1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 30 struct kmem_cache *xfs_extfree_item_cache; 31 32 struct workqueue_struct *xfs_alloc_wq; 33 34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 35 36 #define XFSA_FIXUP_BNO_OK 1 37 #define XFSA_FIXUP_CNT_OK 2 38 39 STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *); 40 STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *); 41 STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *); 42 43 /* 44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 45 * the beginning of the block for a proper header with the location information 46 * and CRC. 47 */ 48 unsigned int 49 xfs_agfl_size( 50 struct xfs_mount *mp) 51 { 52 unsigned int size = mp->m_sb.sb_sectsize; 53 54 if (xfs_has_crc(mp)) 55 size -= sizeof(struct xfs_agfl); 56 57 return size / sizeof(xfs_agblock_t); 58 } 59 60 unsigned int 61 xfs_refc_block( 62 struct xfs_mount *mp) 63 { 64 if (xfs_has_rmapbt(mp)) 65 return XFS_RMAP_BLOCK(mp) + 1; 66 if (xfs_has_finobt(mp)) 67 return XFS_FIBT_BLOCK(mp) + 1; 68 return XFS_IBT_BLOCK(mp) + 1; 69 } 70 71 xfs_extlen_t 72 xfs_prealloc_blocks( 73 struct xfs_mount *mp) 74 { 75 if (xfs_has_reflink(mp)) 76 return xfs_refc_block(mp) + 1; 77 if (xfs_has_rmapbt(mp)) 78 return XFS_RMAP_BLOCK(mp) + 1; 79 if (xfs_has_finobt(mp)) 80 return XFS_FIBT_BLOCK(mp) + 1; 81 return XFS_IBT_BLOCK(mp) + 1; 82 } 83 84 /* 85 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 86 * AGF buffer (PV 947395), we place constraints on the relationship among 87 * actual allocations for data blocks, freelist blocks, and potential file data 88 * bmap btree blocks. However, these restrictions may result in no actual space 89 * allocated for a delayed extent, for example, a data block in a certain AG is 90 * allocated but there is no additional block for the additional bmap btree 91 * block due to a split of the bmap btree of the file. The result of this may 92 * lead to an infinite loop when the file gets flushed to disk and all delayed 93 * extents need to be actually allocated. To get around this, we explicitly set 94 * aside a few blocks which will not be reserved in delayed allocation. 95 * 96 * We need to reserve 4 fsbs _per AG_ for the freelist and 4 more to handle a 97 * potential split of the file's bmap btree. 98 */ 99 unsigned int 100 xfs_alloc_set_aside( 101 struct xfs_mount *mp) 102 { 103 return mp->m_sb.sb_agcount * (XFS_ALLOC_AGFL_RESERVE + 4); 104 } 105 106 /* 107 * When deciding how much space to allocate out of an AG, we limit the 108 * allocation maximum size to the size the AG. However, we cannot use all the 109 * blocks in the AG - some are permanently used by metadata. These 110 * blocks are generally: 111 * - the AG superblock, AGF, AGI and AGFL 112 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 113 * the AGI free inode and rmap btree root blocks. 114 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 115 * - the rmapbt root block 116 * 117 * The AG headers are sector sized, so the amount of space they take up is 118 * dependent on filesystem geometry. The others are all single blocks. 119 */ 120 unsigned int 121 xfs_alloc_ag_max_usable( 122 struct xfs_mount *mp) 123 { 124 unsigned int blocks; 125 126 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 127 blocks += XFS_ALLOC_AGFL_RESERVE; 128 blocks += 3; /* AGF, AGI btree root blocks */ 129 if (xfs_has_finobt(mp)) 130 blocks++; /* finobt root block */ 131 if (xfs_has_rmapbt(mp)) 132 blocks++; /* rmap root block */ 133 if (xfs_has_reflink(mp)) 134 blocks++; /* refcount root block */ 135 136 return mp->m_sb.sb_agblocks - blocks; 137 } 138 139 /* 140 * Lookup the record equal to [bno, len] in the btree given by cur. 141 */ 142 STATIC int /* error */ 143 xfs_alloc_lookup_eq( 144 struct xfs_btree_cur *cur, /* btree cursor */ 145 xfs_agblock_t bno, /* starting block of extent */ 146 xfs_extlen_t len, /* length of extent */ 147 int *stat) /* success/failure */ 148 { 149 int error; 150 151 cur->bc_rec.a.ar_startblock = bno; 152 cur->bc_rec.a.ar_blockcount = len; 153 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); 154 cur->bc_ag.abt.active = (*stat == 1); 155 return error; 156 } 157 158 /* 159 * Lookup the first record greater than or equal to [bno, len] 160 * in the btree given by cur. 161 */ 162 int /* error */ 163 xfs_alloc_lookup_ge( 164 struct xfs_btree_cur *cur, /* btree cursor */ 165 xfs_agblock_t bno, /* starting block of extent */ 166 xfs_extlen_t len, /* length of extent */ 167 int *stat) /* success/failure */ 168 { 169 int error; 170 171 cur->bc_rec.a.ar_startblock = bno; 172 cur->bc_rec.a.ar_blockcount = len; 173 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); 174 cur->bc_ag.abt.active = (*stat == 1); 175 return error; 176 } 177 178 /* 179 * Lookup the first record less than or equal to [bno, len] 180 * in the btree given by cur. 181 */ 182 int /* error */ 183 xfs_alloc_lookup_le( 184 struct xfs_btree_cur *cur, /* btree cursor */ 185 xfs_agblock_t bno, /* starting block of extent */ 186 xfs_extlen_t len, /* length of extent */ 187 int *stat) /* success/failure */ 188 { 189 int error; 190 cur->bc_rec.a.ar_startblock = bno; 191 cur->bc_rec.a.ar_blockcount = len; 192 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); 193 cur->bc_ag.abt.active = (*stat == 1); 194 return error; 195 } 196 197 static inline bool 198 xfs_alloc_cur_active( 199 struct xfs_btree_cur *cur) 200 { 201 return cur && cur->bc_ag.abt.active; 202 } 203 204 /* 205 * Update the record referred to by cur to the value given 206 * by [bno, len]. 207 * This either works (return 0) or gets an EFSCORRUPTED error. 208 */ 209 STATIC int /* error */ 210 xfs_alloc_update( 211 struct xfs_btree_cur *cur, /* btree cursor */ 212 xfs_agblock_t bno, /* starting block of extent */ 213 xfs_extlen_t len) /* length of extent */ 214 { 215 union xfs_btree_rec rec; 216 217 rec.alloc.ar_startblock = cpu_to_be32(bno); 218 rec.alloc.ar_blockcount = cpu_to_be32(len); 219 return xfs_btree_update(cur, &rec); 220 } 221 222 /* 223 * Get the data from the pointed-to record. 224 */ 225 int /* error */ 226 xfs_alloc_get_rec( 227 struct xfs_btree_cur *cur, /* btree cursor */ 228 xfs_agblock_t *bno, /* output: starting block of extent */ 229 xfs_extlen_t *len, /* output: length of extent */ 230 int *stat) /* output: success/failure */ 231 { 232 struct xfs_mount *mp = cur->bc_mp; 233 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno; 234 union xfs_btree_rec *rec; 235 int error; 236 237 error = xfs_btree_get_rec(cur, &rec, stat); 238 if (error || !(*stat)) 239 return error; 240 241 *bno = be32_to_cpu(rec->alloc.ar_startblock); 242 *len = be32_to_cpu(rec->alloc.ar_blockcount); 243 244 if (*len == 0) 245 goto out_bad_rec; 246 247 /* check for valid extent range, including overflow */ 248 if (!xfs_verify_agbno(mp, agno, *bno)) 249 goto out_bad_rec; 250 if (*bno > *bno + *len) 251 goto out_bad_rec; 252 if (!xfs_verify_agbno(mp, agno, *bno + *len - 1)) 253 goto out_bad_rec; 254 255 return 0; 256 257 out_bad_rec: 258 xfs_warn(mp, 259 "%s Freespace BTree record corruption in AG %d detected!", 260 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno); 261 xfs_warn(mp, 262 "start block 0x%x block count 0x%x", *bno, *len); 263 return -EFSCORRUPTED; 264 } 265 266 /* 267 * Compute aligned version of the found extent. 268 * Takes alignment and min length into account. 269 */ 270 STATIC bool 271 xfs_alloc_compute_aligned( 272 xfs_alloc_arg_t *args, /* allocation argument structure */ 273 xfs_agblock_t foundbno, /* starting block in found extent */ 274 xfs_extlen_t foundlen, /* length in found extent */ 275 xfs_agblock_t *resbno, /* result block number */ 276 xfs_extlen_t *reslen, /* result length */ 277 unsigned *busy_gen) 278 { 279 xfs_agblock_t bno = foundbno; 280 xfs_extlen_t len = foundlen; 281 xfs_extlen_t diff; 282 bool busy; 283 284 /* Trim busy sections out of found extent */ 285 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); 286 287 /* 288 * If we have a largish extent that happens to start before min_agbno, 289 * see if we can shift it into range... 290 */ 291 if (bno < args->min_agbno && bno + len > args->min_agbno) { 292 diff = args->min_agbno - bno; 293 if (len > diff) { 294 bno += diff; 295 len -= diff; 296 } 297 } 298 299 if (args->alignment > 1 && len >= args->minlen) { 300 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 301 302 diff = aligned_bno - bno; 303 304 *resbno = aligned_bno; 305 *reslen = diff >= len ? 0 : len - diff; 306 } else { 307 *resbno = bno; 308 *reslen = len; 309 } 310 311 return busy; 312 } 313 314 /* 315 * Compute best start block and diff for "near" allocations. 316 * freelen >= wantlen already checked by caller. 317 */ 318 STATIC xfs_extlen_t /* difference value (absolute) */ 319 xfs_alloc_compute_diff( 320 xfs_agblock_t wantbno, /* target starting block */ 321 xfs_extlen_t wantlen, /* target length */ 322 xfs_extlen_t alignment, /* target alignment */ 323 int datatype, /* are we allocating data? */ 324 xfs_agblock_t freebno, /* freespace's starting block */ 325 xfs_extlen_t freelen, /* freespace's length */ 326 xfs_agblock_t *newbnop) /* result: best start block from free */ 327 { 328 xfs_agblock_t freeend; /* end of freespace extent */ 329 xfs_agblock_t newbno1; /* return block number */ 330 xfs_agblock_t newbno2; /* other new block number */ 331 xfs_extlen_t newlen1=0; /* length with newbno1 */ 332 xfs_extlen_t newlen2=0; /* length with newbno2 */ 333 xfs_agblock_t wantend; /* end of target extent */ 334 bool userdata = datatype & XFS_ALLOC_USERDATA; 335 336 ASSERT(freelen >= wantlen); 337 freeend = freebno + freelen; 338 wantend = wantbno + wantlen; 339 /* 340 * We want to allocate from the start of a free extent if it is past 341 * the desired block or if we are allocating user data and the free 342 * extent is before desired block. The second case is there to allow 343 * for contiguous allocation from the remaining free space if the file 344 * grows in the short term. 345 */ 346 if (freebno >= wantbno || (userdata && freeend < wantend)) { 347 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 348 newbno1 = NULLAGBLOCK; 349 } else if (freeend >= wantend && alignment > 1) { 350 newbno1 = roundup(wantbno, alignment); 351 newbno2 = newbno1 - alignment; 352 if (newbno1 >= freeend) 353 newbno1 = NULLAGBLOCK; 354 else 355 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 356 if (newbno2 < freebno) 357 newbno2 = NULLAGBLOCK; 358 else 359 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 360 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 361 if (newlen1 < newlen2 || 362 (newlen1 == newlen2 && 363 XFS_ABSDIFF(newbno1, wantbno) > 364 XFS_ABSDIFF(newbno2, wantbno))) 365 newbno1 = newbno2; 366 } else if (newbno2 != NULLAGBLOCK) 367 newbno1 = newbno2; 368 } else if (freeend >= wantend) { 369 newbno1 = wantbno; 370 } else if (alignment > 1) { 371 newbno1 = roundup(freeend - wantlen, alignment); 372 if (newbno1 > freeend - wantlen && 373 newbno1 - alignment >= freebno) 374 newbno1 -= alignment; 375 else if (newbno1 >= freeend) 376 newbno1 = NULLAGBLOCK; 377 } else 378 newbno1 = freeend - wantlen; 379 *newbnop = newbno1; 380 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 381 } 382 383 /* 384 * Fix up the length, based on mod and prod. 385 * len should be k * prod + mod for some k. 386 * If len is too small it is returned unchanged. 387 * If len hits maxlen it is left alone. 388 */ 389 STATIC void 390 xfs_alloc_fix_len( 391 xfs_alloc_arg_t *args) /* allocation argument structure */ 392 { 393 xfs_extlen_t k; 394 xfs_extlen_t rlen; 395 396 ASSERT(args->mod < args->prod); 397 rlen = args->len; 398 ASSERT(rlen >= args->minlen); 399 ASSERT(rlen <= args->maxlen); 400 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 401 (args->mod == 0 && rlen < args->prod)) 402 return; 403 k = rlen % args->prod; 404 if (k == args->mod) 405 return; 406 if (k > args->mod) 407 rlen = rlen - (k - args->mod); 408 else 409 rlen = rlen - args->prod + (args->mod - k); 410 /* casts to (int) catch length underflows */ 411 if ((int)rlen < (int)args->minlen) 412 return; 413 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 414 ASSERT(rlen % args->prod == args->mod); 415 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 416 rlen + args->minleft); 417 args->len = rlen; 418 } 419 420 /* 421 * Update the two btrees, logically removing from freespace the extent 422 * starting at rbno, rlen blocks. The extent is contained within the 423 * actual (current) free extent fbno for flen blocks. 424 * Flags are passed in indicating whether the cursors are set to the 425 * relevant records. 426 */ 427 STATIC int /* error code */ 428 xfs_alloc_fixup_trees( 429 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 430 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 431 xfs_agblock_t fbno, /* starting block of free extent */ 432 xfs_extlen_t flen, /* length of free extent */ 433 xfs_agblock_t rbno, /* starting block of returned extent */ 434 xfs_extlen_t rlen, /* length of returned extent */ 435 int flags) /* flags, XFSA_FIXUP_... */ 436 { 437 int error; /* error code */ 438 int i; /* operation results */ 439 xfs_agblock_t nfbno1; /* first new free startblock */ 440 xfs_agblock_t nfbno2; /* second new free startblock */ 441 xfs_extlen_t nflen1=0; /* first new free length */ 442 xfs_extlen_t nflen2=0; /* second new free length */ 443 struct xfs_mount *mp; 444 445 mp = cnt_cur->bc_mp; 446 447 /* 448 * Look up the record in the by-size tree if necessary. 