1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 30 struct kmem_cache *xfs_extfree_item_cache; 31 32 struct workqueue_struct *xfs_alloc_wq; 33 34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 35 36 #define XFSA_FIXUP_BNO_OK 1 37 #define XFSA_FIXUP_CNT_OK 2 38 39 STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *); 40 STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *); 41 STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *); 42 43 /* 44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 45 * the beginning of the block for a proper header with the location information 46 * and CRC. 47 */ 48 unsigned int 49 xfs_agfl_size( 50 struct xfs_mount *mp) 51 { 52 unsigned int size = mp->m_sb.sb_sectsize; 53 54 if (xfs_has_crc(mp)) 55 size -= sizeof(struct xfs_agfl); 56 57 return size / sizeof(xfs_agblock_t); 58 } 59 60 unsigned int 61 xfs_refc_block( 62 struct xfs_mount *mp) 63 { 64 if (xfs_has_rmapbt(mp)) 65 return XFS_RMAP_BLOCK(mp) + 1; 66 if (xfs_has_finobt(mp)) 67 return XFS_FIBT_BLOCK(mp) + 1; 68 return XFS_IBT_BLOCK(mp) + 1; 69 } 70 71 xfs_extlen_t 72 xfs_prealloc_blocks( 73 struct xfs_mount *mp) 74 { 75 if (xfs_has_reflink(mp)) 76 return xfs_refc_block(mp) + 1; 77 if (xfs_has_rmapbt(mp)) 78 return XFS_RMAP_BLOCK(mp) + 1; 79 if (xfs_has_finobt(mp)) 80 return XFS_FIBT_BLOCK(mp) + 1; 81 return XFS_IBT_BLOCK(mp) + 1; 82 } 83 84 /* 85 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to 86 * guarantee that we can refill the AGFL prior to allocating space in a nearly 87 * full AG. Although the the space described by the free space btrees, the 88 * blocks used by the freesp btrees themselves, and the blocks owned by the 89 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk 90 * free space in the AG drop so low that the free space btrees cannot refill an 91 * empty AGFL up to the minimum level. Rather than grind through empty AGs 92 * until the fs goes down, we subtract this many AG blocks from the incore 93 * fdblocks to ensure user allocation does not overcommit the space the 94 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to 95 * withhold space from xfs_mod_fdblocks, so we do not account for that here. 96 */ 97 #define XFS_ALLOCBT_AGFL_RESERVE 4 98 99 /* 100 * Compute the number of blocks that we set aside to guarantee the ability to 101 * refill the AGFL and handle a full bmap btree split. 102 * 103 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 104 * AGF buffer (PV 947395), we place constraints on the relationship among 105 * actual allocations for data blocks, freelist blocks, and potential file data 106 * bmap btree blocks. However, these restrictions may result in no actual space 107 * allocated for a delayed extent, for example, a data block in a certain AG is 108 * allocated but there is no additional block for the additional bmap btree 109 * block due to a split of the bmap btree of the file. The result of this may 110 * lead to an infinite loop when the file gets flushed to disk and all delayed 111 * extents need to be actually allocated. To get around this, we explicitly set 112 * aside a few blocks which will not be reserved in delayed allocation. 113 * 114 * For each AG, we need to reserve enough blocks to replenish a totally empty 115 * AGFL and 4 more to handle a potential split of the file's bmap btree. 116 */ 117 unsigned int 118 xfs_alloc_set_aside( 119 struct xfs_mount *mp) 120 { 121 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); 122 } 123 124 /* 125 * When deciding how much space to allocate out of an AG, we limit the 126 * allocation maximum size to the size the AG. However, we cannot use all the 127 * blocks in the AG - some are permanently used by metadata. These 128 * blocks are generally: 129 * - the AG superblock, AGF, AGI and AGFL 130 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 131 * the AGI free inode and rmap btree root blocks. 132 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 133 * - the rmapbt root block 134 * 135 * The AG headers are sector sized, so the amount of space they take up is 136 * dependent on filesystem geometry. The others are all single blocks. 137 */ 138 unsigned int 139 xfs_alloc_ag_max_usable( 140 struct xfs_mount *mp) 141 { 142 unsigned int blocks; 143 144 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 145 blocks += XFS_ALLOCBT_AGFL_RESERVE; 146 blocks += 3; /* AGF, AGI btree root blocks */ 147 if (xfs_has_finobt(mp)) 148 blocks++; /* finobt root block */ 149 if (xfs_has_rmapbt(mp)) 150 blocks++; /* rmap root block */ 151 if (xfs_has_reflink(mp)) 152 blocks++; /* refcount root block */ 153 154 return mp->m_sb.sb_agblocks - blocks; 155 } 156 157 /* 158 * Lookup the record equal to [bno, len] in the btree given by cur. 159 */ 160 STATIC int /* error */ 161 xfs_alloc_lookup_eq( 162 struct xfs_btree_cur *cur, /* btree cursor */ 163 xfs_agblock_t bno, /* starting block of extent */ 164 xfs_extlen_t len, /* length of extent */ 165 int *stat) /* success/failure */ 166 { 167 int error; 168 169 cur->bc_rec.a.ar_startblock = bno; 170 cur->bc_rec.a.ar_blockcount = len; 171 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); 172 cur->bc_ag.abt.active = (*stat == 1); 173 return error; 174 } 175 176 /* 177 * Lookup the first record greater than or equal to [bno, len] 178 * in the btree given by cur. 179 */ 180 int /* error */ 181 xfs_alloc_lookup_ge( 182 struct xfs_btree_cur *cur, /* btree cursor */ 183 xfs_agblock_t bno, /* starting block of extent */ 184 xfs_extlen_t len, /* length of extent */ 185 int *stat) /* success/failure */ 186 { 187 int error; 188 189 cur->bc_rec.a.ar_startblock = bno; 190 cur->bc_rec.a.ar_blockcount = len; 191 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); 192 cur->bc_ag.abt.active = (*stat == 1); 193 return error; 194 } 195 196 /* 197 * Lookup the first record less than or equal to [bno, len] 198 * in the btree given by cur. 199 */ 200 int /* error */ 201 xfs_alloc_lookup_le( 202 struct xfs_btree_cur *cur, /* btree cursor */ 203 xfs_agblock_t bno, /* starting block of extent */ 204 xfs_extlen_t len, /* length of extent */ 205 int *stat) /* success/failure */ 206 { 207 int error; 208 cur->bc_rec.a.ar_startblock = bno; 209 cur->bc_rec.a.ar_blockcount = len; 210 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); 211 cur->bc_ag.abt.active = (*stat == 1); 212 return error; 213 } 214 215 static inline bool 216 xfs_alloc_cur_active( 217 struct xfs_btree_cur *cur) 218 { 219 return cur && cur->bc_ag.abt.active; 220 } 221 222 /* 223 * Update the record referred to by cur to the value given 224 * by [bno, len]. 225 * This either works (return 0) or gets an EFSCORRUPTED error. 226 */ 227 STATIC int /* error */ 228 xfs_alloc_update( 229 struct xfs_btree_cur *cur, /* btree cursor */ 230 xfs_agblock_t bno, /* starting block of extent */ 231 xfs_extlen_t len) /* length of extent */ 232 { 233 union xfs_btree_rec rec; 234 235 rec.alloc.ar_startblock = cpu_to_be32(bno); 236 rec.alloc.ar_blockcount = cpu_to_be32(len); 237 return xfs_btree_update(cur, &rec); 238 } 239 240 /* 241 * Get the data from the pointed-to record. 242 */ 243 int /* error */ 244 xfs_alloc_get_rec( 245 struct xfs_btree_cur *cur, /* btree cursor */ 246 xfs_agblock_t *bno, /* output: starting block of extent */ 247 xfs_extlen_t *len, /* output: length of extent */ 248 int *stat) /* output: success/failure */ 249 { 250 struct xfs_mount *mp = cur->bc_mp; 251 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno; 252 union xfs_btree_rec *rec; 253 int error; 254 255 error = xfs_btree_get_rec(cur, &rec, stat); 256 if (error || !(*stat)) 257 return error; 258 259 *bno = be32_to_cpu(rec->alloc.ar_startblock); 260 *len = be32_to_cpu(rec->alloc.ar_blockcount); 261 262 if (*len == 0) 263 goto out_bad_rec; 264 265 /* check for valid extent range, including overflow */ 266 if (!xfs_verify_agbno(mp, agno, *bno)) 267 goto out_bad_rec; 268 if (*bno > *bno + *len) 269 goto out_bad_rec; 270 if (!xfs_verify_agbno(mp, agno, *bno + *len - 1)) 271 goto out_bad_rec; 272 273 return 0; 274 275 out_bad_rec: 276 xfs_warn(mp, 277 "%s Freespace BTree record corruption in AG %d detected!", 278 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno); 279 xfs_warn(mp, 280 "start block 0x%x block count 0x%x", *bno, *len); 281 return -EFSCORRUPTED; 282 } 283 284 /* 285 * Compute aligned version of the found extent. 286 * Takes alignment and min length into account. 287 */ 288 STATIC bool 289 xfs_alloc_compute_aligned( 290 xfs_alloc_arg_t *args, /* allocation argument structure */ 291 xfs_agblock_t foundbno, /* starting block in found extent */ 292 xfs_extlen_t foundlen, /* length in found extent */ 293 xfs_agblock_t *resbno, /* result block number */ 294 xfs_extlen_t *reslen, /* result length */ 295 unsigned *busy_gen) 296 { 297 xfs_agblock_t bno = foundbno; 298 xfs_extlen_t len = foundlen; 299 xfs_extlen_t diff; 300 bool busy; 301 302 /* Trim busy sections out of found extent */ 303 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); 304 305 /* 306 * If we have a largish extent that happens to start before min_agbno, 307 * see if we can shift it into range... 308 */ 309 if (bno < args->min_agbno && bno + len > args->min_agbno) { 310 diff = args->min_agbno - bno; 311 if (len > diff) { 312 bno += diff; 313 len -= diff; 314 } 315 } 316 317 if (args->alignment > 1 && len >= args->minlen) { 318 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 319 320 diff = aligned_bno - bno; 321 322 *resbno = aligned_bno; 323 *reslen = diff >= len ? 0 : len - diff; 324 } else { 325 *resbno = bno; 326 *reslen = len; 327 } 328 329 return busy; 330 } 331 332 /* 333 * Compute best start block and diff for "near" allocations. 334 * freelen >= wantlen already checked by caller. 335 */ 336 STATIC xfs_extlen_t /* difference value (absolute) */ 337 xfs_alloc_compute_diff( 338 xfs_agblock_t wantbno, /* target starting block */ 339 xfs_extlen_t wantlen, /* target length */ 340 xfs_extlen_t alignment, /* target alignment */ 341 int datatype, /* are we allocating data? */ 342 xfs_agblock_t freebno, /* freespace's starting block */ 343 xfs_extlen_t freelen, /* freespace's length */ 344 xfs_agblock_t *newbnop) /* result: best start block from free */ 345 { 346 xfs_agblock_t freeend; /* end of freespace extent */ 347 xfs_agblock_t newbno1; /* return block number */ 348 xfs_agblock_t newbno2; /* other new block number */ 349 xfs_extlen_t newlen1=0; /* length with newbno1 */ 350 xfs_extlen_t newlen2=0; /* length with newbno2 */ 351 xfs_agblock_t wantend; /* end of target extent */ 352 bool userdata = datatype & XFS_ALLOC_USERDATA; 353 354 ASSERT(freelen >= wantlen); 355 freeend = freebno + freelen; 356 wantend = wantbno + wantlen; 357 /* 358 * We want to allocate from the start of a free extent if it is past 359 * the desired block or if we are allocating user data and the free 360 * extent is before desired block. The second case is there to allow 361 * for contiguous allocation from the remaining free space if the file 362 * grows in the short term. 363 */ 364 if (freebno >= wantbno || (userdata && freeend < wantend)) { 365 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 366 newbno1 = NULLAGBLOCK; 367 } else if (freeend >= wantend && alignment > 1) { 368 newbno1 = roundup(wantbno, alignment); 369 newbno2 = newbno1 - alignment; 370 if (newbno1 >= freeend) 371 newbno1 = NULLAGBLOCK; 372 else 373 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 374 if (newbno2 < freebno) 375 newbno2 = NULLAGBLOCK; 376 else 377 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 378 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 379 if (newlen1 < newlen2 || 380 (newlen1 == newlen2 && 381 XFS_ABSDIFF(newbno1, wantbno) > 382 XFS_ABSDIFF(newbno2, wantbno))) 383 newbno1 = newbno2; 384 } else if (newbno2 != NULLAGBLOCK) 385 newbno1 = newbno2; 386 } else if (freeend >= wantend) { 387 newbno1 = wantbno; 388 } else if (alignment > 1) { 389 newbno1 = roundup(freeend - wantlen, alignment); 390 if (newbno1 > freeend - wantlen && 391 newbno1 - alignment >= freebno) 392 newbno1 -= alignment; 393 else if (newbno1 >= freeend) 394 newbno1 = NULLAGBLOCK; 395 } else 396 newbno1 = freeend - wantlen; 397 *newbnop = newbno1; 398 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 399 } 400 401 /* 402 * Fix up the length, based on mod and prod. 403 * len should be k * prod + mod for some k. 404 * If len is too small it is returned unchanged. 405 * If len hits maxlen it is left alone. 406 */ 407 STATIC void 408 xfs_alloc_fix_len( 409 xfs_alloc_arg_t *args) /* allocation argument structure */ 410 { 411 xfs_extlen_t k; 412 xfs_extlen_t rlen; 413 414 ASSERT(args->mod < args->prod); 415 rlen = args->len; 416 ASSERT(rlen >= args->minlen); 417 ASSERT(rlen <= args->maxlen); 418 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 419 (args->mod == 0 && rlen < args->prod)) 420 return; 421 k = rlen % args->prod; 422 if (k == args->mod) 423 return; 424 if (k > args->mod) 425 rlen = rlen - (k - args->mod); 426 else 427 rlen = rlen - args->prod + (args->mod - k); 428 /* casts to (int) catch length underflows */ 429 if ((int)rlen < (int)args->minlen) 430 return; 431 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 432 ASSERT(rlen % args->prod == args->mod); 433 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 434 rlen + args->minleft); 435 args->len = rlen; 436 } 437 438 /* 439 * Update the two btrees, logically removing from freespace the extent 440 * starting at rbno, rlen blocks. The extent is contained within the 441 * actual (current) free extent fbno for flen blocks. 