xref: /openbmc/linux/fs/xfs/libxfs/xfs_alloc.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29 
30 struct kmem_cache	*xfs_extfree_item_cache;
31 
32 struct workqueue_struct *xfs_alloc_wq;
33 
34 #define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35 
36 #define	XFSA_FIXUP_BNO_OK	1
37 #define	XFSA_FIXUP_CNT_OK	2
38 
39 /*
40  * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
41  * the beginning of the block for a proper header with the location information
42  * and CRC.
43  */
44 unsigned int
45 xfs_agfl_size(
46 	struct xfs_mount	*mp)
47 {
48 	unsigned int		size = mp->m_sb.sb_sectsize;
49 
50 	if (xfs_has_crc(mp))
51 		size -= sizeof(struct xfs_agfl);
52 
53 	return size / sizeof(xfs_agblock_t);
54 }
55 
56 unsigned int
57 xfs_refc_block(
58 	struct xfs_mount	*mp)
59 {
60 	if (xfs_has_rmapbt(mp))
61 		return XFS_RMAP_BLOCK(mp) + 1;
62 	if (xfs_has_finobt(mp))
63 		return XFS_FIBT_BLOCK(mp) + 1;
64 	return XFS_IBT_BLOCK(mp) + 1;
65 }
66 
67 xfs_extlen_t
68 xfs_prealloc_blocks(
69 	struct xfs_mount	*mp)
70 {
71 	if (xfs_has_reflink(mp))
72 		return xfs_refc_block(mp) + 1;
73 	if (xfs_has_rmapbt(mp))
74 		return XFS_RMAP_BLOCK(mp) + 1;
75 	if (xfs_has_finobt(mp))
76 		return XFS_FIBT_BLOCK(mp) + 1;
77 	return XFS_IBT_BLOCK(mp) + 1;
78 }
79 
80 /*
81  * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82  * guarantee that we can refill the AGFL prior to allocating space in a nearly
83  * full AG.  Although the space described by the free space btrees, the
84  * blocks used by the freesp btrees themselves, and the blocks owned by the
85  * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86  * free space in the AG drop so low that the free space btrees cannot refill an
87  * empty AGFL up to the minimum level.  Rather than grind through empty AGs
88  * until the fs goes down, we subtract this many AG blocks from the incore
89  * fdblocks to ensure user allocation does not overcommit the space the
90  * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
91  * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92  */
93 #define XFS_ALLOCBT_AGFL_RESERVE	4
94 
95 /*
96  * Compute the number of blocks that we set aside to guarantee the ability to
97  * refill the AGFL and handle a full bmap btree split.
98  *
99  * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100  * AGF buffer (PV 947395), we place constraints on the relationship among
101  * actual allocations for data blocks, freelist blocks, and potential file data
102  * bmap btree blocks. However, these restrictions may result in no actual space
103  * allocated for a delayed extent, for example, a data block in a certain AG is
104  * allocated but there is no additional block for the additional bmap btree
105  * block due to a split of the bmap btree of the file. The result of this may
106  * lead to an infinite loop when the file gets flushed to disk and all delayed
107  * extents need to be actually allocated. To get around this, we explicitly set
108  * aside a few blocks which will not be reserved in delayed allocation.
109  *
110  * For each AG, we need to reserve enough blocks to replenish a totally empty
111  * AGFL and 4 more to handle a potential split of the file's bmap btree.
112  */
113 unsigned int
114 xfs_alloc_set_aside(
115 	struct xfs_mount	*mp)
116 {
117 	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119 
120 /*
121  * When deciding how much space to allocate out of an AG, we limit the
122  * allocation maximum size to the size the AG. However, we cannot use all the
123  * blocks in the AG - some are permanently used by metadata. These
124  * blocks are generally:
125  *	- the AG superblock, AGF, AGI and AGFL
126  *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
127  *	  the AGI free inode and rmap btree root blocks.
128  *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
129  *	- the rmapbt root block
130  *
131  * The AG headers are sector sized, so the amount of space they take up is
132  * dependent on filesystem geometry. The others are all single blocks.
133  */
134 unsigned int
135 xfs_alloc_ag_max_usable(
136 	struct xfs_mount	*mp)
137 {
138 	unsigned int		blocks;
139 
140 	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 	blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 	blocks += 3;			/* AGF, AGI btree root blocks */
143 	if (xfs_has_finobt(mp))
144 		blocks++;		/* finobt root block */
145 	if (xfs_has_rmapbt(mp))
146 		blocks++;		/* rmap root block */
147 	if (xfs_has_reflink(mp))
148 		blocks++;		/* refcount root block */
149 
150 	return mp->m_sb.sb_agblocks - blocks;
151 }
152 
153 /*
154  * Lookup the record equal to [bno, len] in the btree given by cur.
155  */
156 STATIC int				/* error */
157 xfs_alloc_lookup_eq(
158 	struct xfs_btree_cur	*cur,	/* btree cursor */
159 	xfs_agblock_t		bno,	/* starting block of extent */
160 	xfs_extlen_t		len,	/* length of extent */
161 	int			*stat)	/* success/failure */
162 {
163 	int			error;
164 
165 	cur->bc_rec.a.ar_startblock = bno;
166 	cur->bc_rec.a.ar_blockcount = len;
167 	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 	cur->bc_ag.abt.active = (*stat == 1);
169 	return error;
170 }
171 
172 /*
173  * Lookup the first record greater than or equal to [bno, len]
174  * in the btree given by cur.
175  */
176 int				/* error */
177 xfs_alloc_lookup_ge(
178 	struct xfs_btree_cur	*cur,	/* btree cursor */
179 	xfs_agblock_t		bno,	/* starting block of extent */
180 	xfs_extlen_t		len,	/* length of extent */
181 	int			*stat)	/* success/failure */
182 {
183 	int			error;
184 
185 	cur->bc_rec.a.ar_startblock = bno;
186 	cur->bc_rec.a.ar_blockcount = len;
187 	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 	cur->bc_ag.abt.active = (*stat == 1);
189 	return error;
190 }
191 
192 /*
193  * Lookup the first record less than or equal to [bno, len]
194  * in the btree given by cur.
195  */
196 int					/* error */
197 xfs_alloc_lookup_le(
198 	struct xfs_btree_cur	*cur,	/* btree cursor */
199 	xfs_agblock_t		bno,	/* starting block of extent */
200 	xfs_extlen_t		len,	/* length of extent */
201 	int			*stat)	/* success/failure */
202 {
203 	int			error;
204 	cur->bc_rec.a.ar_startblock = bno;
205 	cur->bc_rec.a.ar_blockcount = len;
206 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 	cur->bc_ag.abt.active = (*stat == 1);
208 	return error;
209 }
210 
211 static inline bool
212 xfs_alloc_cur_active(
213 	struct xfs_btree_cur	*cur)
214 {
215 	return cur && cur->bc_ag.abt.active;
216 }
217 
218 /*
219  * Update the record referred to by cur to the value given
220  * by [bno, len].
221  * This either works (return 0) or gets an EFSCORRUPTED error.
222  */
223 STATIC int				/* error */
224 xfs_alloc_update(
225 	struct xfs_btree_cur	*cur,	/* btree cursor */
226 	xfs_agblock_t		bno,	/* starting block of extent */
227 	xfs_extlen_t		len)	/* length of extent */
228 {
229 	union xfs_btree_rec	rec;
230 
231 	rec.alloc.ar_startblock = cpu_to_be32(bno);
232 	rec.alloc.ar_blockcount = cpu_to_be32(len);
233 	return xfs_btree_update(cur, &rec);
234 }
235 
236 /* Convert the ondisk btree record to its incore representation. */
237 void
238 xfs_alloc_btrec_to_irec(
239 	const union xfs_btree_rec	*rec,
240 	struct xfs_alloc_rec_incore	*irec)
241 {
242 	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
243 	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
244 }
245 
246 /* Simple checks for free space records. */
247 xfs_failaddr_t
248 xfs_alloc_check_irec(
249 	struct xfs_btree_cur		*cur,
250 	const struct xfs_alloc_rec_incore *irec)
251 {
252 	struct xfs_perag		*pag = cur->bc_ag.pag;
253 
254 	if (irec->ar_blockcount == 0)
255 		return __this_address;
256 
257 	/* check for valid extent range, including overflow */
258 	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
259 		return __this_address;
260 
261 	return NULL;
262 }
263 
264 static inline int
265 xfs_alloc_complain_bad_rec(
266 	struct xfs_btree_cur		*cur,
267 	xfs_failaddr_t			fa,
268 	const struct xfs_alloc_rec_incore *irec)
269 {
270 	struct xfs_mount		*mp = cur->bc_mp;
271 
272 	xfs_warn(mp,
273 		"%s Freespace BTree record corruption in AG %d detected at %pS!",
274 		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
275 		cur->bc_ag.pag->pag_agno, fa);
276 	xfs_warn(mp,
277 		"start block 0x%x block count 0x%x", irec->ar_startblock,
278 		irec->ar_blockcount);
279 	return -EFSCORRUPTED;
280 }
281 
282 /*
283  * Get the data from the pointed-to record.
284  */
285 int					/* error */
286 xfs_alloc_get_rec(
287 	struct xfs_btree_cur	*cur,	/* btree cursor */
288 	xfs_agblock_t		*bno,	/* output: starting block of extent */
289 	xfs_extlen_t		*len,	/* output: length of extent */
290 	int			*stat)	/* output: success/failure */
291 {
292 	struct xfs_alloc_rec_incore irec;
293 	union xfs_btree_rec	*rec;
294 	xfs_failaddr_t		fa;
295 	int			error;
296 
297 	error = xfs_btree_get_rec(cur, &rec, stat);
298 	if (error || !(*stat))
299 		return error;
300 
301 	xfs_alloc_btrec_to_irec(rec, &irec);
302 	fa = xfs_alloc_check_irec(cur, &irec);
303 	if (fa)
304 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
305 
306 	*bno = irec.ar_startblock;
307 	*len = irec.ar_blockcount;
308 	return 0;
309 }
310 
311 /*
312  * Compute aligned version of the found extent.
313  * Takes alignment and min length into account.
314  */
315 STATIC bool
316 xfs_alloc_compute_aligned(
317 	xfs_alloc_arg_t	*args,		/* allocation argument structure */
318 	xfs_agblock_t	foundbno,	/* starting block in found extent */
319 	xfs_extlen_t	foundlen,	/* length in found extent */
320 	xfs_agblock_t	*resbno,	/* result block number */
321 	xfs_extlen_t	*reslen,	/* result length */
322 	unsigned	*busy_gen)
323 {
324 	xfs_agblock_t	bno = foundbno;
325 	xfs_extlen_t	len = foundlen;
326 	xfs_extlen_t	diff;
327 	bool		busy;
328 
329 	/* Trim busy sections out of found extent */
330 	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
331 
332 	/*
333 	 * If we have a largish extent that happens to start before min_agbno,
334 	 * see if we can shift it into range...
335 	 */
336 	if (bno < args->min_agbno && bno + len > args->min_agbno) {
337 		diff = args->min_agbno - bno;
338 		if (len > diff) {
339 			bno += diff;
340 			len -= diff;
341 		}
342 	}
343 
344 	if (args->alignment > 1 && len >= args->minlen) {
345 		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
346 
347 		diff = aligned_bno - bno;
348 
349 		*resbno = aligned_bno;
350 		*reslen = diff >= len ? 0 : len - diff;
351 	} else {
352 		*resbno = bno;
353 		*reslen = len;
354 	}
355 
356 	return busy;
357 }
358 
359 /*
360  * Compute best start block and diff for "near" allocations.
361  * freelen >= wantlen already checked by caller.
362  */
363 STATIC xfs_extlen_t			/* difference value (absolute) */
364 xfs_alloc_compute_diff(
365 	xfs_agblock_t	wantbno,	/* target starting block */
366 	xfs_extlen_t	wantlen,	/* target length */
367 	xfs_extlen_t	alignment,	/* target alignment */
368 	int		datatype,	/* are we allocating data? */
369 	xfs_agblock_t	freebno,	/* freespace's starting block */
370 	xfs_extlen_t	freelen,	/* freespace's length */
371 	xfs_agblock_t	*newbnop)	/* result: best start block from free */
372 {
373 	xfs_agblock_t	freeend;	/* end of freespace extent */
374 	xfs_agblock_t	newbno1;	/* return block number */
375 	xfs_agblock_t	newbno2;	/* other new block number */
376 	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
377 	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
378 	xfs_agblock_t	wantend;	/* end of target extent */
379 	bool		userdata = datatype & XFS_ALLOC_USERDATA;
380 
381 	ASSERT(freelen >= wantlen);
382 	freeend = freebno + freelen;
383 	wantend = wantbno + wantlen;
384 	/*
385 	 * We want to allocate from the start of a free extent if it is past
386 	 * the desired block or if we are allocating user data and the free
387 	 * extent is before desired block. The second case is there to allow
388 	 * for contiguous allocation from the remaining free space if the file
389 	 * grows in the short term.
390 	 */
391 	if (freebno >= wantbno || (userdata && freeend < wantend)) {
392 		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
393 			newbno1 = NULLAGBLOCK;
394 	} else if (freeend >= wantend && alignment > 1) {
395 		newbno1 = roundup(wantbno, alignment);
396 		newbno2 = newbno1 - alignment;
397 		if (newbno1 >= freeend)
398 			newbno1 = NULLAGBLOCK;
399 		else
400 			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
401 		if (newbno2 < freebno)
402 			newbno2 = NULLAGBLOCK;
403 		else
404 			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
405 		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
406 			if (newlen1 < newlen2 ||
407 			    (newlen1 == newlen2 &&
408 			     XFS_ABSDIFF(newbno1, wantbno) >
409 			     XFS_ABSDIFF(newbno2, wantbno)))
410 				newbno1 = newbno2;
411 		} else if (newbno2 != NULLAGBLOCK)
412 			newbno1 = newbno2;
413 	} else if (freeend >= wantend) {
414 		newbno1 = wantbno;
415 	} else if (alignment > 1) {
416 		newbno1 = roundup(freeend - wantlen, alignment);
417 		if (newbno1 > freeend - wantlen &&
418 		    newbno1 - alignment >= freebno)
419 			newbno1 -= alignment;
420 		else if (newbno1 >= freeend)
421 			newbno1 = NULLAGBLOCK;
422 	} else
423 		newbno1 = freeend - wantlen;
424 	*newbnop = newbno1;
425 	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
426 }
427 
428 /*
429  * Fix up the length, based on mod and prod.
430  * len should be k * prod + mod for some k.
431  * If len is too small it is returned unchanged.
432  * If len hits maxlen it is left alone.