449 */ 450 if (flags & XFSA_FIXUP_CNT_OK) { 451 #ifdef DEBUG 452 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 453 return error; 454 if (XFS_IS_CORRUPT(mp, 455 i != 1 || 456 nfbno1 != fbno || 457 nflen1 != flen)) 458 return -EFSCORRUPTED; 459 #endif 460 } else { 461 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 462 return error; 463 if (XFS_IS_CORRUPT(mp, i != 1)) 464 return -EFSCORRUPTED; 465 } 466 /* 467 * Look up the record in the by-block tree if necessary. 468 */ 469 if (flags & XFSA_FIXUP_BNO_OK) { 470 #ifdef DEBUG 471 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 472 return error; 473 if (XFS_IS_CORRUPT(mp, 474 i != 1 || 475 nfbno1 != fbno || 476 nflen1 != flen)) 477 return -EFSCORRUPTED; 478 #endif 479 } else { 480 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 481 return error; 482 if (XFS_IS_CORRUPT(mp, i != 1)) 483 return -EFSCORRUPTED; 484 } 485 486 #ifdef DEBUG 487 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 488 struct xfs_btree_block *bnoblock; 489 struct xfs_btree_block *cntblock; 490 491 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 492 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 493 494 if (XFS_IS_CORRUPT(mp, 495 bnoblock->bb_numrecs != 496 cntblock->bb_numrecs)) 497 return -EFSCORRUPTED; 498 } 499 #endif 500 501 /* 502 * Deal with all four cases: the allocated record is contained 503 * within the freespace record, so we can have new freespace 504 * at either (or both) end, or no freespace remaining. 505 */ 506 if (rbno == fbno && rlen == flen) 507 nfbno1 = nfbno2 = NULLAGBLOCK; 508 else if (rbno == fbno) { 509 nfbno1 = rbno + rlen; 510 nflen1 = flen - rlen; 511 nfbno2 = NULLAGBLOCK; 512 } else if (rbno + rlen == fbno + flen) { 513 nfbno1 = fbno; 514 nflen1 = flen - rlen; 515 nfbno2 = NULLAGBLOCK; 516 } else { 517 nfbno1 = fbno; 518 nflen1 = rbno - fbno; 519 nfbno2 = rbno + rlen; 520 nflen2 = (fbno + flen) - nfbno2; 521 } 522 /* 523 * Delete the entry from the by-size btree. 524 */ 525 if ((error = xfs_btree_delete(cnt_cur, &i))) 526 return error; 527 if (XFS_IS_CORRUPT(mp, i != 1)) 528 return -EFSCORRUPTED; 529 /* 530 * Add new by-size btree entry(s). 531 */ 532 if (nfbno1 != NULLAGBLOCK) { 533 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 534 return error; 535 if (XFS_IS_CORRUPT(mp, i != 0)) 536 return -EFSCORRUPTED; 537 if ((error = xfs_btree_insert(cnt_cur, &i))) 538 return error; 539 if (XFS_IS_CORRUPT(mp, i != 1)) 540 return -EFSCORRUPTED; 541 } 542 if (nfbno2 != NULLAGBLOCK) { 543 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 544 return error; 545 if (XFS_IS_CORRUPT(mp, i != 0)) 546 return -EFSCORRUPTED; 547 if ((error = xfs_btree_insert(cnt_cur, &i))) 548 return error; 549 if (XFS_IS_CORRUPT(mp, i != 1)) 550 return -EFSCORRUPTED; 551 } 552 /* 553 * Fix up the by-block btree entry(s). 554 */ 555 if (nfbno1 == NULLAGBLOCK) { 556 /* 557 * No remaining freespace, just delete the by-block tree entry. 558 */ 559 if ((error = xfs_btree_delete(bno_cur, &i))) 560 return error; 561 if (XFS_IS_CORRUPT(mp, i != 1)) 562 return -EFSCORRUPTED; 563 } else { 564 /* 565 * Update the by-block entry to start later|be shorter. 566 */ 567 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 568 return error; 569 } 570 if (nfbno2 != NULLAGBLOCK) { 571 /* 572 * 2 resulting free entries, need to add one. 573 */ 574 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 575 return error; 576 if (XFS_IS_CORRUPT(mp, i != 0)) 577 return -EFSCORRUPTED; 578 if ((error = xfs_btree_insert(bno_cur, &i))) 579 return error; 580 if (XFS_IS_CORRUPT(mp, i != 1)) 581 return -EFSCORRUPTED; 582 } 583 return 0; 584 } 585 586 static xfs_failaddr_t 587 xfs_agfl_verify( 588 struct xfs_buf *bp) 589 { 590 struct xfs_mount *mp = bp->b_mount; 591 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 592 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 593 int i; 594 595 /* 596 * There is no verification of non-crc AGFLs because mkfs does not 597 * initialise the AGFL to zero or NULL. Hence the only valid part of the 598 * AGFL is what the AGF says is active. We can't get to the AGF, so we 599 * can't verify just those entries are valid. 600 */ 601 if (!xfs_has_crc(mp)) 602 return NULL; 603 604 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 605 return __this_address; 606 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 607 return __this_address; 608 /* 609 * during growfs operations, the perag is not fully initialised, 610 * so we can't use it for any useful checking. growfs ensures we can't 611 * use it by using uncached buffers that don't have the perag attached 612 * so we can detect and avoid this problem. 613 */ 614 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) 615 return __this_address; 616 617 for (i = 0; i < xfs_agfl_size(mp); i++) { 618 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 619 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 620 return __this_address; 621 } 622 623 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 624 return __this_address; 625 return NULL; 626 } 627 628 static void 629 xfs_agfl_read_verify( 630 struct xfs_buf *bp) 631 { 632 struct xfs_mount *mp = bp->b_mount; 633 xfs_failaddr_t fa; 634 635 /* 636 * There is no verification of non-crc AGFLs because mkfs does not 637 * initialise the AGFL to zero or NULL. Hence the only valid part of the 638 * AGFL is what the AGF says is active. We can't get to the AGF, so we 639 * can't verify just those entries are valid. 640 */ 641 if (!xfs_has_crc(mp)) 642 return; 643 644 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 645 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 646 else { 647 fa = xfs_agfl_verify(bp); 648 if (fa) 649 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 650 } 651 } 652 653 static void 654 xfs_agfl_write_verify( 655 struct xfs_buf *bp) 656 { 657 struct xfs_mount *mp = bp->b_mount; 658 struct xfs_buf_log_item *bip = bp->b_log_item; 659 xfs_failaddr_t fa; 660 661 /* no verification of non-crc AGFLs */ 662 if (!xfs_has_crc(mp)) 663 return; 664 665 fa = xfs_agfl_verify(bp); 666 if (fa) { 667 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 668 return; 669 } 670 671 if (bip) 672 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 673 674 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 675 } 676 677 const struct xfs_buf_ops xfs_agfl_buf_ops = { 678 .name = "xfs_agfl", 679 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 680 .verify_read = xfs_agfl_read_verify, 681 .verify_write = xfs_agfl_write_verify, 682 .verify_struct = xfs_agfl_verify, 683 }; 684 685 /* 686 * Read in the allocation group free block array. 687 */ 688 int /* error */ 689 xfs_alloc_read_agfl( 690 xfs_mount_t *mp, /* mount point structure */ 691 xfs_trans_t *tp, /* transaction pointer */ 692 xfs_agnumber_t agno, /* allocation group number */ 693 struct xfs_buf **bpp) /* buffer for the ag free block array */ 694 { 695 struct xfs_buf *bp; /* return value */ 696 int error; 697 698 ASSERT(agno != NULLAGNUMBER); 699 error = xfs_trans_read_buf( 700 mp, tp, mp->m_ddev_targp, 701 XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), 702 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 703 if (error) 704 return error; 705 xfs_buf_set_ref(bp, XFS_AGFL_REF); 706 *bpp = bp; 707 return 0; 708 } 709 710 STATIC int 711 xfs_alloc_update_counters( 712 struct xfs_trans *tp, 713 struct xfs_buf *agbp, 714 long len) 715 { 716 struct xfs_agf *agf = agbp->b_addr; 717 718 agbp->b_pag->pagf_freeblks += len; 719 be32_add_cpu(&agf->agf_freeblks, len); 720 721 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 722 be32_to_cpu(agf->agf_length))) { 723 xfs_buf_mark_corrupt(agbp); 724 return -EFSCORRUPTED; 725 } 726 727 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 728 return 0; 729 } 730 731 /* 732 * Block allocation algorithm and data structures. 733 */ 734 struct xfs_alloc_cur { 735 struct xfs_btree_cur *cnt; /* btree cursors */ 736 struct xfs_btree_cur *bnolt; 737 struct xfs_btree_cur *bnogt; 738 xfs_extlen_t cur_len;/* current search length */ 739 xfs_agblock_t rec_bno;/* extent startblock */ 740 xfs_extlen_t rec_len;/* extent length */ 741 xfs_agblock_t bno; /* alloc bno */ 742 xfs_extlen_t len; /* alloc len */ 743 xfs_extlen_t diff; /* diff from search bno */ 744 unsigned int busy_gen;/* busy state */ 745 bool busy; 746 }; 747 748 /* 749 * Set up cursors, etc. in the extent allocation cursor. This function can be 750 * called multiple times to reset an initialized structure without having to 751 * reallocate cursors. 752 */ 753 static int 754 xfs_alloc_cur_setup( 755 struct xfs_alloc_arg *args, 756 struct xfs_alloc_cur *acur) 757 { 758 int error; 759 int i; 760 761 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO); 762 763 acur->cur_len = args->maxlen; 764 acur->rec_bno = 0; 765 acur->rec_len = 0; 766 acur->bno = 0; 767 acur->len = 0; 768 acur->diff = -1; 769 acur->busy = false; 770 acur->busy_gen = 0; 771 772 /* 773 * Perform an initial cntbt lookup to check for availability of maxlen 774 * extents. If this fails, we'll return -ENOSPC to signal the caller to 775 * attempt a small allocation. 776 */ 777 if (!acur->cnt) 778 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp, 779 args->agbp, args->pag, XFS_BTNUM_CNT); 780 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 781 if (error) 782 return error; 783 784 /* 785 * Allocate the bnobt left and right search cursors. 786 */ 787 if (!acur->bnolt) 788 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp, 789 args->agbp, args->pag, XFS_BTNUM_BNO); 790 if (!acur->bnogt) 791 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp, 792 args->agbp, args->pag, XFS_BTNUM_BNO); 793 return i == 1 ? 0 : -ENOSPC; 794 } 795 796 static void 797 xfs_alloc_cur_close( 798 struct xfs_alloc_cur *acur, 799 bool error) 800 { 801 int cur_error = XFS_BTREE_NOERROR; 802 803 if (error) 804 cur_error = XFS_BTREE_ERROR; 805 806 if (acur->cnt) 807 xfs_btree_del_cursor(acur->cnt, cur_error); 808 if (acur->bnolt) 809 xfs_btree_del_cursor(acur->bnolt, cur_error); 810 if (acur->bnogt) 811 xfs_btree_del_cursor(acur->bnogt, cur_error); 812 acur->cnt = acur->bnolt = acur->bnogt = NULL; 813 } 814 815 /* 816 * Check an extent for allocation and track the best available candidate in the 817 * allocation structure. The cursor is deactivated if it has entered an out of 818 * range state based on allocation arguments. Optionally return the extent 819 * extent geometry and allocation status if requested by the caller. 820 */ 821 static int 822 xfs_alloc_cur_check( 823 struct xfs_alloc_arg *args, 824 struct xfs_alloc_cur *acur, 825 struct xfs_btree_cur *cur, 826 int *new) 827 { 828 int error, i; 829 xfs_agblock_t bno, bnoa, bnew; 830 xfs_extlen_t len, lena, diff = -1; 831 bool busy; 832 unsigned busy_gen = 0; 833 bool deactivate = false; 834 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO; 835 836 *new = 0; 837 838 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 839 if (error) 840 return error; 841 if (XFS_IS_CORRUPT(args->mp, i != 1)) 842 return -EFSCORRUPTED; 843 844 /* 845 * Check minlen and deactivate a cntbt cursor if out of acceptable size 846 * range (i.e., walking backwards looking for a minlen extent). 847 */ 848 if (len < args->minlen) { 849 deactivate = !isbnobt; 850 goto out; 851 } 852 853 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 854 &busy_gen); 855 acur->busy |= busy; 856 if (busy) 857 acur->busy_gen = busy_gen; 858 /* deactivate a bnobt cursor outside of locality range */ 859 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 860 deactivate = isbnobt; 861 goto out; 862 } 863 if (lena < args->minlen) 864 goto out; 865 866 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 867 xfs_alloc_fix_len(args); 868 ASSERT(args->len >= args->minlen); 869 if (args->len < acur->len) 870 goto out; 871 872 /* 873 * We have an aligned record that satisfies minlen and beats or matches 874 * the candidate extent size. Compare locality for near allocation mode. 875 */ 876 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO); 877 diff = xfs_alloc_compute_diff(args->agbno, args->len, 878 args->alignment, args->datatype, 879 bnoa, lena, &bnew); 880 if (bnew == NULLAGBLOCK) 881 goto out; 882 883 /* 884 * Deactivate a bnobt cursor with worse locality than the current best. 885 */ 886 if (diff > acur->diff) { 887 deactivate = isbnobt; 888 goto out; 889 } 890 891 ASSERT(args->len > acur->len || 892 (args->len == acur->len && diff <= acur->diff)); 893 acur->rec_bno = bno; 894 acur->rec_len = len; 895 acur->bno = bnew; 896 acur->len = args->len; 897 acur->diff = diff; 898 *new = 1; 899 900 /* 901 * We're done if we found a perfect allocation. This only deactivates 902 * the current cursor, but this is just an optimization to terminate a 903 * cntbt search that otherwise runs to the edge of the tree. 904 */ 905 if (acur->diff == 0 && acur->len == args->maxlen) 906 deactivate = true; 907 out: 908 if (deactivate) 909 cur->bc_ag.abt.active = false; 910 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff, 911 *new); 912 return 0; 913 } 914 915 /* 916 * Complete an allocation of a candidate extent. Remove the extent from both 917 * trees and update the args structure. 