442 * Flags are passed in indicating whether the cursors are set to the 443 * relevant records. 444 */ 445 STATIC int /* error code */ 446 xfs_alloc_fixup_trees( 447 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 448 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 449 xfs_agblock_t fbno, /* starting block of free extent */ 450 xfs_extlen_t flen, /* length of free extent */ 451 xfs_agblock_t rbno, /* starting block of returned extent */ 452 xfs_extlen_t rlen, /* length of returned extent */ 453 int flags) /* flags, XFSA_FIXUP_... */ 454 { 455 int error; /* error code */ 456 int i; /* operation results */ 457 xfs_agblock_t nfbno1; /* first new free startblock */ 458 xfs_agblock_t nfbno2; /* second new free startblock */ 459 xfs_extlen_t nflen1=0; /* first new free length */ 460 xfs_extlen_t nflen2=0; /* second new free length */ 461 struct xfs_mount *mp; 462 463 mp = cnt_cur->bc_mp; 464 465 /* 466 * Look up the record in the by-size tree if necessary. 467 */ 468 if (flags & XFSA_FIXUP_CNT_OK) { 469 #ifdef DEBUG 470 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 471 return error; 472 if (XFS_IS_CORRUPT(mp, 473 i != 1 || 474 nfbno1 != fbno || 475 nflen1 != flen)) 476 return -EFSCORRUPTED; 477 #endif 478 } else { 479 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 480 return error; 481 if (XFS_IS_CORRUPT(mp, i != 1)) 482 return -EFSCORRUPTED; 483 } 484 /* 485 * Look up the record in the by-block tree if necessary. 486 */ 487 if (flags & XFSA_FIXUP_BNO_OK) { 488 #ifdef DEBUG 489 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 490 return error; 491 if (XFS_IS_CORRUPT(mp, 492 i != 1 || 493 nfbno1 != fbno || 494 nflen1 != flen)) 495 return -EFSCORRUPTED; 496 #endif 497 } else { 498 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 499 return error; 500 if (XFS_IS_CORRUPT(mp, i != 1)) 501 return -EFSCORRUPTED; 502 } 503 504 #ifdef DEBUG 505 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 506 struct xfs_btree_block *bnoblock; 507 struct xfs_btree_block *cntblock; 508 509 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 510 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 511 512 if (XFS_IS_CORRUPT(mp, 513 bnoblock->bb_numrecs != 514 cntblock->bb_numrecs)) 515 return -EFSCORRUPTED; 516 } 517 #endif 518 519 /* 520 * Deal with all four cases: the allocated record is contained 521 * within the freespace record, so we can have new freespace 522 * at either (or both) end, or no freespace remaining. 523 */ 524 if (rbno == fbno && rlen == flen) 525 nfbno1 = nfbno2 = NULLAGBLOCK; 526 else if (rbno == fbno) { 527 nfbno1 = rbno + rlen; 528 nflen1 = flen - rlen; 529 nfbno2 = NULLAGBLOCK; 530 } else if (rbno + rlen == fbno + flen) { 531 nfbno1 = fbno; 532 nflen1 = flen - rlen; 533 nfbno2 = NULLAGBLOCK; 534 } else { 535 nfbno1 = fbno; 536 nflen1 = rbno - fbno; 537 nfbno2 = rbno + rlen; 538 nflen2 = (fbno + flen) - nfbno2; 539 } 540 /* 541 * Delete the entry from the by-size btree. 542 */ 543 if ((error = xfs_btree_delete(cnt_cur, &i))) 544 return error; 545 if (XFS_IS_CORRUPT(mp, i != 1)) 546 return -EFSCORRUPTED; 547 /* 548 * Add new by-size btree entry(s). 549 */ 550 if (nfbno1 != NULLAGBLOCK) { 551 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 552 return error; 553 if (XFS_IS_CORRUPT(mp, i != 0)) 554 return -EFSCORRUPTED; 555 if ((error = xfs_btree_insert(cnt_cur, &i))) 556 return error; 557 if (XFS_IS_CORRUPT(mp, i != 1)) 558 return -EFSCORRUPTED; 559 } 560 if (nfbno2 != NULLAGBLOCK) { 561 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 562 return error; 563 if (XFS_IS_CORRUPT(mp, i != 0)) 564 return -EFSCORRUPTED; 565 if ((error = xfs_btree_insert(cnt_cur, &i))) 566 return error; 567 if (XFS_IS_CORRUPT(mp, i != 1)) 568 return -EFSCORRUPTED; 569 } 570 /* 571 * Fix up the by-block btree entry(s). 572 */ 573 if (nfbno1 == NULLAGBLOCK) { 574 /* 575 * No remaining freespace, just delete the by-block tree entry. 576 */ 577 if ((error = xfs_btree_delete(bno_cur, &i))) 578 return error; 579 if (XFS_IS_CORRUPT(mp, i != 1)) 580 return -EFSCORRUPTED; 581 } else { 582 /* 583 * Update the by-block entry to start later|be shorter. 584 */ 585 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 586 return error; 587 } 588 if (nfbno2 != NULLAGBLOCK) { 589 /* 590 * 2 resulting free entries, need to add one. 591 */ 592 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 593 return error; 594 if (XFS_IS_CORRUPT(mp, i != 0)) 595 return -EFSCORRUPTED; 596 if ((error = xfs_btree_insert(bno_cur, &i))) 597 return error; 598 if (XFS_IS_CORRUPT(mp, i != 1)) 599 return -EFSCORRUPTED; 600 } 601 return 0; 602 } 603 604 static xfs_failaddr_t 605 xfs_agfl_verify( 606 struct xfs_buf *bp) 607 { 608 struct xfs_mount *mp = bp->b_mount; 609 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 610 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 611 int i; 612 613 /* 614 * There is no verification of non-crc AGFLs because mkfs does not 615 * initialise the AGFL to zero or NULL. Hence the only valid part of the 616 * AGFL is what the AGF says is active. We can't get to the AGF, so we 617 * can't verify just those entries are valid. 618 */ 619 if (!xfs_has_crc(mp)) 620 return NULL; 621 622 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 623 return __this_address; 624 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 625 return __this_address; 626 /* 627 * during growfs operations, the perag is not fully initialised, 628 * so we can't use it for any useful checking. growfs ensures we can't 629 * use it by using uncached buffers that don't have the perag attached 630 * so we can detect and avoid this problem. 631 */ 632 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) 633 return __this_address; 634 635 for (i = 0; i < xfs_agfl_size(mp); i++) { 636 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 637 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 638 return __this_address; 639 } 640 641 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 642 return __this_address; 643 return NULL; 644 } 645 646 static void 647 xfs_agfl_read_verify( 648 struct xfs_buf *bp) 649 { 650 struct xfs_mount *mp = bp->b_mount; 651 xfs_failaddr_t fa; 652 653 /* 654 * There is no verification of non-crc AGFLs because mkfs does not 655 * initialise the AGFL to zero or NULL. Hence the only valid part of the 656 * AGFL is what the AGF says is active. We can't get to the AGF, so we 657 * can't verify just those entries are valid. 658 */ 659 if (!xfs_has_crc(mp)) 660 return; 661 662 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 663 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 664 else { 665 fa = xfs_agfl_verify(bp); 666 if (fa) 667 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 668 } 669 } 670 671 static void 672 xfs_agfl_write_verify( 673 struct xfs_buf *bp) 674 { 675 struct xfs_mount *mp = bp->b_mount; 676 struct xfs_buf_log_item *bip = bp->b_log_item; 677 xfs_failaddr_t fa; 678 679 /* no verification of non-crc AGFLs */ 680 if (!xfs_has_crc(mp)) 681 return; 682 683 fa = xfs_agfl_verify(bp); 684 if (fa) { 685 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 686 return; 687 } 688 689 if (bip) 690 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 691 692 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 693 } 694 695 const struct xfs_buf_ops xfs_agfl_buf_ops = { 696 .name = "xfs_agfl", 697 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 698 .verify_read = xfs_agfl_read_verify, 699 .verify_write = xfs_agfl_write_verify, 700 .verify_struct = xfs_agfl_verify, 701 }; 702 703 /* 704 * Read in the allocation group free block array. 705 */ 706 int /* error */ 707 xfs_alloc_read_agfl( 708 xfs_mount_t *mp, /* mount point structure */ 709 xfs_trans_t *tp, /* transaction pointer */ 710 xfs_agnumber_t agno, /* allocation group number */ 711 struct xfs_buf **bpp) /* buffer for the ag free block array */ 712 { 713 struct xfs_buf *bp; /* return value */ 714 int error; 715 716 ASSERT(agno != NULLAGNUMBER); 717 error = xfs_trans_read_buf( 718 mp, tp, mp->m_ddev_targp, 719 XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), 720 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 721 if (error) 722 return error; 723 xfs_buf_set_ref(bp, XFS_AGFL_REF); 724 *bpp = bp; 725 return 0; 726 } 727 728 STATIC int 729 xfs_alloc_update_counters( 730 struct xfs_trans *tp, 731 struct xfs_buf *agbp, 732 long len) 733 { 734 struct xfs_agf *agf = agbp->b_addr; 735 736 agbp->b_pag->pagf_freeblks += len; 737 be32_add_cpu(&agf->agf_freeblks, len); 738 739 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 740 be32_to_cpu(agf->agf_length))) { 741 xfs_buf_mark_corrupt(agbp); 742 return -EFSCORRUPTED; 743 } 744 745 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 746 return 0; 747 } 748 749 /* 750 * Block allocation algorithm and data structures. 751 */ 752 struct xfs_alloc_cur { 753 struct xfs_btree_cur *cnt; /* btree cursors */ 754 struct xfs_btree_cur *bnolt; 755 struct xfs_btree_cur *bnogt; 756 xfs_extlen_t cur_len;/* current search length */ 757 xfs_agblock_t rec_bno;/* extent startblock */ 758 xfs_extlen_t rec_len;/* extent length */ 759 xfs_agblock_t bno; /* alloc bno */ 760 xfs_extlen_t len; /* alloc len */ 761 xfs_extlen_t diff; /* diff from search bno */ 762 unsigned int busy_gen;/* busy state */ 763 bool busy; 764 }; 765 766 /* 767 * Set up cursors, etc. in the extent allocation cursor. This function can be 768 * called multiple times to reset an initialized structure without having to 769 * reallocate cursors. 770 */ 771 static int 772 xfs_alloc_cur_setup( 773 struct xfs_alloc_arg *args, 774 struct xfs_alloc_cur *acur) 775 { 776 int error; 777 int i; 778 779 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO); 780 781 acur->cur_len = args->maxlen; 782 acur->rec_bno = 0; 783 acur->rec_len = 0; 784 acur->bno = 0; 785 acur->len = 0; 786 acur->diff = -1; 787 acur->busy = false; 788 acur->busy_gen = 0; 789 790 /* 791 * Perform an initial cntbt lookup to check for availability of maxlen 792 * extents. If this fails, we'll return -ENOSPC to signal the caller to 793 * attempt a small allocation. 794 */ 795 if (!acur->cnt) 796 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp, 797 args->agbp, args->pag, XFS_BTNUM_CNT); 798 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 799 if (error) 800 return error; 801 802 /* 803 * Allocate the bnobt left and right search cursors. 804 */ 805 if (!acur->bnolt) 806 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp, 807 args->agbp, args->pag, XFS_BTNUM_BNO); 808 if (!acur->bnogt) 809 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp, 810 args->agbp, args->pag, XFS_BTNUM_BNO); 811 return i == 1 ? 0 : -ENOSPC; 812 } 813 814 static void 815 xfs_alloc_cur_close( 816 struct xfs_alloc_cur *acur, 817 bool error) 818 { 819 int cur_error = XFS_BTREE_NOERROR; 820 821 if (error) 822 cur_error = XFS_BTREE_ERROR; 823 824 if (acur->cnt) 825 xfs_btree_del_cursor(acur->cnt, cur_error); 826 if (acur->bnolt) 827 xfs_btree_del_cursor(acur->bnolt, cur_error); 828 if (acur->bnogt) 829 xfs_btree_del_cursor(acur->bnogt, cur_error); 830 acur->cnt = acur->bnolt = acur->bnogt = NULL; 831 } 832 833 /* 834 * Check an extent for allocation and track the best available candidate in the 835 * allocation structure. The cursor is deactivated if it has entered an out of 836 * range state based on allocation arguments. Optionally return the extent 837 * extent geometry and allocation status if requested by the caller. 838 */ 839 static int 840 xfs_alloc_cur_check( 841 struct xfs_alloc_arg *args, 842 struct xfs_alloc_cur *acur, 843 struct xfs_btree_cur *cur, 844 int *new) 845 { 846 int error, i; 847 xfs_agblock_t bno, bnoa, bnew; 848 xfs_extlen_t len, lena, diff = -1; 849 bool busy; 850 unsigned busy_gen = 0; 851 bool deactivate = false; 852 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO; 853 854 *new = 0; 855 856 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 857 if (error) 858 return error; 859 if (XFS_IS_CORRUPT(args->mp, i != 1)) 860 return -EFSCORRUPTED; 861 862 /* 863 * Check minlen and deactivate a cntbt cursor if out of acceptable size 864 * range (i.e., walking backwards looking for a minlen extent). 