433  */
434 STATIC void
435 xfs_alloc_fix_len(
436 	xfs_alloc_arg_t	*args)		/* allocation argument structure */
437 {
438 	xfs_extlen_t	k;
439 	xfs_extlen_t	rlen;
440 
441 	ASSERT(args->mod < args->prod);
442 	rlen = args->len;
443 	ASSERT(rlen >= args->minlen);
444 	ASSERT(rlen <= args->maxlen);
445 	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
446 	    (args->mod == 0 && rlen < args->prod))
447 		return;
448 	k = rlen % args->prod;
449 	if (k == args->mod)
450 		return;
451 	if (k > args->mod)
452 		rlen = rlen - (k - args->mod);
453 	else
454 		rlen = rlen - args->prod + (args->mod - k);
455 	/* casts to (int) catch length underflows */
456 	if ((int)rlen < (int)args->minlen)
457 		return;
458 	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
459 	ASSERT(rlen % args->prod == args->mod);
460 	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
461 		rlen + args->minleft);
462 	args->len = rlen;
463 }
464 
465 /*
466  * Update the two btrees, logically removing from freespace the extent
467  * starting at rbno, rlen blocks.  The extent is contained within the
468  * actual (current) free extent fbno for flen blocks.
469  * Flags are passed in indicating whether the cursors are set to the
470  * relevant records.
471  */
472 STATIC int				/* error code */
473 xfs_alloc_fixup_trees(
474 	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
475 	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
476 	xfs_agblock_t	fbno,		/* starting block of free extent */
477 	xfs_extlen_t	flen,		/* length of free extent */
478 	xfs_agblock_t	rbno,		/* starting block of returned extent */
479 	xfs_extlen_t	rlen,		/* length of returned extent */
480 	int		flags)		/* flags, XFSA_FIXUP_... */
481 {
482 	int		error;		/* error code */
483 	int		i;		/* operation results */
484 	xfs_agblock_t	nfbno1;		/* first new free startblock */
485 	xfs_agblock_t	nfbno2;		/* second new free startblock */
486 	xfs_extlen_t	nflen1=0;	/* first new free length */
487 	xfs_extlen_t	nflen2=0;	/* second new free length */
488 	struct xfs_mount *mp;
489 
490 	mp = cnt_cur->bc_mp;
491 
492 	/*
493 	 * Look up the record in the by-size tree if necessary.
494 	 */
495 	if (flags & XFSA_FIXUP_CNT_OK) {
496 #ifdef DEBUG
497 		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
498 			return error;
499 		if (XFS_IS_CORRUPT(mp,
500 				   i != 1 ||
501 				   nfbno1 != fbno ||
502 				   nflen1 != flen))
503 			return -EFSCORRUPTED;
504 #endif
505 	} else {
506 		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
507 			return error;
508 		if (XFS_IS_CORRUPT(mp, i != 1))
509 			return -EFSCORRUPTED;
510 	}
511 	/*
512 	 * Look up the record in the by-block tree if necessary.
513 	 */
514 	if (flags & XFSA_FIXUP_BNO_OK) {
515 #ifdef DEBUG
516 		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
517 			return error;
518 		if (XFS_IS_CORRUPT(mp,
519 				   i != 1 ||
520 				   nfbno1 != fbno ||
521 				   nflen1 != flen))
522 			return -EFSCORRUPTED;
523 #endif
524 	} else {
525 		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
526 			return error;
527 		if (XFS_IS_CORRUPT(mp, i != 1))
528 			return -EFSCORRUPTED;
529 	}
530 
531 #ifdef DEBUG
532 	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
533 		struct xfs_btree_block	*bnoblock;
534 		struct xfs_btree_block	*cntblock;
535 
536 		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
537 		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
538 
539 		if (XFS_IS_CORRUPT(mp,
540 				   bnoblock->bb_numrecs !=
541 				   cntblock->bb_numrecs))
542 			return -EFSCORRUPTED;
543 	}
544 #endif
545 
546 	/*
547 	 * Deal with all four cases: the allocated record is contained
548 	 * within the freespace record, so we can have new freespace
549 	 * at either (or both) end, or no freespace remaining.
550 	 */
551 	if (rbno == fbno && rlen == flen)
552 		nfbno1 = nfbno2 = NULLAGBLOCK;
553 	else if (rbno == fbno) {
554 		nfbno1 = rbno + rlen;
555 		nflen1 = flen - rlen;
556 		nfbno2 = NULLAGBLOCK;
557 	} else if (rbno + rlen == fbno + flen) {
558 		nfbno1 = fbno;
559 		nflen1 = flen - rlen;
560 		nfbno2 = NULLAGBLOCK;
561 	} else {
562 		nfbno1 = fbno;
563 		nflen1 = rbno - fbno;
564 		nfbno2 = rbno + rlen;
565 		nflen2 = (fbno + flen) - nfbno2;
566 	}
567 	/*
568 	 * Delete the entry from the by-size btree.
569 	 */
570 	if ((error = xfs_btree_delete(cnt_cur, &i)))
571 		return error;
572 	if (XFS_IS_CORRUPT(mp, i != 1))
573 		return -EFSCORRUPTED;
574 	/*
575 	 * Add new by-size btree entry(s).
576 	 */
577 	if (nfbno1 != NULLAGBLOCK) {
578 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
579 			return error;
580 		if (XFS_IS_CORRUPT(mp, i != 0))
581 			return -EFSCORRUPTED;
582 		if ((error = xfs_btree_insert(cnt_cur, &i)))
583 			return error;
584 		if (XFS_IS_CORRUPT(mp, i != 1))
585 			return -EFSCORRUPTED;
586 	}
587 	if (nfbno2 != NULLAGBLOCK) {
588 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
589 			return error;
590 		if (XFS_IS_CORRUPT(mp, i != 0))
591 			return -EFSCORRUPTED;
592 		if ((error = xfs_btree_insert(cnt_cur, &i)))
593 			return error;
594 		if (XFS_IS_CORRUPT(mp, i != 1))
595 			return -EFSCORRUPTED;
596 	}
597 	/*
598 	 * Fix up the by-block btree entry(s).
599 	 */
600 	if (nfbno1 == NULLAGBLOCK) {
601 		/*
602 		 * No remaining freespace, just delete the by-block tree entry.
603 		 */
604 		if ((error = xfs_btree_delete(bno_cur, &i)))
605 			return error;
606 		if (XFS_IS_CORRUPT(mp, i != 1))
607 			return -EFSCORRUPTED;
608 	} else {
609 		/*
610 		 * Update the by-block entry to start later|be shorter.
611 		 */
612 		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
613 			return error;
614 	}
615 	if (nfbno2 != NULLAGBLOCK) {
616 		/*
617 		 * 2 resulting free entries, need to add one.
618 		 */
619 		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
620 			return error;
621 		if (XFS_IS_CORRUPT(mp, i != 0))
622 			return -EFSCORRUPTED;
623 		if ((error = xfs_btree_insert(bno_cur, &i)))
624 			return error;
625 		if (XFS_IS_CORRUPT(mp, i != 1))
626 			return -EFSCORRUPTED;
627 	}
628 	return 0;
629 }
630 
631 /*
632  * We do not verify the AGFL contents against AGF-based index counters here,
633  * even though we may have access to the perag that contains shadow copies. We
634  * don't know if the AGF based counters have been checked, and if they have they
635  * still may be inconsistent because they haven't yet been reset on the first
636  * allocation after the AGF has been read in.
637  *
638  * This means we can only check that all agfl entries contain valid or null
639  * values because we can't reliably determine the active range to exclude
640  * NULLAGBNO as a valid value.
641  *
642  * However, we can't even do that for v4 format filesystems because there are
643  * old versions of mkfs out there that does not initialise the AGFL to known,
644  * verifiable values. HEnce we can't tell the difference between a AGFL block
645  * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
646  *
647  * As a result, we can only fully validate AGFL block numbers when we pull them
648  * from the freelist in xfs_alloc_get_freelist().
649  */
650 static xfs_failaddr_t
651 xfs_agfl_verify(
652 	struct xfs_buf	*bp)
653 {
654 	struct xfs_mount *mp = bp->b_mount;
655 	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
656 	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
657 	int		i;
658 
659 	if (!xfs_has_crc(mp))
660 		return NULL;
661 
662 	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
663 		return __this_address;
664 	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
665 		return __this_address;
666 	/*
667 	 * during growfs operations, the perag is not fully initialised,
668 	 * so we can't use it for any useful checking. growfs ensures we can't
669 	 * use it by using uncached buffers that don't have the perag attached
670 	 * so we can detect and avoid this problem.
671 	 */
672 	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
673 		return __this_address;
674 
675 	for (i = 0; i < xfs_agfl_size(mp); i++) {
676 		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
677 		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
678 			return __this_address;
679 	}
680 
681 	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
682 		return __this_address;
683 	return NULL;
684 }
685 
686 static void
687 xfs_agfl_read_verify(
688 	struct xfs_buf	*bp)
689 {
690 	struct xfs_mount *mp = bp->b_mount;
691 	xfs_failaddr_t	fa;
692 
693 	/*
694 	 * There is no verification of non-crc AGFLs because mkfs does not
695 	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
696 	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
697 	 * can't verify just those entries are valid.
698 	 */
699 	if (!xfs_has_crc(mp))
700 		return;
701 
702 	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
703 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
704 	else {
705 		fa = xfs_agfl_verify(bp);
706 		if (fa)
707 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
708 	}
709 }
710 
711 static void
712 xfs_agfl_write_verify(
713 	struct xfs_buf	*bp)
714 {
715 	struct xfs_mount	*mp = bp->b_mount;
716 	struct xfs_buf_log_item	*bip = bp->b_log_item;
717 	xfs_failaddr_t		fa;
718 
719 	/* no verification of non-crc AGFLs */
720 	if (!xfs_has_crc(mp))
721 		return;
722 
723 	fa = xfs_agfl_verify(bp);
724 	if (fa) {
725 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
726 		return;
727 	}
728 
729 	if (bip)
730 		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
731 
732 	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
733 }
734 
735 const struct xfs_buf_ops xfs_agfl_buf_ops = {
736 	.name = "xfs_agfl",
737 	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
738 	.verify_read = xfs_agfl_read_verify,
739 	.verify_write = xfs_agfl_write_verify,
740 	.verify_struct = xfs_agfl_verify,
741 };
742 
743 /*
744  * Read in the allocation group free block array.
745  */
746 int
747 xfs_alloc_read_agfl(
748 	struct xfs_perag	*pag,
749 	struct xfs_trans	*tp,
750 	struct xfs_buf		**bpp)
751 {
752 	struct xfs_mount	*mp = pag->pag_mount;
753 	struct xfs_buf		*bp;
754 	int			error;
755 
756 	error = xfs_trans_read_buf(
757 			mp, tp, mp->m_ddev_targp,
758 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
759 			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
760 	if (error)
761 		return error;
762 	xfs_buf_set_ref(bp, XFS_AGFL_REF);
763 	*bpp = bp;
764 	return 0;
765 }
766 
767 STATIC int
768 xfs_alloc_update_counters(
769 	struct xfs_trans	*tp,
770 	struct xfs_buf		*agbp,
771 	long			len)
772 {
773 	struct xfs_agf		*agf = agbp->b_addr;
774 
775 	agbp->b_pag->pagf_freeblks += len;
776 	be32_add_cpu(&agf->agf_freeblks, len);
777 
778 	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
779 		     be32_to_cpu(agf->agf_length))) {
780 		xfs_buf_mark_corrupt(agbp);
781 		return -EFSCORRUPTED;
782 	}
783 
784 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
785 	return 0;
786 }
787 
788 /*
789  * Block allocation algorithm and data structures.
790  */
791 struct xfs_alloc_cur {
792 	struct xfs_btree_cur		*cnt;	/* btree cursors */
793 	struct xfs_btree_cur		*bnolt;
794 	struct xfs_btree_cur		*bnogt;
795 	xfs_extlen_t			cur_len;/* current search length */
796 	xfs_agblock_t			rec_bno;/* extent startblock */
797 	xfs_extlen_t			rec_len;/* extent length */
798 	xfs_agblock_t			bno;	/* alloc bno */
799 	xfs_extlen_t			len;	/* alloc len */
800 	xfs_extlen_t			diff;	/* diff from search bno */
801 	unsigned int			busy_gen;/* busy state */
802 	bool				busy;
803 };
804 
805 /*
806  * Set up cursors, etc. in the extent allocation cursor. This function can be
807  * called multiple times to reset an initialized structure without having to
808  * reallocate cursors.
809  */
810 static int
811 xfs_alloc_cur_setup(
812 	struct xfs_alloc_arg	*args,
813 	struct xfs_alloc_cur	*acur)
814 {
815 	int			error;
816 	int			i;
817 
818 	acur->cur_len = args->maxlen;
819 	acur->rec_bno = 0;
820 	acur->rec_len = 0;
821 	acur->bno = 0;
822 	acur->len = 0;
823 	acur->diff = -1;
824 	acur->busy = false;
825 	acur->busy_gen = 0;
826 
827 	/*
828 	 * Perform an initial cntbt lookup to check for availability of maxlen
829 	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
830 	 * attempt a small allocation.
831 	 */
832 	if (!acur->cnt)
833 		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
834 					args->agbp, args->pag, XFS_BTNUM_CNT);
835 	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
836 	if (error)
837 		return error;
838 
839 	/*
840 	 * Allocate the bnobt left and right search cursors.
841 	 */
842 	if (!acur->bnolt)
843 		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
844 					args->agbp, args->pag, XFS_BTNUM_BNO);
845 	if (!acur->bnogt)
846 		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
847 					args->agbp, args->pag, XFS_BTNUM_BNO);
848 	return i == 1 ? 0 : -ENOSPC;
849 }
850 
851 static void
852 xfs_alloc_cur_close(
853 	struct xfs_alloc_cur	*acur,
854 	bool			error)
855 {
856 	int			cur_error = XFS_BTREE_NOERROR;
857 
858 	if (error)
859 		cur_error = XFS_BTREE_ERROR;
860 
861 	if (acur->cnt)
862 		xfs_btree_del_cursor(acur->cnt, cur_error);
863 	if (acur->bnolt)
864 		xfs_btree_del_cursor(acur->bnolt, cur_error);
865 	if (acur->bnogt)
866 		xfs_btree_del_cursor(acur->bnogt, cur_error);
867 	acur->cnt = acur->bnolt = acur->bnogt = NULL;
868 }
869 
870 /*
871  * Check an extent for allocation and track the best available candidate in the
872  * allocation structure. The cursor is deactivated if it has entered an out of
873  * range state based on allocation arguments. Optionally return the extent
874  * extent geometry and allocation status if requested by the caller.
875  */
876 static int
877 xfs_alloc_cur_check(
878 	struct xfs_alloc_arg	*args,
879 	struct xfs_alloc_cur	*acur,
880 	struct xfs_btree_cur	*cur,
881 	int			*new)
882 {
883 	int			error, i;
884 	xfs_agblock_t		bno, bnoa, bnew;
885 	xfs_extlen_t		len, lena, diff = -1;
886 	bool			busy;
887 	unsigned		busy_gen = 0;
888 	bool			deactivate = false;
889 	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
890 
891 	*new = 0;
892 
893 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
894 	if (error)
895 		return error;
896 	if (XFS_IS_CORRUPT(args->mp, i != 1))
897 		return -EFSCORRUPTED;
898 
899 	/*
900 	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
901 	 * range (i.e., walking backwards looking for a minlen extent).
