union xfs_btree_ptr	*new,
60 	int			*stat)
61 {
62 	int			error;
63 	xfs_agblock_t		bno;
64 
65 	/* Allocate the new block from the freelist. If we can't, give up.  */
66 	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
67 				       &bno, 1);
68 	if (error)
69 		return error;
70 
71 	if (bno == NULLAGBLOCK) {
72 		*stat = 0;
73 		return 0;
74 	}
75 
76 	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
77 
78 	xfs_trans_agbtree_delta(cur->bc_tp, 1);
79 	new->s = cpu_to_be32(bno);
80 
81 	*stat = 1;
82 	return 0;
83 }
84 
85 STATIC int
86 xfs_allocbt_free_block(
87 	struct xfs_btree_cur	*cur,
88 	struct xfs_buf		*bp)
89 {
90 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
91 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
92 	xfs_agblock_t		bno;
93 	int			error;
94 
95 	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
96 	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
97 	if (error)
98 		return error;
99 
100 	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
101 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
102 	xfs_trans_agbtree_delta(cur->bc_tp, -1);
103 	return 0;
104 }
105 
106 /*
107  * Update the longest extent in the AGF
108  */
109 STATIC void
110 xfs_allocbt_update_lastrec(
111 	struct xfs_btree_cur	*cur,
112 	struct xfs_btree_block	*block,
113 	union xfs_btree_rec	*rec,
114 	int			ptr,
115 	int			reason)
116 {
117 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
118 	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
119 	struct xfs_perag	*pag;
120 	__be32			len;
121 	int			numrecs;
122 
123 	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
124 
125 	switch (reason) {
126 	case LASTREC_UPDATE:
127 		/*
128 		 * If this is the last leaf block and it's the last record,
129 		 * then update the size of the longest extent in the AG.
130 		 */
131 		if (ptr != xfs_btree_get_numrecs(block))
132 			return;
133 		len = rec->alloc.ar_blockcount;
134 		break;
135 	case LASTREC_INSREC:
136 		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
137 		    be32_to_cpu(agf->agf_longest))
138 			return;
139 		len = rec->alloc.ar_blockcount;
140 		break;
141 	case LASTREC_DELREC:
142 		numrecs = xfs_btree_get_numrecs(block);
143 		if (ptr <= numrecs)
144 			return;
145 		ASSERT(ptr == numrecs + 1);
146 
147 		if (numrecs) {
148 			xfs_alloc_rec_t *rrp;
149 
150 			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
151 			len = rrp->ar_blockcount;
152 		} else {
153 			len = 0;
154 		}
155 
156 		break;
157 	default:
158 		ASSERT(0);
159 		return;
160 	}
161 
162 	agf->agf_longest = len;
163 	pag = xfs_perag_get(cur->bc_mp, seqno);
164 	pag->pagf_longest = be32_to_cpu(len);
165 	xfs_perag_put(pag);
166 	xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
167 }
168 
169 STATIC int
170 xfs_allocbt_get_minrecs(
171 	struct xfs_btree_cur	*cur,
172 	int			level)
173 {
174 	return cur->bc_mp->m_alloc_mnr[level != 0];
175 }
176 
177 STATIC int
178 xfs_allocbt_get_maxrecs(
179 	struct xfs_btree_cur	*cur,
180 	int			level)
181 {
182 	return cur->bc_mp->m_alloc_mxr[level != 0];
183 }
184 
185 STATIC void
186 xfs_allocbt_init_key_from_rec(
187 	union xfs_btree_key	*key,
188 	union xfs_btree_rec	*rec)
189 {
190 	key->alloc.ar_startblock = rec->alloc.ar_startblock;
191 	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