918 */ 919 STATIC int 920 xfs_alloc_cur_finish( 921 struct xfs_alloc_arg *args, 922 struct xfs_alloc_cur *acur) 923 { 924 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 925 int error; 926 927 ASSERT(acur->cnt && acur->bnolt); 928 ASSERT(acur->bno >= acur->rec_bno); 929 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 930 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length)); 931 932 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 933 acur->rec_len, acur->bno, acur->len, 0); 934 if (error) 935 return error; 936 937 args->agbno = acur->bno; 938 args->len = acur->len; 939 args->wasfromfl = 0; 940 941 trace_xfs_alloc_cur(args); 942 return 0; 943 } 944 945 /* 946 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 947 * bno optimized lookup to search for extents with ideal size and locality. 948 */ 949 STATIC int 950 xfs_alloc_cntbt_iter( 951 struct xfs_alloc_arg *args, 952 struct xfs_alloc_cur *acur) 953 { 954 struct xfs_btree_cur *cur = acur->cnt; 955 xfs_agblock_t bno; 956 xfs_extlen_t len, cur_len; 957 int error; 958 int i; 959 960 if (!xfs_alloc_cur_active(cur)) 961 return 0; 962 963 /* locality optimized lookup */ 964 cur_len = acur->cur_len; 965 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 966 if (error) 967 return error; 968 if (i == 0) 969 return 0; 970 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 971 if (error) 972 return error; 973 974 /* check the current record and update search length from it */ 975 error = xfs_alloc_cur_check(args, acur, cur, &i); 976 if (error) 977 return error; 978 ASSERT(len >= acur->cur_len); 979 acur->cur_len = len; 980 981 /* 982 * We looked up the first record >= [agbno, len] above. The agbno is a 983 * secondary key and so the current record may lie just before or after 984 * agbno. If it is past agbno, check the previous record too so long as 985 * the length matches as it may be closer. Don't check a smaller record 986 * because that could deactivate our cursor. 987 */ 988 if (bno > args->agbno) { 989 error = xfs_btree_decrement(cur, 0, &i); 990 if (!error && i) { 991 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 992 if (!error && i && len == acur->cur_len) 993 error = xfs_alloc_cur_check(args, acur, cur, 994 &i); 995 } 996 if (error) 997 return error; 998 } 999 1000 /* 1001 * Increment the search key until we find at least one allocation 1002 * candidate or if the extent we found was larger. Otherwise, double the 1003 * search key to optimize the search. Efficiency is more important here 1004 * than absolute best locality. 1005 */ 1006 cur_len <<= 1; 1007 if (!acur->len || acur->cur_len >= cur_len) 1008 acur->cur_len++; 1009 else 1010 acur->cur_len = cur_len; 1011 1012 return error; 1013 } 1014 1015 /* 1016 * Deal with the case where only small freespaces remain. Either return the 1017 * contents of the last freespace record, or allocate space from the freelist if 1018 * there is nothing in the tree. 1019 */ 1020 STATIC int /* error */ 1021 xfs_alloc_ag_vextent_small( 1022 struct xfs_alloc_arg *args, /* allocation argument structure */ 1023 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1024 xfs_agblock_t *fbnop, /* result block number */ 1025 xfs_extlen_t *flenp, /* result length */ 1026 int *stat) /* status: 0-freelist, 1-normal/none */ 1027 { 1028 struct xfs_agf *agf = args->agbp->b_addr; 1029 int error = 0; 1030 xfs_agblock_t fbno = NULLAGBLOCK; 1031 xfs_extlen_t flen = 0; 1032 int i = 0; 1033 1034 /* 1035 * If a cntbt cursor is provided, try to allocate the largest record in 1036 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1037 * allocation. Make sure to respect minleft even when pulling from the 1038 * freelist. 1039 */ 1040 if (ccur) 1041 error = xfs_btree_decrement(ccur, 0, &i); 1042 if (error) 1043 goto error; 1044 if (i) { 1045 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1046 if (error) 1047 goto error; 1048 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1049 error = -EFSCORRUPTED; 1050 goto error; 1051 } 1052 goto out; 1053 } 1054 1055 if (args->minlen != 1 || args->alignment != 1 || 1056 args->resv == XFS_AG_RESV_AGFL || 1057 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1058 goto out; 1059 1060 error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0); 1061 if (error) 1062 goto error; 1063 if (fbno == NULLAGBLOCK) 1064 goto out; 1065 1066 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, 1067 (args->datatype & XFS_ALLOC_NOBUSY)); 1068 1069 if (args->datatype & XFS_ALLOC_USERDATA) { 1070 struct xfs_buf *bp; 1071 1072 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1073 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), 1074 args->mp->m_bsize, 0, &bp); 1075 if (error) 1076 goto error; 1077 xfs_trans_binval(args->tp, bp); 1078 } 1079 *fbnop = args->agbno = fbno; 1080 *flenp = args->len = 1; 1081 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1082 error = -EFSCORRUPTED; 1083 goto error; 1084 } 1085 args->wasfromfl = 1; 1086 trace_xfs_alloc_small_freelist(args); 1087 1088 /* 1089 * If we're feeding an AGFL block to something that doesn't live in the 1090 * free space, we need to clear out the OWN_AG rmap. 1091 */ 1092 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1093 &XFS_RMAP_OINFO_AG); 1094 if (error) 1095 goto error; 1096 1097 *stat = 0; 1098 return 0; 1099 1100 out: 1101 /* 1102 * Can't do the allocation, give up. 1103 */ 1104 if (flen < args->minlen) { 1105 args->agbno = NULLAGBLOCK; 1106 trace_xfs_alloc_small_notenough(args); 1107 flen = 0; 1108 } 1109 *fbnop = fbno; 1110 *flenp = flen; 1111 *stat = 1; 1112 trace_xfs_alloc_small_done(args); 1113 return 0; 1114 1115 error: 1116 trace_xfs_alloc_small_error(args); 1117 return error; 1118 } 1119 1120 /* 1121 * Allocate a variable extent in the allocation group agno. 1122 * Type and bno are used to determine where in the allocation group the 1123 * extent will start. 1124 * Extent's length (returned in *len) will be between minlen and maxlen, 1125 * and of the form k * prod + mod unless there's nothing that large. 1126 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1127 */ 1128 STATIC int /* error */ 1129 xfs_alloc_ag_vextent( 1130 xfs_alloc_arg_t *args) /* argument structure for allocation */ 1131 { 1132 int error=0; 1133 1134 ASSERT(args->minlen > 0); 1135 ASSERT(args->maxlen > 0); 1136 ASSERT(args->minlen <= args->maxlen); 1137 ASSERT(args->mod < args->prod); 1138 ASSERT(args->alignment > 0); 1139 1140 /* 1141 * Branch to correct routine based on the type. 1142 */ 1143 args->wasfromfl = 0; 1144 switch (args->type) { 1145 case XFS_ALLOCTYPE_THIS_AG: 1146 error = xfs_alloc_ag_vextent_size(args); 1147 break; 1148 case XFS_ALLOCTYPE_NEAR_BNO: 1149 error = xfs_alloc_ag_vextent_near(args); 1150 break; 1151 case XFS_ALLOCTYPE_THIS_BNO: 1152 error = xfs_alloc_ag_vextent_exact(args); 1153 break; 1154 default: 1155 ASSERT(0); 1156 /* NOTREACHED */ 1157 } 1158 1159 if (error || args->agbno == NULLAGBLOCK) 1160 return error; 1161 1162 ASSERT(args->len >= args->minlen); 1163 ASSERT(args->len <= args->maxlen); 1164 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL); 1165 ASSERT(args->agbno % args->alignment == 0); 1166 1167 /* if not file data, insert new block into the reverse map btree */ 1168 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 1169 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 1170 args->agbno, args->len, &args->oinfo); 1171 if (error) 1172 return error; 1173 } 1174 1175 if (!args->wasfromfl) { 1176 error = xfs_alloc_update_counters(args->tp, args->agbp, 1177 -((long)(args->len))); 1178 if (error) 1179 return error; 1180 1181 ASSERT(!xfs_extent_busy_search(args->mp, args->pag, 1182 args->agbno, args->len)); 1183 } 1184 1185 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 1186 1187 XFS_STATS_INC(args->mp, xs_allocx); 1188 XFS_STATS_ADD(args->mp, xs_allocb, args->len); 1189 return error; 1190 } 1191 1192 /* 1193 * Allocate a variable extent at exactly agno/bno. 1194 * Extent's length (returned in *len) will be between minlen and maxlen, 1195 * and of the form k * prod + mod unless there's nothing that large. 1196 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1197 */ 1198 STATIC int /* error */ 1199 xfs_alloc_ag_vextent_exact( 1200 xfs_alloc_arg_t *args) /* allocation argument structure */ 1201 { 1202 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 1203 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1204 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1205 int error; 1206 xfs_agblock_t fbno; /* start block of found extent */ 1207 xfs_extlen_t flen; /* length of found extent */ 1208 xfs_agblock_t tbno; /* start block of busy extent */ 1209 xfs_extlen_t tlen; /* length of busy extent */ 1210 xfs_agblock_t tend; /* end block of busy extent */ 1211 int i; /* success/failure of operation */ 1212 unsigned busy_gen; 1213 1214 ASSERT(args->alignment == 1); 1215 1216 /* 1217 * Allocate/initialize a cursor for the by-number freespace btree. 1218 */ 1219 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1220 args->pag, XFS_BTNUM_BNO); 1221 1222 /* 1223 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1224 * Look for the closest free block <= bno, it must contain bno 1225 * if any free block does. 1226 */ 1227 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1228 if (error) 1229 goto error0; 1230 if (!i) 1231 goto not_found; 1232 1233 /* 1234 * Grab the freespace record. 1235 */ 1236 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1237 if (error) 1238 goto error0; 1239 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1240 error = -EFSCORRUPTED; 1241 goto error0; 1242 } 1243 ASSERT(fbno <= args->agbno); 1244 1245 /* 1246 * Check for overlapping busy extents. 1247 */ 1248 tbno = fbno; 1249 tlen = flen; 1250 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); 1251 1252 /* 1253 * Give up if the start of the extent is busy, or the freespace isn't 1254 * long enough for the minimum request. 1255 */ 1256 if (tbno > args->agbno) 1257 goto not_found; 1258 if (tlen < args->minlen) 1259 goto not_found; 1260 tend = tbno + tlen; 1261 if (tend < args->agbno + args->minlen) 1262 goto not_found; 1263 1264 /* 1265 * End of extent will be smaller of the freespace end and the 1266 * maximal requested end. 1267 * 1268 * Fix the length according to mod and prod if given. 1269 */ 1270 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1271 - args->agbno; 1272 xfs_alloc_fix_len(args); 1273 ASSERT(args->agbno + args->len <= tend); 1274 1275 /* 1276 * We are allocating agbno for args->len 1277 * Allocate/initialize a cursor for the by-size btree. 1278 */ 1279 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1280 args->pag, XFS_BTNUM_CNT); 1281 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length)); 1282 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1283 args->len, XFSA_FIXUP_BNO_OK); 1284 if (error) { 1285 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1286 goto error0; 1287 } 1288 1289 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1290 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1291 1292 args->wasfromfl = 0; 1293 trace_xfs_alloc_exact_done(args); 1294 return 0; 1295 1296 not_found: 1297 /* Didn't find it, return null. */ 1298 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1299 args->agbno = NULLAGBLOCK; 1300 trace_xfs_alloc_exact_notfound(args); 1301 return 0; 1302 1303 error0: 1304 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1305 trace_xfs_alloc_exact_error(args); 1306 return error; 1307 } 1308 1309 /* 1310 * Search a given number of btree records in a given direction. Check each 1311 * record against the good extent we've already found. 1312 */ 1313 STATIC int 1314 xfs_alloc_walk_iter( 1315 struct xfs_alloc_arg *args, 1316 struct xfs_alloc_cur *acur, 1317 struct xfs_btree_cur *cur, 1318 bool increment, 1319 bool find_one, /* quit on first candidate */ 1320 int count, /* rec count (-1 for infinite) */ 1321 int *stat) 1322 { 1323 int error; 1324 int i; 1325 1326 *stat = 0; 1327 1328 /* 1329 * Search so long as the cursor is active or we find a better extent. 1330 * The cursor is deactivated if it extends beyond the range of the 1331 * current allocation candidate. 