865 */ 866 if (len < args->minlen) { 867 deactivate = !isbnobt; 868 goto out; 869 } 870 871 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 872 &busy_gen); 873 acur->busy |= busy; 874 if (busy) 875 acur->busy_gen = busy_gen; 876 /* deactivate a bnobt cursor outside of locality range */ 877 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 878 deactivate = isbnobt; 879 goto out; 880 } 881 if (lena < args->minlen) 882 goto out; 883 884 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 885 xfs_alloc_fix_len(args); 886 ASSERT(args->len >= args->minlen); 887 if (args->len < acur->len) 888 goto out; 889 890 /* 891 * We have an aligned record that satisfies minlen and beats or matches 892 * the candidate extent size. Compare locality for near allocation mode. 893 */ 894 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO); 895 diff = xfs_alloc_compute_diff(args->agbno, args->len, 896 args->alignment, args->datatype, 897 bnoa, lena, &bnew); 898 if (bnew == NULLAGBLOCK) 899 goto out; 900 901 /* 902 * Deactivate a bnobt cursor with worse locality than the current best. 903 */ 904 if (diff > acur->diff) { 905 deactivate = isbnobt; 906 goto out; 907 } 908 909 ASSERT(args->len > acur->len || 910 (args->len == acur->len && diff <= acur->diff)); 911 acur->rec_bno = bno; 912 acur->rec_len = len; 913 acur->bno = bnew; 914 acur->len = args->len; 915 acur->diff = diff; 916 *new = 1; 917 918 /* 919 * We're done if we found a perfect allocation. This only deactivates 920 * the current cursor, but this is just an optimization to terminate a 921 * cntbt search that otherwise runs to the edge of the tree. 922 */ 923 if (acur->diff == 0 && acur->len == args->maxlen) 924 deactivate = true; 925 out: 926 if (deactivate) 927 cur->bc_ag.abt.active = false; 928 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff, 929 *new); 930 return 0; 931 } 932 933 /* 934 * Complete an allocation of a candidate extent. Remove the extent from both 935 * trees and update the args structure. 936 */ 937 STATIC int 938 xfs_alloc_cur_finish( 939 struct xfs_alloc_arg *args, 940 struct xfs_alloc_cur *acur) 941 { 942 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 943 int error; 944 945 ASSERT(acur->cnt && acur->bnolt); 946 ASSERT(acur->bno >= acur->rec_bno); 947 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 948 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length)); 949 950 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 951 acur->rec_len, acur->bno, acur->len, 0); 952 if (error) 953 return error; 954 955 args->agbno = acur->bno; 956 args->len = acur->len; 957 args->wasfromfl = 0; 958 959 trace_xfs_alloc_cur(args); 960 return 0; 961 } 962 963 /* 964 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 965 * bno optimized lookup to search for extents with ideal size and locality. 966 */ 967 STATIC int 968 xfs_alloc_cntbt_iter( 969 struct xfs_alloc_arg *args, 970 struct xfs_alloc_cur *acur) 971 { 972 struct xfs_btree_cur *cur = acur->cnt; 973 xfs_agblock_t bno; 974 xfs_extlen_t len, cur_len; 975 int error; 976 int i; 977 978 if (!xfs_alloc_cur_active(cur)) 979 return 0; 980 981 /* locality optimized lookup */ 982 cur_len = acur->cur_len; 983 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 984 if (error) 985 return error; 986 if (i == 0) 987 return 0; 988 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 989 if (error) 990 return error; 991 992 /* check the current record and update search length from it */ 993 error = xfs_alloc_cur_check(args, acur, cur, &i); 994 if (error) 995 return error; 996 ASSERT(len >= acur->cur_len); 997 acur->cur_len = len; 998 999 /* 1000 * We looked up the first record >= [agbno, len] above. The agbno is a 1001 * secondary key and so the current record may lie just before or after 1002 * agbno. If it is past agbno, check the previous record too so long as 1003 * the length matches as it may be closer. Don't check a smaller record 1004 * because that could deactivate our cursor. 1005 */ 1006 if (bno > args->agbno) { 1007 error = xfs_btree_decrement(cur, 0, &i); 1008 if (!error && i) { 1009 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1010 if (!error && i && len == acur->cur_len) 1011 error = xfs_alloc_cur_check(args, acur, cur, 1012 &i); 1013 } 1014 if (error) 1015 return error; 1016 } 1017 1018 /* 1019 * Increment the search key until we find at least one allocation 1020 * candidate or if the extent we found was larger. Otherwise, double the 1021 * search key to optimize the search. Efficiency is more important here 1022 * than absolute best locality. 1023 */ 1024 cur_len <<= 1; 1025 if (!acur->len || acur->cur_len >= cur_len) 1026 acur->cur_len++; 1027 else 1028 acur->cur_len = cur_len; 1029 1030 return error; 1031 } 1032 1033 /* 1034 * Deal with the case where only small freespaces remain. Either return the 1035 * contents of the last freespace record, or allocate space from the freelist if 1036 * there is nothing in the tree. 1037 */ 1038 STATIC int /* error */ 1039 xfs_alloc_ag_vextent_small( 1040 struct xfs_alloc_arg *args, /* allocation argument structure */ 1041 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1042 xfs_agblock_t *fbnop, /* result block number */ 1043 xfs_extlen_t *flenp, /* result length */ 1044 int *stat) /* status: 0-freelist, 1-normal/none */ 1045 { 1046 struct xfs_agf *agf = args->agbp->b_addr; 1047 int error = 0; 1048 xfs_agblock_t fbno = NULLAGBLOCK; 1049 xfs_extlen_t flen = 0; 1050 int i = 0; 1051 1052 /* 1053 * If a cntbt cursor is provided, try to allocate the largest record in 1054 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1055 * allocation. Make sure to respect minleft even when pulling from the 1056 * freelist. 1057 */ 1058 if (ccur) 1059 error = xfs_btree_decrement(ccur, 0, &i); 1060 if (error) 1061 goto error; 1062 if (i) { 1063 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1064 if (error) 1065 goto error; 1066 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1067 error = -EFSCORRUPTED; 1068 goto error; 1069 } 1070 goto out; 1071 } 1072 1073 if (args->minlen != 1 || args->alignment != 1 || 1074 args->resv == XFS_AG_RESV_AGFL || 1075 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1076 goto out; 1077 1078 error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0); 1079 if (error) 1080 goto error; 1081 if (fbno == NULLAGBLOCK) 1082 goto out; 1083 1084 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, 1085 (args->datatype & XFS_ALLOC_NOBUSY)); 1086 1087 if (args->datatype & XFS_ALLOC_USERDATA) { 1088 struct xfs_buf *bp; 1089 1090 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1091 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), 1092 args->mp->m_bsize, 0, &bp); 1093 if (error) 1094 goto error; 1095 xfs_trans_binval(args->tp, bp); 1096 } 1097 *fbnop = args->agbno = fbno; 1098 *flenp = args->len = 1; 1099 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1100 error = -EFSCORRUPTED; 1101 goto error; 1102 } 1103 args->wasfromfl = 1; 1104 trace_xfs_alloc_small_freelist(args); 1105 1106 /* 1107 * If we're feeding an AGFL block to something that doesn't live in the 1108 * free space, we need to clear out the OWN_AG rmap. 1109 */ 1110 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1111 &XFS_RMAP_OINFO_AG); 1112 if (error) 1113 goto error; 1114 1115 *stat = 0; 1116 return 0; 1117 1118 out: 1119 /* 1120 * Can't do the allocation, give up. 1121 */ 1122 if (flen < args->minlen) { 1123 args->agbno = NULLAGBLOCK; 1124 trace_xfs_alloc_small_notenough(args); 1125 flen = 0; 1126 } 1127 *fbnop = fbno; 1128 *flenp = flen; 1129 *stat = 1; 1130 trace_xfs_alloc_small_done(args); 1131 return 0; 1132 1133 error: 1134 trace_xfs_alloc_small_error(args); 1135 return error; 1136 } 1137 1138 /* 1139 * Allocate a variable extent in the allocation group agno. 1140 * Type and bno are used to determine where in the allocation group the 1141 * extent will start. 1142 * Extent's length (returned in *len) will be between minlen and maxlen, 1143 * and of the form k * prod + mod unless there's nothing that large. 1144 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1145 */ 1146 STATIC int /* error */ 1147 xfs_alloc_ag_vextent( 1148 xfs_alloc_arg_t *args) /* argument structure for allocation */ 1149 { 1150 int error=0; 1151 1152 ASSERT(args->minlen > 0); 1153 ASSERT(args->maxlen > 0); 1154 ASSERT(args->minlen <= args->maxlen); 1155 ASSERT(args->mod < args->prod); 1156 ASSERT(args->alignment > 0); 1157 1158 /* 1159 * Branch to correct routine based on the type. 1160 */ 1161 args->wasfromfl = 0; 1162 switch (args->type) { 1163 case XFS_ALLOCTYPE_THIS_AG: 1164 error = xfs_alloc_ag_vextent_size(args); 1165 break; 1166 case XFS_ALLOCTYPE_NEAR_BNO: 1167 error = xfs_alloc_ag_vextent_near(args); 1168 break; 1169 case XFS_ALLOCTYPE_THIS_BNO: 1170 error = xfs_alloc_ag_vextent_exact(args); 1171 break; 1172 default: 1173 ASSERT(0); 1174 /* NOTREACHED */ 1175 } 1176 1177 if (error || args->agbno == NULLAGBLOCK) 1178 return error; 1179 1180 ASSERT(args->len >= args->minlen); 1181 ASSERT(args->len <= args->maxlen); 1182 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL); 1183 ASSERT(args->agbno % args->alignment == 0); 1184 1185 /* if not file data, insert new block into the reverse map btree */ 1186 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 1187 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 1188 args->agbno, args->len, &args->oinfo); 1189 if (error) 1190 return error; 1191 } 1192 1193 if (!args->wasfromfl) { 1194 error = xfs_alloc_update_counters(args->tp, args->agbp, 1195 -((long)(args->len))); 1196 if (error) 1197 return error; 1198 1199 ASSERT(!xfs_extent_busy_search(args->mp, args->pag, 1200 args->agbno, args->len)); 1201 } 1202 1203 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 1204 1205 XFS_STATS_INC(args->mp, xs_allocx); 1206 XFS_STATS_ADD(args->mp, xs_allocb, args->len); 1207 return error; 1208 } 1209 1210 /* 1211 * Allocate a variable extent at exactly agno/bno. 1212 * Extent's length (returned in *len) will be between minlen and maxlen, 1213 * and of the form k * prod + mod unless there's nothing that large. 1214 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1215 */ 1216 STATIC int /* error */ 1217 xfs_alloc_ag_vextent_exact( 1218 xfs_alloc_arg_t *args) /* allocation argument structure */ 1219 { 1220 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 1221 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1222 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1223 int error; 1224 xfs_agblock_t fbno; /* start block of found extent */ 1225 xfs_extlen_t flen; /* length of found extent */ 1226 xfs_agblock_t tbno; /* start block of busy extent */ 1227 xfs_extlen_t tlen; /* length of busy extent */ 1228 xfs_agblock_t tend; /* end block of busy extent */ 1229 int i; /* success/failure of operation */ 1230 unsigned busy_gen; 1231 1232 ASSERT(args->alignment == 1); 1233 1234 /* 1235 * Allocate/initialize a cursor for the by-number freespace btree. 1236 */ 1237 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1238 args->pag, XFS_BTNUM_BNO); 1239 1240 /* 1241 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1242 * Look for the closest free block <= bno, it must contain bno 1243 * if any free block does. 1244 */ 1245 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1246 if (error) 1247 goto error0; 1248 if (!i) 1249 goto not_found; 1250 1251 /* 1252 * Grab the freespace record. 1253 */ 1254 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1255 if (error) 1256 goto error0; 1257 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1258 error = -EFSCORRUPTED; 1259 goto error0; 1260 } 1261 ASSERT(fbno <= args->agbno); 1262 1263 /* 1264 * Check for overlapping busy extents. 1265 */ 1266 tbno = fbno; 1267 tlen = flen; 1268 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); 1269 1270 /* 1271 * Give up if the start of the extent is busy, or the freespace isn't 1272 * long enough for the minimum request. 1273 */ 1274 if (tbno > args->agbno) 1275 goto not_found; 1276 if (tlen < args->minlen) 1277 goto not_found; 1278 tend = tbno + tlen; 1279 if (tend < args->agbno + args->minlen) 1280 goto not_found; 1281 1282 /* 1283 * End of extent will be smaller of the freespace end and the 1284 * maximal requested end. 1285 * 1286 * Fix the length according to mod and prod if given. 1287 */ 1288 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1289 - args->agbno; 1290 xfs_alloc_fix_len(args); 1291 ASSERT(args->agbno + args->len <= tend); 1292 1293 /* 1294 * We are allocating agbno for args->len 1295 * Allocate/initialize a cursor for the by-size btree. 1296 */ 1297 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1298 args->pag, XFS_BTNUM_CNT); 1299 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length)); 1300 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1301 args->len, XFSA_FIXUP_BNO_OK); 1302 if (error) { 1303 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1304 goto error0; 1305 } 1306 1307 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1308 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1309 1310 args->wasfromfl = 0; 1311 trace_xfs_alloc_exact_done(args); 1312 return 0; 1313 1314 not_found: 1315 /* Didn't find it, return null. */ 1316 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1317 args->agbno = NULLAGBLOCK; 1318 trace_xfs_alloc_exact_notfound(args); 1319 return 0; 1320 1321 error0: 1322 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1323 trace_xfs_alloc_exact_error(args); 1324 return error; 1325 } 1326 1327 /* 1328 * Search a given number of btree records in a given direction. Check each 1329 * record against the good extent we've already found. 1330 */ 1331 STATIC int 1332 xfs_alloc_walk_iter( 1333 struct xfs_alloc_arg *args, 1334 struct xfs_alloc_cur *acur, 1335 struct xfs_btree_cur *cur, 1336 bool increment, 1337 bool find_one, /* quit on first candidate */ 1338 int count, /* rec count (-1 for infinite) */ 1339 int *stat) 1340 { 1341 int error; 1342 int i; 1343 1344 *stat = 0; 1345 1346 /* 1347 * Search so long as the cursor is active or we find a better extent. 1348 * The cursor is deactivated if it extends beyond the range of the 1349 * current allocation candidate. 