902 	 */
903 	if (len < args->minlen) {
904 		deactivate = !isbnobt;
905 		goto out;
906 	}
907 
908 	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
909 					 &busy_gen);
910 	acur->busy |= busy;
911 	if (busy)
912 		acur->busy_gen = busy_gen;
913 	/* deactivate a bnobt cursor outside of locality range */
914 	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
915 		deactivate = isbnobt;
916 		goto out;
917 	}
918 	if (lena < args->minlen)
919 		goto out;
920 
921 	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
922 	xfs_alloc_fix_len(args);
923 	ASSERT(args->len >= args->minlen);
924 	if (args->len < acur->len)
925 		goto out;
926 
927 	/*
928 	 * We have an aligned record that satisfies minlen and beats or matches
929 	 * the candidate extent size. Compare locality for near allocation mode.
930 	 */
931 	diff = xfs_alloc_compute_diff(args->agbno, args->len,
932 				      args->alignment, args->datatype,
933 				      bnoa, lena, &bnew);
934 	if (bnew == NULLAGBLOCK)
935 		goto out;
936 
937 	/*
938 	 * Deactivate a bnobt cursor with worse locality than the current best.
939 	 */
940 	if (diff > acur->diff) {
941 		deactivate = isbnobt;
942 		goto out;
943 	}
944 
945 	ASSERT(args->len > acur->len ||
946 	       (args->len == acur->len && diff <= acur->diff));
947 	acur->rec_bno = bno;
948 	acur->rec_len = len;
949 	acur->bno = bnew;
950 	acur->len = args->len;
951 	acur->diff = diff;
952 	*new = 1;
953 
954 	/*
955 	 * We're done if we found a perfect allocation. This only deactivates
956 	 * the current cursor, but this is just an optimization to terminate a
957 	 * cntbt search that otherwise runs to the edge of the tree.
958 	 */
959 	if (acur->diff == 0 && acur->len == args->maxlen)
960 		deactivate = true;
961 out:
962 	if (deactivate)
963 		cur->bc_ag.abt.active = false;
964 	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
965 				  *new);
966 	return 0;
967 }
968 
969 /*
970  * Complete an allocation of a candidate extent. Remove the extent from both
971  * trees and update the args structure.
972  */
973 STATIC int
974 xfs_alloc_cur_finish(
975 	struct xfs_alloc_arg	*args,
976 	struct xfs_alloc_cur	*acur)
977 {
978 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
979 	int			error;
980 
981 	ASSERT(acur->cnt && acur->bnolt);
982 	ASSERT(acur->bno >= acur->rec_bno);
983 	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
984 	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
985 
986 	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
987 				      acur->rec_len, acur->bno, acur->len, 0);
988 	if (error)
989 		return error;
990 
991 	args->agbno = acur->bno;
992 	args->len = acur->len;
993 	args->wasfromfl = 0;
994 
995 	trace_xfs_alloc_cur(args);
996 	return 0;
997 }
998 
999 /*
1000  * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1001  * bno optimized lookup to search for extents with ideal size and locality.
1002  */
1003 STATIC int
1004 xfs_alloc_cntbt_iter(
1005 	struct xfs_alloc_arg		*args,
1006 	struct xfs_alloc_cur		*acur)
1007 {
1008 	struct xfs_btree_cur	*cur = acur->cnt;
1009 	xfs_agblock_t		bno;
1010 	xfs_extlen_t		len, cur_len;
1011 	int			error;
1012 	int			i;
1013 
1014 	if (!xfs_alloc_cur_active(cur))
1015 		return 0;
1016 
1017 	/* locality optimized lookup */
1018 	cur_len = acur->cur_len;
1019 	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1020 	if (error)
1021 		return error;
1022 	if (i == 0)
1023 		return 0;
1024 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 	if (error)
1026 		return error;
1027 
1028 	/* check the current record and update search length from it */
1029 	error = xfs_alloc_cur_check(args, acur, cur, &i);
1030 	if (error)
1031 		return error;
1032 	ASSERT(len >= acur->cur_len);
1033 	acur->cur_len = len;
1034 
1035 	/*
1036 	 * We looked up the first record >= [agbno, len] above. The agbno is a
1037 	 * secondary key and so the current record may lie just before or after
1038 	 * agbno. If it is past agbno, check the previous record too so long as
1039 	 * the length matches as it may be closer. Don't check a smaller record
1040 	 * because that could deactivate our cursor.
1041 	 */
1042 	if (bno > args->agbno) {
1043 		error = xfs_btree_decrement(cur, 0, &i);
1044 		if (!error && i) {
1045 			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1046 			if (!error && i && len == acur->cur_len)
1047 				error = xfs_alloc_cur_check(args, acur, cur,
1048 							    &i);
1049 		}
1050 		if (error)
1051 			return error;
1052 	}
1053 
1054 	/*
1055 	 * Increment the search key until we find at least one allocation
1056 	 * candidate or if the extent we found was larger. Otherwise, double the
1057 	 * search key to optimize the search. Efficiency is more important here
1058 	 * than absolute best locality.
1059 	 */
1060 	cur_len <<= 1;
1061 	if (!acur->len || acur->cur_len >= cur_len)
1062 		acur->cur_len++;
1063 	else
1064 		acur->cur_len = cur_len;
1065 
1066 	return error;
1067 }
1068 
1069 /*
1070  * Deal with the case where only small freespaces remain. Either return the
1071  * contents of the last freespace record, or allocate space from the freelist if
1072  * there is nothing in the tree.
1073  */
1074 STATIC int			/* error */
1075 xfs_alloc_ag_vextent_small(
1076 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1077 	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1078 	xfs_agblock_t		*fbnop,	/* result block number */
1079 	xfs_extlen_t		*flenp,	/* result length */
1080 	int			*stat)	/* status: 0-freelist, 1-normal/none */
1081 {
1082 	struct xfs_agf		*agf = args->agbp->b_addr;
1083 	int			error = 0;
1084 	xfs_agblock_t		fbno = NULLAGBLOCK;
1085 	xfs_extlen_t		flen = 0;
1086 	int			i = 0;
1087 
1088 	/*
1089 	 * If a cntbt cursor is provided, try to allocate the largest record in
1090 	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1091 	 * allocation. Make sure to respect minleft even when pulling from the
1092 	 * freelist.
1093 	 */
1094 	if (ccur)
1095 		error = xfs_btree_decrement(ccur, 0, &i);
1096 	if (error)
1097 		goto error;
1098 	if (i) {
1099 		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1100 		if (error)
1101 			goto error;
1102 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1103 			error = -EFSCORRUPTED;
1104 			goto error;
1105 		}
1106 		goto out;
1107 	}
1108 
1109 	if (args->minlen != 1 || args->alignment != 1 ||
1110 	    args->resv == XFS_AG_RESV_AGFL ||
1111 	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1112 		goto out;
1113 
1114 	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1115 			&fbno, 0);
1116 	if (error)
1117 		goto error;
1118 	if (fbno == NULLAGBLOCK)
1119 		goto out;
1120 
1121 	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1122 			      (args->datatype & XFS_ALLOC_NOBUSY));
1123 
1124 	if (args->datatype & XFS_ALLOC_USERDATA) {
1125 		struct xfs_buf	*bp;
1126 
1127 		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1128 				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1129 				args->mp->m_bsize, 0, &bp);
1130 		if (error)
1131 			goto error;
1132 		xfs_trans_binval(args->tp, bp);
1133 	}
1134 	*fbnop = args->agbno = fbno;
1135 	*flenp = args->len = 1;
1136 	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1137 		error = -EFSCORRUPTED;
1138 		goto error;
1139 	}
1140 	args->wasfromfl = 1;
1141 	trace_xfs_alloc_small_freelist(args);
1142 
1143 	/*
1144 	 * If we're feeding an AGFL block to something that doesn't live in the
1145 	 * free space, we need to clear out the OWN_AG rmap.
1146 	 */
1147 	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1148 			      &XFS_RMAP_OINFO_AG);
1149 	if (error)
1150 		goto error;
1151 
1152 	*stat = 0;
1153 	return 0;
1154 
1155 out:
1156 	/*
1157 	 * Can't do the allocation, give up.
1158 	 */
1159 	if (flen < args->minlen) {
1160 		args->agbno = NULLAGBLOCK;
1161 		trace_xfs_alloc_small_notenough(args);
1162 		flen = 0;
1163 	}
1164 	*fbnop = fbno;
1165 	*flenp = flen;
1166 	*stat = 1;
1167 	trace_xfs_alloc_small_done(args);
1168 	return 0;
1169 
1170 error:
1171 	trace_xfs_alloc_small_error(args);
1172 	return error;
1173 }
1174 
1175 /*
1176  * Allocate a variable extent at exactly agno/bno.
1177  * Extent's length (returned in *len) will be between minlen and maxlen,
1178  * and of the form k * prod + mod unless there's nothing that large.
1179  * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1180  */
1181 STATIC int			/* error */
1182 xfs_alloc_ag_vextent_exact(
1183 	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1184 {
1185 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1186 	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1187 	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1188 	int		error;
1189 	xfs_agblock_t	fbno;	/* start block of found extent */
1190 	xfs_extlen_t	flen;	/* length of found extent */
1191 	xfs_agblock_t	tbno;	/* start block of busy extent */
1192 	xfs_extlen_t	tlen;	/* length of busy extent */
1193 	xfs_agblock_t	tend;	/* end block of busy extent */
1194 	int		i;	/* success/failure of operation */
1195 	unsigned	busy_gen;
1196 
1197 	ASSERT(args->alignment == 1);
1198 
1199 	/*
1200 	 * Allocate/initialize a cursor for the by-number freespace btree.
1201 	 */
1202 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1203 					  args->pag, XFS_BTNUM_BNO);
1204 
1205 	/*
1206 	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1207 	 * Look for the closest free block <= bno, it must contain bno
1208 	 * if any free block does.
1209 	 */
1210 	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1211 	if (error)
1212 		goto error0;
1213 	if (!i)
1214 		goto not_found;
1215 
1216 	/*
1217 	 * Grab the freespace record.
1218 	 */
1219 	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1220 	if (error)
1221 		goto error0;
1222 	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1223 		error = -EFSCORRUPTED;
1224 		goto error0;
1225 	}
1226 	ASSERT(fbno <= args->agbno);
1227 
1228 	/*
1229 	 * Check for overlapping busy extents.
1230 	 */
1231 	tbno = fbno;
1232 	tlen = flen;
1233 	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1234 
1235 	/*
1236 	 * Give up if the start of the extent is busy, or the freespace isn't
1237 	 * long enough for the minimum request.
1238 	 */
1239 	if (tbno > args->agbno)
1240 		goto not_found;
1241 	if (tlen < args->minlen)
1242 		goto not_found;
1243 	tend = tbno + tlen;
1244 	if (tend < args->agbno + args->minlen)
1245 		goto not_found;
1246 
1247 	/*
1248 	 * End of extent will be smaller of the freespace end and the
1249 	 * maximal requested end.
1250 	 *
1251 	 * Fix the length according to mod and prod if given.
1252 	 */
1253 	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1254 						- args->agbno;
1255 	xfs_alloc_fix_len(args);
1256 	ASSERT(args->agbno + args->len <= tend);
1257 
1258 	/*
1259 	 * We are allocating agbno for args->len
1260 	 * Allocate/initialize a cursor for the by-size btree.
1261 	 */
1262 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1263 					args->pag, XFS_BTNUM_CNT);
1264 	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1265 	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1266 				      args->len, XFSA_FIXUP_BNO_OK);
1267 	if (error) {
1268 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1269 		goto error0;
1270 	}
1271 
1272 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1273 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1274 
1275 	args->wasfromfl = 0;
1276 	trace_xfs_alloc_exact_done(args);
1277 	return 0;
1278 
1279 not_found:
1280 	/* Didn't find it, return null. */
1281 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1282 	args->agbno = NULLAGBLOCK;
1283 	trace_xfs_alloc_exact_notfound(args);
1284 	return 0;
1285 
1286 error0:
1287 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1288 	trace_xfs_alloc_exact_error(args);
1289 	return error;
1290 }
1291 
1292 /*
1293  * Search a given number of btree records in a given direction. Check each
1294  * record against the good extent we've already found.
1295  */
1296 STATIC int
1297 xfs_alloc_walk_iter(
1298 	struct xfs_alloc_arg	*args,
1299 	struct xfs_alloc_cur	*acur,
1300 	struct xfs_btree_cur	*cur,
1301 	bool			increment,
1302 	bool			find_one, /* quit on first candidate */
1303 	int			count,    /* rec count (-1 for infinite) */
1304 	int			*stat)
1305 {
1306 	int			error;
1307 	int			i;
1308 
1309 	*stat = 0;
1310 
1311 	/*
1312 	 * Search so long as the cursor is active or we find a better extent.
1313 	 * The cursor is deactivated if it extends beyond the range of the
1314 	 * current allocation candidate.
1315 	 */
1316 	while (xfs_alloc_cur_active(cur) && count) {
1317 		error = xfs_alloc_cur_check(args, acur, cur, &i);
1318 		if (error)
1319 			return error;
1320 		if (i == 1) {
1321 			*stat = 1;
1322 			if (find_one)
1323 				break;
1324 		}
1325 		if (!xfs_alloc_cur_active(cur))
1326 			break;
1327 
1328 		if (increment)
1329 			error = xfs_btree_increment(cur, 0, &i);
1330 		else
1331 			error = xfs_btree_decrement(cur, 0, &i);
1332 		if (error)
1333 			return error;
1334 		if (i == 0)
1335 			cur->bc_ag.abt.active = false;
1336 
1337 		if (count > 0)
1338 			count--;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Search the by-bno and by-size btrees in parallel in search of an extent with
1346  * ideal locality based on the NEAR mode ->agbno locality hint.
1347  */
1348 STATIC int
1349 xfs_alloc_ag_vextent_locality(
1350 	struct xfs_alloc_arg	*args,
1351 	struct xfs_alloc_cur	*acur,
1352 	int			*stat)
1353 {
1354 	struct xfs_btree_cur	*fbcur = NULL;
1355 	int			error;
1356 	int			i;
1357 	bool			fbinc;
1358 
1359 	ASSERT(acur->len == 0);
1360 
1361 	*stat = 0;
1362 
1363 	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1364 	if (error)
1365 		return error;
1366 	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1367 	if (error)
1368 		return error;
1369 	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1370 	if (error)
1371 		return error;
1372 
1373 	/*
1374 	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1375 	 * right and lookup the closest extent to the locality hint for each
1376 	 * extent size key in the cntbt. The entire search terminates
1377 	 * immediately on a bnobt hit because that means we've found best case
1378 	 * locality. Otherwise the search continues until the cntbt cursor runs
1379 	 * off the end of the tree. If no allocation candidate is found at this
1380 	 * point, give up on locality, walk backwards from the end of the cntbt
1381 	 * and take the first available extent.
1382 	 *
1383 	 * The parallel tree searches balance each other out to provide fairly
1384 	 * consistent performance for various situations. The bnobt search can
1385 	 * have pathological behavior in the worst case scenario of larger
1386 	 * allocation requests and fragmented free space. On the other hand, the
1387 	 * bnobt is able to satisfy most smaller allocation requests much more
1388 	 * quickly than the cntbt. The cntbt search can sift through fragmented
1389 	 * free space and sets of free extents for larger allocation requests
1390 	 * more quickly than the bnobt. Since the locality hint is just a hint
1391 	 * and we don't want to scan the entire bnobt for perfect locality, the
1392 	 * cntbt search essentially bounds the bnobt search such that we can
1393 	 * find good enough locality at reasonable performance in most cases.