1332 */ 1333 while (xfs_alloc_cur_active(cur) && count) { 1334 error = xfs_alloc_cur_check(args, acur, cur, &i); 1335 if (error) 1336 return error; 1337 if (i == 1) { 1338 *stat = 1; 1339 if (find_one) 1340 break; 1341 } 1342 if (!xfs_alloc_cur_active(cur)) 1343 break; 1344 1345 if (increment) 1346 error = xfs_btree_increment(cur, 0, &i); 1347 else 1348 error = xfs_btree_decrement(cur, 0, &i); 1349 if (error) 1350 return error; 1351 if (i == 0) 1352 cur->bc_ag.abt.active = false; 1353 1354 if (count > 0) 1355 count--; 1356 } 1357 1358 return 0; 1359 } 1360 1361 /* 1362 * Search the by-bno and by-size btrees in parallel in search of an extent with 1363 * ideal locality based on the NEAR mode ->agbno locality hint. 1364 */ 1365 STATIC int 1366 xfs_alloc_ag_vextent_locality( 1367 struct xfs_alloc_arg *args, 1368 struct xfs_alloc_cur *acur, 1369 int *stat) 1370 { 1371 struct xfs_btree_cur *fbcur = NULL; 1372 int error; 1373 int i; 1374 bool fbinc; 1375 1376 ASSERT(acur->len == 0); 1377 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO); 1378 1379 *stat = 0; 1380 1381 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1382 if (error) 1383 return error; 1384 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1385 if (error) 1386 return error; 1387 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1388 if (error) 1389 return error; 1390 1391 /* 1392 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1393 * right and lookup the closest extent to the locality hint for each 1394 * extent size key in the cntbt. The entire search terminates 1395 * immediately on a bnobt hit because that means we've found best case 1396 * locality. Otherwise the search continues until the cntbt cursor runs 1397 * off the end of the tree. If no allocation candidate is found at this 1398 * point, give up on locality, walk backwards from the end of the cntbt 1399 * and take the first available extent. 1400 * 1401 * The parallel tree searches balance each other out to provide fairly 1402 * consistent performance for various situations. The bnobt search can 1403 * have pathological behavior in the worst case scenario of larger 1404 * allocation requests and fragmented free space. On the other hand, the 1405 * bnobt is able to satisfy most smaller allocation requests much more 1406 * quickly than the cntbt. The cntbt search can sift through fragmented 1407 * free space and sets of free extents for larger allocation requests 1408 * more quickly than the bnobt. Since the locality hint is just a hint 1409 * and we don't want to scan the entire bnobt for perfect locality, the 1410 * cntbt search essentially bounds the bnobt search such that we can 1411 * find good enough locality at reasonable performance in most cases. 1412 */ 1413 while (xfs_alloc_cur_active(acur->bnolt) || 1414 xfs_alloc_cur_active(acur->bnogt) || 1415 xfs_alloc_cur_active(acur->cnt)) { 1416 1417 trace_xfs_alloc_cur_lookup(args); 1418 1419 /* 1420 * Search the bnobt left and right. In the case of a hit, finish 1421 * the search in the opposite direction and we're done. 1422 */ 1423 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1424 true, 1, &i); 1425 if (error) 1426 return error; 1427 if (i == 1) { 1428 trace_xfs_alloc_cur_left(args); 1429 fbcur = acur->bnogt; 1430 fbinc = true; 1431 break; 1432 } 1433 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1434 1, &i); 1435 if (error) 1436 return error; 1437 if (i == 1) { 1438 trace_xfs_alloc_cur_right(args); 1439 fbcur = acur->bnolt; 1440 fbinc = false; 1441 break; 1442 } 1443 1444 /* 1445 * Check the extent with best locality based on the current 1446 * extent size search key and keep track of the best candidate. 1447 */ 1448 error = xfs_alloc_cntbt_iter(args, acur); 1449 if (error) 1450 return error; 1451 if (!xfs_alloc_cur_active(acur->cnt)) { 1452 trace_xfs_alloc_cur_lookup_done(args); 1453 break; 1454 } 1455 } 1456 1457 /* 1458 * If we failed to find anything due to busy extents, return empty 1459 * handed so the caller can flush and retry. If no busy extents were 1460 * found, walk backwards from the end of the cntbt as a last resort. 1461 */ 1462 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1463 error = xfs_btree_decrement(acur->cnt, 0, &i); 1464 if (error) 1465 return error; 1466 if (i) { 1467 acur->cnt->bc_ag.abt.active = true; 1468 fbcur = acur->cnt; 1469 fbinc = false; 1470 } 1471 } 1472 1473 /* 1474 * Search in the opposite direction for a better entry in the case of 1475 * a bnobt hit or walk backwards from the end of the cntbt. 1476 */ 1477 if (fbcur) { 1478 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1479 &i); 1480 if (error) 1481 return error; 1482 } 1483 1484 if (acur->len) 1485 *stat = 1; 1486 1487 return 0; 1488 } 1489 1490 /* Check the last block of the cnt btree for allocations. */ 1491 static int 1492 xfs_alloc_ag_vextent_lastblock( 1493 struct xfs_alloc_arg *args, 1494 struct xfs_alloc_cur *acur, 1495 xfs_agblock_t *bno, 1496 xfs_extlen_t *len, 1497 bool *allocated) 1498 { 1499 int error; 1500 int i; 1501 1502 #ifdef DEBUG 1503 /* Randomly don't execute the first algorithm. */ 1504 if (prandom_u32() & 1) 1505 return 0; 1506 #endif 1507 1508 /* 1509 * Start from the entry that lookup found, sequence through all larger 1510 * free blocks. If we're actually pointing at a record smaller than 1511 * maxlen, go to the start of this block, and skip all those smaller 1512 * than minlen. 1513 */ 1514 if (*len || args->alignment > 1) { 1515 acur->cnt->bc_levels[0].ptr = 1; 1516 do { 1517 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1518 if (error) 1519 return error; 1520 if (XFS_IS_CORRUPT(args->mp, i != 1)) 1521 return -EFSCORRUPTED; 1522 if (*len >= args->minlen) 1523 break; 1524 error = xfs_btree_increment(acur->cnt, 0, &i); 1525 if (error) 1526 return error; 1527 } while (i); 1528 ASSERT(*len >= args->minlen); 1529 if (!i) 1530 return 0; 1531 } 1532 1533 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1534 if (error) 1535 return error; 1536 1537 /* 1538 * It didn't work. We COULD be in a case where there's a good record 1539 * somewhere, so try again. 1540 */ 1541 if (acur->len == 0) 1542 return 0; 1543 1544 trace_xfs_alloc_near_first(args); 1545 *allocated = true; 1546 return 0; 1547 } 1548 1549 /* 1550 * Allocate a variable extent near bno in the allocation group agno. 1551 * Extent's length (returned in len) will be between minlen and maxlen, 1552 * and of the form k * prod + mod unless there's nothing that large. 1553 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1554 */ 1555 STATIC int 1556 xfs_alloc_ag_vextent_near( 1557 struct xfs_alloc_arg *args) 1558 { 1559 struct xfs_alloc_cur acur = {}; 1560 int error; /* error code */ 1561 int i; /* result code, temporary */ 1562 xfs_agblock_t bno; 1563 xfs_extlen_t len; 1564 1565 /* handle uninitialized agbno range so caller doesn't have to */ 1566 if (!args->min_agbno && !args->max_agbno) 1567 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1568 ASSERT(args->min_agbno <= args->max_agbno); 1569 1570 /* clamp agbno to the range if it's outside */ 1571 if (args->agbno < args->min_agbno) 1572 args->agbno = args->min_agbno; 1573 if (args->agbno > args->max_agbno) 1574 args->agbno = args->max_agbno; 1575 1576 restart: 1577 len = 0; 1578 1579 /* 1580 * Set up cursors and see if there are any free extents as big as 1581 * maxlen. If not, pick the last entry in the tree unless the tree is 1582 * empty. 1583 */ 1584 error = xfs_alloc_cur_setup(args, &acur); 1585 if (error == -ENOSPC) { 1586 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1587 &len, &i); 1588 if (error) 1589 goto out; 1590 if (i == 0 || len == 0) { 1591 trace_xfs_alloc_near_noentry(args); 1592 goto out; 1593 } 1594 ASSERT(i == 1); 1595 } else if (error) { 1596 goto out; 1597 } 1598 1599 /* 1600 * First algorithm. 1601 * If the requested extent is large wrt the freespaces available 1602 * in this a.g., then the cursor will be pointing to a btree entry 1603 * near the right edge of the tree. If it's in the last btree leaf 1604 * block, then we just examine all the entries in that block 1605 * that are big enough, and pick the best one. 1606 */ 1607 if (xfs_btree_islastblock(acur.cnt, 0)) { 1608 bool allocated = false; 1609 1610 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1611 &allocated); 1612 if (error) 1613 goto out; 1614 if (allocated) 1615 goto alloc_finish; 1616 } 1617 1618 /* 1619 * Second algorithm. Combined cntbt and bnobt search to find ideal 1620 * locality. 1621 */ 1622 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1623 if (error) 1624 goto out; 1625 1626 /* 1627 * If we couldn't get anything, give up. 1628 */ 1629 if (!acur.len) { 1630 if (acur.busy) { 1631 trace_xfs_alloc_near_busy(args); 1632 xfs_extent_busy_flush(args->mp, args->pag, 1633 acur.busy_gen); 1634 goto restart; 1635 } 1636 trace_xfs_alloc_size_neither(args); 1637 args->agbno = NULLAGBLOCK; 1638 goto out; 1639 } 1640 1641 alloc_finish: 1642 /* fix up btrees on a successful allocation */ 1643 error = xfs_alloc_cur_finish(args, &acur); 1644 1645 out: 1646 xfs_alloc_cur_close(&acur, error); 1647 return error; 1648 } 1649 1650 /* 1651 * Allocate a variable extent anywhere in the allocation group agno. 1652 * Extent's length (returned in len) will be between minlen and maxlen, 1653 * and of the form k * prod + mod unless there's nothing that large. 1654 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1655 */ 1656 STATIC int /* error */ 1657 xfs_alloc_ag_vextent_size( 1658 xfs_alloc_arg_t *args) /* allocation argument structure */ 1659 { 1660 struct xfs_agf *agf = args->agbp->b_addr; 1661 struct xfs_btree_cur *bno_cur; /* cursor for bno btree */ 1662 struct xfs_btree_cur *cnt_cur; /* cursor for cnt btree */ 1663 int error; /* error result */ 1664 xfs_agblock_t fbno; /* start of found freespace */ 1665 xfs_extlen_t flen; /* length of found freespace */ 1666 int i; /* temp status variable */ 1667 xfs_agblock_t rbno; /* returned block number */ 1668 xfs_extlen_t rlen; /* length of returned extent */ 1669 bool busy; 1670 unsigned busy_gen; 1671 1672 restart: 1673 /* 1674 * Allocate and initialize a cursor for the by-size btree. 1675 */ 1676 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1677 args->pag, XFS_BTNUM_CNT); 1678 bno_cur = NULL; 1679 1680 /* 1681 * Look for an entry >= maxlen+alignment-1 blocks. 1682 */ 1683 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1684 args->maxlen + args->alignment - 1, &i))) 1685 goto error0; 1686 1687 /* 1688 * If none then we have to settle for a smaller extent. In the case that 1689 * there are no large extents, this will return the last entry in the 1690 * tree unless the tree is empty. In the case that there are only busy 1691 * large extents, this will return the largest small extent unless there 1692 * are no smaller extents available. 1693 */ 1694 if (!i) { 1695 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1696 &fbno, &flen, &i); 1697 if (error) 1698 goto error0; 1699 if (i == 0 || flen == 0) { 1700 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1701 trace_xfs_alloc_size_noentry(args); 1702 return 0; 1703 } 1704 ASSERT(i == 1); 1705 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1706 &rlen, &busy_gen); 1707 } else { 1708 /* 1709 * Search for a non-busy extent that is large enough. 1710 */ 1711 for (;;) { 1712 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1713 if (error) 1714 goto error0; 1715 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1716 error = -EFSCORRUPTED; 1717 goto error0; 1718 } 1719 1720 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1721 &rbno, &rlen, &busy_gen); 1722 1723 if (rlen >= args->maxlen) 1724 break; 1725 1726 error = xfs_btree_increment(cnt_cur, 0, &i); 1727 if (error) 1728 goto error0; 1729 if (i == 0) { 1730 /* 1731 * Our only valid extents must have been busy. 1732 * Make it unbusy by forcing the log out and 1733 * retrying. 1734 */ 1735 xfs_btree_del_cursor(cnt_cur, 1736 XFS_BTREE_NOERROR); 1737 trace_xfs_alloc_size_busy(args); 1738 xfs_extent_busy_flush(args->mp, 1739 args->pag, busy_gen); 1740 goto restart; 1741 } 1742 } 1743 } 1744 1745 /* 1746 * In the first case above, we got the last entry in the 1747 * by-size btree. Now we check to see if the space hits maxlen 1748 * once aligned; if not, we search left for something better. 1749 * This can't happen in the second case above. 1750 */ 1751 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1752 if (XFS_IS_CORRUPT(args->mp, 1753 rlen != 0 && 1754 (rlen > flen || 1755 rbno + rlen > fbno + flen))) { 1756 error = -EFSCORRUPTED; 1757 goto error0; 1758 } 1759 if (rlen < args->maxlen) { 1760 xfs_agblock_t bestfbno; 1761 xfs_extlen_t bestflen; 1762 xfs_agblock_t bestrbno; 1763 xfs_extlen_t bestrlen; 1764 1765 bestrlen = rlen; 1766 bestrbno = rbno; 1767 bestflen = flen; 1768 bestfbno = fbno; 1769 for (;;) { 1770 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1771 goto error0; 1772 if (i == 0) 1773 break; 1774 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1775 &i))) 1776 goto error0; 1777 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1778 error = -EFSCORRUPTED; 1779 goto error0; 1780 } 1781 if (flen < bestrlen) 1782 break; 1783 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1784 &rbno, &rlen, &busy_gen); 1785 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1786 if (XFS_IS_CORRUPT(args->mp, 1787 rlen != 0 && 1788 (rlen > flen || 1789 rbno + rlen > fbno + flen))) { 1790 error = -EFSCORRUPTED; 1791 goto error0; 1792 } 1793 if (rlen > bestrlen) { 1794 bestrlen = rlen; 1795 bestrbno = rbno; 1796 bestflen = flen; 1797 bestfbno = fbno; 1798 if (rlen == args->maxlen) 1799 break; 1800 } 1801 } 1802 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1803 &i))) 1804 goto error0; 1805 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1806 error = -EFSCORRUPTED; 1807 goto error0; 1808 } 1809 rlen = bestrlen; 1810 rbno = bestrbno; 1811 flen = bestflen; 1812 fbno = bestfbno; 1813 } 1814 args->wasfromfl = 0; 1815 /* 1816 * Fix up the length. 