1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_mount.h" 26 #include "xfs_btree.h" 27 #include "xfs_alloc_btree.h" 28 #include "xfs_alloc.h" 29 #include "xfs_extent_busy.h" 30 #include "xfs_error.h" 31 #include "xfs_trace.h" 32 #include "xfs_cksum.h" 33 #include "xfs_trans.h" 34 35 36 STATIC struct xfs_btree_cur * 37 xfs_allocbt_dup_cursor( 38 struct xfs_btree_cur *cur) 39 { 40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp, 41 cur->bc_private.a.agbp, cur->bc_private.a.agno, 42 cur->bc_btnum); 43 } 44 45 STATIC void 46 xfs_allocbt_set_root( 47 struct xfs_btree_cur *cur, 48 union xfs_btree_ptr *ptr, 49 int inc) 50 { 51 struct xfs_buf *agbp = cur->bc_private.a.agbp; 52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); 54 int btnum = cur->bc_btnum; 55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno); 56 57 ASSERT(ptr->s != 0); 58 59 agf->agf_roots[btnum] = ptr->s; 60 be32_add_cpu(&agf->agf_levels[btnum], inc); 61 pag->pagf_levels[btnum] += inc; 62 xfs_perag_put(pag); 63 64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); 65 } 66 67 STATIC int 68 xfs_allocbt_alloc_block( 69 struct xfs_btree_cur *cur, 70 union xfs_btree_ptr *start, 71 union xfs_btree_ptr *new, 72 int *stat) 73 { 74 int error; 75 xfs_agblock_t bno; 76 77 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 78 79 /* Allocate the new block from the freelist. If we can't, give up. */ 80 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, 81 &bno, 1); 82 if (error) { 83 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 84 return error; 85 } 86 87 if (bno == NULLAGBLOCK) { 88 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 89 *stat = 0; 90 return 0; 91 } 92 93 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false); 94 95 xfs_trans_agbtree_delta(cur->bc_tp, 1); 96 new->s = cpu_to_be32(bno); 97 98 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 99 *stat = 1; 100 return 0; 101 } 102 103 STATIC int 104 xfs_allocbt_free_block( 105 struct xfs_btree_cur *cur, 106 struct xfs_buf *bp) 107 { 108 struct xfs_buf *agbp = cur->bc_private.a.agbp; 109 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 110 xfs_agblock_t bno; 111 int error; 112 113 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp)); 114 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1); 115 if (error) 116 return error; 117 118 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1, 119 XFS_EXTENT_BUSY_SKIP_DISCARD); 120 xfs_trans_agbtree_delta(cur->bc_tp, -1); 121 return 0; 122 } 123 124 /* 125 * Update the longest extent in the AGF 126 */ 127 STATIC void 128 xfs_allocbt_update_lastrec( 129 struct xfs_btree_cur *cur, 130 struct xfs_btree_block *block, 131 union xfs_btree_rec *rec, 132 int ptr, 133 int reason) 134 { 135 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); 136 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); 137 struct xfs_perag *pag; 138 __be32 len; 139 int numrecs; 140 141 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT); 142 143 switch (reason) { 144 case LASTREC_UPDATE: 145 /* 146 * If this is the last leaf block and it's the last record, 147 * then update the size of the longest extent in the AG. 148 */ 149 if (ptr != xfs_btree_get_numrecs(block)) 150 return; 151 len = rec->alloc.ar_blockcount; 152 break; 153 case LASTREC_INSREC: 154 if (be32_to_cpu(rec->alloc.ar_blockcount) <= 155 be32_to_cpu(agf->agf_longest)) 156 return; 157 len = rec->alloc.ar_blockcount; 158 break; 159 case LASTREC_DELREC: 160 numrecs = xfs_btree_get_numrecs(block); 161 if (ptr <= numrecs) 162 return; 163 ASSERT(ptr == numrecs + 1); 164 165 if (numrecs) { 166 xfs_alloc_rec_t *rrp; 167 168 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs); 169 len = rrp->ar_blockcount; 170 } else { 171 len = 0; 172 } 173 174 break; 175 default: 176 ASSERT(0); 177 return; 178 } 179 180 agf->agf_longest = len; 181 pag = xfs_perag_get(cur->bc_mp, seqno); 182 pag->pagf_longest = be32_to_cpu(len); 183 xfs_perag_put(pag); 184 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST); 185 } 186 187 STATIC int 188 xfs_allocbt_get_minrecs( 189 struct xfs_btree_cur *cur, 190 int level) 191 { 192 return cur->bc_mp->m_alloc_mnr[level != 0]; 193 } 194 195 STATIC int 196 xfs_allocbt_get_maxrecs( 197 struct xfs_btree_cur *cur, 198 int level) 199 { 200 return cur->bc_mp->m_alloc_mxr[level != 0]; 201 } 202 203 STATIC void 204 xfs_allocbt_init_key_from_rec( 205 union xfs_btree_key *key, 206 union xfs_btree_rec *rec) 207 { 208 ASSERT(rec->alloc.ar_startblock != 0); 209 210 key->alloc.ar_startblock = rec->alloc.ar_startblock; 211 key->alloc.ar_blockcount = rec->alloc.ar_blockcount; 212 } 213 214 STATIC void 215 xfs_allocbt_init_rec_from_key( 216 union xfs_btree_key *key, 217 union xfs_btree_rec *rec) 218 { 219 ASSERT(key->alloc.ar_startblock != 0); 220 221 rec->alloc.ar_startblock = key->alloc.ar_startblock; 222 rec->alloc.ar_blockcount = key->alloc.ar_blockcount; 223 } 224 225 STATIC void 226 xfs_allocbt_init_rec_from_cur( 227 struct xfs_btree_cur *cur, 228 union xfs_btree_rec *rec) 229 { 230 ASSERT(cur->bc_rec.a.ar_startblock != 0); 231 232 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock); 233 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount); 234 } 235 236 STATIC void 237 xfs_allocbt_init_ptr_from_cur( 238 struct xfs_btree_cur *cur, 239 union xfs_btree_ptr *ptr) 240 { 241 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); 242 243 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno)); 244 ASSERT(agf->agf_roots[cur->bc_btnum] != 0); 245 246 ptr->s = agf->agf_roots[cur->bc_btnum]; 247 } 248 249 STATIC __int64_t 250 xfs_allocbt_key_diff( 251 struct xfs_btree_cur *cur, 252 union xfs_btree_key *key) 253 { 254 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a; 255 xfs_alloc_key_t *kp = &key->alloc; 256 __int64_t diff; 257 258 if (cur->bc_btnum == XFS_BTNUM_BNO) { 259 return (__int64_t)be32_to_cpu(kp->ar_startblock) - 260 rec->ar_startblock; 261 } 262 263 diff = (__int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount; 264 if (diff) 265 return diff; 266 267 return (__int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock; 268 } 269 270 static bool 271 xfs_allocbt_verify( 272 struct xfs_buf *bp) 273 { 274 struct xfs_mount *mp = bp->b_target->bt_mount; 275 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 276 struct xfs_perag *pag = bp->b_pag; 277 unsigned int level; 278 279 /* 280 * magic number and level verification 281 * 282 * During growfs operations, we can't verify the exact level or owner as 283 * the perag is not fully initialised and hence not attached to the 284 * buffer. In this case, check against the maximum tree depth. 285 * 286 * Similarly, during log recovery we will have a perag structure 287 * attached, but the agf information will not yet have been initialised 288 * from the on disk AGF. Again, we can only check against maximum limits 289 * in this case. 290 */ 291 level = be16_to_cpu(block->bb_level); 292 switch (block->bb_magic) { 293 case cpu_to_be32(XFS_ABTB_CRC_MAGIC): 294 if (!xfs_btree_sblock_v5hdr_verify(bp)) 295 return false; 296 /* fall through */ 297 case cpu_to_be32(XFS_ABTB_MAGIC): 298 if (pag && pag->pagf_init) { 299 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi]) 300 return false; 301 } else if (level >= mp->m_ag_maxlevels) 302 return false; 303 break; 304 case cpu_to_be32(XFS_ABTC_CRC_MAGIC): 305 if (!xfs_btree_sblock_v5hdr_verify(bp)) 306 return false; 307 /* fall through */ 308 case cpu_to_be32(XFS_ABTC_MAGIC): 309 if (pag && pag->pagf_init) { 310 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi]) 311 return false; 312 } else if (level >= mp->m_ag_maxlevels) 313 return false; 314 break; 315 default: 316 return false; 317 } 318 319 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]); 320 } 321 322 static void 323 xfs_allocbt_read_verify( 324 struct xfs_buf *bp) 325 { 326 if (!xfs_btree_sblock_verify_crc(bp)) 327 xfs_buf_ioerror(bp, -EFSBADCRC); 328 else if (!xfs_allocbt_verify(bp)) 329 xfs_buf_ioerror(bp, -EFSCORRUPTED); 330 331 if (bp->b_error) { 332 trace_xfs_btree_corrupt(bp, _RET_IP_); 333 xfs_verifier_error(bp); 334 } 335 } 336 337 static void 338 xfs_allocbt_write_verify( 339 struct xfs_buf *bp) 340 { 341 if (!xfs_allocbt_verify(bp)) { 342 trace_xfs_btree_corrupt(bp, _RET_IP_); 343 xfs_buf_ioerror(bp, -EFSCORRUPTED); 344 xfs_verifier_error(bp); 345 return; 346 } 347 xfs_btree_sblock_calc_crc(bp); 348 349 } 350 351 const struct xfs_buf_ops xfs_allocbt_buf_ops = { 352 .name = "xfs_allocbt", 353 .verify_read = xfs_allocbt_read_verify, 354 .verify_write = xfs_allocbt_write_verify, 355 }; 356 357 358 #if defined(DEBUG) || defined(XFS_WARN) 359 STATIC int 360 xfs_allocbt_keys_inorder( 361 struct xfs_btree_cur *cur, 362 union xfs_btree_key *k1, 363 union xfs_btree_key *k2) 364 { 365 if (cur->bc_btnum == XFS_BTNUM_BNO) { 366 return be32_to_cpu(k1->alloc.ar_startblock) < 367 be32_to_cpu(k2->alloc.ar_startblock); 368 } else { 369 return be32_to_cpu(k1->alloc.ar_blockcount) < 370 be32_to_cpu(k2->alloc.ar_blockcount) || 371 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount && 372 be32_to_cpu(k1->alloc.ar_startblock) < 373 be32_to_cpu(k2->alloc.ar_startblock)); 374 } 375 } 376 377 STATIC int 378 xfs_allocbt_recs_inorder( 379 struct xfs_btree_cur *cur, 380 union xfs_btree_rec *r1, 381 union xfs_btree_rec *r2) 382 { 383 if (cur->bc_btnum == XFS_BTNUM_BNO) { 384 return be32_to_cpu(r1->alloc.ar_startblock) + 385 be32_to_cpu(r1->alloc.ar_blockcount) <= 386 be32_to_cpu(r2->alloc.ar_startblock); 387 } else { 388 return be32_to_cpu(r1->alloc.ar_blockcount) < 389 be32_to_cpu(r2->alloc.ar_blockcount) || 390 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount && 391 be32_to_cpu(r1->alloc.ar_startblock) < 392 be32_to_cpu(r2->alloc.ar_startblock)); 393 } 394 } 395 #endif /* DEBUG */ 396 397 static const struct xfs_btree_ops xfs_allocbt_ops = { 398 .rec_len = sizeof(xfs_alloc_rec_t), 399 .key_len = sizeof(xfs_alloc_key_t), 400 401 .dup_cursor = xfs_allocbt_dup_cursor, 402 .set_root = xfs_allocbt_set_root, 403 .alloc_block = xfs_allocbt_alloc_block, 404 .free_block = xfs_allocbt_free_block, 405 .update_lastrec = xfs_allocbt_update_lastrec, 406 .get_minrecs = xfs_allocbt_get_minrecs, 407 .get_maxrecs = xfs_allocbt_get_maxrecs, 408 .init_key_from_rec = xfs_allocbt_init_key_from_rec, 409 .init_rec_from_key = xfs_allocbt_init_rec_from_key, 410 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur, 411 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur, 412 .key_diff = xfs_allocbt_key_diff, 413 .buf_ops = &xfs_allocbt_buf_ops, 414 #if defined(DEBUG) || defined(XFS_WARN) 415 .keys_inorder = xfs_allocbt_keys_inorder, 416 .recs_inorder = xfs_allocbt_recs_inorder, 417 #endif 418 }; 419 420 /* 421 * Allocate a new allocation btree cursor. 422 */ 423 struct xfs_btree_cur * /* new alloc btree cursor */ 424 xfs_allocbt_init_cursor( 425 struct xfs_mount *mp, /* file system mount point */ 426 struct xfs_trans *tp, /* transaction pointer */ 427 struct xfs_buf *agbp, /* buffer for agf structure */ 428 xfs_agnumber_t agno, /* allocation group number */ 429 xfs_btnum_t btnum) /* btree identifier */ 430 { 431 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); 432 struct xfs_btree_cur *cur; 433 434 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT); 435 436 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); 437 438 cur->bc_tp = tp; 439 cur->bc_mp = mp; 440 cur->bc_btnum = btnum; 441 cur->bc_blocklog = mp->m_sb.sb_blocklog; 442 cur->bc_ops = &xfs_allocbt_ops; 443 444 if (btnum == XFS_BTNUM_CNT) { 445 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]); 446 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE; 447 } else { 448 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]); 449 } 450 451 cur->bc_private.a.agbp = agbp; 452 cur->bc_private.a.agno = agno; 453 454 if (xfs_sb_version_hascrc(&mp->m_sb)) 455 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 456 457 return cur; 458 } 459 460 /* 461 * Calculate number of records in an alloc btree block. 462 */ 463 int 464 xfs_allocbt_maxrecs( 465 struct xfs_mount *mp, 466 int blocklen, 467 int leaf) 468 { 469 blocklen -= XFS_ALLOC_BLOCK_LEN(mp); 470 471 if (leaf) 472 return blocklen / sizeof(xfs_alloc_rec_t); 473 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t)); 474 } 475