1394 	 */
1395 	while (xfs_alloc_cur_active(acur->bnolt) ||
1396 	       xfs_alloc_cur_active(acur->bnogt) ||
1397 	       xfs_alloc_cur_active(acur->cnt)) {
1398 
1399 		trace_xfs_alloc_cur_lookup(args);
1400 
1401 		/*
1402 		 * Search the bnobt left and right. In the case of a hit, finish
1403 		 * the search in the opposite direction and we're done.
1404 		 */
1405 		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1406 					    true, 1, &i);
1407 		if (error)
1408 			return error;
1409 		if (i == 1) {
1410 			trace_xfs_alloc_cur_left(args);
1411 			fbcur = acur->bnogt;
1412 			fbinc = true;
1413 			break;
1414 		}
1415 		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1416 					    1, &i);
1417 		if (error)
1418 			return error;
1419 		if (i == 1) {
1420 			trace_xfs_alloc_cur_right(args);
1421 			fbcur = acur->bnolt;
1422 			fbinc = false;
1423 			break;
1424 		}
1425 
1426 		/*
1427 		 * Check the extent with best locality based on the current
1428 		 * extent size search key and keep track of the best candidate.
1429 		 */
1430 		error = xfs_alloc_cntbt_iter(args, acur);
1431 		if (error)
1432 			return error;
1433 		if (!xfs_alloc_cur_active(acur->cnt)) {
1434 			trace_xfs_alloc_cur_lookup_done(args);
1435 			break;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * If we failed to find anything due to busy extents, return empty
1441 	 * handed so the caller can flush and retry. If no busy extents were
1442 	 * found, walk backwards from the end of the cntbt as a last resort.
1443 	 */
1444 	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1445 		error = xfs_btree_decrement(acur->cnt, 0, &i);
1446 		if (error)
1447 			return error;
1448 		if (i) {
1449 			acur->cnt->bc_ag.abt.active = true;
1450 			fbcur = acur->cnt;
1451 			fbinc = false;
1452 		}
1453 	}
1454 
1455 	/*
1456 	 * Search in the opposite direction for a better entry in the case of
1457 	 * a bnobt hit or walk backwards from the end of the cntbt.
1458 	 */
1459 	if (fbcur) {
1460 		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1461 					    &i);
1462 		if (error)
1463 			return error;
1464 	}
1465 
1466 	if (acur->len)
1467 		*stat = 1;
1468 
1469 	return 0;
1470 }
1471 
1472 /* Check the last block of the cnt btree for allocations. */
1473 static int
1474 xfs_alloc_ag_vextent_lastblock(
1475 	struct xfs_alloc_arg	*args,
1476 	struct xfs_alloc_cur	*acur,
1477 	xfs_agblock_t		*bno,
1478 	xfs_extlen_t		*len,
1479 	bool			*allocated)
1480 {
1481 	int			error;
1482 	int			i;
1483 
1484 #ifdef DEBUG
1485 	/* Randomly don't execute the first algorithm. */
1486 	if (get_random_u32_below(2))
1487 		return 0;
1488 #endif
1489 
1490 	/*
1491 	 * Start from the entry that lookup found, sequence through all larger
1492 	 * free blocks.  If we're actually pointing at a record smaller than
1493 	 * maxlen, go to the start of this block, and skip all those smaller
1494 	 * than minlen.
1495 	 */
1496 	if (*len || args->alignment > 1) {
1497 		acur->cnt->bc_levels[0].ptr = 1;
1498 		do {
1499 			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1500 			if (error)
1501 				return error;
1502 			if (XFS_IS_CORRUPT(args->mp, i != 1))
1503 				return -EFSCORRUPTED;
1504 			if (*len >= args->minlen)
1505 				break;
1506 			error = xfs_btree_increment(acur->cnt, 0, &i);
1507 			if (error)
1508 				return error;
1509 		} while (i);
1510 		ASSERT(*len >= args->minlen);
1511 		if (!i)
1512 			return 0;
1513 	}
1514 
1515 	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1516 	if (error)
1517 		return error;
1518 
1519 	/*
1520 	 * It didn't work.  We COULD be in a case where there's a good record
1521 	 * somewhere, so try again.
1522 	 */
1523 	if (acur->len == 0)
1524 		return 0;
1525 
1526 	trace_xfs_alloc_near_first(args);
1527 	*allocated = true;
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Allocate a variable extent near bno in the allocation group agno.
1533  * Extent's length (returned in len) will be between minlen and maxlen,
1534  * and of the form k * prod + mod unless there's nothing that large.
1535  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1536  */
1537 STATIC int
1538 xfs_alloc_ag_vextent_near(
1539 	struct xfs_alloc_arg	*args,
1540 	uint32_t		alloc_flags)
1541 {
1542 	struct xfs_alloc_cur	acur = {};
1543 	int			error;		/* error code */
1544 	int			i;		/* result code, temporary */
1545 	xfs_agblock_t		bno;
1546 	xfs_extlen_t		len;
1547 
1548 	/* handle uninitialized agbno range so caller doesn't have to */
1549 	if (!args->min_agbno && !args->max_agbno)
1550 		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1551 	ASSERT(args->min_agbno <= args->max_agbno);
1552 
1553 	/* clamp agbno to the range if it's outside */
1554 	if (args->agbno < args->min_agbno)
1555 		args->agbno = args->min_agbno;
1556 	if (args->agbno > args->max_agbno)
1557 		args->agbno = args->max_agbno;
1558 
1559 	/* Retry once quickly if we find busy extents before blocking. */
1560 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1561 restart:
1562 	len = 0;
1563 
1564 	/*
1565 	 * Set up cursors and see if there are any free extents as big as
1566 	 * maxlen. If not, pick the last entry in the tree unless the tree is
1567 	 * empty.
1568 	 */
1569 	error = xfs_alloc_cur_setup(args, &acur);
1570 	if (error == -ENOSPC) {
1571 		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1572 				&len, &i);
1573 		if (error)
1574 			goto out;
1575 		if (i == 0 || len == 0) {
1576 			trace_xfs_alloc_near_noentry(args);
1577 			goto out;
1578 		}
1579 		ASSERT(i == 1);
1580 	} else if (error) {
1581 		goto out;
1582 	}
1583 
1584 	/*
1585 	 * First algorithm.
1586 	 * If the requested extent is large wrt the freespaces available
1587 	 * in this a.g., then the cursor will be pointing to a btree entry
1588 	 * near the right edge of the tree.  If it's in the last btree leaf
1589 	 * block, then we just examine all the entries in that block
1590 	 * that are big enough, and pick the best one.
1591 	 */
1592 	if (xfs_btree_islastblock(acur.cnt, 0)) {
1593 		bool		allocated = false;
1594 
1595 		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1596 				&allocated);
1597 		if (error)
1598 			goto out;
1599 		if (allocated)
1600 			goto alloc_finish;
1601 	}
1602 
1603 	/*
1604 	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1605 	 * locality.
1606 	 */
1607 	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1608 	if (error)
1609 		goto out;
1610 
1611 	/*
1612 	 * If we couldn't get anything, give up.
1613 	 */
1614 	if (!acur.len) {
1615 		if (acur.busy) {
1616 			/*
1617 			 * Our only valid extents must have been busy. Flush and
1618 			 * retry the allocation again. If we get an -EAGAIN
1619 			 * error, we're being told that a deadlock was avoided
1620 			 * and the current transaction needs committing before
1621 			 * the allocation can be retried.
1622 			 */
1623 			trace_xfs_alloc_near_busy(args);
1624 			error = xfs_extent_busy_flush(args->tp, args->pag,
1625 					acur.busy_gen, alloc_flags);
1626 			if (error)
1627 				goto out;
1628 
1629 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1630 			goto restart;
1631 		}
1632 		trace_xfs_alloc_size_neither(args);
1633 		args->agbno = NULLAGBLOCK;
1634 		goto out;
1635 	}
1636 
1637 alloc_finish:
1638 	/* fix up btrees on a successful allocation */
1639 	error = xfs_alloc_cur_finish(args, &acur);
1640 
1641 out:
1642 	xfs_alloc_cur_close(&acur, error);
1643 	return error;
1644 }
1645 
1646 /*
1647  * Allocate a variable extent anywhere in the allocation group agno.
1648  * Extent's length (returned in len) will be between minlen and maxlen,
1649  * and of the form k * prod + mod unless there's nothing that large.
1650  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1651  */
1652 static int
1653 xfs_alloc_ag_vextent_size(
1654 	struct xfs_alloc_arg	*args,
1655 	uint32_t		alloc_flags)
1656 {
1657 	struct xfs_agf		*agf = args->agbp->b_addr;
1658 	struct xfs_btree_cur	*bno_cur;
1659 	struct xfs_btree_cur	*cnt_cur;
1660 	xfs_agblock_t		fbno;		/* start of found freespace */
1661 	xfs_extlen_t		flen;		/* length of found freespace */
1662 	xfs_agblock_t		rbno;		/* returned block number */
1663 	xfs_extlen_t		rlen;		/* length of returned extent */
1664 	bool			busy;
1665 	unsigned		busy_gen;
1666 	int			error;
1667 	int			i;
1668 
1669 	/* Retry once quickly if we find busy extents before blocking. */
1670 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1671 restart:
1672 	/*
1673 	 * Allocate and initialize a cursor for the by-size btree.
1674 	 */
1675 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1676 					args->pag, XFS_BTNUM_CNT);
1677 	bno_cur = NULL;
1678 
1679 	/*
1680 	 * Look for an entry >= maxlen+alignment-1 blocks.
1681 	 */
1682 	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1683 			args->maxlen + args->alignment - 1, &i)))
1684 		goto error0;
1685 
1686 	/*
1687 	 * If none then we have to settle for a smaller extent. In the case that
1688 	 * there are no large extents, this will return the last entry in the
1689 	 * tree unless the tree is empty. In the case that there are only busy
1690 	 * large extents, this will return the largest small extent unless there
1691 	 * are no smaller extents available.
1692 	 */
1693 	if (!i) {
1694 		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1695 						   &fbno, &flen, &i);
1696 		if (error)
1697 			goto error0;
1698 		if (i == 0 || flen == 0) {
1699 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1700 			trace_xfs_alloc_size_noentry(args);
1701 			return 0;
1702 		}
1703 		ASSERT(i == 1);
1704 		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1705 				&rlen, &busy_gen);
1706 	} else {
1707 		/*
1708 		 * Search for a non-busy extent that is large enough.
1709 		 */
1710 		for (;;) {
1711 			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1712 			if (error)
1713 				goto error0;
1714 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1715 				error = -EFSCORRUPTED;
1716 				goto error0;
1717 			}
1718 
1719 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1720 					&rbno, &rlen, &busy_gen);
1721 
1722 			if (rlen >= args->maxlen)
1723 				break;
1724 
1725 			error = xfs_btree_increment(cnt_cur, 0, &i);
1726 			if (error)
1727 				goto error0;
1728 			if (i)
1729 				continue;
1730 
1731 			/*
1732 			 * Our only valid extents must have been busy. Flush and
1733 			 * retry the allocation again. If we get an -EAGAIN
1734 			 * error, we're being told that a deadlock was avoided
1735 			 * and the current transaction needs committing before
1736 			 * the allocation can be retried.
1737 			 */
1738 			trace_xfs_alloc_size_busy(args);
1739 			error = xfs_extent_busy_flush(args->tp, args->pag,
1740 					busy_gen, alloc_flags);
1741 			if (error)
1742 				goto error0;
1743 
1744 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1745 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1746 			goto restart;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * In the first case above, we got the last entry in the
1752 	 * by-size btree.  Now we check to see if the space hits maxlen
1753 	 * once aligned; if not, we search left for something better.
1754 	 * This can't happen in the second case above.
1755 	 */
1756 	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1757 	if (XFS_IS_CORRUPT(args->mp,
1758 			   rlen != 0 &&
1759 			   (rlen > flen ||
1760 			    rbno + rlen > fbno + flen))) {
1761 		error = -EFSCORRUPTED;
1762 		goto error0;
1763 	}
1764 	if (rlen < args->maxlen) {
1765 		xfs_agblock_t	bestfbno;
1766 		xfs_extlen_t	bestflen;
1767 		xfs_agblock_t	bestrbno;
1768 		xfs_extlen_t	bestrlen;
1769 
1770 		bestrlen = rlen;
1771 		bestrbno = rbno;
1772 		bestflen = flen;
1773 		bestfbno = fbno;
1774 		for (;;) {
1775 			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1776 				goto error0;
1777 			if (i == 0)
1778 				break;
1779 			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1780 					&i)))
1781 				goto error0;
1782 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1783 				error = -EFSCORRUPTED;
1784 				goto error0;
1785 			}
1786 			if (flen < bestrlen)
1787 				break;
1788 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1789 					&rbno, &rlen, &busy_gen);
1790 			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1791 			if (XFS_IS_CORRUPT(args->mp,
1792 					   rlen != 0 &&
1793 					   (rlen > flen ||
1794 					    rbno + rlen > fbno + flen))) {
1795 				error = -EFSCORRUPTED;
1796 				goto error0;
1797 			}
1798 			if (rlen > bestrlen) {
1799 				bestrlen = rlen;
1800 				bestrbno = rbno;
1801 				bestflen = flen;
1802 				bestfbno = fbno;
1803 				if (rlen == args->maxlen)
1804 					break;
1805 			}
1806 		}
1807 		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1808 				&i)))
1809 			goto error0;
1810 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1811 			error = -EFSCORRUPTED;
1812 			goto error0;
1813 		}
1814 		rlen = bestrlen;
1815 		rbno = bestrbno;
1816 		flen = bestflen;
1817 		fbno = bestfbno;
1818 	}
1819 	args->wasfromfl = 0;
1820 	/*
1821 	 * Fix up the length.
1822 	 */
1823 	args->len = rlen;
1824 	if (rlen < args->minlen) {
1825 		if (busy) {
1826 			/*
1827 			 * Our only valid extents must have been busy. Flush and
1828 			 * retry the allocation again. If we get an -EAGAIN
1829 			 * error, we're being told that a deadlock was avoided
1830 			 * and the current transaction needs committing before
1831 			 * the allocation can be retried.
1832 			 */
1833 			trace_xfs_alloc_size_busy(args);
1834 			error = xfs_extent_busy_flush(args->tp, args->pag,
1835 					busy_gen, alloc_flags);
1836 			if (error)
1837 				goto error0;
1838 
1839 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1840 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1841 			goto restart;
1842 		}
1843 		goto out_nominleft;
1844 	}
1845 	xfs_alloc_fix_len(args);
1846 
1847 	rlen = args->len;
1848 	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1849 		error = -EFSCORRUPTED;
1850 		goto error0;
1851 	}
1852 	/*
1853 	 * Allocate and initialize a cursor for the by-block tree.