1817 */ 1818 args->len = rlen; 1819 if (rlen < args->minlen) { 1820 if (busy) { 1821 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1822 trace_xfs_alloc_size_busy(args); 1823 xfs_extent_busy_flush(args->mp, args->pag, busy_gen); 1824 goto restart; 1825 } 1826 goto out_nominleft; 1827 } 1828 xfs_alloc_fix_len(args); 1829 1830 rlen = args->len; 1831 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1832 error = -EFSCORRUPTED; 1833 goto error0; 1834 } 1835 /* 1836 * Allocate and initialize a cursor for the by-block tree. 1837 */ 1838 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1839 args->pag, XFS_BTNUM_BNO); 1840 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 1841 rbno, rlen, XFSA_FIXUP_CNT_OK))) 1842 goto error0; 1843 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1844 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1845 cnt_cur = bno_cur = NULL; 1846 args->len = rlen; 1847 args->agbno = rbno; 1848 if (XFS_IS_CORRUPT(args->mp, 1849 args->agbno + args->len > 1850 be32_to_cpu(agf->agf_length))) { 1851 error = -EFSCORRUPTED; 1852 goto error0; 1853 } 1854 trace_xfs_alloc_size_done(args); 1855 return 0; 1856 1857 error0: 1858 trace_xfs_alloc_size_error(args); 1859 if (cnt_cur) 1860 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1861 if (bno_cur) 1862 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1863 return error; 1864 1865 out_nominleft: 1866 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1867 trace_xfs_alloc_size_nominleft(args); 1868 args->agbno = NULLAGBLOCK; 1869 return 0; 1870 } 1871 1872 /* 1873 * Free the extent starting at agno/bno for length. 1874 */ 1875 STATIC int 1876 xfs_free_ag_extent( 1877 struct xfs_trans *tp, 1878 struct xfs_buf *agbp, 1879 xfs_agnumber_t agno, 1880 xfs_agblock_t bno, 1881 xfs_extlen_t len, 1882 const struct xfs_owner_info *oinfo, 1883 enum xfs_ag_resv_type type) 1884 { 1885 struct xfs_mount *mp; 1886 struct xfs_btree_cur *bno_cur; 1887 struct xfs_btree_cur *cnt_cur; 1888 xfs_agblock_t gtbno; /* start of right neighbor */ 1889 xfs_extlen_t gtlen; /* length of right neighbor */ 1890 xfs_agblock_t ltbno; /* start of left neighbor */ 1891 xfs_extlen_t ltlen; /* length of left neighbor */ 1892 xfs_agblock_t nbno; /* new starting block of freesp */ 1893 xfs_extlen_t nlen; /* new length of freespace */ 1894 int haveleft; /* have a left neighbor */ 1895 int haveright; /* have a right neighbor */ 1896 int i; 1897 int error; 1898 struct xfs_perag *pag = agbp->b_pag; 1899 1900 bno_cur = cnt_cur = NULL; 1901 mp = tp->t_mountp; 1902 1903 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 1904 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 1905 if (error) 1906 goto error0; 1907 } 1908 1909 /* 1910 * Allocate and initialize a cursor for the by-block btree. 1911 */ 1912 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO); 1913 /* 1914 * Look for a neighboring block on the left (lower block numbers) 1915 * that is contiguous with this space. 1916 */ 1917 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 1918 goto error0; 1919 if (haveleft) { 1920 /* 1921 * There is a block to our left. 1922 */ 1923 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 1924 goto error0; 1925 if (XFS_IS_CORRUPT(mp, i != 1)) { 1926 error = -EFSCORRUPTED; 1927 goto error0; 1928 } 1929 /* 1930 * It's not contiguous, though. 1931 */ 1932 if (ltbno + ltlen < bno) 1933 haveleft = 0; 1934 else { 1935 /* 1936 * If this failure happens the request to free this 1937 * space was invalid, it's (partly) already free. 1938 * Very bad. 1939 */ 1940 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 1941 error = -EFSCORRUPTED; 1942 goto error0; 1943 } 1944 } 1945 } 1946 /* 1947 * Look for a neighboring block on the right (higher block numbers) 1948 * that is contiguous with this space. 1949 */ 1950 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 1951 goto error0; 1952 if (haveright) { 1953 /* 1954 * There is a block to our right. 1955 */ 1956 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 1957 goto error0; 1958 if (XFS_IS_CORRUPT(mp, i != 1)) { 1959 error = -EFSCORRUPTED; 1960 goto error0; 1961 } 1962 /* 1963 * It's not contiguous, though. 1964 */ 1965 if (bno + len < gtbno) 1966 haveright = 0; 1967 else { 1968 /* 1969 * If this failure happens the request to free this 1970 * space was invalid, it's (partly) already free. 1971 * Very bad. 1972 */ 1973 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 1974 error = -EFSCORRUPTED; 1975 goto error0; 1976 } 1977 } 1978 } 1979 /* 1980 * Now allocate and initialize a cursor for the by-size tree. 1981 */ 1982 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT); 1983 /* 1984 * Have both left and right contiguous neighbors. 1985 * Merge all three into a single free block. 1986 */ 1987 if (haveleft && haveright) { 1988 /* 1989 * Delete the old by-size entry on the left. 1990 */ 1991 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 1992 goto error0; 1993 if (XFS_IS_CORRUPT(mp, i != 1)) { 1994 error = -EFSCORRUPTED; 1995 goto error0; 1996 } 1997 if ((error = xfs_btree_delete(cnt_cur, &i))) 1998 goto error0; 1999 if (XFS_IS_CORRUPT(mp, i != 1)) { 2000 error = -EFSCORRUPTED; 2001 goto error0; 2002 } 2003 /* 2004 * Delete the old by-size entry on the right. 2005 */ 2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2007 goto error0; 2008 if (XFS_IS_CORRUPT(mp, i != 1)) { 2009 error = -EFSCORRUPTED; 2010 goto error0; 2011 } 2012 if ((error = xfs_btree_delete(cnt_cur, &i))) 2013 goto error0; 2014 if (XFS_IS_CORRUPT(mp, i != 1)) { 2015 error = -EFSCORRUPTED; 2016 goto error0; 2017 } 2018 /* 2019 * Delete the old by-block entry for the right block. 2020 */ 2021 if ((error = xfs_btree_delete(bno_cur, &i))) 2022 goto error0; 2023 if (XFS_IS_CORRUPT(mp, i != 1)) { 2024 error = -EFSCORRUPTED; 2025 goto error0; 2026 } 2027 /* 2028 * Move the by-block cursor back to the left neighbor. 2029 */ 2030 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2031 goto error0; 2032 if (XFS_IS_CORRUPT(mp, i != 1)) { 2033 error = -EFSCORRUPTED; 2034 goto error0; 2035 } 2036 #ifdef DEBUG 2037 /* 2038 * Check that this is the right record: delete didn't 2039 * mangle the cursor. 2040 */ 2041 { 2042 xfs_agblock_t xxbno; 2043 xfs_extlen_t xxlen; 2044 2045 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2046 &i))) 2047 goto error0; 2048 if (XFS_IS_CORRUPT(mp, 2049 i != 1 || 2050 xxbno != ltbno || 2051 xxlen != ltlen)) { 2052 error = -EFSCORRUPTED; 2053 goto error0; 2054 } 2055 } 2056 #endif 2057 /* 2058 * Update remaining by-block entry to the new, joined block. 2059 */ 2060 nbno = ltbno; 2061 nlen = len + ltlen + gtlen; 2062 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2063 goto error0; 2064 } 2065 /* 2066 * Have only a left contiguous neighbor. 2067 * Merge it together with the new freespace. 2068 */ 2069 else if (haveleft) { 2070 /* 2071 * Delete the old by-size entry on the left. 2072 */ 2073 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2074 goto error0; 2075 if (XFS_IS_CORRUPT(mp, i != 1)) { 2076 error = -EFSCORRUPTED; 2077 goto error0; 2078 } 2079 if ((error = xfs_btree_delete(cnt_cur, &i))) 2080 goto error0; 2081 if (XFS_IS_CORRUPT(mp, i != 1)) { 2082 error = -EFSCORRUPTED; 2083 goto error0; 2084 } 2085 /* 2086 * Back up the by-block cursor to the left neighbor, and 2087 * update its length. 2088 */ 2089 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2090 goto error0; 2091 if (XFS_IS_CORRUPT(mp, i != 1)) { 2092 error = -EFSCORRUPTED; 2093 goto error0; 2094 } 2095 nbno = ltbno; 2096 nlen = len + ltlen; 2097 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2098 goto error0; 2099 } 2100 /* 2101 * Have only a right contiguous neighbor. 2102 * Merge it together with the new freespace. 2103 */ 2104 else if (haveright) { 2105 /* 2106 * Delete the old by-size entry on the right. 2107 */ 2108 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2109 goto error0; 2110 if (XFS_IS_CORRUPT(mp, i != 1)) { 2111 error = -EFSCORRUPTED; 2112 goto error0; 2113 } 2114 if ((error = xfs_btree_delete(cnt_cur, &i))) 2115 goto error0; 2116 if (XFS_IS_CORRUPT(mp, i != 1)) { 2117 error = -EFSCORRUPTED; 2118 goto error0; 2119 } 2120 /* 2121 * Update the starting block and length of the right 2122 * neighbor in the by-block tree. 2123 */ 2124 nbno = bno; 2125 nlen = len + gtlen; 2126 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2127 goto error0; 2128 } 2129 /* 2130 * No contiguous neighbors. 2131 * Insert the new freespace into the by-block tree. 2132 */ 2133 else { 2134 nbno = bno; 2135 nlen = len; 2136 if ((error = xfs_btree_insert(bno_cur, &i))) 2137 goto error0; 2138 if (XFS_IS_CORRUPT(mp, i != 1)) { 2139 error = -EFSCORRUPTED; 2140 goto error0; 2141 } 2142 } 2143 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2144 bno_cur = NULL; 2145 /* 2146 * In all cases we need to insert the new freespace in the by-size tree. 2147 */ 2148 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2149 goto error0; 2150 if (XFS_IS_CORRUPT(mp, i != 0)) { 2151 error = -EFSCORRUPTED; 2152 goto error0; 2153 } 2154 if ((error = xfs_btree_insert(cnt_cur, &i))) 2155 goto error0; 2156 if (XFS_IS_CORRUPT(mp, i != 1)) { 2157 error = -EFSCORRUPTED; 2158 goto error0; 2159 } 2160 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2161 cnt_cur = NULL; 2162 2163 /* 2164 * Update the freespace totals in the ag and superblock. 2165 */ 2166 error = xfs_alloc_update_counters(tp, agbp, len); 2167 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); 2168 if (error) 2169 goto error0; 2170 2171 XFS_STATS_INC(mp, xs_freex); 2172 XFS_STATS_ADD(mp, xs_freeb, len); 2173 2174 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); 2175 2176 return 0; 2177 2178 error0: 2179 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); 2180 if (bno_cur) 2181 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2182 if (cnt_cur) 2183 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2184 return error; 2185 } 2186 2187 /* 2188 * Visible (exported) allocation/free functions. 2189 * Some of these are used just by xfs_alloc_btree.c and this file. 2190 */ 2191 2192 /* 2193 * Compute and fill in value of m_alloc_maxlevels. 2194 */ 2195 void 2196 xfs_alloc_compute_maxlevels( 2197 xfs_mount_t *mp) /* file system mount structure */ 2198 { 2199 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2200 (mp->m_sb.sb_agblocks + 1) / 2); 2201 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2202 } 2203 2204 /* 2205 * Find the length of the longest extent in an AG. The 'need' parameter 2206 * specifies how much space we're going to need for the AGFL and the 2207 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2208 * other callers. 2209 */ 2210 xfs_extlen_t 2211 xfs_alloc_longest_free_extent( 2212 struct xfs_perag *pag, 2213 xfs_extlen_t need, 2214 xfs_extlen_t reserved) 2215 { 2216 xfs_extlen_t delta = 0; 2217 2218 /* 2219 * If the AGFL needs a recharge, we'll have to subtract that from the 2220 * longest extent. 2221 */ 2222 if (need > pag->pagf_flcount) 2223 delta = need - pag->pagf_flcount; 2224 2225 /* 2226 * If we cannot maintain others' reservations with space from the 2227 * not-longest freesp extents, we'll have to subtract /that/ from 2228 * the longest extent too. 2229 */ 2230 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2231 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2232 2233 /* 2234 * If the longest extent is long enough to satisfy all the 2235 * reservations and AGFL rules in place, we can return this extent. 2236 */ 2237 if (pag->pagf_longest > delta) 2238 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, 2239 pag->pagf_longest - delta); 2240 2241 /* Otherwise, let the caller try for 1 block if there's space. */ 2242 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2243 } 2244 2245 /* 2246 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2247 * return the largest possible minimum length. 2248 */ 2249 unsigned int 2250 xfs_alloc_min_freelist( 2251 struct xfs_mount *mp, 2252 struct xfs_perag *pag) 2253 { 2254 /* AG btrees have at least 1 level. */ 2255 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1}; 2256 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels; 2257 unsigned int min_free; 2258 2259 ASSERT(mp->m_alloc_maxlevels > 0); 2260 2261 /* space needed by-bno freespace btree */ 2262 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1, 2263 mp->m_alloc_maxlevels); 2264 /* space needed by-size freespace btree */ 2265 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1, 2266 mp->m_alloc_maxlevels); 2267 /* space needed reverse mapping used space btree */ 2268 if (xfs_has_rmapbt(mp)) 2269 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1, 2270 mp->m_rmap_maxlevels); 2271 2272 return min_free; 2273 } 2274 2275 /* 2276 * Check if the operation we are fixing up the freelist for should go ahead or 2277 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2278 * is dependent on whether the size and shape of free space available will 2279 * permit the requested allocation to take place. 