1350 */ 1351 while (xfs_alloc_cur_active(cur) && count) { 1352 error = xfs_alloc_cur_check(args, acur, cur, &i); 1353 if (error) 1354 return error; 1355 if (i == 1) { 1356 *stat = 1; 1357 if (find_one) 1358 break; 1359 } 1360 if (!xfs_alloc_cur_active(cur)) 1361 break; 1362 1363 if (increment) 1364 error = xfs_btree_increment(cur, 0, &i); 1365 else 1366 error = xfs_btree_decrement(cur, 0, &i); 1367 if (error) 1368 return error; 1369 if (i == 0) 1370 cur->bc_ag.abt.active = false; 1371 1372 if (count > 0) 1373 count--; 1374 } 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * Search the by-bno and by-size btrees in parallel in search of an extent with 1381 * ideal locality based on the NEAR mode ->agbno locality hint. 1382 */ 1383 STATIC int 1384 xfs_alloc_ag_vextent_locality( 1385 struct xfs_alloc_arg *args, 1386 struct xfs_alloc_cur *acur, 1387 int *stat) 1388 { 1389 struct xfs_btree_cur *fbcur = NULL; 1390 int error; 1391 int i; 1392 bool fbinc; 1393 1394 ASSERT(acur->len == 0); 1395 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO); 1396 1397 *stat = 0; 1398 1399 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1400 if (error) 1401 return error; 1402 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1403 if (error) 1404 return error; 1405 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1406 if (error) 1407 return error; 1408 1409 /* 1410 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1411 * right and lookup the closest extent to the locality hint for each 1412 * extent size key in the cntbt. The entire search terminates 1413 * immediately on a bnobt hit because that means we've found best case 1414 * locality. Otherwise the search continues until the cntbt cursor runs 1415 * off the end of the tree. If no allocation candidate is found at this 1416 * point, give up on locality, walk backwards from the end of the cntbt 1417 * and take the first available extent. 1418 * 1419 * The parallel tree searches balance each other out to provide fairly 1420 * consistent performance for various situations. The bnobt search can 1421 * have pathological behavior in the worst case scenario of larger 1422 * allocation requests and fragmented free space. On the other hand, the 1423 * bnobt is able to satisfy most smaller allocation requests much more 1424 * quickly than the cntbt. The cntbt search can sift through fragmented 1425 * free space and sets of free extents for larger allocation requests 1426 * more quickly than the bnobt. Since the locality hint is just a hint 1427 * and we don't want to scan the entire bnobt for perfect locality, the 1428 * cntbt search essentially bounds the bnobt search such that we can 1429 * find good enough locality at reasonable performance in most cases. 1430 */ 1431 while (xfs_alloc_cur_active(acur->bnolt) || 1432 xfs_alloc_cur_active(acur->bnogt) || 1433 xfs_alloc_cur_active(acur->cnt)) { 1434 1435 trace_xfs_alloc_cur_lookup(args); 1436 1437 /* 1438 * Search the bnobt left and right. In the case of a hit, finish 1439 * the search in the opposite direction and we're done. 1440 */ 1441 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1442 true, 1, &i); 1443 if (error) 1444 return error; 1445 if (i == 1) { 1446 trace_xfs_alloc_cur_left(args); 1447 fbcur = acur->bnogt; 1448 fbinc = true; 1449 break; 1450 } 1451 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1452 1, &i); 1453 if (error) 1454 return error; 1455 if (i == 1) { 1456 trace_xfs_alloc_cur_right(args); 1457 fbcur = acur->bnolt; 1458 fbinc = false; 1459 break; 1460 } 1461 1462 /* 1463 * Check the extent with best locality based on the current 1464 * extent size search key and keep track of the best candidate. 1465 */ 1466 error = xfs_alloc_cntbt_iter(args, acur); 1467 if (error) 1468 return error; 1469 if (!xfs_alloc_cur_active(acur->cnt)) { 1470 trace_xfs_alloc_cur_lookup_done(args); 1471 break; 1472 } 1473 } 1474 1475 /* 1476 * If we failed to find anything due to busy extents, return empty 1477 * handed so the caller can flush and retry. If no busy extents were 1478 * found, walk backwards from the end of the cntbt as a last resort. 1479 */ 1480 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1481 error = xfs_btree_decrement(acur->cnt, 0, &i); 1482 if (error) 1483 return error; 1484 if (i) { 1485 acur->cnt->bc_ag.abt.active = true; 1486 fbcur = acur->cnt; 1487 fbinc = false; 1488 } 1489 } 1490 1491 /* 1492 * Search in the opposite direction for a better entry in the case of 1493 * a bnobt hit or walk backwards from the end of the cntbt. 1494 */ 1495 if (fbcur) { 1496 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1497 &i); 1498 if (error) 1499 return error; 1500 } 1501 1502 if (acur->len) 1503 *stat = 1; 1504 1505 return 0; 1506 } 1507 1508 /* Check the last block of the cnt btree for allocations. */ 1509 static int 1510 xfs_alloc_ag_vextent_lastblock( 1511 struct xfs_alloc_arg *args, 1512 struct xfs_alloc_cur *acur, 1513 xfs_agblock_t *bno, 1514 xfs_extlen_t *len, 1515 bool *allocated) 1516 { 1517 int error; 1518 int i; 1519 1520 #ifdef DEBUG 1521 /* Randomly don't execute the first algorithm. */ 1522 if (prandom_u32() & 1) 1523 return 0; 1524 #endif 1525 1526 /* 1527 * Start from the entry that lookup found, sequence through all larger 1528 * free blocks. If we're actually pointing at a record smaller than 1529 * maxlen, go to the start of this block, and skip all those smaller 1530 * than minlen. 1531 */ 1532 if (*len || args->alignment > 1) { 1533 acur->cnt->bc_levels[0].ptr = 1; 1534 do { 1535 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1536 if (error) 1537 return error; 1538 if (XFS_IS_CORRUPT(args->mp, i != 1)) 1539 return -EFSCORRUPTED; 1540 if (*len >= args->minlen) 1541 break; 1542 error = xfs_btree_increment(acur->cnt, 0, &i); 1543 if (error) 1544 return error; 1545 } while (i); 1546 ASSERT(*len >= args->minlen); 1547 if (!i) 1548 return 0; 1549 } 1550 1551 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1552 if (error) 1553 return error; 1554 1555 /* 1556 * It didn't work. We COULD be in a case where there's a good record 1557 * somewhere, so try again. 1558 */ 1559 if (acur->len == 0) 1560 return 0; 1561 1562 trace_xfs_alloc_near_first(args); 1563 *allocated = true; 1564 return 0; 1565 } 1566 1567 /* 1568 * Allocate a variable extent near bno in the allocation group agno. 1569 * Extent's length (returned in len) will be between minlen and maxlen, 1570 * and of the form k * prod + mod unless there's nothing that large. 1571 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1572 */ 1573 STATIC int 1574 xfs_alloc_ag_vextent_near( 1575 struct xfs_alloc_arg *args) 1576 { 1577 struct xfs_alloc_cur acur = {}; 1578 int error; /* error code */ 1579 int i; /* result code, temporary */ 1580 xfs_agblock_t bno; 1581 xfs_extlen_t len; 1582 1583 /* handle uninitialized agbno range so caller doesn't have to */ 1584 if (!args->min_agbno && !args->max_agbno) 1585 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1586 ASSERT(args->min_agbno <= args->max_agbno); 1587 1588 /* clamp agbno to the range if it's outside */ 1589 if (args->agbno < args->min_agbno) 1590 args->agbno = args->min_agbno; 1591 if (args->agbno > args->max_agbno) 1592 args->agbno = args->max_agbno; 1593 1594 restart: 1595 len = 0; 1596 1597 /* 1598 * Set up cursors and see if there are any free extents as big as 1599 * maxlen. If not, pick the last entry in the tree unless the tree is 1600 * empty. 1601 */ 1602 error = xfs_alloc_cur_setup(args, &acur); 1603 if (error == -ENOSPC) { 1604 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1605 &len, &i); 1606 if (error) 1607 goto out; 1608 if (i == 0 || len == 0) { 1609 trace_xfs_alloc_near_noentry(args); 1610 goto out; 1611 } 1612 ASSERT(i == 1); 1613 } else if (error) { 1614 goto out; 1615 } 1616 1617 /* 1618 * First algorithm. 1619 * If the requested extent is large wrt the freespaces available 1620 * in this a.g., then the cursor will be pointing to a btree entry 1621 * near the right edge of the tree. If it's in the last btree leaf 1622 * block, then we just examine all the entries in that block 1623 * that are big enough, and pick the best one. 1624 */ 1625 if (xfs_btree_islastblock(acur.cnt, 0)) { 1626 bool allocated = false; 1627 1628 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1629 &allocated); 1630 if (error) 1631 goto out; 1632 if (allocated) 1633 goto alloc_finish; 1634 } 1635 1636 /* 1637 * Second algorithm. Combined cntbt and bnobt search to find ideal 1638 * locality. 1639 */ 1640 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1641 if (error) 1642 goto out; 1643 1644 /* 1645 * If we couldn't get anything, give up. 1646 */ 1647 if (!acur.len) { 1648 if (acur.busy) { 1649 trace_xfs_alloc_near_busy(args); 1650 xfs_extent_busy_flush(args->mp, args->pag, 1651 acur.busy_gen); 1652 goto restart; 1653 } 1654 trace_xfs_alloc_size_neither(args); 1655 args->agbno = NULLAGBLOCK; 1656 goto out; 1657 } 1658 1659 alloc_finish: 1660 /* fix up btrees on a successful allocation */ 1661 error = xfs_alloc_cur_finish(args, &acur); 1662 1663 out: 1664 xfs_alloc_cur_close(&acur, error); 1665 return error; 1666 } 1667 1668 /* 1669 * Allocate a variable extent anywhere in the allocation group agno. 1670 * Extent's length (returned in len) will be between minlen and maxlen, 1671 * and of the form k * prod + mod unless there's nothing that large. 1672 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1673 */ 1674 STATIC int /* error */ 1675 xfs_alloc_ag_vextent_size( 1676 xfs_alloc_arg_t *args) /* allocation argument structure */ 1677 { 1678 struct xfs_agf *agf = args->agbp->b_addr; 1679 struct xfs_btree_cur *bno_cur; /* cursor for bno btree */ 1680 struct xfs_btree_cur *cnt_cur; /* cursor for cnt btree */ 1681 int error; /* error result */ 1682 xfs_agblock_t fbno; /* start of found freespace */ 1683 xfs_extlen_t flen; /* length of found freespace */ 1684 int i; /* temp status variable */ 1685 xfs_agblock_t rbno; /* returned block number */ 1686 xfs_extlen_t rlen; /* length of returned extent */ 1687 bool busy; 1688 unsigned busy_gen; 1689 1690 restart: 1691 /* 1692 * Allocate and initialize a cursor for the by-size btree. 1693 */ 1694 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1695 args->pag, XFS_BTNUM_CNT); 1696 bno_cur = NULL; 1697 1698 /* 1699 * Look for an entry >= maxlen+alignment-1 blocks. 1700 */ 1701 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1702 args->maxlen + args->alignment - 1, &i))) 1703 goto error0; 1704 1705 /* 1706 * If none then we have to settle for a smaller extent. In the case that 1707 * there are no large extents, this will return the last entry in the 1708 * tree unless the tree is empty. In the case that there are only busy 1709 * large extents, this will return the largest small extent unless there 1710 * are no smaller extents available. 1711 */ 1712 if (!i) { 1713 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1714 &fbno, &flen, &i); 1715 if (error) 1716 goto error0; 1717 if (i == 0 || flen == 0) { 1718 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1719 trace_xfs_alloc_size_noentry(args); 1720 return 0; 1721 } 1722 ASSERT(i == 1); 1723 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1724 &rlen, &busy_gen); 1725 } else { 1726 /* 1727 * Search for a non-busy extent that is large enough. 1728 */ 1729 for (;;) { 1730 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1731 if (error) 1732 goto error0; 1733 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1734 error = -EFSCORRUPTED; 1735 goto error0; 1736 } 1737 1738 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1739 &rbno, &rlen, &busy_gen); 1740 1741 if (rlen >= args->maxlen) 1742 break; 1743 1744 error = xfs_btree_increment(cnt_cur, 0, &i); 1745 if (error) 1746 goto error0; 1747 if (i == 0) { 1748 /* 1749 * Our only valid extents must have been busy. 1750 * Make it unbusy by forcing the log out and 1751 * retrying. 1752 */ 1753 xfs_btree_del_cursor(cnt_cur, 1754 XFS_BTREE_NOERROR); 1755 trace_xfs_alloc_size_busy(args); 1756 xfs_extent_busy_flush(args->mp, 1757 args->pag, busy_gen); 1758 goto restart; 1759 } 1760 } 1761 } 1762 1763 /* 1764 * In the first case above, we got the last entry in the 1765 * by-size btree. Now we check to see if the space hits maxlen 1766 * once aligned; if not, we search left for something better. 1767 * This can't happen in the second case above. 1768 */ 1769 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1770 if (XFS_IS_CORRUPT(args->mp, 1771 rlen != 0 && 1772 (rlen > flen || 1773 rbno + rlen > fbno + flen))) { 1774 error = -EFSCORRUPTED; 1775 goto error0; 1776 } 1777 if (rlen < args->maxlen) { 1778 xfs_agblock_t bestfbno; 1779 xfs_extlen_t bestflen; 1780 xfs_agblock_t bestrbno; 1781 xfs_extlen_t bestrlen; 1782 1783 bestrlen = rlen; 1784 bestrbno = rbno; 1785 bestflen = flen; 1786 bestfbno = fbno; 1787 for (;;) { 1788 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1789 goto error0; 1790 if (i == 0) 1791 break; 1792 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1793 &i))) 1794 goto error0; 1795 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1796 error = -EFSCORRUPTED; 1797 goto error0; 1798 } 1799 if (flen < bestrlen) 1800 break; 1801 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1802 &rbno, &rlen, &busy_gen); 1803 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1804 if (XFS_IS_CORRUPT(args->mp, 1805 rlen != 0 && 1806 (rlen > flen || 1807 rbno + rlen > fbno + flen))) { 1808 error = -EFSCORRUPTED; 1809 goto error0; 1810 } 1811 if (rlen > bestrlen) { 1812 bestrlen = rlen; 1813 bestrbno = rbno; 1814 bestflen = flen; 1815 bestfbno = fbno; 1816 if (rlen == args->maxlen) 1817 break; 1818 } 1819 } 1820 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1821 &i))) 1822 goto error0; 1823 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1824 error = -EFSCORRUPTED; 1825 goto error0; 1826 } 1827 rlen = bestrlen; 1828 rbno = bestrbno; 1829 flen = bestflen; 1830 fbno = bestfbno; 1831 } 1832 args->wasfromfl = 0; 1833 /* 1834 * Fix up the length. 