1854 	 */
1855 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1856 					args->pag, XFS_BTNUM_BNO);
1857 	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1858 			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1859 		goto error0;
1860 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1861 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1862 	cnt_cur = bno_cur = NULL;
1863 	args->len = rlen;
1864 	args->agbno = rbno;
1865 	if (XFS_IS_CORRUPT(args->mp,
1866 			   args->agbno + args->len >
1867 			   be32_to_cpu(agf->agf_length))) {
1868 		error = -EFSCORRUPTED;
1869 		goto error0;
1870 	}
1871 	trace_xfs_alloc_size_done(args);
1872 	return 0;
1873 
1874 error0:
1875 	trace_xfs_alloc_size_error(args);
1876 	if (cnt_cur)
1877 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1878 	if (bno_cur)
1879 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1880 	return error;
1881 
1882 out_nominleft:
1883 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884 	trace_xfs_alloc_size_nominleft(args);
1885 	args->agbno = NULLAGBLOCK;
1886 	return 0;
1887 }
1888 
1889 /*
1890  * Free the extent starting at agno/bno for length.
1891  */
1892 STATIC int
1893 xfs_free_ag_extent(
1894 	struct xfs_trans		*tp,
1895 	struct xfs_buf			*agbp,
1896 	xfs_agnumber_t			agno,
1897 	xfs_agblock_t			bno,
1898 	xfs_extlen_t			len,
1899 	const struct xfs_owner_info	*oinfo,
1900 	enum xfs_ag_resv_type		type)
1901 {
1902 	struct xfs_mount		*mp;
1903 	struct xfs_btree_cur		*bno_cur;
1904 	struct xfs_btree_cur		*cnt_cur;
1905 	xfs_agblock_t			gtbno; /* start of right neighbor */
1906 	xfs_extlen_t			gtlen; /* length of right neighbor */
1907 	xfs_agblock_t			ltbno; /* start of left neighbor */
1908 	xfs_extlen_t			ltlen; /* length of left neighbor */
1909 	xfs_agblock_t			nbno; /* new starting block of freesp */
1910 	xfs_extlen_t			nlen; /* new length of freespace */
1911 	int				haveleft; /* have a left neighbor */
1912 	int				haveright; /* have a right neighbor */
1913 	int				i;
1914 	int				error;
1915 	struct xfs_perag		*pag = agbp->b_pag;
1916 
1917 	bno_cur = cnt_cur = NULL;
1918 	mp = tp->t_mountp;
1919 
1920 	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1921 		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1922 		if (error)
1923 			goto error0;
1924 	}
1925 
1926 	/*
1927 	 * Allocate and initialize a cursor for the by-block btree.
1928 	 */
1929 	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1930 	/*
1931 	 * Look for a neighboring block on the left (lower block numbers)
1932 	 * that is contiguous with this space.
1933 	 */
1934 	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1935 		goto error0;
1936 	if (haveleft) {
1937 		/*
1938 		 * There is a block to our left.
1939 		 */
1940 		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1941 			goto error0;
1942 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1943 			error = -EFSCORRUPTED;
1944 			goto error0;
1945 		}
1946 		/*
1947 		 * It's not contiguous, though.
1948 		 */
1949 		if (ltbno + ltlen < bno)
1950 			haveleft = 0;
1951 		else {
1952 			/*
1953 			 * If this failure happens the request to free this
1954 			 * space was invalid, it's (partly) already free.
1955 			 * Very bad.
1956 			 */
1957 			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1958 				error = -EFSCORRUPTED;
1959 				goto error0;
1960 			}
1961 		}
1962 	}
1963 	/*
1964 	 * Look for a neighboring block on the right (higher block numbers)
1965 	 * that is contiguous with this space.
1966 	 */
1967 	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1968 		goto error0;
1969 	if (haveright) {
1970 		/*
1971 		 * There is a block to our right.
1972 		 */
1973 		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1974 			goto error0;
1975 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 			error = -EFSCORRUPTED;
1977 			goto error0;
1978 		}
1979 		/*
1980 		 * It's not contiguous, though.
1981 		 */
1982 		if (bno + len < gtbno)
1983 			haveright = 0;
1984 		else {
1985 			/*
1986 			 * If this failure happens the request to free this
1987 			 * space was invalid, it's (partly) already free.
1988 			 * Very bad.
1989 			 */
1990 			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1991 				error = -EFSCORRUPTED;
1992 				goto error0;
1993 			}
1994 		}
1995 	}
1996 	/*
1997 	 * Now allocate and initialize a cursor for the by-size tree.
1998 	 */
1999 	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
2000 	/*
2001 	 * Have both left and right contiguous neighbors.
2002 	 * Merge all three into a single free block.
2003 	 */
2004 	if (haveleft && haveright) {
2005 		/*
2006 		 * Delete the old by-size entry on the left.
2007 		 */
2008 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2009 			goto error0;
2010 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2011 			error = -EFSCORRUPTED;
2012 			goto error0;
2013 		}
2014 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2015 			goto error0;
2016 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2017 			error = -EFSCORRUPTED;
2018 			goto error0;
2019 		}
2020 		/*
2021 		 * Delete the old by-size entry on the right.
2022 		 */
2023 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2024 			goto error0;
2025 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2026 			error = -EFSCORRUPTED;
2027 			goto error0;
2028 		}
2029 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2030 			goto error0;
2031 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2032 			error = -EFSCORRUPTED;
2033 			goto error0;
2034 		}
2035 		/*
2036 		 * Delete the old by-block entry for the right block.
2037 		 */
2038 		if ((error = xfs_btree_delete(bno_cur, &i)))
2039 			goto error0;
2040 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2041 			error = -EFSCORRUPTED;
2042 			goto error0;
2043 		}
2044 		/*
2045 		 * Move the by-block cursor back to the left neighbor.
2046 		 */
2047 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2048 			goto error0;
2049 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2050 			error = -EFSCORRUPTED;
2051 			goto error0;
2052 		}
2053 #ifdef DEBUG
2054 		/*
2055 		 * Check that this is the right record: delete didn't
2056 		 * mangle the cursor.
2057 		 */
2058 		{
2059 			xfs_agblock_t	xxbno;
2060 			xfs_extlen_t	xxlen;
2061 
2062 			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2063 					&i)))
2064 				goto error0;
2065 			if (XFS_IS_CORRUPT(mp,
2066 					   i != 1 ||
2067 					   xxbno != ltbno ||
2068 					   xxlen != ltlen)) {
2069 				error = -EFSCORRUPTED;
2070 				goto error0;
2071 			}
2072 		}
2073 #endif
2074 		/*
2075 		 * Update remaining by-block entry to the new, joined block.
2076 		 */
2077 		nbno = ltbno;
2078 		nlen = len + ltlen + gtlen;
2079 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2080 			goto error0;
2081 	}
2082 	/*
2083 	 * Have only a left contiguous neighbor.
2084 	 * Merge it together with the new freespace.
2085 	 */
2086 	else if (haveleft) {
2087 		/*
2088 		 * Delete the old by-size entry on the left.
2089 		 */
2090 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2091 			goto error0;
2092 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 			error = -EFSCORRUPTED;
2094 			goto error0;
2095 		}
2096 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2097 			goto error0;
2098 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2099 			error = -EFSCORRUPTED;
2100 			goto error0;
2101 		}
2102 		/*
2103 		 * Back up the by-block cursor to the left neighbor, and
2104 		 * update its length.
2105 		 */
2106 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2107 			goto error0;
2108 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 			error = -EFSCORRUPTED;
2110 			goto error0;
2111 		}
2112 		nbno = ltbno;
2113 		nlen = len + ltlen;
2114 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2115 			goto error0;
2116 	}
2117 	/*
2118 	 * Have only a right contiguous neighbor.
2119 	 * Merge it together with the new freespace.
2120 	 */
2121 	else if (haveright) {
2122 		/*
2123 		 * Delete the old by-size entry on the right.
2124 		 */
2125 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2126 			goto error0;
2127 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2128 			error = -EFSCORRUPTED;
2129 			goto error0;
2130 		}
2131 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2132 			goto error0;
2133 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2134 			error = -EFSCORRUPTED;
2135 			goto error0;
2136 		}
2137 		/*
2138 		 * Update the starting block and length of the right
2139 		 * neighbor in the by-block tree.
2140 		 */
2141 		nbno = bno;
2142 		nlen = len + gtlen;
2143 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2144 			goto error0;
2145 	}
2146 	/*
2147 	 * No contiguous neighbors.
2148 	 * Insert the new freespace into the by-block tree.
2149 	 */
2150 	else {
2151 		nbno = bno;
2152 		nlen = len;
2153 		if ((error = xfs_btree_insert(bno_cur, &i)))
2154 			goto error0;
2155 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2156 			error = -EFSCORRUPTED;
2157 			goto error0;
2158 		}
2159 	}
2160 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2161 	bno_cur = NULL;
2162 	/*
2163 	 * In all cases we need to insert the new freespace in the by-size tree.
2164 	 */
2165 	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2166 		goto error0;
2167 	if (XFS_IS_CORRUPT(mp, i != 0)) {
2168 		error = -EFSCORRUPTED;
2169 		goto error0;
2170 	}
2171 	if ((error = xfs_btree_insert(cnt_cur, &i)))
2172 		goto error0;
2173 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2174 		error = -EFSCORRUPTED;
2175 		goto error0;
2176 	}
2177 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2178 	cnt_cur = NULL;
2179 
2180 	/*
2181 	 * Update the freespace totals in the ag and superblock.
2182 	 */
2183 	error = xfs_alloc_update_counters(tp, agbp, len);
2184 	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2185 	if (error)
2186 		goto error0;
2187 
2188 	XFS_STATS_INC(mp, xs_freex);
2189 	XFS_STATS_ADD(mp, xs_freeb, len);
2190 
2191 	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2192 
2193 	return 0;
2194 
2195  error0:
2196 	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2197 	if (bno_cur)
2198 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2199 	if (cnt_cur)
2200 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2201 	return error;
2202 }
2203 
2204 /*
2205  * Visible (exported) allocation/free functions.
2206  * Some of these are used just by xfs_alloc_btree.c and this file.
2207  */
2208 
2209 /*
2210  * Compute and fill in value of m_alloc_maxlevels.
2211  */
2212 void
2213 xfs_alloc_compute_maxlevels(
2214 	xfs_mount_t	*mp)	/* file system mount structure */
2215 {
2216 	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2217 			(mp->m_sb.sb_agblocks + 1) / 2);
2218 	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2219 }
2220 
2221 /*
2222  * Find the length of the longest extent in an AG.  The 'need' parameter
2223  * specifies how much space we're going to need for the AGFL and the
2224  * 'reserved' parameter tells us how many blocks in this AG are reserved for
2225  * other callers.
2226  */
2227 xfs_extlen_t
2228 xfs_alloc_longest_free_extent(
2229 	struct xfs_perag	*pag,
2230 	xfs_extlen_t		need,
2231 	xfs_extlen_t		reserved)
2232 {
2233 	xfs_extlen_t		delta = 0;
2234 
2235 	/*
2236 	 * If the AGFL needs a recharge, we'll have to subtract that from the
2237 	 * longest extent.
2238 	 */
2239 	if (need > pag->pagf_flcount)
2240 		delta = need - pag->pagf_flcount;
2241 
2242 	/*
2243 	 * If we cannot maintain others' reservations with space from the
2244 	 * not-longest freesp extents, we'll have to subtract /that/ from
2245 	 * the longest extent too.
2246 	 */
2247 	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2248 		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2249 
2250 	/*
2251 	 * If the longest extent is long enough to satisfy all the
2252 	 * reservations and AGFL rules in place, we can return this extent.
2253 	 */
2254 	if (pag->pagf_longest > delta)
2255 		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2256 				pag->pagf_longest - delta);
2257 
2258 	/* Otherwise, let the caller try for 1 block if there's space. */
2259 	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2260 }
2261 
2262 /*
2263  * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2264  * return the largest possible minimum length.
2265  */
2266 unsigned int
2267 xfs_alloc_min_freelist(
2268 	struct xfs_mount	*mp,
2269 	struct xfs_perag	*pag)
2270 {
2271 	/* AG btrees have at least 1 level. */
2272 	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2273 	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
2274 	unsigned int		min_free;
2275 
2276 	ASSERT(mp->m_alloc_maxlevels > 0);
2277 
2278 	/*
2279 	 * For a btree shorter than the maximum height, the worst case is that
2280 	 * every level gets split and a new level is added, then while inserting
2281 	 * another entry to refill the AGFL, every level under the old root gets
2282 	 * split again. This is:
2283 	 *
2284 	 *   (full height split reservation) + (AGFL refill split height)
2285 	 * = (current height + 1) + (current height - 1)
2286 	 * = (new height) + (new height - 2)
2287 	 * = 2 * new height - 2
2288 	 *
2289 	 * For a btree of maximum height, the worst case is that every level
2290 	 * under the root gets split, then while inserting another entry to
2291 	 * refill the AGFL, every level under the root gets split again. This is
2292 	 * also:
2293 	 *
2294 	 *   2 * (current height - 1)
2295 	 * = 2 * (new height - 1)
2296 	 * = 2 * new height - 2
2297 	 */
2298 
2299 	/* space needed by-bno freespace btree */
2300 	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2301 				       mp->m_alloc_maxlevels) * 2 - 2;
2302 	/* space needed by-size freespace btree */
2303 	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2304 				       mp->m_alloc_maxlevels) * 2 - 2;
2305 	/* space needed reverse mapping used space btree */
2306 	if (xfs_has_rmapbt(mp))
2307 		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2308 						mp->m_rmap_maxlevels) * 2 - 2;
2309 
2310 	return min_free;
2311 }
2312 
2313 /*
2314  * Check if the operation we are fixing up the freelist for should go ahead or
2315  * not. If we are freeing blocks, we always allow it, otherwise the allocation
2316  * is dependent on whether the size and shape of free space available will
2317  * permit the requested allocation to take place.
2318  */
2319 static bool
2320 xfs_alloc_space_available(
2321 	struct xfs_alloc_arg	*args,
2322 	xfs_extlen_t		min_free,
2323 	int			flags)
2324 {
2325 	struct xfs_perag	*pag = args->pag;
2326 	xfs_extlen_t		alloc_len, longest;
2327 	xfs_extlen_t		reservation; /* blocks that are still reserved */
2328 	int			available;
2329 	xfs_extlen_t		agflcount;
2330 
2331 	if (flags & XFS_ALLOC_FLAG_FREEING)
2332 		return true;
2333 
2334 	reservation = xfs_ag_resv_needed(pag, args->resv);
2335 
2336 	/* do we have enough contiguous free space for the allocation? */
2337 	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2338 	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2339 	if (longest < alloc_len)
2340 		return false;
2341 
2342 	/*
2343 	 * Do we have enough free space remaining for the allocation? Don't
2344 	 * account extra agfl blocks because we are about to defer free them,
2345 	 * making them unavailable until the current transaction commits.
2346 	 */
2347 	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2348 	available = (int)(pag->pagf_freeblks + agflcount -
2349 			  reservation - min_free - args->minleft);
2350 	if (available < (int)max(args->total, alloc_len))
2351 		return false;
2352 
2353 	/*
2354 	 * Clamp maxlen to the amount of free space available for the actual
2355 	 * extent allocation.