2280 */ 2281 static bool 2282 xfs_alloc_space_available( 2283 struct xfs_alloc_arg *args, 2284 xfs_extlen_t min_free, 2285 int flags) 2286 { 2287 struct xfs_perag *pag = args->pag; 2288 xfs_extlen_t alloc_len, longest; 2289 xfs_extlen_t reservation; /* blocks that are still reserved */ 2290 int available; 2291 xfs_extlen_t agflcount; 2292 2293 if (flags & XFS_ALLOC_FLAG_FREEING) 2294 return true; 2295 2296 reservation = xfs_ag_resv_needed(pag, args->resv); 2297 2298 /* do we have enough contiguous free space for the allocation? */ 2299 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2300 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2301 if (longest < alloc_len) 2302 return false; 2303 2304 /* 2305 * Do we have enough free space remaining for the allocation? Don't 2306 * account extra agfl blocks because we are about to defer free them, 2307 * making them unavailable until the current transaction commits. 2308 */ 2309 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2310 available = (int)(pag->pagf_freeblks + agflcount - 2311 reservation - min_free - args->minleft); 2312 if (available < (int)max(args->total, alloc_len)) 2313 return false; 2314 2315 /* 2316 * Clamp maxlen to the amount of free space available for the actual 2317 * extent allocation. 2318 */ 2319 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2320 args->maxlen = available; 2321 ASSERT(args->maxlen > 0); 2322 ASSERT(args->maxlen >= args->minlen); 2323 } 2324 2325 return true; 2326 } 2327 2328 int 2329 xfs_free_agfl_block( 2330 struct xfs_trans *tp, 2331 xfs_agnumber_t agno, 2332 xfs_agblock_t agbno, 2333 struct xfs_buf *agbp, 2334 struct xfs_owner_info *oinfo) 2335 { 2336 int error; 2337 struct xfs_buf *bp; 2338 2339 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo, 2340 XFS_AG_RESV_AGFL); 2341 if (error) 2342 return error; 2343 2344 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp, 2345 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno), 2346 tp->t_mountp->m_bsize, 0, &bp); 2347 if (error) 2348 return error; 2349 xfs_trans_binval(tp, bp); 2350 2351 return 0; 2352 } 2353 2354 /* 2355 * Check the agfl fields of the agf for inconsistency or corruption. The purpose 2356 * is to detect an agfl header padding mismatch between current and early v5 2357 * kernels. This problem manifests as a 1-slot size difference between the 2358 * on-disk flcount and the active [first, last] range of a wrapped agfl. This 2359 * may also catch variants of agfl count corruption unrelated to padding. Either 2360 * way, we'll reset the agfl and warn the user. 2361 * 2362 * Return true if a reset is required before the agfl can be used, false 2363 * otherwise. 2364 */ 2365 static bool 2366 xfs_agfl_needs_reset( 2367 struct xfs_mount *mp, 2368 struct xfs_agf *agf) 2369 { 2370 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2371 uint32_t l = be32_to_cpu(agf->agf_fllast); 2372 uint32_t c = be32_to_cpu(agf->agf_flcount); 2373 int agfl_size = xfs_agfl_size(mp); 2374 int active; 2375 2376 /* no agfl header on v4 supers */ 2377 if (!xfs_has_crc(mp)) 2378 return false; 2379 2380 /* 2381 * The agf read verifier catches severe corruption of these fields. 2382 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2383 * the verifier allows it. 2384 */ 2385 if (f >= agfl_size || l >= agfl_size) 2386 return true; 2387 if (c > agfl_size) 2388 return true; 2389 2390 /* 2391 * Check consistency between the on-disk count and the active range. An 2392 * agfl padding mismatch manifests as an inconsistent flcount. 2393 */ 2394 if (c && l >= f) 2395 active = l - f + 1; 2396 else if (c) 2397 active = agfl_size - f + l + 1; 2398 else 2399 active = 0; 2400 2401 return active != c; 2402 } 2403 2404 /* 2405 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2406 * agfl content cannot be trusted. Warn the user that a repair is required to 2407 * recover leaked blocks. 2408 * 2409 * The purpose of this mechanism is to handle filesystems affected by the agfl 2410 * header padding mismatch problem. A reset keeps the filesystem online with a 2411 * relatively minor free space accounting inconsistency rather than suffer the 2412 * inevitable crash from use of an invalid agfl block. 2413 */ 2414 static void 2415 xfs_agfl_reset( 2416 struct xfs_trans *tp, 2417 struct xfs_buf *agbp, 2418 struct xfs_perag *pag) 2419 { 2420 struct xfs_mount *mp = tp->t_mountp; 2421 struct xfs_agf *agf = agbp->b_addr; 2422 2423 ASSERT(pag->pagf_agflreset); 2424 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2425 2426 xfs_warn(mp, 2427 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2428 "Please unmount and run xfs_repair.", 2429 pag->pag_agno, pag->pagf_flcount); 2430 2431 agf->agf_flfirst = 0; 2432 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2433 agf->agf_flcount = 0; 2434 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2435 XFS_AGF_FLCOUNT); 2436 2437 pag->pagf_flcount = 0; 2438 pag->pagf_agflreset = false; 2439 } 2440 2441 /* 2442 * Defer an AGFL block free. This is effectively equivalent to 2443 * xfs_free_extent_later() with some special handling particular to AGFL blocks. 2444 * 2445 * Deferring AGFL frees helps prevent log reservation overruns due to too many 2446 * allocation operations in a transaction. AGFL frees are prone to this problem 2447 * because for one they are always freed one at a time. Further, an immediate 2448 * AGFL block free can cause a btree join and require another block free before 2449 * the real allocation can proceed. Deferring the free disconnects freeing up 2450 * the AGFL slot from freeing the block. 2451 */ 2452 STATIC void 2453 xfs_defer_agfl_block( 2454 struct xfs_trans *tp, 2455 xfs_agnumber_t agno, 2456 xfs_fsblock_t agbno, 2457 struct xfs_owner_info *oinfo) 2458 { 2459 struct xfs_mount *mp = tp->t_mountp; 2460 struct xfs_extent_free_item *new; /* new element */ 2461 2462 ASSERT(xfs_extfree_item_cache != NULL); 2463 ASSERT(oinfo != NULL); 2464 2465 new = kmem_cache_zalloc(xfs_extfree_item_cache, 2466 GFP_KERNEL | __GFP_NOFAIL); 2467 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno); 2468 new->xefi_blockcount = 1; 2469 new->xefi_owner = oinfo->oi_owner; 2470 2471 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1); 2472 2473 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list); 2474 } 2475 2476 /* 2477 * Add the extent to the list of extents to be free at transaction end. 2478 * The list is maintained sorted (by block number). 2479 */ 2480 void 2481 __xfs_free_extent_later( 2482 struct xfs_trans *tp, 2483 xfs_fsblock_t bno, 2484 xfs_filblks_t len, 2485 const struct xfs_owner_info *oinfo, 2486 bool skip_discard) 2487 { 2488 struct xfs_extent_free_item *new; /* new element */ 2489 #ifdef DEBUG 2490 struct xfs_mount *mp = tp->t_mountp; 2491 xfs_agnumber_t agno; 2492 xfs_agblock_t agbno; 2493 2494 ASSERT(bno != NULLFSBLOCK); 2495 ASSERT(len > 0); 2496 ASSERT(len <= MAXEXTLEN); 2497 ASSERT(!isnullstartblock(bno)); 2498 agno = XFS_FSB_TO_AGNO(mp, bno); 2499 agbno = XFS_FSB_TO_AGBNO(mp, bno); 2500 ASSERT(agno < mp->m_sb.sb_agcount); 2501 ASSERT(agbno < mp->m_sb.sb_agblocks); 2502 ASSERT(len < mp->m_sb.sb_agblocks); 2503 ASSERT(agbno + len <= mp->m_sb.sb_agblocks); 2504 #endif 2505 ASSERT(xfs_extfree_item_cache != NULL); 2506 2507 new = kmem_cache_zalloc(xfs_extfree_item_cache, 2508 GFP_KERNEL | __GFP_NOFAIL); 2509 new->xefi_startblock = bno; 2510 new->xefi_blockcount = (xfs_extlen_t)len; 2511 if (skip_discard) 2512 new->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2513 if (oinfo) { 2514 ASSERT(oinfo->oi_offset == 0); 2515 2516 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2517 new->xefi_flags |= XFS_EFI_ATTR_FORK; 2518 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2519 new->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2520 new->xefi_owner = oinfo->oi_owner; 2521 } else { 2522 new->xefi_owner = XFS_RMAP_OWN_NULL; 2523 } 2524 trace_xfs_bmap_free_defer(tp->t_mountp, 2525 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0, 2526 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len); 2527 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list); 2528 } 2529 2530 #ifdef DEBUG 2531 /* 2532 * Check if an AGF has a free extent record whose length is equal to 2533 * args->minlen. 2534 */ 2535 STATIC int 2536 xfs_exact_minlen_extent_available( 2537 struct xfs_alloc_arg *args, 2538 struct xfs_buf *agbp, 2539 int *stat) 2540 { 2541 struct xfs_btree_cur *cnt_cur; 2542 xfs_agblock_t fbno; 2543 xfs_extlen_t flen; 2544 int error = 0; 2545 2546 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp, 2547 args->pag, XFS_BTNUM_CNT); 2548 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2549 if (error) 2550 goto out; 2551 2552 if (*stat == 0) { 2553 error = -EFSCORRUPTED; 2554 goto out; 2555 } 2556 2557 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2558 if (error) 2559 goto out; 2560 2561 if (*stat == 1 && flen != args->minlen) 2562 *stat = 0; 2563 2564 out: 2565 xfs_btree_del_cursor(cnt_cur, error); 2566 2567 return error; 2568 } 2569 #endif 2570 2571 /* 2572 * Decide whether to use this allocation group for this allocation. 2573 * If so, fix up the btree freelist's size. 2574 */ 2575 int /* error */ 2576 xfs_alloc_fix_freelist( 2577 struct xfs_alloc_arg *args, /* allocation argument structure */ 2578 int flags) /* XFS_ALLOC_FLAG_... */ 2579 { 2580 struct xfs_mount *mp = args->mp; 2581 struct xfs_perag *pag = args->pag; 2582 struct xfs_trans *tp = args->tp; 2583 struct xfs_buf *agbp = NULL; 2584 struct xfs_buf *agflbp = NULL; 2585 struct xfs_alloc_arg targs; /* local allocation arguments */ 2586 xfs_agblock_t bno; /* freelist block */ 2587 xfs_extlen_t need; /* total blocks needed in freelist */ 2588 int error = 0; 2589 2590 /* deferred ops (AGFL block frees) require permanent transactions */ 2591 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2592 2593 if (!pag->pagf_init) { 2594 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp); 2595 if (error) { 2596 /* Couldn't lock the AGF so skip this AG. */ 2597 if (error == -EAGAIN) 2598 error = 0; 2599 goto out_no_agbp; 2600 } 2601 } 2602 2603 /* 2604 * If this is a metadata preferred pag and we are user data then try 2605 * somewhere else if we are not being asked to try harder at this 2606 * point 2607 */ 2608 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) && 2609 (flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2610 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); 2611 goto out_agbp_relse; 2612 } 2613 2614 need = xfs_alloc_min_freelist(mp, pag); 2615 if (!xfs_alloc_space_available(args, need, flags | 2616 XFS_ALLOC_FLAG_CHECK)) 2617 goto out_agbp_relse; 2618 2619 /* 2620 * Get the a.g. freespace buffer. 2621 * Can fail if we're not blocking on locks, and it's held. 2622 */ 2623 if (!agbp) { 2624 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp); 2625 if (error) { 2626 /* Couldn't lock the AGF so skip this AG. */ 2627 if (error == -EAGAIN) 2628 error = 0; 2629 goto out_no_agbp; 2630 } 2631 } 2632 2633 /* reset a padding mismatched agfl before final free space check */ 2634 if (pag->pagf_agflreset) 2635 xfs_agfl_reset(tp, agbp, pag); 2636 2637 /* If there isn't enough total space or single-extent, reject it. */ 2638 need = xfs_alloc_min_freelist(mp, pag); 2639 if (!xfs_alloc_space_available(args, need, flags)) 2640 goto out_agbp_relse; 2641 2642 #ifdef DEBUG 2643 if (args->alloc_minlen_only) { 2644 int stat; 2645 2646 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2647 if (error || !stat) 2648 goto out_agbp_relse; 2649 } 2650 #endif 2651 /* 2652 * Make the freelist shorter if it's too long. 2653 * 2654 * Note that from this point onwards, we will always release the agf and 2655 * agfl buffers on error. This handles the case where we error out and 2656 * the buffers are clean or may not have been joined to the transaction 2657 * and hence need to be released manually. If they have been joined to 2658 * the transaction, then xfs_trans_brelse() will handle them 2659 * appropriately based on the recursion count and dirty state of the 2660 * buffer. 2661 * 2662 * XXX (dgc): When we have lots of free space, does this buy us 2663 * anything other than extra overhead when we need to put more blocks 2664 * back on the free list? Maybe we should only do this when space is 2665 * getting low or the AGFL is more than half full? 2666 * 2667 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2668 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2669 * updating the rmapbt. Both flags are used in xfs_repair while we're 2670 * rebuilding the rmapbt, and neither are used by the kernel. They're 2671 * both required to ensure that rmaps are correctly recorded for the 2672 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2673 * repair/rmap.c in xfsprogs for details. 