192 }
193 
194 STATIC void
195 xfs_bnobt_init_high_key_from_rec(
196 	union xfs_btree_key	*key,
197 	union xfs_btree_rec	*rec)
198 {
199 	__u32			x;
200 
201 	x = be32_to_cpu(rec->alloc.ar_startblock);
202 	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
203 	key->alloc.ar_startblock = cpu_to_be32(x);
204 	key->alloc.ar_blockcount = 0;
205 }
206 
207 STATIC void
208 xfs_cntbt_init_high_key_from_rec(
209 	union xfs_btree_key	*key,
210 	union xfs_btree_rec	*rec)
211 {
212 	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
213 	key->alloc.ar_startblock = 0;
214 }
215 
216 STATIC void
217 xfs_allocbt_init_rec_from_cur(
218 	struct xfs_btree_cur	*cur,
219 	union xfs_btree_rec	*rec)
220 {
221 	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
222 	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
223 }
224 
225 STATIC void
226 xfs_allocbt_init_ptr_from_cur(
227 	struct xfs_btree_cur	*cur,
228 	union xfs_btree_ptr	*ptr)
229 {
230 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
231 
232 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
233 
234 	ptr->s = agf->agf_roots[cur->bc_btnum];
235 }
236 
237 STATIC int64_t
238 xfs_bnobt_key_diff(
239 	struct xfs_btree_cur	*cur,
240 	union xfs_btree_key	*key)
241 {
242 	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
243 	xfs_alloc_key_t		*kp = &key->alloc;
244 
245 	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
246 }
247 
248 STATIC int64_t
249 xfs_cntbt_key_diff(
250 	struct xfs_btree_cur	*cur,
251 	union xfs_btree_key	*key)
252 {
253 	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
254 	xfs_alloc_key_t		*kp = &key->alloc;
255 	int64_t			diff;
256 
257 	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
258 	if (diff)
259 		return diff;
260 
261 	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
262 }
263 
264 STATIC int64_t
265 xfs_bnobt_diff_two_keys(
266 	struct xfs_btree_cur	*cur,
267 	union xfs_btree_key	*k1,
268 	union xfs_btree_key	*k2)
269 {
270 	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
271 			  be32_to_cpu(k2->alloc.ar_startblock);
272 }
273 
274 STATIC int64_t
275 xfs_cntbt_diff_two_keys(
276 	struct xfs_btree_cur	*cur,
277 	union xfs_btree_key	*k1,
278 	union xfs_btree_key	*k2)
279 {
280 	int64_t			diff;
281 
282 	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
283 		be32_to_cpu(k2->alloc.ar_blockcount);
284 	if (diff)
285 		return diff;
286 
287 	return  be32_to_cpu(k1->alloc.ar_startblock) -
288 		be32_to_cpu(k2->alloc.ar_startblock);
289 }
290 
291 static xfs_failaddr_t
292 xfs_allocbt_verify(
293 	struct xfs_buf		*bp)
294 {
295 	struct xfs_mount	*mp = bp->b_target->bt_mount;
296 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
297 	struct xfs_perag	*pag = bp->b_pag;
298 	xfs_failaddr_t		fa;
299 	unsigned int		level;
300 
301 	/*
302 	 * magic number and level verification
303 	 *
304 	 * During growfs operations, we can't verify the exact level or owner as
305 	 * the perag is not fully initialised and hence not attached to the
306 	 * buffer.  In this case, check against the maximum tree depth.
307 	 *
308 	 * Similarly, during log recovery we will have a perag structure
309 	 * attached, but the agf information will not yet have been initialised
310 	 * from the on disk AGF. Again, we can only check against maximum limits
311 	 * in this case.