2356 	 */
2357 	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2358 		args->maxlen = available;
2359 		ASSERT(args->maxlen > 0);
2360 		ASSERT(args->maxlen >= args->minlen);
2361 	}
2362 
2363 	return true;
2364 }
2365 
2366 int
2367 xfs_free_agfl_block(
2368 	struct xfs_trans	*tp,
2369 	xfs_agnumber_t		agno,
2370 	xfs_agblock_t		agbno,
2371 	struct xfs_buf		*agbp,
2372 	struct xfs_owner_info	*oinfo)
2373 {
2374 	int			error;
2375 	struct xfs_buf		*bp;
2376 
2377 	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2378 				   XFS_AG_RESV_AGFL);
2379 	if (error)
2380 		return error;
2381 
2382 	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2383 			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2384 			tp->t_mountp->m_bsize, 0, &bp);
2385 	if (error)
2386 		return error;
2387 	xfs_trans_binval(tp, bp);
2388 
2389 	return 0;
2390 }
2391 
2392 /*
2393  * Check the agfl fields of the agf for inconsistency or corruption.
2394  *
2395  * The original purpose was to detect an agfl header padding mismatch between
2396  * current and early v5 kernels. This problem manifests as a 1-slot size
2397  * difference between the on-disk flcount and the active [first, last] range of
2398  * a wrapped agfl.
2399  *
2400  * However, we need to use these same checks to catch agfl count corruptions
2401  * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2402  * way, we need to reset the agfl and warn the user.
2403  *
2404  * Return true if a reset is required before the agfl can be used, false
2405  * otherwise.
2406  */
2407 static bool
2408 xfs_agfl_needs_reset(
2409 	struct xfs_mount	*mp,
2410 	struct xfs_agf		*agf)
2411 {
2412 	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2413 	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2414 	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2415 	int			agfl_size = xfs_agfl_size(mp);
2416 	int			active;
2417 
2418 	/*
2419 	 * The agf read verifier catches severe corruption of these fields.
2420 	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2421 	 * the verifier allows it.
2422 	 */
2423 	if (f >= agfl_size || l >= agfl_size)
2424 		return true;
2425 	if (c > agfl_size)
2426 		return true;
2427 
2428 	/*
2429 	 * Check consistency between the on-disk count and the active range. An
2430 	 * agfl padding mismatch manifests as an inconsistent flcount.
2431 	 */
2432 	if (c && l >= f)
2433 		active = l - f + 1;
2434 	else if (c)
2435 		active = agfl_size - f + l + 1;
2436 	else
2437 		active = 0;
2438 
2439 	return active != c;
2440 }
2441 
2442 /*
2443  * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2444  * agfl content cannot be trusted. Warn the user that a repair is required to
2445  * recover leaked blocks.
2446  *
2447  * The purpose of this mechanism is to handle filesystems affected by the agfl
2448  * header padding mismatch problem. A reset keeps the filesystem online with a
2449  * relatively minor free space accounting inconsistency rather than suffer the
2450  * inevitable crash from use of an invalid agfl block.
2451  */
2452 static void
2453 xfs_agfl_reset(
2454 	struct xfs_trans	*tp,
2455 	struct xfs_buf		*agbp,
2456 	struct xfs_perag	*pag)
2457 {
2458 	struct xfs_mount	*mp = tp->t_mountp;
2459 	struct xfs_agf		*agf = agbp->b_addr;
2460 
2461 	ASSERT(xfs_perag_agfl_needs_reset(pag));
2462 	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2463 
2464 	xfs_warn(mp,
2465 	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2466 	       "Please unmount and run xfs_repair.",
2467 	         pag->pag_agno, pag->pagf_flcount);
2468 
2469 	agf->agf_flfirst = 0;
2470 	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2471 	agf->agf_flcount = 0;
2472 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2473 				    XFS_AGF_FLCOUNT);
2474 
2475 	pag->pagf_flcount = 0;
2476 	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2477 }
2478 
2479 /*
2480  * Defer an AGFL block free. This is effectively equivalent to
2481  * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2482  *
2483  * Deferring AGFL frees helps prevent log reservation overruns due to too many
2484  * allocation operations in a transaction. AGFL frees are prone to this problem
2485  * because for one they are always freed one at a time. Further, an immediate
2486  * AGFL block free can cause a btree join and require another block free before
2487  * the real allocation can proceed. Deferring the free disconnects freeing up
2488  * the AGFL slot from freeing the block.
2489  */
2490 static int
2491 xfs_defer_agfl_block(
2492 	struct xfs_trans		*tp,
2493 	xfs_agnumber_t			agno,
2494 	xfs_agblock_t			agbno,
2495 	struct xfs_owner_info		*oinfo)
2496 {
2497 	struct xfs_mount		*mp = tp->t_mountp;
2498 	struct xfs_extent_free_item	*xefi;
2499 	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2500 
2501 	ASSERT(xfs_extfree_item_cache != NULL);
2502 	ASSERT(oinfo != NULL);
2503 
2504 	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2505 		return -EFSCORRUPTED;
2506 
2507 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2508 			       GFP_KERNEL | __GFP_NOFAIL);
2509 	xefi->xefi_startblock = fsbno;
2510 	xefi->xefi_blockcount = 1;
2511 	xefi->xefi_owner = oinfo->oi_owner;
2512 	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2513 
2514 	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2515 
2516 	xfs_extent_free_get_group(mp, xefi);
2517 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
2518 	return 0;
2519 }
2520 
2521 /*
2522  * Add the extent to the list of extents to be free at transaction end.
2523  * The list is maintained sorted (by block number).
2524  */
2525 int
2526 __xfs_free_extent_later(
2527 	struct xfs_trans		*tp,
2528 	xfs_fsblock_t			bno,
2529 	xfs_filblks_t			len,
2530 	const struct xfs_owner_info	*oinfo,
2531 	enum xfs_ag_resv_type		type,
2532 	bool				skip_discard)
2533 {
2534 	struct xfs_extent_free_item	*xefi;
2535 	struct xfs_mount		*mp = tp->t_mountp;
2536 #ifdef DEBUG
2537 	xfs_agnumber_t			agno;
2538 	xfs_agblock_t			agbno;
2539 
2540 	ASSERT(bno != NULLFSBLOCK);
2541 	ASSERT(len > 0);
2542 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2543 	ASSERT(!isnullstartblock(bno));
2544 	agno = XFS_FSB_TO_AGNO(mp, bno);
2545 	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2546 	ASSERT(agno < mp->m_sb.sb_agcount);
2547 	ASSERT(agbno < mp->m_sb.sb_agblocks);
2548 	ASSERT(len < mp->m_sb.sb_agblocks);
2549 	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2550 #endif
2551 	ASSERT(xfs_extfree_item_cache != NULL);
2552 	ASSERT(type != XFS_AG_RESV_AGFL);
2553 
2554 	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2555 		return -EFSCORRUPTED;
2556 
2557 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2558 			       GFP_KERNEL | __GFP_NOFAIL);
2559 	xefi->xefi_startblock = bno;
2560 	xefi->xefi_blockcount = (xfs_extlen_t)len;
2561 	xefi->xefi_agresv = type;
2562 	if (skip_discard)
2563 		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2564 	if (oinfo) {
2565 		ASSERT(oinfo->oi_offset == 0);
2566 
2567 		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2568 			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2569 		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2570 			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2571 		xefi->xefi_owner = oinfo->oi_owner;
2572 	} else {
2573 		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2574 	}
2575 	trace_xfs_bmap_free_defer(mp,
2576 			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2577 			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2578 
2579 	xfs_extent_free_get_group(mp, xefi);
2580 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
2581 	return 0;
2582 }
2583 
2584 #ifdef DEBUG
2585 /*
2586  * Check if an AGF has a free extent record whose length is equal to
2587  * args->minlen.
2588  */
2589 STATIC int
2590 xfs_exact_minlen_extent_available(
2591 	struct xfs_alloc_arg	*args,
2592 	struct xfs_buf		*agbp,
2593 	int			*stat)
2594 {
2595 	struct xfs_btree_cur	*cnt_cur;
2596 	xfs_agblock_t		fbno;
2597 	xfs_extlen_t		flen;
2598 	int			error = 0;
2599 
2600 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2601 					args->pag, XFS_BTNUM_CNT);
2602 	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2603 	if (error)
2604 		goto out;
2605 
2606 	if (*stat == 0) {
2607 		error = -EFSCORRUPTED;
2608 		goto out;
2609 	}
2610 
2611 	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2612 	if (error)
2613 		goto out;
2614 
2615 	if (*stat == 1 && flen != args->minlen)
2616 		*stat = 0;
2617 
2618 out:
2619 	xfs_btree_del_cursor(cnt_cur, error);
2620 
2621 	return error;
2622 }
2623 #endif
2624 
2625 /*
2626  * Decide whether to use this allocation group for this allocation.
2627  * If so, fix up the btree freelist's size.
2628  */
2629 int			/* error */
2630 xfs_alloc_fix_freelist(
2631 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2632 	uint32_t		alloc_flags)
2633 {
2634 	struct xfs_mount	*mp = args->mp;
2635 	struct xfs_perag	*pag = args->pag;
2636 	struct xfs_trans	*tp = args->tp;
2637 	struct xfs_buf		*agbp = NULL;
2638 	struct xfs_buf		*agflbp = NULL;
2639 	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2640 	xfs_agblock_t		bno;	/* freelist block */
2641 	xfs_extlen_t		need;	/* total blocks needed in freelist */
2642 	int			error = 0;
2643 
2644 	/* deferred ops (AGFL block frees) require permanent transactions */
2645 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2646 
2647 	if (!xfs_perag_initialised_agf(pag)) {
2648 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2649 		if (error) {
2650 			/* Couldn't lock the AGF so skip this AG. */
2651 			if (error == -EAGAIN)
2652 				error = 0;
2653 			goto out_no_agbp;
2654 		}
2655 	}
2656 
2657 	/*
2658 	 * If this is a metadata preferred pag and we are user data then try
2659 	 * somewhere else if we are not being asked to try harder at this
2660 	 * point
2661 	 */
2662 	if (xfs_perag_prefers_metadata(pag) &&
2663 	    (args->datatype & XFS_ALLOC_USERDATA) &&
2664 	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2665 		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2666 		goto out_agbp_relse;
2667 	}
2668 
2669 	need = xfs_alloc_min_freelist(mp, pag);
2670 	if (!xfs_alloc_space_available(args, need, alloc_flags |
2671 			XFS_ALLOC_FLAG_CHECK))
2672 		goto out_agbp_relse;
2673 
2674 	/*
2675 	 * Get the a.g. freespace buffer.
2676 	 * Can fail if we're not blocking on locks, and it's held.
2677 	 */
2678 	if (!agbp) {
2679 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2680 		if (error) {
2681 			/* Couldn't lock the AGF so skip this AG. */
2682 			if (error == -EAGAIN)
2683 				error = 0;
2684 			goto out_no_agbp;
2685 		}
2686 	}
2687 
2688 	/* reset a padding mismatched agfl before final free space check */
2689 	if (xfs_perag_agfl_needs_reset(pag))
2690 		xfs_agfl_reset(tp, agbp, pag);
2691 
2692 	/* If there isn't enough total space or single-extent, reject it. */
2693 	need = xfs_alloc_min_freelist(mp, pag);
2694 	if (!xfs_alloc_space_available(args, need, alloc_flags))
2695 		goto out_agbp_relse;
2696 
2697 #ifdef DEBUG
2698 	if (args->alloc_minlen_only) {
2699 		int stat;
2700 
2701 		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2702 		if (error || !stat)
2703 			goto out_agbp_relse;
2704 	}
2705 #endif
2706 	/*
2707 	 * Make the freelist shorter if it's too long.
2708 	 *
2709 	 * Note that from this point onwards, we will always release the agf and
2710 	 * agfl buffers on error. This handles the case where we error out and
2711 	 * the buffers are clean or may not have been joined to the transaction
2712 	 * and hence need to be released manually. If they have been joined to
2713 	 * the transaction, then xfs_trans_brelse() will handle them
2714 	 * appropriately based on the recursion count and dirty state of the
2715 	 * buffer.
2716 	 *
2717 	 * XXX (dgc): When we have lots of free space, does this buy us
2718 	 * anything other than extra overhead when we need to put more blocks
2719 	 * back on the free list? Maybe we should only do this when space is
2720 	 * getting low or the AGFL is more than half full?
2721 	 *
2722 	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2723 	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2724 	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2725 	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2726 	 * both required to ensure that rmaps are correctly recorded for the
2727 	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2728 	 * repair/rmap.c in xfsprogs for details.
2729 	 */
2730 	memset(&targs, 0, sizeof(targs));
2731 	/* struct copy below */
2732 	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2733 		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2734 	else
2735 		targs.oinfo = XFS_RMAP_OINFO_AG;
2736 	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2737 			pag->pagf_flcount > need) {
2738 		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2739 		if (error)
2740 			goto out_agbp_relse;
2741 
2742 		/* defer agfl frees */
2743 		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2744 		if (error)
2745 			goto out_agbp_relse;
2746 	}
2747 
2748 	targs.tp = tp;
2749 	targs.mp = mp;
2750 	targs.agbp = agbp;
2751 	targs.agno = args->agno;
2752 	targs.alignment = targs.minlen = targs.prod = 1;
2753 	targs.pag = pag;
2754 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2755 	if (error)
2756 		goto out_agbp_relse;
2757 
2758 	/* Make the freelist longer if it's too short. */
2759 	while (pag->pagf_flcount < need) {
2760 		targs.agbno = 0;
2761 		targs.maxlen = need - pag->pagf_flcount;
2762 		targs.resv = XFS_AG_RESV_AGFL;
2763 
2764 		/* Allocate as many blocks as possible at once. */
2765 		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2766 		if (error)
2767 			goto out_agflbp_relse;
2768 
2769 		/*
2770 		 * Stop if we run out.  Won't happen if callers are obeying
2771 		 * the restrictions correctly.  Can happen for free calls
2772 		 * on a completely full ag.
2773 		 */
2774 		if (targs.agbno == NULLAGBLOCK) {
2775 			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2776 				break;
2777 			goto out_agflbp_relse;
2778 		}
2779 
2780 		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2781 			error = xfs_rmap_alloc(tp, agbp, pag,
2782 				       targs.agbno, targs.len, &targs.oinfo);
2783 			if (error)
2784 				goto out_agflbp_relse;
2785 		}
2786 		error = xfs_alloc_update_counters(tp, agbp,
2787 						  -((long)(targs.len)));
2788 		if (error)
2789 			goto out_agflbp_relse;
2790 
2791 		/*
2792 		 * Put each allocated block on the list.
2793 		 */
2794 		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2795 			error = xfs_alloc_put_freelist(pag, tp, agbp,
2796 							agflbp, bno, 0);
2797 			if (error)
2798 				goto out_agflbp_relse;
2799 		}
2800 	}
2801 	xfs_trans_brelse(tp, agflbp);
2802 	args->agbp = agbp;
2803 	return 0;
2804 
2805 out_agflbp_relse:
2806 	xfs_trans_brelse(tp, agflbp);
2807 out_agbp_relse:
2808 	if (agbp)
2809 		xfs_trans_brelse(tp, agbp);
2810 out_no_agbp:
2811 	args->agbp = NULL;
2812 	return error;
2813 }
2814 
2815 /*
2816  * Get a block from the freelist.
2817  * Returns with the buffer for the block gotten.