2674 */ 2675 memset(&targs, 0, sizeof(targs)); 2676 /* struct copy below */ 2677 if (flags & XFS_ALLOC_FLAG_NORMAP) 2678 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2679 else 2680 targs.oinfo = XFS_RMAP_OINFO_AG; 2681 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) { 2682 error = xfs_alloc_get_freelist(tp, agbp, &bno, 0); 2683 if (error) 2684 goto out_agbp_relse; 2685 2686 /* defer agfl frees */ 2687 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo); 2688 } 2689 2690 targs.tp = tp; 2691 targs.mp = mp; 2692 targs.agbp = agbp; 2693 targs.agno = args->agno; 2694 targs.alignment = targs.minlen = targs.prod = 1; 2695 targs.type = XFS_ALLOCTYPE_THIS_AG; 2696 targs.pag = pag; 2697 error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp); 2698 if (error) 2699 goto out_agbp_relse; 2700 2701 /* Make the freelist longer if it's too short. */ 2702 while (pag->pagf_flcount < need) { 2703 targs.agbno = 0; 2704 targs.maxlen = need - pag->pagf_flcount; 2705 targs.resv = XFS_AG_RESV_AGFL; 2706 2707 /* Allocate as many blocks as possible at once. */ 2708 error = xfs_alloc_ag_vextent(&targs); 2709 if (error) 2710 goto out_agflbp_relse; 2711 2712 /* 2713 * Stop if we run out. Won't happen if callers are obeying 2714 * the restrictions correctly. Can happen for free calls 2715 * on a completely full ag. 2716 */ 2717 if (targs.agbno == NULLAGBLOCK) { 2718 if (flags & XFS_ALLOC_FLAG_FREEING) 2719 break; 2720 goto out_agflbp_relse; 2721 } 2722 /* 2723 * Put each allocated block on the list. 2724 */ 2725 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 2726 error = xfs_alloc_put_freelist(tp, agbp, 2727 agflbp, bno, 0); 2728 if (error) 2729 goto out_agflbp_relse; 2730 } 2731 } 2732 xfs_trans_brelse(tp, agflbp); 2733 args->agbp = agbp; 2734 return 0; 2735 2736 out_agflbp_relse: 2737 xfs_trans_brelse(tp, agflbp); 2738 out_agbp_relse: 2739 if (agbp) 2740 xfs_trans_brelse(tp, agbp); 2741 out_no_agbp: 2742 args->agbp = NULL; 2743 return error; 2744 } 2745 2746 /* 2747 * Get a block from the freelist. 2748 * Returns with the buffer for the block gotten. 2749 */ 2750 int 2751 xfs_alloc_get_freelist( 2752 struct xfs_trans *tp, 2753 struct xfs_buf *agbp, 2754 xfs_agblock_t *bnop, 2755 int btreeblk) 2756 { 2757 struct xfs_agf *agf = agbp->b_addr; 2758 struct xfs_buf *agflbp; 2759 xfs_agblock_t bno; 2760 __be32 *agfl_bno; 2761 int error; 2762 int logflags; 2763 struct xfs_mount *mp = tp->t_mountp; 2764 struct xfs_perag *pag; 2765 2766 /* 2767 * Freelist is empty, give up. 2768 */ 2769 if (!agf->agf_flcount) { 2770 *bnop = NULLAGBLOCK; 2771 return 0; 2772 } 2773 /* 2774 * Read the array of free blocks. 2775 */ 2776 error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno), 2777 &agflbp); 2778 if (error) 2779 return error; 2780 2781 2782 /* 2783 * Get the block number and update the data structures. 2784 */ 2785 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2786 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 2787 be32_add_cpu(&agf->agf_flfirst, 1); 2788 xfs_trans_brelse(tp, agflbp); 2789 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 2790 agf->agf_flfirst = 0; 2791 2792 pag = agbp->b_pag; 2793 ASSERT(!pag->pagf_agflreset); 2794 be32_add_cpu(&agf->agf_flcount, -1); 2795 pag->pagf_flcount--; 2796 2797 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 2798 if (btreeblk) { 2799 be32_add_cpu(&agf->agf_btreeblks, 1); 2800 pag->pagf_btreeblks++; 2801 logflags |= XFS_AGF_BTREEBLKS; 2802 } 2803 2804 xfs_alloc_log_agf(tp, agbp, logflags); 2805 *bnop = bno; 2806 2807 return 0; 2808 } 2809 2810 /* 2811 * Log the given fields from the agf structure. 2812 */ 2813 void 2814 xfs_alloc_log_agf( 2815 xfs_trans_t *tp, /* transaction pointer */ 2816 struct xfs_buf *bp, /* buffer for a.g. freelist header */ 2817 int fields) /* mask of fields to be logged (XFS_AGF_...) */ 2818 { 2819 int first; /* first byte offset */ 2820 int last; /* last byte offset */ 2821 static const short offsets[] = { 2822 offsetof(xfs_agf_t, agf_magicnum), 2823 offsetof(xfs_agf_t, agf_versionnum), 2824 offsetof(xfs_agf_t, agf_seqno), 2825 offsetof(xfs_agf_t, agf_length), 2826 offsetof(xfs_agf_t, agf_roots[0]), 2827 offsetof(xfs_agf_t, agf_levels[0]), 2828 offsetof(xfs_agf_t, agf_flfirst), 2829 offsetof(xfs_agf_t, agf_fllast), 2830 offsetof(xfs_agf_t, agf_flcount), 2831 offsetof(xfs_agf_t, agf_freeblks), 2832 offsetof(xfs_agf_t, agf_longest), 2833 offsetof(xfs_agf_t, agf_btreeblks), 2834 offsetof(xfs_agf_t, agf_uuid), 2835 offsetof(xfs_agf_t, agf_rmap_blocks), 2836 offsetof(xfs_agf_t, agf_refcount_blocks), 2837 offsetof(xfs_agf_t, agf_refcount_root), 2838 offsetof(xfs_agf_t, agf_refcount_level), 2839 /* needed so that we don't log the whole rest of the structure: */ 2840 offsetof(xfs_agf_t, agf_spare64), 2841 sizeof(xfs_agf_t) 2842 }; 2843 2844 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 2845 2846 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 2847 2848 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 2849 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 2850 } 2851 2852 /* 2853 * Interface for inode allocation to force the pag data to be initialized. 2854 */ 2855 int /* error */ 2856 xfs_alloc_pagf_init( 2857 xfs_mount_t *mp, /* file system mount structure */ 2858 xfs_trans_t *tp, /* transaction pointer */ 2859 xfs_agnumber_t agno, /* allocation group number */ 2860 int flags) /* XFS_ALLOC_FLAGS_... */ 2861 { 2862 struct xfs_buf *bp; 2863 int error; 2864 2865 error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp); 2866 if (!error) 2867 xfs_trans_brelse(tp, bp); 2868 return error; 2869 } 2870 2871 /* 2872 * Put the block on the freelist for the allocation group. 2873 */ 2874 int 2875 xfs_alloc_put_freelist( 2876 struct xfs_trans *tp, 2877 struct xfs_buf *agbp, 2878 struct xfs_buf *agflbp, 2879 xfs_agblock_t bno, 2880 int btreeblk) 2881 { 2882 struct xfs_mount *mp = tp->t_mountp; 2883 struct xfs_agf *agf = agbp->b_addr; 2884 struct xfs_perag *pag; 2885 __be32 *blockp; 2886 int error; 2887 int logflags; 2888 __be32 *agfl_bno; 2889 int startoff; 2890 2891 if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp, 2892 be32_to_cpu(agf->agf_seqno), &agflbp))) 2893 return error; 2894 be32_add_cpu(&agf->agf_fllast, 1); 2895 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 2896 agf->agf_fllast = 0; 2897 2898 pag = agbp->b_pag; 2899 ASSERT(!pag->pagf_agflreset); 2900 be32_add_cpu(&agf->agf_flcount, 1); 2901 pag->pagf_flcount++; 2902 2903 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 2904 if (btreeblk) { 2905 be32_add_cpu(&agf->agf_btreeblks, -1); 2906 pag->pagf_btreeblks--; 2907 logflags |= XFS_AGF_BTREEBLKS; 2908 } 2909 2910 xfs_alloc_log_agf(tp, agbp, logflags); 2911 2912 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 2913 2914 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2915 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 2916 *blockp = cpu_to_be32(bno); 2917 startoff = (char *)blockp - (char *)agflbp->b_addr; 2918 2919 xfs_alloc_log_agf(tp, agbp, logflags); 2920 2921 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 2922 xfs_trans_log_buf(tp, agflbp, startoff, 2923 startoff + sizeof(xfs_agblock_t) - 1); 2924 return 0; 2925 } 2926 2927 static xfs_failaddr_t 2928 xfs_agf_verify( 2929 struct xfs_buf *bp) 2930 { 2931 struct xfs_mount *mp = bp->b_mount; 2932 struct xfs_agf *agf = bp->b_addr; 2933 2934 if (xfs_has_crc(mp)) { 2935 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 2936 return __this_address; 2937 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 2938 return __this_address; 2939 } 2940 2941 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 2942 return __this_address; 2943 2944 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) && 2945 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) && 2946 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) && 2947 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) && 2948 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp))) 2949 return __this_address; 2950 2951 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks) 2952 return __this_address; 2953 2954 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 2955 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length)) 2956 return __this_address; 2957 2958 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 || 2959 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 || 2960 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > 2961 mp->m_alloc_maxlevels || 2962 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > 2963 mp->m_alloc_maxlevels) 2964 return __this_address; 2965 2966 if (xfs_has_rmapbt(mp) && 2967 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 || 2968 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > 2969 mp->m_rmap_maxlevels)) 2970 return __this_address; 2971 2972 if (xfs_has_rmapbt(mp) && 2973 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length)) 2974 return __this_address; 2975 2976 /* 2977 * during growfs operations, the perag is not fully initialised, 2978 * so we can't use it for any useful checking. growfs ensures we can't 2979 * use it by using uncached buffers that don't have the perag attached 2980 * so we can detect and avoid this problem. 2981 */ 2982 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno) 2983 return __this_address; 2984 2985 if (xfs_has_lazysbcount(mp) && 2986 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length)) 2987 return __this_address; 2988 2989 if (xfs_has_reflink(mp) && 2990 be32_to_cpu(agf->agf_refcount_blocks) > 2991 be32_to_cpu(agf->agf_length)) 2992 return __this_address; 2993 2994 if (xfs_has_reflink(mp) && 2995 (be32_to_cpu(agf->agf_refcount_level) < 1 || 2996 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)) 2997 return __this_address; 2998 2999 return NULL; 3000 3001 } 3002 3003 static void 3004 xfs_agf_read_verify( 3005 struct xfs_buf *bp) 3006 { 3007 struct xfs_mount *mp = bp->b_mount; 3008 xfs_failaddr_t fa; 3009 3010 if (xfs_has_crc(mp) && 3011 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3012 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3013 else { 3014 fa = xfs_agf_verify(bp); 3015 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3016 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3017 } 3018 } 3019 3020 static void 3021 xfs_agf_write_verify( 3022 struct xfs_buf *bp) 3023 { 3024 struct xfs_mount *mp = bp->b_mount; 3025 struct xfs_buf_log_item *bip = bp->b_log_item; 3026 struct xfs_agf *agf = bp->b_addr; 3027 xfs_failaddr_t fa; 3028 3029 fa = xfs_agf_verify(bp); 3030 if (fa) { 3031 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3032 return; 3033 } 3034 3035 if (!xfs_has_crc(mp)) 3036 return; 3037 3038 if (bip) 3039 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3040 3041 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3042 } 3043 3044 const struct xfs_buf_ops xfs_agf_buf_ops = { 3045 .name = "xfs_agf", 3046 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3047 .verify_read = xfs_agf_read_verify, 3048 .verify_write = xfs_agf_write_verify, 3049 .verify_struct = xfs_agf_verify, 3050 }; 3051 3052 /* 3053 * Read in the allocation group header (free/alloc section). 3054 */ 3055 int /* error */ 3056 xfs_read_agf( 3057 struct xfs_mount *mp, /* mount point structure */ 3058 struct xfs_trans *tp, /* transaction pointer */ 3059 xfs_agnumber_t agno, /* allocation group number */ 3060 int flags, /* XFS_BUF_ */ 3061 struct xfs_buf **bpp) /* buffer for the ag freelist header */ 3062 { 3063 int error; 3064 3065 trace_xfs_read_agf(mp, agno); 3066 3067 ASSERT(agno != NULLAGNUMBER); 3068 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3069 XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), 3070 XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops); 3071 if (error) 3072 return error; 3073 3074 ASSERT(!(*bpp)->b_error); 3075 xfs_buf_set_ref(*bpp, XFS_AGF_REF); 3076 return 0; 3077 } 3078 3079 /* 3080 * Read in the allocation group header (free/alloc section). 3081 */ 3082 int /* error */ 3083 xfs_alloc_read_agf( 3084 struct xfs_mount *mp, /* mount point structure */ 3085 struct xfs_trans *tp, /* transaction pointer */ 3086 xfs_agnumber_t agno, /* allocation group number */ 3087 int flags, /* XFS_ALLOC_FLAG_... */ 3088 struct xfs_buf **bpp) /* buffer for the ag freelist header */ 3089 { 3090 struct xfs_agf *agf; /* ag freelist header */ 3091 struct xfs_perag *pag; /* per allocation group data */ 3092 int error; 3093 int allocbt_blks; 3094 3095 trace_xfs_alloc_read_agf(mp, agno); 3096 3097 /* We don't support trylock when freeing. */ 3098 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3099 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3100 ASSERT(agno != NULLAGNUMBER); 3101 error = xfs_read_agf(mp, tp, agno, 3102 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3103 bpp); 3104 if (error) 3105 return error; 3106 ASSERT(!(*bpp)->b_error); 3107 3108 agf = (*bpp)->b_addr; 3109 pag = (*bpp)->b_pag; 3110 if (!pag->pagf_init) { 3111 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3112 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3113 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3114 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3115 pag->pagf_levels[XFS_BTNUM_BNOi] = 3116 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); 3117 pag->pagf_levels[XFS_BTNUM_CNTi] = 3118 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); 3119 pag->pagf_levels[XFS_BTNUM_RMAPi] = 3120 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]); 3121 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3122 pag->pagf_init = 1; 3123 pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf); 3124 3125 /* 3126 * Update the in-core allocbt counter. Filter out the rmapbt 3127 * subset of the btreeblks counter because the rmapbt is managed 3128 * by perag reservation. Subtract one for the rmapbt root block 3129 * because the rmap counter includes it while the btreeblks 3130 * counter only tracks non-root blocks. 