312 	 */
313 	level = be16_to_cpu(block->bb_level);
314 	switch (block->bb_magic) {
315 	case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
316 		fa = xfs_btree_sblock_v5hdr_verify(bp);
317 		if (fa)
318 			return fa;
319 		/* fall through */
320 	case cpu_to_be32(XFS_ABTB_MAGIC):
321 		if (pag && pag->pagf_init) {
322 			if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
323 				return __this_address;
324 		} else if (level >= mp->m_ag_maxlevels)
325 			return __this_address;
326 		break;
327 	case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
328 		fa = xfs_btree_sblock_v5hdr_verify(bp);
329 		if (fa)
330 			return fa;
331 		/* fall through */
332 	case cpu_to_be32(XFS_ABTC_MAGIC):
333 		if (pag && pag->pagf_init) {
334 			if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
335 				return __this_address;
336 		} else if (level >= mp->m_ag_maxlevels)
337 			return __this_address;
338 		break;
339 	default:
340 		return __this_address;
341 	}
342 
343 	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
344 }
345 
346 static void
347 xfs_allocbt_read_verify(
348 	struct xfs_buf	*bp)
349 {
350 	xfs_failaddr_t	fa;
351 
352 	if (!xfs_btree_sblock_verify_crc(bp))
353 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
354 	else {
355 		fa = xfs_allocbt_verify(bp);
356 		if (fa)
357 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
358 	}
359 
360 	if (bp->b_error)
361 		trace_xfs_btree_corrupt(bp, _RET_IP_);
362 }
363 
364 static void
365 xfs_allocbt_write_verify(
366 	struct xfs_buf	*bp)
367 {
368 	xfs_failaddr_t	fa;
369 
370 	fa = xfs_allocbt_verify(bp);
371 	if (fa) {
372 		trace_xfs_btree_corrupt(bp, _RET_IP_);
373 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
374 		return;
375 	}
376 	xfs_btree_sblock_calc_crc(bp);
377 
378 }
379 
380 const struct xfs_buf_ops xfs_allocbt_buf_ops = {
381 	.name = "xfs_allocbt",
382 	.verify_read = xfs_allocbt_read_verify,
383 	.verify_write = xfs_allocbt_write_verify,
384 	.verify_struct = xfs_allocbt_verify,
385 };
386 
387 
388 STATIC int
389 xfs_bnobt_keys_inorder(
390 	struct xfs_btree_cur	*cur,
391 	union xfs_btree_key	*k1,
392 	union xfs_btree_key	*k2)
393 {
394 	return be32_to_cpu(k1->alloc.ar_startblock) <
395 	       be32_to_cpu(k2->alloc.ar_startblock);
396 }
397 
398 STATIC int
399 xfs_bnobt_recs_inorder(
400 	struct xfs_btree_cur	*cur,
401 	union xfs_btree_rec	*r1,
402 	union xfs_btree_rec	*r2)
403 {
404 	return be32_to_cpu(r1->alloc.ar_startblock) +
405 		be32_to_cpu(r1->alloc.ar_blockcount) <=
406 		be32_to_cpu(r2->alloc.ar_startblock);
407 }
408 
409 STATIC int
410 xfs_cntbt_keys_inorder(
411 	struct xfs_btree_cur	*cur,
412 	union xfs_btree_key	*k1,
413 	union xfs_btree_key	*k2)
414 {
415 	return be32_to_cpu(k1->alloc.ar_blockcount) <
416 		be32_to_cpu(k2->alloc.ar_blockcount) ||
417 		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
418 		 be32_to_cpu(k1->alloc.ar_startblock) <
419 		 be32_to_cpu(k2->alloc.ar_startblock));
420 }
421 
422 STATIC int
423 xfs_cntbt_recs_inorder(
424 	struct xfs_btree_cur	*cur,
425 	union xfs_btree_rec	*r1,
426 	union xfs_btree_rec	*r2)
427 {
428 	return be32_to_cpu(r1->alloc.ar_blockcount) <
429 		be32_to_cpu(r2->alloc.ar_blockcount) ||
430 		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
431 		 be32_to_cpu(r1->alloc.ar_startblock) <
432 		 be32_to_cpu(r2->alloc.ar_startblock));
433 }
434 
435 static const struct xfs_btree_ops xfs_bnobt_ops = {
436 	.rec_len		= sizeof(xfs_alloc_rec_t),
437 	.key_len		= sizeof(xfs_alloc_key_t),
438 
439 	.dup_cursor		= xfs_allocbt_dup_cursor,
440 	.set_root		= xfs_allocbt_set_root,
441 	.alloc_block		= xfs_allocbt_alloc_block,