1835 */ 1836 args->len = rlen; 1837 if (rlen < args->minlen) { 1838 if (busy) { 1839 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1840 trace_xfs_alloc_size_busy(args); 1841 xfs_extent_busy_flush(args->mp, args->pag, busy_gen); 1842 goto restart; 1843 } 1844 goto out_nominleft; 1845 } 1846 xfs_alloc_fix_len(args); 1847 1848 rlen = args->len; 1849 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1850 error = -EFSCORRUPTED; 1851 goto error0; 1852 } 1853 /* 1854 * Allocate and initialize a cursor for the by-block tree. 1855 */ 1856 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1857 args->pag, XFS_BTNUM_BNO); 1858 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 1859 rbno, rlen, XFSA_FIXUP_CNT_OK))) 1860 goto error0; 1861 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1862 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1863 cnt_cur = bno_cur = NULL; 1864 args->len = rlen; 1865 args->agbno = rbno; 1866 if (XFS_IS_CORRUPT(args->mp, 1867 args->agbno + args->len > 1868 be32_to_cpu(agf->agf_length))) { 1869 error = -EFSCORRUPTED; 1870 goto error0; 1871 } 1872 trace_xfs_alloc_size_done(args); 1873 return 0; 1874 1875 error0: 1876 trace_xfs_alloc_size_error(args); 1877 if (cnt_cur) 1878 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1879 if (bno_cur) 1880 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1881 return error; 1882 1883 out_nominleft: 1884 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1885 trace_xfs_alloc_size_nominleft(args); 1886 args->agbno = NULLAGBLOCK; 1887 return 0; 1888 } 1889 1890 /* 1891 * Free the extent starting at agno/bno for length. 1892 */ 1893 STATIC int 1894 xfs_free_ag_extent( 1895 struct xfs_trans *tp, 1896 struct xfs_buf *agbp, 1897 xfs_agnumber_t agno, 1898 xfs_agblock_t bno, 1899 xfs_extlen_t len, 1900 const struct xfs_owner_info *oinfo, 1901 enum xfs_ag_resv_type type) 1902 { 1903 struct xfs_mount *mp; 1904 struct xfs_btree_cur *bno_cur; 1905 struct xfs_btree_cur *cnt_cur; 1906 xfs_agblock_t gtbno; /* start of right neighbor */ 1907 xfs_extlen_t gtlen; /* length of right neighbor */ 1908 xfs_agblock_t ltbno; /* start of left neighbor */ 1909 xfs_extlen_t ltlen; /* length of left neighbor */ 1910 xfs_agblock_t nbno; /* new starting block of freesp */ 1911 xfs_extlen_t nlen; /* new length of freespace */ 1912 int haveleft; /* have a left neighbor */ 1913 int haveright; /* have a right neighbor */ 1914 int i; 1915 int error; 1916 struct xfs_perag *pag = agbp->b_pag; 1917 1918 bno_cur = cnt_cur = NULL; 1919 mp = tp->t_mountp; 1920 1921 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 1922 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 1923 if (error) 1924 goto error0; 1925 } 1926 1927 /* 1928 * Allocate and initialize a cursor for the by-block btree. 1929 */ 1930 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO); 1931 /* 1932 * Look for a neighboring block on the left (lower block numbers) 1933 * that is contiguous with this space. 1934 */ 1935 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 1936 goto error0; 1937 if (haveleft) { 1938 /* 1939 * There is a block to our left. 1940 */ 1941 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 1942 goto error0; 1943 if (XFS_IS_CORRUPT(mp, i != 1)) { 1944 error = -EFSCORRUPTED; 1945 goto error0; 1946 } 1947 /* 1948 * It's not contiguous, though. 1949 */ 1950 if (ltbno + ltlen < bno) 1951 haveleft = 0; 1952 else { 1953 /* 1954 * If this failure happens the request to free this 1955 * space was invalid, it's (partly) already free. 1956 * Very bad. 1957 */ 1958 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 1959 error = -EFSCORRUPTED; 1960 goto error0; 1961 } 1962 } 1963 } 1964 /* 1965 * Look for a neighboring block on the right (higher block numbers) 1966 * that is contiguous with this space. 1967 */ 1968 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 1969 goto error0; 1970 if (haveright) { 1971 /* 1972 * There is a block to our right. 1973 */ 1974 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 1975 goto error0; 1976 if (XFS_IS_CORRUPT(mp, i != 1)) { 1977 error = -EFSCORRUPTED; 1978 goto error0; 1979 } 1980 /* 1981 * It's not contiguous, though. 1982 */ 1983 if (bno + len < gtbno) 1984 haveright = 0; 1985 else { 1986 /* 1987 * If this failure happens the request to free this 1988 * space was invalid, it's (partly) already free. 1989 * Very bad. 1990 */ 1991 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 1992 error = -EFSCORRUPTED; 1993 goto error0; 1994 } 1995 } 1996 } 1997 /* 1998 * Now allocate and initialize a cursor for the by-size tree. 1999 */ 2000 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT); 2001 /* 2002 * Have both left and right contiguous neighbors. 2003 * Merge all three into a single free block. 2004 */ 2005 if (haveleft && haveright) { 2006 /* 2007 * Delete the old by-size entry on the left. 2008 */ 2009 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2010 goto error0; 2011 if (XFS_IS_CORRUPT(mp, i != 1)) { 2012 error = -EFSCORRUPTED; 2013 goto error0; 2014 } 2015 if ((error = xfs_btree_delete(cnt_cur, &i))) 2016 goto error0; 2017 if (XFS_IS_CORRUPT(mp, i != 1)) { 2018 error = -EFSCORRUPTED; 2019 goto error0; 2020 } 2021 /* 2022 * Delete the old by-size entry on the right. 2023 */ 2024 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2025 goto error0; 2026 if (XFS_IS_CORRUPT(mp, i != 1)) { 2027 error = -EFSCORRUPTED; 2028 goto error0; 2029 } 2030 if ((error = xfs_btree_delete(cnt_cur, &i))) 2031 goto error0; 2032 if (XFS_IS_CORRUPT(mp, i != 1)) { 2033 error = -EFSCORRUPTED; 2034 goto error0; 2035 } 2036 /* 2037 * Delete the old by-block entry for the right block. 2038 */ 2039 if ((error = xfs_btree_delete(bno_cur, &i))) 2040 goto error0; 2041 if (XFS_IS_CORRUPT(mp, i != 1)) { 2042 error = -EFSCORRUPTED; 2043 goto error0; 2044 } 2045 /* 2046 * Move the by-block cursor back to the left neighbor. 2047 */ 2048 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2049 goto error0; 2050 if (XFS_IS_CORRUPT(mp, i != 1)) { 2051 error = -EFSCORRUPTED; 2052 goto error0; 2053 } 2054 #ifdef DEBUG 2055 /* 2056 * Check that this is the right record: delete didn't 2057 * mangle the cursor. 2058 */ 2059 { 2060 xfs_agblock_t xxbno; 2061 xfs_extlen_t xxlen; 2062 2063 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2064 &i))) 2065 goto error0; 2066 if (XFS_IS_CORRUPT(mp, 2067 i != 1 || 2068 xxbno != ltbno || 2069 xxlen != ltlen)) { 2070 error = -EFSCORRUPTED; 2071 goto error0; 2072 } 2073 } 2074 #endif 2075 /* 2076 * Update remaining by-block entry to the new, joined block. 2077 */ 2078 nbno = ltbno; 2079 nlen = len + ltlen + gtlen; 2080 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2081 goto error0; 2082 } 2083 /* 2084 * Have only a left contiguous neighbor. 2085 * Merge it together with the new freespace. 2086 */ 2087 else if (haveleft) { 2088 /* 2089 * Delete the old by-size entry on the left. 2090 */ 2091 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2092 goto error0; 2093 if (XFS_IS_CORRUPT(mp, i != 1)) { 2094 error = -EFSCORRUPTED; 2095 goto error0; 2096 } 2097 if ((error = xfs_btree_delete(cnt_cur, &i))) 2098 goto error0; 2099 if (XFS_IS_CORRUPT(mp, i != 1)) { 2100 error = -EFSCORRUPTED; 2101 goto error0; 2102 } 2103 /* 2104 * Back up the by-block cursor to the left neighbor, and 2105 * update its length. 2106 */ 2107 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2108 goto error0; 2109 if (XFS_IS_CORRUPT(mp, i != 1)) { 2110 error = -EFSCORRUPTED; 2111 goto error0; 2112 } 2113 nbno = ltbno; 2114 nlen = len + ltlen; 2115 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2116 goto error0; 2117 } 2118 /* 2119 * Have only a right contiguous neighbor. 2120 * Merge it together with the new freespace. 2121 */ 2122 else if (haveright) { 2123 /* 2124 * Delete the old by-size entry on the right. 2125 */ 2126 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2127 goto error0; 2128 if (XFS_IS_CORRUPT(mp, i != 1)) { 2129 error = -EFSCORRUPTED; 2130 goto error0; 2131 } 2132 if ((error = xfs_btree_delete(cnt_cur, &i))) 2133 goto error0; 2134 if (XFS_IS_CORRUPT(mp, i != 1)) { 2135 error = -EFSCORRUPTED; 2136 goto error0; 2137 } 2138 /* 2139 * Update the starting block and length of the right 2140 * neighbor in the by-block tree. 2141 */ 2142 nbno = bno; 2143 nlen = len + gtlen; 2144 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2145 goto error0; 2146 } 2147 /* 2148 * No contiguous neighbors. 2149 * Insert the new freespace into the by-block tree. 2150 */ 2151 else { 2152 nbno = bno; 2153 nlen = len; 2154 if ((error = xfs_btree_insert(bno_cur, &i))) 2155 goto error0; 2156 if (XFS_IS_CORRUPT(mp, i != 1)) { 2157 error = -EFSCORRUPTED; 2158 goto error0; 2159 } 2160 } 2161 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2162 bno_cur = NULL; 2163 /* 2164 * In all cases we need to insert the new freespace in the by-size tree. 2165 */ 2166 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2167 goto error0; 2168 if (XFS_IS_CORRUPT(mp, i != 0)) { 2169 error = -EFSCORRUPTED; 2170 goto error0; 2171 } 2172 if ((error = xfs_btree_insert(cnt_cur, &i))) 2173 goto error0; 2174 if (XFS_IS_CORRUPT(mp, i != 1)) { 2175 error = -EFSCORRUPTED; 2176 goto error0; 2177 } 2178 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2179 cnt_cur = NULL; 2180 2181 /* 2182 * Update the freespace totals in the ag and superblock. 2183 */ 2184 error = xfs_alloc_update_counters(tp, agbp, len); 2185 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); 2186 if (error) 2187 goto error0; 2188 2189 XFS_STATS_INC(mp, xs_freex); 2190 XFS_STATS_ADD(mp, xs_freeb, len); 2191 2192 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); 2193 2194 return 0; 2195 2196 error0: 2197 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); 2198 if (bno_cur) 2199 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2200 if (cnt_cur) 2201 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2202 return error; 2203 } 2204 2205 /* 2206 * Visible (exported) allocation/free functions. 2207 * Some of these are used just by xfs_alloc_btree.c and this file. 2208 */ 2209 2210 /* 2211 * Compute and fill in value of m_alloc_maxlevels. 2212 */ 2213 void 2214 xfs_alloc_compute_maxlevels( 2215 xfs_mount_t *mp) /* file system mount structure */ 2216 { 2217 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2218 (mp->m_sb.sb_agblocks + 1) / 2); 2219 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2220 } 2221 2222 /* 2223 * Find the length of the longest extent in an AG. The 'need' parameter 2224 * specifies how much space we're going to need for the AGFL and the 2225 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2226 * other callers. 2227 */ 2228 xfs_extlen_t 2229 xfs_alloc_longest_free_extent( 2230 struct xfs_perag *pag, 2231 xfs_extlen_t need, 2232 xfs_extlen_t reserved) 2233 { 2234 xfs_extlen_t delta = 0; 2235 2236 /* 2237 * If the AGFL needs a recharge, we'll have to subtract that from the 2238 * longest extent. 2239 */ 2240 if (need > pag->pagf_flcount) 2241 delta = need - pag->pagf_flcount; 2242 2243 /* 2244 * If we cannot maintain others' reservations with space from the 2245 * not-longest freesp extents, we'll have to subtract /that/ from 2246 * the longest extent too. 2247 */ 2248 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2249 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2250 2251 /* 2252 * If the longest extent is long enough to satisfy all the 2253 * reservations and AGFL rules in place, we can return this extent. 2254 */ 2255 if (pag->pagf_longest > delta) 2256 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, 2257 pag->pagf_longest - delta); 2258 2259 /* Otherwise, let the caller try for 1 block if there's space. */ 2260 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2261 } 2262 2263 /* 2264 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2265 * return the largest possible minimum length. 2266 */ 2267 unsigned int 2268 xfs_alloc_min_freelist( 2269 struct xfs_mount *mp, 2270 struct xfs_perag *pag) 2271 { 2272 /* AG btrees have at least 1 level. */ 2273 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1}; 2274 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels; 2275 unsigned int min_free; 2276 2277 ASSERT(mp->m_alloc_maxlevels > 0); 2278 2279 /* space needed by-bno freespace btree */ 2280 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1, 2281 mp->m_alloc_maxlevels); 2282 /* space needed by-size freespace btree */ 2283 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1, 2284 mp->m_alloc_maxlevels); 2285 /* space needed reverse mapping used space btree */ 2286 if (xfs_has_rmapbt(mp)) 2287 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1, 2288 mp->m_rmap_maxlevels); 2289 2290 return min_free; 2291 } 2292 2293 /* 2294 * Check if the operation we are fixing up the freelist for should go ahead or 2295 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2296 * is dependent on whether the size and shape of free space available will 2297 * permit the requested allocation to take place. 