3131 */ 3132 allocbt_blks = pag->pagf_btreeblks; 3133 if (xfs_has_rmapbt(mp)) 3134 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3135 if (allocbt_blks > 0) 3136 atomic64_add(allocbt_blks, &mp->m_allocbt_blks); 3137 } 3138 #ifdef DEBUG 3139 else if (!xfs_is_shutdown(mp)) { 3140 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3141 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3142 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3143 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3144 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == 3145 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); 3146 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == 3147 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); 3148 } 3149 #endif 3150 return 0; 3151 } 3152 3153 /* 3154 * Allocate an extent (variable-size). 3155 * Depending on the allocation type, we either look in a single allocation 3156 * group or loop over the allocation groups to find the result. 3157 */ 3158 int /* error */ 3159 xfs_alloc_vextent( 3160 struct xfs_alloc_arg *args) /* allocation argument structure */ 3161 { 3162 xfs_agblock_t agsize; /* allocation group size */ 3163 int error; 3164 int flags; /* XFS_ALLOC_FLAG_... locking flags */ 3165 struct xfs_mount *mp; /* mount structure pointer */ 3166 xfs_agnumber_t sagno; /* starting allocation group number */ 3167 xfs_alloctype_t type; /* input allocation type */ 3168 int bump_rotor = 0; 3169 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */ 3170 3171 mp = args->mp; 3172 type = args->otype = args->type; 3173 args->agbno = NULLAGBLOCK; 3174 /* 3175 * Just fix this up, for the case where the last a.g. is shorter 3176 * (or there's only one a.g.) and the caller couldn't easily figure 3177 * that out (xfs_bmap_alloc). 3178 */ 3179 agsize = mp->m_sb.sb_agblocks; 3180 if (args->maxlen > agsize) 3181 args->maxlen = agsize; 3182 if (args->alignment == 0) 3183 args->alignment = 1; 3184 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount); 3185 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize); 3186 ASSERT(args->minlen <= args->maxlen); 3187 ASSERT(args->minlen <= agsize); 3188 ASSERT(args->mod < args->prod); 3189 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount || 3190 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize || 3191 args->minlen > args->maxlen || args->minlen > agsize || 3192 args->mod >= args->prod) { 3193 args->fsbno = NULLFSBLOCK; 3194 trace_xfs_alloc_vextent_badargs(args); 3195 return 0; 3196 } 3197 3198 switch (type) { 3199 case XFS_ALLOCTYPE_THIS_AG: 3200 case XFS_ALLOCTYPE_NEAR_BNO: 3201 case XFS_ALLOCTYPE_THIS_BNO: 3202 /* 3203 * These three force us into a single a.g. 3204 */ 3205 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3206 args->pag = xfs_perag_get(mp, args->agno); 3207 error = xfs_alloc_fix_freelist(args, 0); 3208 if (error) { 3209 trace_xfs_alloc_vextent_nofix(args); 3210 goto error0; 3211 } 3212 if (!args->agbp) { 3213 trace_xfs_alloc_vextent_noagbp(args); 3214 break; 3215 } 3216 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); 3217 if ((error = xfs_alloc_ag_vextent(args))) 3218 goto error0; 3219 break; 3220 case XFS_ALLOCTYPE_START_BNO: 3221 /* 3222 * Try near allocation first, then anywhere-in-ag after 3223 * the first a.g. fails. 3224 */ 3225 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3226 xfs_is_inode32(mp)) { 3227 args->fsbno = XFS_AGB_TO_FSB(mp, 3228 ((mp->m_agfrotor / rotorstep) % 3229 mp->m_sb.sb_agcount), 0); 3230 bump_rotor = 1; 3231 } 3232 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); 3233 args->type = XFS_ALLOCTYPE_NEAR_BNO; 3234 fallthrough; 3235 case XFS_ALLOCTYPE_FIRST_AG: 3236 /* 3237 * Rotate through the allocation groups looking for a winner. 3238 */ 3239 if (type == XFS_ALLOCTYPE_FIRST_AG) { 3240 /* 3241 * Start with allocation group given by bno. 3242 */ 3243 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3244 args->type = XFS_ALLOCTYPE_THIS_AG; 3245 sagno = 0; 3246 flags = 0; 3247 } else { 3248 /* 3249 * Start with the given allocation group. 3250 */ 3251 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno); 3252 flags = XFS_ALLOC_FLAG_TRYLOCK; 3253 } 3254 /* 3255 * Loop over allocation groups twice; first time with 3256 * trylock set, second time without. 3257 */ 3258 for (;;) { 3259 args->pag = xfs_perag_get(mp, args->agno); 3260 error = xfs_alloc_fix_freelist(args, flags); 3261 if (error) { 3262 trace_xfs_alloc_vextent_nofix(args); 3263 goto error0; 3264 } 3265 /* 3266 * If we get a buffer back then the allocation will fly. 3267 */ 3268 if (args->agbp) { 3269 if ((error = xfs_alloc_ag_vextent(args))) 3270 goto error0; 3271 break; 3272 } 3273 3274 trace_xfs_alloc_vextent_loopfailed(args); 3275 3276 /* 3277 * Didn't work, figure out the next iteration. 3278 */ 3279 if (args->agno == sagno && 3280 type == XFS_ALLOCTYPE_START_BNO) 3281 args->type = XFS_ALLOCTYPE_THIS_AG; 3282 /* 3283 * For the first allocation, we can try any AG to get 3284 * space. However, if we already have allocated a 3285 * block, we don't want to try AGs whose number is below 3286 * sagno. Otherwise, we may end up with out-of-order 3287 * locking of AGF, which might cause deadlock. 3288 */ 3289 if (++(args->agno) == mp->m_sb.sb_agcount) { 3290 if (args->tp->t_firstblock != NULLFSBLOCK) 3291 args->agno = sagno; 3292 else 3293 args->agno = 0; 3294 } 3295 /* 3296 * Reached the starting a.g., must either be done 3297 * or switch to non-trylock mode. 3298 */ 3299 if (args->agno == sagno) { 3300 if (flags == 0) { 3301 args->agbno = NULLAGBLOCK; 3302 trace_xfs_alloc_vextent_allfailed(args); 3303 break; 3304 } 3305 3306 flags = 0; 3307 if (type == XFS_ALLOCTYPE_START_BNO) { 3308 args->agbno = XFS_FSB_TO_AGBNO(mp, 3309 args->fsbno); 3310 args->type = XFS_ALLOCTYPE_NEAR_BNO; 3311 } 3312 } 3313 xfs_perag_put(args->pag); 3314 } 3315 if (bump_rotor) { 3316 if (args->agno == sagno) 3317 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3318 (mp->m_sb.sb_agcount * rotorstep); 3319 else 3320 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3321 (mp->m_sb.sb_agcount * rotorstep); 3322 } 3323 break; 3324 default: 3325 ASSERT(0); 3326 /* NOTREACHED */ 3327 } 3328 if (args->agbno == NULLAGBLOCK) 3329 args->fsbno = NULLFSBLOCK; 3330 else { 3331 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); 3332 #ifdef DEBUG 3333 ASSERT(args->len >= args->minlen); 3334 ASSERT(args->len <= args->maxlen); 3335 ASSERT(args->agbno % args->alignment == 0); 3336 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), 3337 args->len); 3338 #endif 3339 3340 } 3341 xfs_perag_put(args->pag); 3342 return 0; 3343 error0: 3344 xfs_perag_put(args->pag); 3345 return error; 3346 } 3347 3348 /* Ensure that the freelist is at full capacity. */ 3349 int 3350 xfs_free_extent_fix_freelist( 3351 struct xfs_trans *tp, 3352 struct xfs_perag *pag, 3353 struct xfs_buf **agbp) 3354 { 3355 struct xfs_alloc_arg args; 3356 int error; 3357 3358 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3359 args.tp = tp; 3360 args.mp = tp->t_mountp; 3361 args.agno = pag->pag_agno; 3362 args.pag = pag; 3363 3364 /* 3365 * validate that the block number is legal - the enables us to detect 3366 * and handle a silent filesystem corruption rather than crashing. 3367 */ 3368 if (args.agno >= args.mp->m_sb.sb_agcount) 3369 return -EFSCORRUPTED; 3370 3371 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3372 if (error) 3373 return error; 3374 3375 *agbp = args.agbp; 3376 return 0; 3377 } 3378 3379 /* 3380 * Free an extent. 3381 * Just break up the extent address and hand off to xfs_free_ag_extent 3382 * after fixing up the freelist. 3383 */ 3384 int 3385 __xfs_free_extent( 3386 struct xfs_trans *tp, 3387 xfs_fsblock_t bno, 3388 xfs_extlen_t len, 3389 const struct xfs_owner_info *oinfo, 3390 enum xfs_ag_resv_type type, 3391 bool skip_discard) 3392 { 3393 struct xfs_mount *mp = tp->t_mountp; 3394 struct xfs_buf *agbp; 3395 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno); 3396 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno); 3397 struct xfs_agf *agf; 3398 int error; 3399 unsigned int busy_flags = 0; 3400 struct xfs_perag *pag; 3401 3402 ASSERT(len != 0); 3403 ASSERT(type != XFS_AG_RESV_AGFL); 3404 3405 if (XFS_TEST_ERROR(false, mp, 3406 XFS_ERRTAG_FREE_EXTENT)) 3407 return -EIO; 3408 3409 pag = xfs_perag_get(mp, agno); 3410 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 3411 if (error) 3412 goto err; 3413 agf = agbp->b_addr; 3414 3415 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 3416 error = -EFSCORRUPTED; 3417 goto err_release; 3418 } 3419 3420 /* validate the extent size is legal now we have the agf locked */ 3421 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 3422 error = -EFSCORRUPTED; 3423 goto err_release; 3424 } 3425 3426 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type); 3427 if (error) 3428 goto err_release; 3429 3430 if (skip_discard) 3431 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 3432 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); 3433 xfs_perag_put(pag); 3434 return 0; 3435 3436 err_release: 3437 xfs_trans_brelse(tp, agbp); 3438 err: 3439 xfs_perag_put(pag); 3440 return error; 3441 } 3442 3443 struct xfs_alloc_query_range_info { 3444 xfs_alloc_query_range_fn fn; 3445 void *priv; 3446 }; 3447 3448 /* Format btree record and pass to our callback. */ 3449 STATIC int 3450 xfs_alloc_query_range_helper( 3451 struct xfs_btree_cur *cur, 3452 const union xfs_btree_rec *rec, 3453 void *priv) 3454 { 3455 struct xfs_alloc_query_range_info *query = priv; 3456 struct xfs_alloc_rec_incore irec; 3457 3458 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 3459 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 3460 return query->fn(cur, &irec, query->priv); 3461 } 3462 3463 /* Find all free space within a given range of blocks. */ 3464 int 3465 xfs_alloc_query_range( 3466 struct xfs_btree_cur *cur, 3467 const struct xfs_alloc_rec_incore *low_rec, 3468 const struct xfs_alloc_rec_incore *high_rec, 3469 xfs_alloc_query_range_fn fn, 3470 void *priv) 3471 { 3472 union xfs_btree_irec low_brec; 3473 union xfs_btree_irec high_brec; 3474 struct xfs_alloc_query_range_info query; 3475 3476 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3477 low_brec.a = *low_rec; 3478 high_brec.a = *high_rec; 3479 query.priv = priv; 3480 query.fn = fn; 3481 return xfs_btree_query_range(cur, &low_brec, &high_brec, 3482 xfs_alloc_query_range_helper, &query); 3483 } 3484 3485 /* Find all free space records. */ 3486 int 3487 xfs_alloc_query_all( 3488 struct xfs_btree_cur *cur, 3489 xfs_alloc_query_range_fn fn, 3490 void *priv) 3491 { 3492 struct xfs_alloc_query_range_info query; 3493 3494 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3495 query.priv = priv; 3496 query.fn = fn; 3497 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 3498 } 3499 3500 /* Is there a record covering a given extent? */ 3501 int 3502 xfs_alloc_has_record( 3503 struct xfs_btree_cur *cur, 3504 xfs_agblock_t bno, 3505 xfs_extlen_t len, 3506 bool *exists) 3507 { 3508 union xfs_btree_irec low; 3509 union xfs_btree_irec high; 3510 3511 memset(&low, 0, sizeof(low)); 3512 low.a.ar_startblock = bno; 3513 memset(&high, 0xFF, sizeof(high)); 3514 high.a.ar_startblock = bno + len - 1; 3515 3516 return xfs_btree_has_record(cur, &low, &high, exists); 3517 } 3518 3519 /* 3520 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 3521 * error code or XFS_ITER_*. 3522 */ 3523 int 3524 xfs_agfl_walk( 3525 struct xfs_mount *mp, 3526 struct xfs_agf *agf, 3527 struct xfs_buf *agflbp, 3528 xfs_agfl_walk_fn walk_fn, 3529 void *priv) 3530 { 3531 __be32 *agfl_bno; 3532 unsigned int i; 3533 int error; 3534 3535 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3536 i = be32_to_cpu(agf->agf_flfirst); 3537 3538 /* Nothing to walk in an empty AGFL. */ 3539 if (agf->agf_flcount == cpu_to_be32(0)) 3540 return 0; 3541 3542 /* Otherwise, walk from first to last, wrapping as needed. */ 3543 for (;;) { 3544 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 3545 if (error) 3546 return error; 3547 if (i == be32_to_cpu(agf->agf_fllast)) 3548 break; 3549 if (++i == xfs_agfl_size(mp)) 3550 i = 0; 3551 } 3552 3553 return 0; 3554 } 3555 3556 int __init 3557 xfs_extfree_intent_init_cache(void) 3558 { 3559 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 3560 sizeof(struct xfs_extent_free_item), 3561 0, 0, NULL); 3562 3563 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 3564 } 3565 3566 void 3567 xfs_extfree_intent_destroy_cache(void) 3568 { 3569 kmem_cache_destroy(xfs_extfree_item_cache); 3570 xfs_extfree_item_cache = NULL; 3571 } 3572