2818  */
2819 int
2820 xfs_alloc_get_freelist(
2821 	struct xfs_perag	*pag,
2822 	struct xfs_trans	*tp,
2823 	struct xfs_buf		*agbp,
2824 	xfs_agblock_t		*bnop,
2825 	int			btreeblk)
2826 {
2827 	struct xfs_agf		*agf = agbp->b_addr;
2828 	struct xfs_buf		*agflbp;
2829 	xfs_agblock_t		bno;
2830 	__be32			*agfl_bno;
2831 	int			error;
2832 	uint32_t		logflags;
2833 	struct xfs_mount	*mp = tp->t_mountp;
2834 
2835 	/*
2836 	 * Freelist is empty, give up.
2837 	 */
2838 	if (!agf->agf_flcount) {
2839 		*bnop = NULLAGBLOCK;
2840 		return 0;
2841 	}
2842 	/*
2843 	 * Read the array of free blocks.
2844 	 */
2845 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2846 	if (error)
2847 		return error;
2848 
2849 
2850 	/*
2851 	 * Get the block number and update the data structures.
2852 	 */
2853 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2854 	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2855 	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2856 		return -EFSCORRUPTED;
2857 
2858 	be32_add_cpu(&agf->agf_flfirst, 1);
2859 	xfs_trans_brelse(tp, agflbp);
2860 	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2861 		agf->agf_flfirst = 0;
2862 
2863 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2864 	be32_add_cpu(&agf->agf_flcount, -1);
2865 	pag->pagf_flcount--;
2866 
2867 	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2868 	if (btreeblk) {
2869 		be32_add_cpu(&agf->agf_btreeblks, 1);
2870 		pag->pagf_btreeblks++;
2871 		logflags |= XFS_AGF_BTREEBLKS;
2872 	}
2873 
2874 	xfs_alloc_log_agf(tp, agbp, logflags);
2875 	*bnop = bno;
2876 
2877 	return 0;
2878 }
2879 
2880 /*
2881  * Log the given fields from the agf structure.
2882  */
2883 void
2884 xfs_alloc_log_agf(
2885 	struct xfs_trans	*tp,
2886 	struct xfs_buf		*bp,
2887 	uint32_t		fields)
2888 {
2889 	int	first;		/* first byte offset */
2890 	int	last;		/* last byte offset */
2891 	static const short	offsets[] = {
2892 		offsetof(xfs_agf_t, agf_magicnum),
2893 		offsetof(xfs_agf_t, agf_versionnum),
2894 		offsetof(xfs_agf_t, agf_seqno),
2895 		offsetof(xfs_agf_t, agf_length),
2896 		offsetof(xfs_agf_t, agf_roots[0]),
2897 		offsetof(xfs_agf_t, agf_levels[0]),
2898 		offsetof(xfs_agf_t, agf_flfirst),
2899 		offsetof(xfs_agf_t, agf_fllast),
2900 		offsetof(xfs_agf_t, agf_flcount),
2901 		offsetof(xfs_agf_t, agf_freeblks),
2902 		offsetof(xfs_agf_t, agf_longest),
2903 		offsetof(xfs_agf_t, agf_btreeblks),
2904 		offsetof(xfs_agf_t, agf_uuid),
2905 		offsetof(xfs_agf_t, agf_rmap_blocks),
2906 		offsetof(xfs_agf_t, agf_refcount_blocks),
2907 		offsetof(xfs_agf_t, agf_refcount_root),
2908 		offsetof(xfs_agf_t, agf_refcount_level),
2909 		/* needed so that we don't log the whole rest of the structure: */
2910 		offsetof(xfs_agf_t, agf_spare64),
2911 		sizeof(xfs_agf_t)
2912 	};
2913 
2914 	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2915 
2916 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2917 
2918 	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2919 	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2920 }
2921 
2922 /*
2923  * Put the block on the freelist for the allocation group.
2924  */
2925 int
2926 xfs_alloc_put_freelist(
2927 	struct xfs_perag	*pag,
2928 	struct xfs_trans	*tp,
2929 	struct xfs_buf		*agbp,
2930 	struct xfs_buf		*agflbp,
2931 	xfs_agblock_t		bno,
2932 	int			btreeblk)
2933 {
2934 	struct xfs_mount	*mp = tp->t_mountp;
2935 	struct xfs_agf		*agf = agbp->b_addr;
2936 	__be32			*blockp;
2937 	int			error;
2938 	uint32_t		logflags;
2939 	__be32			*agfl_bno;
2940 	int			startoff;
2941 
2942 	if (!agflbp) {
2943 		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2944 		if (error)
2945 			return error;
2946 	}
2947 
2948 	be32_add_cpu(&agf->agf_fllast, 1);
2949 	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2950 		agf->agf_fllast = 0;
2951 
2952 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2953 	be32_add_cpu(&agf->agf_flcount, 1);
2954 	pag->pagf_flcount++;
2955 
2956 	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2957 	if (btreeblk) {
2958 		be32_add_cpu(&agf->agf_btreeblks, -1);
2959 		pag->pagf_btreeblks--;
2960 		logflags |= XFS_AGF_BTREEBLKS;
2961 	}
2962 
2963 	xfs_alloc_log_agf(tp, agbp, logflags);
2964 
2965 	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2966 
2967 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2968 	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2969 	*blockp = cpu_to_be32(bno);
2970 	startoff = (char *)blockp - (char *)agflbp->b_addr;
2971 
2972 	xfs_alloc_log_agf(tp, agbp, logflags);
2973 
2974 	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2975 	xfs_trans_log_buf(tp, agflbp, startoff,
2976 			  startoff + sizeof(xfs_agblock_t) - 1);
2977 	return 0;
2978 }
2979 
2980 /*
2981  * Check that this AGF/AGI header's sequence number and length matches the AG
2982  * number and size in fsblocks.
2983  */
2984 xfs_failaddr_t
2985 xfs_validate_ag_length(
2986 	struct xfs_buf		*bp,
2987 	uint32_t		seqno,
2988 	uint32_t		length)
2989 {
2990 	struct xfs_mount	*mp = bp->b_mount;
2991 	/*
2992 	 * During growfs operations, the perag is not fully initialised,
2993 	 * so we can't use it for any useful checking. growfs ensures we can't
2994 	 * use it by using uncached buffers that don't have the perag attached
2995 	 * so we can detect and avoid this problem.
2996 	 */
2997 	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
2998 		return __this_address;
2999 
3000 	/*
3001 	 * Only the last AG in the filesystem is allowed to be shorter
3002 	 * than the AG size recorded in the superblock.
3003 	 */
3004 	if (length != mp->m_sb.sb_agblocks) {
3005 		/*
3006 		 * During growfs, the new last AG can get here before we
3007 		 * have updated the superblock. Give it a pass on the seqno
3008 		 * check.
3009 		 */
3010 		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3011 			return __this_address;
3012 		if (length < XFS_MIN_AG_BLOCKS)
3013 			return __this_address;
3014 		if (length > mp->m_sb.sb_agblocks)
3015 			return __this_address;
3016 	}
3017 
3018 	return NULL;
3019 }
3020 
3021 /*
3022  * Verify the AGF is consistent.
3023  *
3024  * We do not verify the AGFL indexes in the AGF are fully consistent here
3025  * because of issues with variable on-disk structure sizes. Instead, we check
3026  * the agfl indexes for consistency when we initialise the perag from the AGF
3027  * information after a read completes.
3028  *
3029  * If the index is inconsistent, then we mark the perag as needing an AGFL
3030  * reset. The first AGFL update performed then resets the AGFL indexes and
3031  * refills the AGFL with known good free blocks, allowing the filesystem to
3032  * continue operating normally at the cost of a few leaked free space blocks.
3033  */
3034 static xfs_failaddr_t
3035 xfs_agf_verify(
3036 	struct xfs_buf		*bp)
3037 {
3038 	struct xfs_mount	*mp = bp->b_mount;
3039 	struct xfs_agf		*agf = bp->b_addr;
3040 	xfs_failaddr_t		fa;
3041 	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3042 	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3043 
3044 	if (xfs_has_crc(mp)) {
3045 		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3046 			return __this_address;
3047 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3048 			return __this_address;
3049 	}
3050 
3051 	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3052 		return __this_address;
3053 
3054 	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3055 		return __this_address;
3056 
3057 	/*
3058 	 * Both agf_seqno and agf_length need to validated before anything else
3059 	 * block number related in the AGF or AGFL can be checked.
3060 	 */
3061 	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3062 	if (fa)
3063 		return fa;
3064 
3065 	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3066 		return __this_address;
3067 	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3068 		return __this_address;
3069 	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3070 		return __this_address;
3071 
3072 	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3073 	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3074 		return __this_address;
3075 
3076 	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3077 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3078 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3079 						mp->m_alloc_maxlevels ||
3080 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3081 						mp->m_alloc_maxlevels)
3082 		return __this_address;
3083 
3084 	if (xfs_has_lazysbcount(mp) &&
3085 	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3086 		return __this_address;
3087 
3088 	if (xfs_has_rmapbt(mp)) {
3089 		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3090 			return __this_address;
3091 
3092 		if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3093 		    be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3094 							mp->m_rmap_maxlevels)
3095 			return __this_address;
3096 	}
3097 
3098 	if (xfs_has_reflink(mp)) {
3099 		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3100 			return __this_address;
3101 
3102 		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3103 		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3104 			return __this_address;
3105 	}
3106 
3107 	return NULL;
3108 }
3109 
3110 static void
3111 xfs_agf_read_verify(
3112 	struct xfs_buf	*bp)
3113 {
3114 	struct xfs_mount *mp = bp->b_mount;
3115 	xfs_failaddr_t	fa;
3116 
3117 	if (xfs_has_crc(mp) &&
3118 	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3119 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3120 	else {
3121 		fa = xfs_agf_verify(bp);
3122 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3123 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3124 	}
3125 }
3126 
3127 static void
3128 xfs_agf_write_verify(
3129 	struct xfs_buf	*bp)
3130 {
3131 	struct xfs_mount	*mp = bp->b_mount;
3132 	struct xfs_buf_log_item	*bip = bp->b_log_item;
3133 	struct xfs_agf		*agf = bp->b_addr;
3134 	xfs_failaddr_t		fa;
3135 
3136 	fa = xfs_agf_verify(bp);
3137 	if (fa) {
3138 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3139 		return;
3140 	}
3141 
3142 	if (!xfs_has_crc(mp))
3143 		return;
3144 
3145 	if (bip)
3146 		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3147 
3148 	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3149 }
3150 
3151 const struct xfs_buf_ops xfs_agf_buf_ops = {
3152 	.name = "xfs_agf",
3153 	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3154 	.verify_read = xfs_agf_read_verify,
3155 	.verify_write = xfs_agf_write_verify,
3156 	.verify_struct = xfs_agf_verify,
3157 };
3158 
3159 /*
3160  * Read in the allocation group header (free/alloc section).
3161  */
3162 int
3163 xfs_read_agf(
3164 	struct xfs_perag	*pag,
3165 	struct xfs_trans	*tp,
3166 	int			flags,
3167 	struct xfs_buf		**agfbpp)
3168 {
3169 	struct xfs_mount	*mp = pag->pag_mount;
3170 	int			error;
3171 
3172 	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3173 
3174 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3175 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3176 			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3177 	if (error)
3178 		return error;
3179 
3180 	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3181 	return 0;
3182 }
3183 
3184 /*
3185  * Read in the allocation group header (free/alloc section) and initialise the
3186  * perag structure if necessary. If the caller provides @agfbpp, then return the
3187  * locked buffer to the caller, otherwise free it.
3188  */
3189 int
3190 xfs_alloc_read_agf(
3191 	struct xfs_perag	*pag,
3192 	struct xfs_trans	*tp,
3193 	int			flags,
3194 	struct xfs_buf		**agfbpp)
3195 {
3196 	struct xfs_buf		*agfbp;
3197 	struct xfs_agf		*agf;
3198 	int			error;
3199 	int			allocbt_blks;
3200 
3201 	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3202 
3203 	/* We don't support trylock when freeing. */
3204 	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3205 			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3206 	error = xfs_read_agf(pag, tp,
3207 			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3208 			&agfbp);
3209 	if (error)
3210 		return error;
3211 
3212 	agf = agfbp->b_addr;
3213 	if (!xfs_perag_initialised_agf(pag)) {
3214 		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3215 		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3216 		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3217 		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3218 		pag->pagf_levels[XFS_BTNUM_BNOi] =
3219 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3220 		pag->pagf_levels[XFS_BTNUM_CNTi] =
3221 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3222 		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3223 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3224 		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3225 		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3226 			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3227 		else
3228 			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3229 
3230 		/*
3231 		 * Update the in-core allocbt counter. Filter out the rmapbt
3232 		 * subset of the btreeblks counter because the rmapbt is managed
3233 		 * by perag reservation. Subtract one for the rmapbt root block
3234 		 * because the rmap counter includes it while the btreeblks
3235 		 * counter only tracks non-root blocks.
3236 		 */
3237 		allocbt_blks = pag->pagf_btreeblks;
3238 		if (xfs_has_rmapbt(pag->pag_mount))
3239 			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3240 		if (allocbt_blks > 0)
3241 			atomic64_add(allocbt_blks,
3242 					&pag->pag_mount->m_allocbt_blks);
3243 
3244 		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3245 	}
3246 #ifdef DEBUG
3247 	else if (!xfs_is_shutdown(pag->pag_mount)) {
3248 		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3249 		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3250 		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3251 		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3252 		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3253 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3254 		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3255 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3256 	}
3257 #endif
3258 	if (agfbpp)
3259 		*agfbpp = agfbp;
3260 	else
3261 		xfs_trans_brelse(tp, agfbp);
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Pre-proces allocation arguments to set initial state that we don't require
3267  * callers to set up correctly, as well as bounds check the allocation args
3268  * that are set up.
3269  */
3270 static int
3271 xfs_alloc_vextent_check_args(
3272 	struct xfs_alloc_arg	*args,
3273 	xfs_fsblock_t		target,
3274 	xfs_agnumber_t		*minimum_agno)
3275 {
3276 	struct xfs_mount	*mp = args->mp;
3277 	xfs_agblock_t		agsize;
3278 
3279 	args->fsbno = NULLFSBLOCK;
3280 
3281 	*minimum_agno = 0;
3282 	if (args->tp->t_highest_agno != NULLAGNUMBER)
3283 		*minimum_agno = args->tp->t_highest_agno;
3284 
3285 	/*
3286 	 * Just fix this up, for the case where the last a.g. is shorter
3287 	 * (or there's only one a.g.) and the caller couldn't easily figure
3288 	 * that out (xfs_bmap_alloc).
3289 	 */
3290 	agsize = mp->m_sb.sb_agblocks;
3291 	if (args->maxlen > agsize)
3292 		args->maxlen = agsize;
3293 	if (args->alignment == 0)
3294 		args->alignment = 1;
3295 
3296 	ASSERT(args->minlen > 0);
3297 	ASSERT(args->maxlen > 0);
3298 	ASSERT(args->alignment > 0);
3299 	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3300 
3301 	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3302 	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3303 	ASSERT(args->minlen <= args->maxlen);
3304 	ASSERT(args->minlen <= agsize);
3305 	ASSERT(args->mod < args->prod);
3306 
3307 	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3308 	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3309 	    args->minlen > args->maxlen || args->minlen > agsize ||
3310 	    args->mod >= args->prod) {
3311 		trace_xfs_alloc_vextent_badargs(args);
3312 		return -ENOSPC;
3313 	}
3314 
3315 	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3316 		trace_xfs_alloc_vextent_skip_deadlock(args);
3317 		return -ENOSPC;
3318 	}
3319 	return 0;
3320 
3321 }
3322 
3323 /*
3324  * Prepare an AG for allocation. If the AG is not prepared to accept the
3325  * allocation, return failure.