2298 */ 2299 static bool 2300 xfs_alloc_space_available( 2301 struct xfs_alloc_arg *args, 2302 xfs_extlen_t min_free, 2303 int flags) 2304 { 2305 struct xfs_perag *pag = args->pag; 2306 xfs_extlen_t alloc_len, longest; 2307 xfs_extlen_t reservation; /* blocks that are still reserved */ 2308 int available; 2309 xfs_extlen_t agflcount; 2310 2311 if (flags & XFS_ALLOC_FLAG_FREEING) 2312 return true; 2313 2314 reservation = xfs_ag_resv_needed(pag, args->resv); 2315 2316 /* do we have enough contiguous free space for the allocation? */ 2317 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2318 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2319 if (longest < alloc_len) 2320 return false; 2321 2322 /* 2323 * Do we have enough free space remaining for the allocation? Don't 2324 * account extra agfl blocks because we are about to defer free them, 2325 * making them unavailable until the current transaction commits. 2326 */ 2327 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2328 available = (int)(pag->pagf_freeblks + agflcount - 2329 reservation - min_free - args->minleft); 2330 if (available < (int)max(args->total, alloc_len)) 2331 return false; 2332 2333 /* 2334 * Clamp maxlen to the amount of free space available for the actual 2335 * extent allocation. 2336 */ 2337 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2338 args->maxlen = available; 2339 ASSERT(args->maxlen > 0); 2340 ASSERT(args->maxlen >= args->minlen); 2341 } 2342 2343 return true; 2344 } 2345 2346 int 2347 xfs_free_agfl_block( 2348 struct xfs_trans *tp, 2349 xfs_agnumber_t agno, 2350 xfs_agblock_t agbno, 2351 struct xfs_buf *agbp, 2352 struct xfs_owner_info *oinfo) 2353 { 2354 int error; 2355 struct xfs_buf *bp; 2356 2357 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo, 2358 XFS_AG_RESV_AGFL); 2359 if (error) 2360 return error; 2361 2362 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp, 2363 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno), 2364 tp->t_mountp->m_bsize, 0, &bp); 2365 if (error) 2366 return error; 2367 xfs_trans_binval(tp, bp); 2368 2369 return 0; 2370 } 2371 2372 /* 2373 * Check the agfl fields of the agf for inconsistency or corruption. The purpose 2374 * is to detect an agfl header padding mismatch between current and early v5 2375 * kernels. This problem manifests as a 1-slot size difference between the 2376 * on-disk flcount and the active [first, last] range of a wrapped agfl. This 2377 * may also catch variants of agfl count corruption unrelated to padding. Either 2378 * way, we'll reset the agfl and warn the user. 2379 * 2380 * Return true if a reset is required before the agfl can be used, false 2381 * otherwise. 2382 */ 2383 static bool 2384 xfs_agfl_needs_reset( 2385 struct xfs_mount *mp, 2386 struct xfs_agf *agf) 2387 { 2388 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2389 uint32_t l = be32_to_cpu(agf->agf_fllast); 2390 uint32_t c = be32_to_cpu(agf->agf_flcount); 2391 int agfl_size = xfs_agfl_size(mp); 2392 int active; 2393 2394 /* no agfl header on v4 supers */ 2395 if (!xfs_has_crc(mp)) 2396 return false; 2397 2398 /* 2399 * The agf read verifier catches severe corruption of these fields. 2400 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2401 * the verifier allows it. 2402 */ 2403 if (f >= agfl_size || l >= agfl_size) 2404 return true; 2405 if (c > agfl_size) 2406 return true; 2407 2408 /* 2409 * Check consistency between the on-disk count and the active range. An 2410 * agfl padding mismatch manifests as an inconsistent flcount. 2411 */ 2412 if (c && l >= f) 2413 active = l - f + 1; 2414 else if (c) 2415 active = agfl_size - f + l + 1; 2416 else 2417 active = 0; 2418 2419 return active != c; 2420 } 2421 2422 /* 2423 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2424 * agfl content cannot be trusted. Warn the user that a repair is required to 2425 * recover leaked blocks. 2426 * 2427 * The purpose of this mechanism is to handle filesystems affected by the agfl 2428 * header padding mismatch problem. A reset keeps the filesystem online with a 2429 * relatively minor free space accounting inconsistency rather than suffer the 2430 * inevitable crash from use of an invalid agfl block. 2431 */ 2432 static void 2433 xfs_agfl_reset( 2434 struct xfs_trans *tp, 2435 struct xfs_buf *agbp, 2436 struct xfs_perag *pag) 2437 { 2438 struct xfs_mount *mp = tp->t_mountp; 2439 struct xfs_agf *agf = agbp->b_addr; 2440 2441 ASSERT(pag->pagf_agflreset); 2442 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2443 2444 xfs_warn(mp, 2445 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2446 "Please unmount and run xfs_repair.", 2447 pag->pag_agno, pag->pagf_flcount); 2448 2449 agf->agf_flfirst = 0; 2450 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2451 agf->agf_flcount = 0; 2452 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2453 XFS_AGF_FLCOUNT); 2454 2455 pag->pagf_flcount = 0; 2456 pag->pagf_agflreset = false; 2457 } 2458 2459 /* 2460 * Defer an AGFL block free. This is effectively equivalent to 2461 * xfs_free_extent_later() with some special handling particular to AGFL blocks. 2462 * 2463 * Deferring AGFL frees helps prevent log reservation overruns due to too many 2464 * allocation operations in a transaction. AGFL frees are prone to this problem 2465 * because for one they are always freed one at a time. Further, an immediate 2466 * AGFL block free can cause a btree join and require another block free before 2467 * the real allocation can proceed. Deferring the free disconnects freeing up 2468 * the AGFL slot from freeing the block. 2469 */ 2470 STATIC void 2471 xfs_defer_agfl_block( 2472 struct xfs_trans *tp, 2473 xfs_agnumber_t agno, 2474 xfs_fsblock_t agbno, 2475 struct xfs_owner_info *oinfo) 2476 { 2477 struct xfs_mount *mp = tp->t_mountp; 2478 struct xfs_extent_free_item *new; /* new element */ 2479 2480 ASSERT(xfs_extfree_item_cache != NULL); 2481 ASSERT(oinfo != NULL); 2482 2483 new = kmem_cache_zalloc(xfs_extfree_item_cache, 2484 GFP_KERNEL | __GFP_NOFAIL); 2485 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno); 2486 new->xefi_blockcount = 1; 2487 new->xefi_owner = oinfo->oi_owner; 2488 2489 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1); 2490 2491 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list); 2492 } 2493 2494 /* 2495 * Add the extent to the list of extents to be free at transaction end. 2496 * The list is maintained sorted (by block number). 2497 */ 2498 void 2499 __xfs_free_extent_later( 2500 struct xfs_trans *tp, 2501 xfs_fsblock_t bno, 2502 xfs_filblks_t len, 2503 const struct xfs_owner_info *oinfo, 2504 bool skip_discard) 2505 { 2506 struct xfs_extent_free_item *new; /* new element */ 2507 #ifdef DEBUG 2508 struct xfs_mount *mp = tp->t_mountp; 2509 xfs_agnumber_t agno; 2510 xfs_agblock_t agbno; 2511 2512 ASSERT(bno != NULLFSBLOCK); 2513 ASSERT(len > 0); 2514 ASSERT(len <= MAXEXTLEN); 2515 ASSERT(!isnullstartblock(bno)); 2516 agno = XFS_FSB_TO_AGNO(mp, bno); 2517 agbno = XFS_FSB_TO_AGBNO(mp, bno); 2518 ASSERT(agno < mp->m_sb.sb_agcount); 2519 ASSERT(agbno < mp->m_sb.sb_agblocks); 2520 ASSERT(len < mp->m_sb.sb_agblocks); 2521 ASSERT(agbno + len <= mp->m_sb.sb_agblocks); 2522 #endif 2523 ASSERT(xfs_extfree_item_cache != NULL); 2524 2525 new = kmem_cache_zalloc(xfs_extfree_item_cache, 2526 GFP_KERNEL | __GFP_NOFAIL); 2527 new->xefi_startblock = bno; 2528 new->xefi_blockcount = (xfs_extlen_t)len; 2529 if (skip_discard) 2530 new->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2531 if (oinfo) { 2532 ASSERT(oinfo->oi_offset == 0); 2533 2534 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2535 new->xefi_flags |= XFS_EFI_ATTR_FORK; 2536 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2537 new->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2538 new->xefi_owner = oinfo->oi_owner; 2539 } else { 2540 new->xefi_owner = XFS_RMAP_OWN_NULL; 2541 } 2542 trace_xfs_bmap_free_defer(tp->t_mountp, 2543 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0, 2544 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len); 2545 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list); 2546 } 2547 2548 #ifdef DEBUG 2549 /* 2550 * Check if an AGF has a free extent record whose length is equal to 2551 * args->minlen. 2552 */ 2553 STATIC int 2554 xfs_exact_minlen_extent_available( 2555 struct xfs_alloc_arg *args, 2556 struct xfs_buf *agbp, 2557 int *stat) 2558 { 2559 struct xfs_btree_cur *cnt_cur; 2560 xfs_agblock_t fbno; 2561 xfs_extlen_t flen; 2562 int error = 0; 2563 2564 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp, 2565 args->pag, XFS_BTNUM_CNT); 2566 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2567 if (error) 2568 goto out; 2569 2570 if (*stat == 0) { 2571 error = -EFSCORRUPTED; 2572 goto out; 2573 } 2574 2575 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2576 if (error) 2577 goto out; 2578 2579 if (*stat == 1 && flen != args->minlen) 2580 *stat = 0; 2581 2582 out: 2583 xfs_btree_del_cursor(cnt_cur, error); 2584 2585 return error; 2586 } 2587 #endif 2588 2589 /* 2590 * Decide whether to use this allocation group for this allocation. 2591 * If so, fix up the btree freelist's size. 2592 */ 2593 int /* error */ 2594 xfs_alloc_fix_freelist( 2595 struct xfs_alloc_arg *args, /* allocation argument structure */ 2596 int flags) /* XFS_ALLOC_FLAG_... */ 2597 { 2598 struct xfs_mount *mp = args->mp; 2599 struct xfs_perag *pag = args->pag; 2600 struct xfs_trans *tp = args->tp; 2601 struct xfs_buf *agbp = NULL; 2602 struct xfs_buf *agflbp = NULL; 2603 struct xfs_alloc_arg targs; /* local allocation arguments */ 2604 xfs_agblock_t bno; /* freelist block */ 2605 xfs_extlen_t need; /* total blocks needed in freelist */ 2606 int error = 0; 2607 2608 /* deferred ops (AGFL block frees) require permanent transactions */ 2609 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2610 2611 if (!pag->pagf_init) { 2612 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp); 2613 if (error) { 2614 /* Couldn't lock the AGF so skip this AG. */ 2615 if (error == -EAGAIN) 2616 error = 0; 2617 goto out_no_agbp; 2618 } 2619 } 2620 2621 /* 2622 * If this is a metadata preferred pag and we are user data then try 2623 * somewhere else if we are not being asked to try harder at this 2624 * point 2625 */ 2626 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) && 2627 (flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2628 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); 2629 goto out_agbp_relse; 2630 } 2631 2632 need = xfs_alloc_min_freelist(mp, pag); 2633 if (!xfs_alloc_space_available(args, need, flags | 2634 XFS_ALLOC_FLAG_CHECK)) 2635 goto out_agbp_relse; 2636 2637 /* 2638 * Get the a.g. freespace buffer. 2639 * Can fail if we're not blocking on locks, and it's held. 2640 */ 2641 if (!agbp) { 2642 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp); 2643 if (error) { 2644 /* Couldn't lock the AGF so skip this AG. */ 2645 if (error == -EAGAIN) 2646 error = 0; 2647 goto out_no_agbp; 2648 } 2649 } 2650 2651 /* reset a padding mismatched agfl before final free space check */ 2652 if (pag->pagf_agflreset) 2653 xfs_agfl_reset(tp, agbp, pag); 2654 2655 /* If there isn't enough total space or single-extent, reject it. */ 2656 need = xfs_alloc_min_freelist(mp, pag); 2657 if (!xfs_alloc_space_available(args, need, flags)) 2658 goto out_agbp_relse; 2659 2660 #ifdef DEBUG 2661 if (args->alloc_minlen_only) { 2662 int stat; 2663 2664 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2665 if (error || !stat) 2666 goto out_agbp_relse; 2667 } 2668 #endif 2669 /* 2670 * Make the freelist shorter if it's too long. 2671 * 2672 * Note that from this point onwards, we will always release the agf and 2673 * agfl buffers on error. This handles the case where we error out and 2674 * the buffers are clean or may not have been joined to the transaction 2675 * and hence need to be released manually. If they have been joined to 2676 * the transaction, then xfs_trans_brelse() will handle them 2677 * appropriately based on the recursion count and dirty state of the 2678 * buffer. 2679 * 2680 * XXX (dgc): When we have lots of free space, does this buy us 2681 * anything other than extra overhead when we need to put more blocks 2682 * back on the free list? Maybe we should only do this when space is 2683 * getting low or the AGFL is more than half full? 2684 * 2685 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2686 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2687 * updating the rmapbt. Both flags are used in xfs_repair while we're 2688 * rebuilding the rmapbt, and neither are used by the kernel. They're 2689 * both required to ensure that rmaps are correctly recorded for the 2690 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2691 * repair/rmap.c in xfsprogs for details. 