442 	.free_block		= xfs_allocbt_free_block,
443 	.update_lastrec		= xfs_allocbt_update_lastrec,
444 	.get_minrecs		= xfs_allocbt_get_minrecs,
445 	.get_maxrecs		= xfs_allocbt_get_maxrecs,
446 	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
447 	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
448 	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
449 	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
450 	.key_diff		= xfs_bnobt_key_diff,
451 	.buf_ops		= &xfs_allocbt_buf_ops,
452 	.diff_two_keys		= xfs_bnobt_diff_two_keys,
453 	.keys_inorder		= xfs_bnobt_keys_inorder,
454 	.recs_inorder		= xfs_bnobt_recs_inorder,
455 };
456 
457 static const struct xfs_btree_ops xfs_cntbt_ops = {
458 	.rec_len		= sizeof(xfs_alloc_rec_t),
459 	.key_len		= sizeof(xfs_alloc_key_t),
460 
461 	.dup_cursor		= xfs_allocbt_dup_cursor,
462 	.set_root		= xfs_allocbt_set_root,
463 	.alloc_block		= xfs_allocbt_alloc_block,
464 	.free_block		= xfs_allocbt_free_block,
465 	.update_lastrec		= xfs_allocbt_update_lastrec,
466 	.get_minrecs		= xfs_allocbt_get_minrecs,
467 	.get_maxrecs		= xfs_allocbt_get_maxrecs,
468 	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
469 	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
470 	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
471 	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
472 	.key_diff		= xfs_cntbt_key_diff,
473 	.buf_ops		= &xfs_allocbt_buf_ops,
474 	.diff_two_keys		= xfs_cntbt_diff_two_keys,
475 	.keys_inorder		= xfs_cntbt_keys_inorder,
476 	.recs_inorder		= xfs_cntbt_recs_inorder,
477 };
478 
479 /*
480  * Allocate a new allocation btree cursor.
481  */
482 struct xfs_btree_cur *			/* new alloc btree cursor */
483 xfs_allocbt_init_cursor(
484 	struct xfs_mount	*mp,		/* file system mount point */
485 	struct xfs_trans	*tp,		/* transaction pointer */
486 	struct xfs_buf		*agbp,		/* buffer for agf structure */
487 	xfs_agnumber_t		agno,		/* allocation group number */
488 	xfs_btnum_t		btnum)		/* btree identifier */
489 {
490 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
491 	struct xfs_btree_cur	*cur;
492 
493 	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
494 
495 	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
496 
497 	cur->bc_tp = tp;
498 	cur->bc_mp = mp;
499 	cur->bc_btnum = btnum;
500 	cur->bc_blocklog = mp->m_sb.sb_blocklog;
501 
502 	if (btnum == XFS_BTNUM_CNT) {
503 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
504 		cur->bc_ops = &xfs_cntbt_ops;
505 		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
506 		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
507 	} else {
508 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
509 		cur->bc_ops = &xfs_bnobt_ops;
510 		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
511 	}
512 
513 	cur->bc_private.a.agbp = agbp;
514 	cur->bc_private.a.agno = agno;
515 
516 	if (xfs_sb_version_hascrc(&mp->m_sb))
517 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
518 
519 	return cur;
520 }
521 
522 /*
523  * Calculate number of records in an alloc btree block.
524  */
525 int
526 xfs_allocbt_maxrecs(
527 	struct xfs_mount	*mp,
528 	int			blocklen,
529 	int			leaf)
530 {
531 	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
532 
533 	if (leaf)
534 		return blocklen / sizeof(xfs_alloc_rec_t);
535 	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
536 }
537 
538 /* Calculate the freespace btree size for some records. */
539 xfs_extlen_t
540 xfs_allocbt_calc_size(
541 	struct xfs_mount	*mp,
542 	unsigned long long	len)
543 {
544 	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
545 }
546