2692 */ 2693 memset(&targs, 0, sizeof(targs)); 2694 /* struct copy below */ 2695 if (flags & XFS_ALLOC_FLAG_NORMAP) 2696 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2697 else 2698 targs.oinfo = XFS_RMAP_OINFO_AG; 2699 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) { 2700 error = xfs_alloc_get_freelist(tp, agbp, &bno, 0); 2701 if (error) 2702 goto out_agbp_relse; 2703 2704 /* defer agfl frees */ 2705 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo); 2706 } 2707 2708 targs.tp = tp; 2709 targs.mp = mp; 2710 targs.agbp = agbp; 2711 targs.agno = args->agno; 2712 targs.alignment = targs.minlen = targs.prod = 1; 2713 targs.type = XFS_ALLOCTYPE_THIS_AG; 2714 targs.pag = pag; 2715 error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp); 2716 if (error) 2717 goto out_agbp_relse; 2718 2719 /* Make the freelist longer if it's too short. */ 2720 while (pag->pagf_flcount < need) { 2721 targs.agbno = 0; 2722 targs.maxlen = need - pag->pagf_flcount; 2723 targs.resv = XFS_AG_RESV_AGFL; 2724 2725 /* Allocate as many blocks as possible at once. */ 2726 error = xfs_alloc_ag_vextent(&targs); 2727 if (error) 2728 goto out_agflbp_relse; 2729 2730 /* 2731 * Stop if we run out. Won't happen if callers are obeying 2732 * the restrictions correctly. Can happen for free calls 2733 * on a completely full ag. 2734 */ 2735 if (targs.agbno == NULLAGBLOCK) { 2736 if (flags & XFS_ALLOC_FLAG_FREEING) 2737 break; 2738 goto out_agflbp_relse; 2739 } 2740 /* 2741 * Put each allocated block on the list. 2742 */ 2743 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 2744 error = xfs_alloc_put_freelist(tp, agbp, 2745 agflbp, bno, 0); 2746 if (error) 2747 goto out_agflbp_relse; 2748 } 2749 } 2750 xfs_trans_brelse(tp, agflbp); 2751 args->agbp = agbp; 2752 return 0; 2753 2754 out_agflbp_relse: 2755 xfs_trans_brelse(tp, agflbp); 2756 out_agbp_relse: 2757 if (agbp) 2758 xfs_trans_brelse(tp, agbp); 2759 out_no_agbp: 2760 args->agbp = NULL; 2761 return error; 2762 } 2763 2764 /* 2765 * Get a block from the freelist. 2766 * Returns with the buffer for the block gotten. 2767 */ 2768 int 2769 xfs_alloc_get_freelist( 2770 struct xfs_trans *tp, 2771 struct xfs_buf *agbp, 2772 xfs_agblock_t *bnop, 2773 int btreeblk) 2774 { 2775 struct xfs_agf *agf = agbp->b_addr; 2776 struct xfs_buf *agflbp; 2777 xfs_agblock_t bno; 2778 __be32 *agfl_bno; 2779 int error; 2780 int logflags; 2781 struct xfs_mount *mp = tp->t_mountp; 2782 struct xfs_perag *pag; 2783 2784 /* 2785 * Freelist is empty, give up. 2786 */ 2787 if (!agf->agf_flcount) { 2788 *bnop = NULLAGBLOCK; 2789 return 0; 2790 } 2791 /* 2792 * Read the array of free blocks. 2793 */ 2794 error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno), 2795 &agflbp); 2796 if (error) 2797 return error; 2798 2799 2800 /* 2801 * Get the block number and update the data structures. 2802 */ 2803 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2804 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 2805 be32_add_cpu(&agf->agf_flfirst, 1); 2806 xfs_trans_brelse(tp, agflbp); 2807 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 2808 agf->agf_flfirst = 0; 2809 2810 pag = agbp->b_pag; 2811 ASSERT(!pag->pagf_agflreset); 2812 be32_add_cpu(&agf->agf_flcount, -1); 2813 pag->pagf_flcount--; 2814 2815 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 2816 if (btreeblk) { 2817 be32_add_cpu(&agf->agf_btreeblks, 1); 2818 pag->pagf_btreeblks++; 2819 logflags |= XFS_AGF_BTREEBLKS; 2820 } 2821 2822 xfs_alloc_log_agf(tp, agbp, logflags); 2823 *bnop = bno; 2824 2825 return 0; 2826 } 2827 2828 /* 2829 * Log the given fields from the agf structure. 2830 */ 2831 void 2832 xfs_alloc_log_agf( 2833 xfs_trans_t *tp, /* transaction pointer */ 2834 struct xfs_buf *bp, /* buffer for a.g. freelist header */ 2835 int fields) /* mask of fields to be logged (XFS_AGF_...) */ 2836 { 2837 int first; /* first byte offset */ 2838 int last; /* last byte offset */ 2839 static const short offsets[] = { 2840 offsetof(xfs_agf_t, agf_magicnum), 2841 offsetof(xfs_agf_t, agf_versionnum), 2842 offsetof(xfs_agf_t, agf_seqno), 2843 offsetof(xfs_agf_t, agf_length), 2844 offsetof(xfs_agf_t, agf_roots[0]), 2845 offsetof(xfs_agf_t, agf_levels[0]), 2846 offsetof(xfs_agf_t, agf_flfirst), 2847 offsetof(xfs_agf_t, agf_fllast), 2848 offsetof(xfs_agf_t, agf_flcount), 2849 offsetof(xfs_agf_t, agf_freeblks), 2850 offsetof(xfs_agf_t, agf_longest), 2851 offsetof(xfs_agf_t, agf_btreeblks), 2852 offsetof(xfs_agf_t, agf_uuid), 2853 offsetof(xfs_agf_t, agf_rmap_blocks), 2854 offsetof(xfs_agf_t, agf_refcount_blocks), 2855 offsetof(xfs_agf_t, agf_refcount_root), 2856 offsetof(xfs_agf_t, agf_refcount_level), 2857 /* needed so that we don't log the whole rest of the structure: */ 2858 offsetof(xfs_agf_t, agf_spare64), 2859 sizeof(xfs_agf_t) 2860 }; 2861 2862 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 2863 2864 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 2865 2866 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 2867 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 2868 } 2869 2870 /* 2871 * Interface for inode allocation to force the pag data to be initialized. 2872 */ 2873 int /* error */ 2874 xfs_alloc_pagf_init( 2875 xfs_mount_t *mp, /* file system mount structure */ 2876 xfs_trans_t *tp, /* transaction pointer */ 2877 xfs_agnumber_t agno, /* allocation group number */ 2878 int flags) /* XFS_ALLOC_FLAGS_... */ 2879 { 2880 struct xfs_buf *bp; 2881 int error; 2882 2883 error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp); 2884 if (!error) 2885 xfs_trans_brelse(tp, bp); 2886 return error; 2887 } 2888 2889 /* 2890 * Put the block on the freelist for the allocation group. 2891 */ 2892 int 2893 xfs_alloc_put_freelist( 2894 struct xfs_trans *tp, 2895 struct xfs_buf *agbp, 2896 struct xfs_buf *agflbp, 2897 xfs_agblock_t bno, 2898 int btreeblk) 2899 { 2900 struct xfs_mount *mp = tp->t_mountp; 2901 struct xfs_agf *agf = agbp->b_addr; 2902 struct xfs_perag *pag; 2903 __be32 *blockp; 2904 int error; 2905 int logflags; 2906 __be32 *agfl_bno; 2907 int startoff; 2908 2909 if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp, 2910 be32_to_cpu(agf->agf_seqno), &agflbp))) 2911 return error; 2912 be32_add_cpu(&agf->agf_fllast, 1); 2913 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 2914 agf->agf_fllast = 0; 2915 2916 pag = agbp->b_pag; 2917 ASSERT(!pag->pagf_agflreset); 2918 be32_add_cpu(&agf->agf_flcount, 1); 2919 pag->pagf_flcount++; 2920 2921 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 2922 if (btreeblk) { 2923 be32_add_cpu(&agf->agf_btreeblks, -1); 2924 pag->pagf_btreeblks--; 2925 logflags |= XFS_AGF_BTREEBLKS; 2926 } 2927 2928 xfs_alloc_log_agf(tp, agbp, logflags); 2929 2930 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 2931 2932 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2933 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 2934 *blockp = cpu_to_be32(bno); 2935 startoff = (char *)blockp - (char *)agflbp->b_addr; 2936 2937 xfs_alloc_log_agf(tp, agbp, logflags); 2938 2939 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 2940 xfs_trans_log_buf(tp, agflbp, startoff, 2941 startoff + sizeof(xfs_agblock_t) - 1); 2942 return 0; 2943 } 2944 2945 static xfs_failaddr_t 2946 xfs_agf_verify( 2947 struct xfs_buf *bp) 2948 { 2949 struct xfs_mount *mp = bp->b_mount; 2950 struct xfs_agf *agf = bp->b_addr; 2951 2952 if (xfs_has_crc(mp)) { 2953 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 2954 return __this_address; 2955 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 2956 return __this_address; 2957 } 2958 2959 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 2960 return __this_address; 2961 2962 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) && 2963 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) && 2964 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) && 2965 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) && 2966 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp))) 2967 return __this_address; 2968 2969 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks) 2970 return __this_address; 2971 2972 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 2973 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length)) 2974 return __this_address; 2975 2976 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 || 2977 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 || 2978 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > 2979 mp->m_alloc_maxlevels || 2980 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > 2981 mp->m_alloc_maxlevels) 2982 return __this_address; 2983 2984 if (xfs_has_rmapbt(mp) && 2985 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 || 2986 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > 2987 mp->m_rmap_maxlevels)) 2988 return __this_address; 2989 2990 if (xfs_has_rmapbt(mp) && 2991 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length)) 2992 return __this_address; 2993 2994 /* 2995 * during growfs operations, the perag is not fully initialised, 2996 * so we can't use it for any useful checking. growfs ensures we can't 2997 * use it by using uncached buffers that don't have the perag attached 2998 * so we can detect and avoid this problem. 2999 */ 3000 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno) 3001 return __this_address; 3002 3003 if (xfs_has_lazysbcount(mp) && 3004 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length)) 3005 return __this_address; 3006 3007 if (xfs_has_reflink(mp) && 3008 be32_to_cpu(agf->agf_refcount_blocks) > 3009 be32_to_cpu(agf->agf_length)) 3010 return __this_address; 3011 3012 if (xfs_has_reflink(mp) && 3013 (be32_to_cpu(agf->agf_refcount_level) < 1 || 3014 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)) 3015 return __this_address; 3016 3017 return NULL; 3018 3019 } 3020 3021 static void 3022 xfs_agf_read_verify( 3023 struct xfs_buf *bp) 3024 { 3025 struct xfs_mount *mp = bp->b_mount; 3026 xfs_failaddr_t fa; 3027 3028 if (xfs_has_crc(mp) && 3029 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3030 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3031 else { 3032 fa = xfs_agf_verify(bp); 3033 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3034 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3035 } 3036 } 3037 3038 static void 3039 xfs_agf_write_verify( 3040 struct xfs_buf *bp) 3041 { 3042 struct xfs_mount *mp = bp->b_mount; 3043 struct xfs_buf_log_item *bip = bp->b_log_item; 3044 struct xfs_agf *agf = bp->b_addr; 3045 xfs_failaddr_t fa; 3046 3047 fa = xfs_agf_verify(bp); 3048 if (fa) { 3049 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3050 return; 3051 } 3052 3053 if (!xfs_has_crc(mp)) 3054 return; 3055 3056 if (bip) 3057 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3058 3059 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3060 } 3061 3062 const struct xfs_buf_ops xfs_agf_buf_ops = { 3063 .name = "xfs_agf", 3064 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3065 .verify_read = xfs_agf_read_verify, 3066 .verify_write = xfs_agf_write_verify, 3067 .verify_struct = xfs_agf_verify, 3068 }; 3069 3070 /* 3071 * Read in the allocation group header (free/alloc section). 3072 */ 3073 int /* error */ 3074 xfs_read_agf( 3075 struct xfs_mount *mp, /* mount point structure */ 3076 struct xfs_trans *tp, /* transaction pointer */ 3077 xfs_agnumber_t agno, /* allocation group number */ 3078 int flags, /* XFS_BUF_ */ 3079 struct xfs_buf **bpp) /* buffer for the ag freelist header */ 3080 { 3081 int error; 3082 3083 trace_xfs_read_agf(mp, agno); 3084 3085 ASSERT(agno != NULLAGNUMBER); 3086 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3087 XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), 3088 XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops); 3089 if (error) 3090 return error; 3091 3092 ASSERT(!(*bpp)->b_error); 3093 xfs_buf_set_ref(*bpp, XFS_AGF_REF); 3094 return 0; 3095 } 3096 3097 /* 3098 * Read in the allocation group header (free/alloc section). 3099 */ 3100 int /* error */ 3101 xfs_alloc_read_agf( 3102 struct xfs_mount *mp, /* mount point structure */ 3103 struct xfs_trans *tp, /* transaction pointer */ 3104 xfs_agnumber_t agno, /* allocation group number */ 3105 int flags, /* XFS_ALLOC_FLAG_... */ 3106 struct xfs_buf **bpp) /* buffer for the ag freelist header */ 3107 { 3108 struct xfs_agf *agf; /* ag freelist header */ 3109 struct xfs_perag *pag; /* per allocation group data */ 3110 int error; 3111 int allocbt_blks; 3112 3113 trace_xfs_alloc_read_agf(mp, agno); 3114 3115 /* We don't support trylock when freeing. */ 3116 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3117 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3118 ASSERT(agno != NULLAGNUMBER); 3119 error = xfs_read_agf(mp, tp, agno, 3120 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3121 bpp); 3122 if (error) 3123 return error; 3124 ASSERT(!(*bpp)->b_error); 3125 3126 agf = (*bpp)->b_addr; 3127 pag = (*bpp)->b_pag; 3128 if (!pag->pagf_init) { 3129 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3130 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3131 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3132 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3133 pag->pagf_levels[XFS_BTNUM_BNOi] = 3134 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); 3135 pag->pagf_levels[XFS_BTNUM_CNTi] = 3136 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); 3137 pag->pagf_levels[XFS_BTNUM_RMAPi] = 3138 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]); 3139 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3140 pag->pagf_init = 1; 3141 pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf); 3142 3143 /* 3144 * Update the in-core allocbt counter. Filter out the rmapbt 3145 * subset of the btreeblks counter because the rmapbt is managed 3146 * by perag reservation. Subtract one for the rmapbt root block 3147 * because the rmap counter includes it while the btreeblks 3148 * counter only tracks non-root blocks. 3149 */ 3150 allocbt_blks = pag->pagf_btreeblks; 3151 if (xfs_has_rmapbt(mp)) 3152 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3153 if (allocbt_blks > 0) 3154 atomic64_add(allocbt_blks, &mp->m_allocbt_blks); 3155 } 3156 #ifdef DEBUG 3157 else if (!xfs_is_shutdown(mp)) { 3158 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3159 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3160 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3161 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3162 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == 3163 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); 3164 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == 3165 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); 3166 } 3167 #endif 3168 return 0; 3169 } 3170 3171 /* 3172 * Allocate an extent (variable-size). 3173 * Depending on the allocation type, we either look in a single allocation 3174 * group or loop over the allocation groups to find the result. 3175 */ 3176 int /* error */ 3177 xfs_alloc_vextent( 3178 struct xfs_alloc_arg *args) /* allocation argument structure */ 3179 { 3180 xfs_agblock_t agsize; /* allocation group size */ 3181 int error; 3182 int flags; /* XFS_ALLOC_FLAG_... locking flags */ 3183 struct xfs_mount *mp; /* mount structure pointer */ 3184 xfs_agnumber_t sagno; /* starting allocation group number */ 3185 xfs_alloctype_t type; /* input allocation type */ 3186 int bump_rotor = 0; 3187 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */ 3188 3189 mp = args->mp; 3190 type = args->otype = args->type; 3191 args->agbno = NULLAGBLOCK; 3192 /* 3193 * Just fix this up, for the case where the last a.g. is shorter 3194 * (or there's only one a.g.) and the caller couldn't easily figure 3195 * that out (xfs_bmap_alloc). 3196 */ 3197 agsize = mp->m_sb.sb_agblocks; 3198 if (args->maxlen > agsize) 3199 args->maxlen = agsize; 3200 if (args->alignment == 0) 3201 args->alignment = 1; 3202 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount); 3203 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize); 3204 ASSERT(args->minlen <= args->maxlen); 3205 ASSERT(args->minlen <= agsize); 3206 ASSERT(args->mod < args->prod); 3207 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount || 3208 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize || 3209 args->minlen > args->maxlen || args->minlen > agsize || 3210 args->mod >= args->prod) { 3211 args->fsbno = NULLFSBLOCK; 3212 trace_xfs_alloc_vextent_badargs(args); 3213 return 0; 3214 } 3215 3216 switch (type) { 3217 case XFS_ALLOCTYPE_THIS_AG: 3218 case XFS_ALLOCTYPE_NEAR_BNO: 3219 case XFS_ALLOCTYPE_THIS_BNO: 3220 /* 3221 * These three force us into a single a.g. 3222 */ 3223 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3224 args->pag = xfs_perag_get(mp, args->agno); 3225 error = xfs_alloc_fix_freelist(args, 0); 3226 if (error) { 3227 trace_xfs_alloc_vextent_nofix(args); 3228 goto error0; 3229 } 3230 if (!args->agbp) { 3231 trace_xfs_alloc_vextent_noagbp(args); 3232 break; 3233 } 3234 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); 3235 if ((error = xfs_alloc_ag_vextent(args))) 3236 goto error0; 3237 break; 3238 case XFS_ALLOCTYPE_START_BNO: 3239 /* 3240 * Try near allocation first, then anywhere-in-ag after 3241 * the first a.g. fails. 3242 */ 3243 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3244 xfs_is_inode32(mp)) { 3245 args->fsbno = XFS_AGB_TO_FSB(mp, 3246 ((mp->m_agfrotor / rotorstep) % 3247 mp->m_sb.sb_agcount), 0); 3248 bump_rotor = 1; 3249 } 3250 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); 3251 args->type = XFS_ALLOCTYPE_NEAR_BNO; 3252 fallthrough; 3253 case XFS_ALLOCTYPE_FIRST_AG: 3254 /* 3255 * Rotate through the allocation groups looking for a winner. 3256 */ 3257 if (type == XFS_ALLOCTYPE_FIRST_AG) { 3258 /* 3259 * Start with allocation group given by bno. 3260 */ 3261 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3262 args->type = XFS_ALLOCTYPE_THIS_AG; 3263 sagno = 0; 3264 flags = 0; 3265 } else { 3266 /* 3267 * Start with the given allocation group. 3268 */ 3269 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3270 flags = XFS_ALLOC_FLAG_TRYLOCK; 3271 } 3272 /* 3273 * Loop over allocation groups twice; first time with 3274 * trylock set, second time without. 3275 */ 3276 for (;;) { 3277 args->pag = xfs_perag_get(mp, args->agno); 3278 error = xfs_alloc_fix_freelist(args, flags); 3279 if (error) { 3280 trace_xfs_alloc_vextent_nofix(args); 3281 goto error0; 3282 } 3283 /* 3284 * If we get a buffer back then the allocation will fly. 3285 */ 3286 if (args->agbp) { 3287 if ((error = xfs_alloc_ag_vextent(args))) 3288 goto error0; 3289 break; 3290 } 3291 3292 trace_xfs_alloc_vextent_loopfailed(args); 3293 3294 /* 3295 * Didn't work, figure out the next iteration. 3296 */ 3297 if (args->agno == sagno && 3298 type == XFS_ALLOCTYPE_START_BNO) 3299 args->type = XFS_ALLOCTYPE_THIS_AG; 3300 /* 3301 * For the first allocation, we can try any AG to get 3302 * space. However, if we already have allocated a 3303 * block, we don't want to try AGs whose number is below 3304 * sagno. Otherwise, we may end up with out-of-order 3305 * locking of AGF, which might cause deadlock. 3306 */ 3307 if (++(args->agno) == mp->m_sb.sb_agcount) { 3308 if (args->tp->t_firstblock != NULLFSBLOCK) 3309 args->agno = sagno; 3310 else 3311 args->agno = 0; 3312 } 3313 /* 3314 * Reached the starting a.g., must either be done 3315 * or switch to non-trylock mode. 3316 */ 3317 if (args->agno == sagno) { 3318 if (flags == 0) { 3319 args->agbno = NULLAGBLOCK; 3320 trace_xfs_alloc_vextent_allfailed(args); 3321 break; 3322 } 3323 3324 flags = 0; 3325 if (type == XFS_ALLOCTYPE_START_BNO) { 3326 args->agbno = XFS_FSB_TO_AGBNO(mp, 3327 args->fsbno); 3328 args->type = XFS_ALLOCTYPE_NEAR_BNO; 3329 } 3330 } 3331 xfs_perag_put(args->pag); 3332 } 3333 if (bump_rotor) { 3334 if (args->agno == sagno) 3335 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3336 (mp->m_sb.sb_agcount * rotorstep); 3337 else 3338 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3339 (mp->m_sb.sb_agcount * rotorstep); 3340 } 3341 break; 3342 default: 3343 ASSERT(0); 3344 /* NOTREACHED */ 3345 } 3346 if (args->agbno == NULLAGBLOCK) 3347 args->fsbno = NULLFSBLOCK; 3348 else { 3349 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); 3350 #ifdef DEBUG 3351 ASSERT(args->len >= args->minlen); 3352 ASSERT(args->len <= args->maxlen); 3353 ASSERT(args->agbno % args->alignment == 0); 3354 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), 3355 args->len); 3356 #endif 3357 3358 } 3359 xfs_perag_put(args->pag); 3360 return 0; 3361 error0: 3362 xfs_perag_put(args->pag); 3363 return error; 3364 } 3365 3366 /* Ensure that the freelist is at full capacity. */ 3367 int 3368 xfs_free_extent_fix_freelist( 3369 struct xfs_trans *tp, 3370 struct xfs_perag *pag, 3371 struct xfs_buf **agbp) 3372 { 3373 struct xfs_alloc_arg args; 3374 int error; 3375 3376 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3377 args.tp = tp; 3378 args.mp = tp->t_mountp; 3379 args.agno = pag->pag_agno; 3380 args.pag = pag; 3381 3382 /* 3383 * validate that the block number is legal - the enables us to detect 3384 * and handle a silent filesystem corruption rather than crashing. 3385 */ 3386 if (args.agno >= args.mp->m_sb.sb_agcount) 3387 return -EFSCORRUPTED; 3388 3389 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3390 if (error) 3391 return error; 3392 3393 *agbp = args.agbp; 3394 return 0; 3395 } 3396 3397 /* 3398 * Free an extent. 3399 * Just break up the extent address and hand off to xfs_free_ag_extent 3400 * after fixing up the freelist. 3401 */ 3402 int 3403 __xfs_free_extent( 3404 struct xfs_trans *tp, 3405 xfs_fsblock_t bno, 3406 xfs_extlen_t len, 3407 const struct xfs_owner_info *oinfo, 3408 enum xfs_ag_resv_type type, 3409 bool skip_discard) 3410 { 3411 struct xfs_mount *mp = tp->t_mountp; 3412 struct xfs_buf *agbp; 3413 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno); 3414 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno); 3415 struct xfs_agf *agf; 3416 int error; 3417 unsigned int busy_flags = 0; 3418 struct xfs_perag *pag; 3419 3420 ASSERT(len != 0); 3421 ASSERT(type != XFS_AG_RESV_AGFL); 3422 3423 if (XFS_TEST_ERROR(false, mp, 3424 XFS_ERRTAG_FREE_EXTENT)) 3425 return -EIO; 3426 3427 pag = xfs_perag_get(mp, agno); 3428 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 3429 if (error) 3430 goto err; 3431 agf = agbp->b_addr; 3432 3433 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 3434 error = -EFSCORRUPTED; 3435 goto err_release; 3436 } 3437 3438 /* validate the extent size is legal now we have the agf locked */ 3439 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 3440 error = -EFSCORRUPTED; 3441 goto err_release; 3442 } 3443 3444 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type); 3445 if (error) 3446 goto err_release; 3447 3448 if (skip_discard) 3449 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 3450 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); 3451 xfs_perag_put(pag); 3452 return 0; 3453 3454 err_release: 3455 xfs_trans_brelse(tp, agbp); 3456 err: 3457 xfs_perag_put(pag); 3458 return error; 3459 } 3460 3461 struct xfs_alloc_query_range_info { 3462 xfs_alloc_query_range_fn fn; 3463 void *priv; 3464 }; 3465 3466 /* Format btree record and pass to our callback. */ 3467 STATIC int 3468 xfs_alloc_query_range_helper( 3469 struct xfs_btree_cur *cur, 3470 const union xfs_btree_rec *rec, 3471 void *priv) 3472 { 3473 struct xfs_alloc_query_range_info *query = priv; 3474 struct xfs_alloc_rec_incore irec; 3475 3476 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 3477 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 3478 return query->fn(cur, &irec, query->priv); 3479 } 3480 3481 /* Find all free space within a given range of blocks. */ 3482 int 3483 xfs_alloc_query_range( 3484 struct xfs_btree_cur *cur, 3485 const struct xfs_alloc_rec_incore *low_rec, 3486 const struct xfs_alloc_rec_incore *high_rec, 3487 xfs_alloc_query_range_fn fn, 3488 void *priv) 3489 { 3490 union xfs_btree_irec low_brec; 3491 union xfs_btree_irec high_brec; 3492 struct xfs_alloc_query_range_info query; 3493 3494 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3495 low_brec.a = *low_rec; 3496 high_brec.a = *high_rec; 3497 query.priv = priv; 3498 query.fn = fn; 3499 return xfs_btree_query_range(cur, &low_brec, &high_brec, 3500 xfs_alloc_query_range_helper, &query); 3501 } 3502 3503 /* Find all free space records. */ 3504 int 3505 xfs_alloc_query_all( 3506 struct xfs_btree_cur *cur, 3507 xfs_alloc_query_range_fn fn, 3508 void *priv) 3509 { 3510 struct xfs_alloc_query_range_info query; 3511 3512 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3513 query.priv = priv; 3514 query.fn = fn; 3515 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 3516 } 3517 3518 /* Is there a record covering a given extent? */ 3519 int 3520 xfs_alloc_has_record( 3521 struct xfs_btree_cur *cur, 3522 xfs_agblock_t bno, 3523 xfs_extlen_t len, 3524 bool *exists) 3525 { 3526 union xfs_btree_irec low; 3527 union xfs_btree_irec high; 3528 3529 memset(&low, 0, sizeof(low)); 3530 low.a.ar_startblock = bno; 3531 memset(&high, 0xFF, sizeof(high)); 3532 high.a.ar_startblock = bno + len - 1; 3533 3534 return xfs_btree_has_record(cur, &low, &high, exists); 3535 } 3536 3537 /* 3538 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 3539 * error code or XFS_ITER_*. 3540 */ 3541 int 3542 xfs_agfl_walk( 3543 struct xfs_mount *mp, 3544 struct xfs_agf *agf, 3545 struct xfs_buf *agflbp, 3546 xfs_agfl_walk_fn walk_fn, 3547 void *priv) 3548 { 3549 __be32 *agfl_bno; 3550 unsigned int i; 3551 int error; 3552 3553 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3554 i = be32_to_cpu(agf->agf_flfirst); 3555 3556 /* Nothing to walk in an empty AGFL. */ 3557 if (agf->agf_flcount == cpu_to_be32(0)) 3558 return 0; 3559 3560 /* Otherwise, walk from first to last, wrapping as needed. */ 3561 for (;;) { 3562 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 3563 if (error) 3564 return error; 3565 if (i == be32_to_cpu(agf->agf_fllast)) 3566 break; 3567 if (++i == xfs_agfl_size(mp)) 3568 i = 0; 3569 } 3570 3571 return 0; 3572 } 3573 3574 int __init 3575 xfs_extfree_intent_init_cache(void) 3576 { 3577 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 3578 sizeof(struct xfs_extent_free_item), 3579 0, 0, NULL); 3580 3581 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 3582 } 3583 3584 void 3585 xfs_extfree_intent_destroy_cache(void) 3586 { 3587 kmem_cache_destroy(xfs_extfree_item_cache); 3588 xfs_extfree_item_cache = NULL; 3589 } 3590