3326  *
3327  * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3328  * modified to hold their own perag references.
3329  */
3330 static int
3331 xfs_alloc_vextent_prepare_ag(
3332 	struct xfs_alloc_arg	*args,
3333 	uint32_t		alloc_flags)
3334 {
3335 	bool			need_pag = !args->pag;
3336 	int			error;
3337 
3338 	if (need_pag)
3339 		args->pag = xfs_perag_get(args->mp, args->agno);
3340 
3341 	args->agbp = NULL;
3342 	error = xfs_alloc_fix_freelist(args, alloc_flags);
3343 	if (error) {
3344 		trace_xfs_alloc_vextent_nofix(args);
3345 		if (need_pag)
3346 			xfs_perag_put(args->pag);
3347 		args->agbno = NULLAGBLOCK;
3348 		return error;
3349 	}
3350 	if (!args->agbp) {
3351 		/* cannot allocate in this AG at all */
3352 		trace_xfs_alloc_vextent_noagbp(args);
3353 		args->agbno = NULLAGBLOCK;
3354 		return 0;
3355 	}
3356 	args->wasfromfl = 0;
3357 	return 0;
3358 }
3359 
3360 /*
3361  * Post-process allocation results to account for the allocation if it succeed
3362  * and set the allocated block number correctly for the caller.
3363  *
3364  * XXX: we should really be returning ENOSPC for ENOSPC, not
3365  * hiding it behind a "successful" NULLFSBLOCK allocation.
3366  */
3367 static int
3368 xfs_alloc_vextent_finish(
3369 	struct xfs_alloc_arg	*args,
3370 	xfs_agnumber_t		minimum_agno,
3371 	int			alloc_error,
3372 	bool			drop_perag)
3373 {
3374 	struct xfs_mount	*mp = args->mp;
3375 	int			error = 0;
3376 
3377 	/*
3378 	 * We can end up here with a locked AGF. If we failed, the caller is
3379 	 * likely going to try to allocate again with different parameters, and
3380 	 * that can widen the AGs that are searched for free space. If we have
3381 	 * to do BMBT block allocation, we have to do a new allocation.
3382 	 *
3383 	 * Hence leaving this function with the AGF locked opens up potential
3384 	 * ABBA AGF deadlocks because a future allocation attempt in this
3385 	 * transaction may attempt to lock a lower number AGF.
3386 	 *
3387 	 * We can't release the AGF until the transaction is commited, so at
3388 	 * this point we must update the "first allocation" tracker to point at
3389 	 * this AG if the tracker is empty or points to a lower AG. This allows
3390 	 * the next allocation attempt to be modified appropriately to avoid
3391 	 * deadlocks.
3392 	 */
3393 	if (args->agbp &&
3394 	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3395 	     args->agno > minimum_agno))
3396 		args->tp->t_highest_agno = args->agno;
3397 
3398 	/*
3399 	 * If the allocation failed with an error or we had an ENOSPC result,
3400 	 * preserve the returned error whilst also marking the allocation result
3401 	 * as "no extent allocated". This ensures that callers that fail to
3402 	 * capture the error will still treat it as a failed allocation.
3403 	 */
3404 	if (alloc_error || args->agbno == NULLAGBLOCK) {
3405 		args->fsbno = NULLFSBLOCK;
3406 		error = alloc_error;
3407 		goto out_drop_perag;
3408 	}
3409 
3410 	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3411 
3412 	ASSERT(args->len >= args->minlen);
3413 	ASSERT(args->len <= args->maxlen);
3414 	ASSERT(args->agbno % args->alignment == 0);
3415 	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3416 
3417 	/* if not file data, insert new block into the reverse map btree */
3418 	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3419 		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3420 				       args->agbno, args->len, &args->oinfo);
3421 		if (error)
3422 			goto out_drop_perag;
3423 	}
3424 
3425 	if (!args->wasfromfl) {
3426 		error = xfs_alloc_update_counters(args->tp, args->agbp,
3427 						  -((long)(args->len)));
3428 		if (error)
3429 			goto out_drop_perag;
3430 
3431 		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3432 				args->len));
3433 	}
3434 
3435 	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3436 
3437 	XFS_STATS_INC(mp, xs_allocx);
3438 	XFS_STATS_ADD(mp, xs_allocb, args->len);
3439 
3440 	trace_xfs_alloc_vextent_finish(args);
3441 
3442 out_drop_perag:
3443 	if (drop_perag && args->pag) {
3444 		xfs_perag_rele(args->pag);
3445 		args->pag = NULL;
3446 	}
3447 	return error;
3448 }
3449 
3450 /*
3451  * Allocate within a single AG only. This uses a best-fit length algorithm so if
3452  * you need an exact sized allocation without locality constraints, this is the
3453  * fastest way to do it.
3454  *
3455  * Caller is expected to hold a perag reference in args->pag.
3456  */
3457 int
3458 xfs_alloc_vextent_this_ag(
3459 	struct xfs_alloc_arg	*args,
3460 	xfs_agnumber_t		agno)
3461 {
3462 	struct xfs_mount	*mp = args->mp;
3463 	xfs_agnumber_t		minimum_agno;
3464 	uint32_t		alloc_flags = 0;
3465 	int			error;
3466 
3467 	ASSERT(args->pag != NULL);
3468 	ASSERT(args->pag->pag_agno == agno);
3469 
3470 	args->agno = agno;
3471 	args->agbno = 0;
3472 
3473 	trace_xfs_alloc_vextent_this_ag(args);
3474 
3475 	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3476 			&minimum_agno);
3477 	if (error) {
3478 		if (error == -ENOSPC)
3479 			return 0;
3480 		return error;
3481 	}
3482 
3483 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3484 	if (!error && args->agbp)
3485 		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3486 
3487 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3488 }
3489 
3490 /*
3491  * Iterate all AGs trying to allocate an extent starting from @start_ag.
3492  *
3493  * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3494  * allocation attempts in @start_agno have locality information. If we fail to
3495  * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3496  * we attempt to allocation in as there is no locality optimisation possible for
3497  * those allocations.
3498  *
3499  * On return, args->pag may be left referenced if we finish before the "all
3500  * failed" return point. The allocation finish still needs the perag, and
3501  * so the caller will release it once they've finished the allocation.
3502  *
3503  * When we wrap the AG iteration at the end of the filesystem, we have to be
3504  * careful not to wrap into AGs below ones we already have locked in the
3505  * transaction if we are doing a blocking iteration. This will result in an
3506  * out-of-order locking of AGFs and hence can cause deadlocks.
3507  */
3508 static int
3509 xfs_alloc_vextent_iterate_ags(
3510 	struct xfs_alloc_arg	*args,
3511 	xfs_agnumber_t		minimum_agno,
3512 	xfs_agnumber_t		start_agno,
3513 	xfs_agblock_t		target_agbno,
3514 	uint32_t		alloc_flags)
3515 {
3516 	struct xfs_mount	*mp = args->mp;
3517 	xfs_agnumber_t		restart_agno = minimum_agno;
3518 	xfs_agnumber_t		agno;
3519 	int			error = 0;
3520 
3521 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3522 		restart_agno = 0;
3523 restart:
3524 	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3525 			mp->m_sb.sb_agcount, agno, args->pag) {
3526 		args->agno = agno;
3527 		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3528 		if (error)
3529 			break;
3530 		if (!args->agbp) {
3531 			trace_xfs_alloc_vextent_loopfailed(args);
3532 			continue;
3533 		}
3534 
3535 		/*
3536 		 * Allocation is supposed to succeed now, so break out of the
3537 		 * loop regardless of whether we succeed or not.
3538 		 */
3539 		if (args->agno == start_agno && target_agbno) {
3540 			args->agbno = target_agbno;
3541 			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3542 		} else {
3543 			args->agbno = 0;
3544 			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3545 		}
3546 		break;
3547 	}
3548 	if (error) {
3549 		xfs_perag_rele(args->pag);
3550 		args->pag = NULL;
3551 		return error;
3552 	}
3553 	if (args->agbp)
3554 		return 0;
3555 
3556 	/*
3557 	 * We didn't find an AG we can alloation from. If we were given
3558 	 * constraining flags by the caller, drop them and retry the allocation
3559 	 * without any constraints being set.
3560 	 */
3561 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3562 		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3563 		restart_agno = minimum_agno;
3564 		goto restart;
3565 	}
3566 
3567 	ASSERT(args->pag == NULL);
3568 	trace_xfs_alloc_vextent_allfailed(args);
3569 	return 0;
3570 }
3571 
3572 /*
3573  * Iterate from the AGs from the start AG to the end of the filesystem, trying
3574  * to allocate blocks. It starts with a near allocation attempt in the initial
3575  * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3576  * back to zero if allowed by previous allocations in this transaction,
3577  * otherwise will wrap back to the start AG and run a second blocking pass to
3578  * the end of the filesystem.
3579  */
3580 int
3581 xfs_alloc_vextent_start_ag(
3582 	struct xfs_alloc_arg	*args,
3583 	xfs_fsblock_t		target)
3584 {
3585 	struct xfs_mount	*mp = args->mp;
3586 	xfs_agnumber_t		minimum_agno;
3587 	xfs_agnumber_t		start_agno;
3588 	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3589 	bool			bump_rotor = false;
3590 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3591 	int			error;
3592 
3593 	ASSERT(args->pag == NULL);
3594 
3595 	args->agno = NULLAGNUMBER;
3596 	args->agbno = NULLAGBLOCK;
3597 
3598 	trace_xfs_alloc_vextent_start_ag(args);
3599 
3600 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3601 	if (error) {
3602 		if (error == -ENOSPC)
3603 			return 0;
3604 		return error;
3605 	}
3606 
3607 	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3608 	    xfs_is_inode32(mp)) {
3609 		target = XFS_AGB_TO_FSB(mp,
3610 				((mp->m_agfrotor / rotorstep) %
3611 				mp->m_sb.sb_agcount), 0);
3612 		bump_rotor = 1;
3613 	}
3614 
3615 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3616 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3617 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3618 
3619 	if (bump_rotor) {
3620 		if (args->agno == start_agno)
3621 			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3622 				(mp->m_sb.sb_agcount * rotorstep);
3623 		else
3624 			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3625 				(mp->m_sb.sb_agcount * rotorstep);
3626 	}
3627 
3628 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3629 }
3630 
3631 /*
3632  * Iterate from the agno indicated via @target through to the end of the
3633  * filesystem attempting blocking allocation. This does not wrap or try a second
3634  * pass, so will not recurse into AGs lower than indicated by the target.
3635  */
3636 int
3637 xfs_alloc_vextent_first_ag(
3638 	struct xfs_alloc_arg	*args,
3639 	xfs_fsblock_t		target)
3640  {
3641 	struct xfs_mount	*mp = args->mp;
3642 	xfs_agnumber_t		minimum_agno;
3643 	xfs_agnumber_t		start_agno;
3644 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3645 	int			error;
3646 
3647 	ASSERT(args->pag == NULL);
3648 
3649 	args->agno = NULLAGNUMBER;
3650 	args->agbno = NULLAGBLOCK;
3651 
3652 	trace_xfs_alloc_vextent_first_ag(args);
3653 
3654 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3655 	if (error) {
3656 		if (error == -ENOSPC)
3657 			return 0;
3658 		return error;
3659 	}
3660 
3661 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3662 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3663 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3664 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3665 }
3666 
3667 /*
3668  * Allocate at the exact block target or fail. Caller is expected to hold a
3669  * perag reference in args->pag.
3670  */
3671 int
3672 xfs_alloc_vextent_exact_bno(
3673 	struct xfs_alloc_arg	*args,
3674 	xfs_fsblock_t		target)
3675 {
3676 	struct xfs_mount	*mp = args->mp;
3677 	xfs_agnumber_t		minimum_agno;
3678 	int			error;
3679 
3680 	ASSERT(args->pag != NULL);
3681 	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3682 
3683 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3684 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3685 
3686 	trace_xfs_alloc_vextent_exact_bno(args);
3687 
3688 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3689 	if (error) {
3690 		if (error == -ENOSPC)
3691 			return 0;
3692 		return error;
3693 	}
3694 
3695 	error = xfs_alloc_vextent_prepare_ag(args, 0);
3696 	if (!error && args->agbp)
3697 		error = xfs_alloc_ag_vextent_exact(args);
3698 
3699 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3700 }
3701 
3702 /*
3703  * Allocate an extent as close to the target as possible. If there are not
3704  * viable candidates in the AG, then fail the allocation.
3705  *
3706  * Caller may or may not have a per-ag reference in args->pag.
3707  */
3708 int
3709 xfs_alloc_vextent_near_bno(
3710 	struct xfs_alloc_arg	*args,
3711 	xfs_fsblock_t		target)
3712 {
3713 	struct xfs_mount	*mp = args->mp;
3714 	xfs_agnumber_t		minimum_agno;
3715 	bool			needs_perag = args->pag == NULL;
3716 	uint32_t		alloc_flags = 0;
3717 	int			error;
3718 
3719 	if (!needs_perag)
3720 		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3721 
3722 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3723 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3724 
3725 	trace_xfs_alloc_vextent_near_bno(args);
3726 
3727 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3728 	if (error) {
3729 		if (error == -ENOSPC)
3730 			return 0;
3731 		return error;
3732 	}
3733 
3734 	if (needs_perag)
3735 		args->pag = xfs_perag_grab(mp, args->agno);
3736 
3737 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3738 	if (!error && args->agbp)
3739 		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3740 
3741 	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3742 }
3743 
3744 /* Ensure that the freelist is at full capacity. */
3745 int
3746 xfs_free_extent_fix_freelist(
3747 	struct xfs_trans	*tp,
3748 	struct xfs_perag	*pag,
3749 	struct xfs_buf		**agbp)
3750 {
3751 	struct xfs_alloc_arg	args;
3752 	int			error;
3753 
3754 	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3755 	args.tp = tp;
3756 	args.mp = tp->t_mountp;
3757 	args.agno = pag->pag_agno;
3758 	args.pag = pag;
3759 
3760 	/*
3761 	 * validate that the block number is legal - the enables us to detect
3762 	 * and handle a silent filesystem corruption rather than crashing.
3763 	 */
3764 	if (args.agno >= args.mp->m_sb.sb_agcount)
3765 		return -EFSCORRUPTED;
3766 
3767 	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3768 	if (error)
3769 		return error;
3770 
3771 	*agbp = args.agbp;
3772 	return 0;
3773 }
3774 
3775 /*
3776  * Free an extent.
3777  * Just break up the extent address and hand off to xfs_free_ag_extent
3778  * after fixing up the freelist.
3779  */
3780 int
3781 __xfs_free_extent(
3782 	struct xfs_trans		*tp,
3783 	struct xfs_perag		*pag,
3784 	xfs_agblock_t			agbno,
3785 	xfs_extlen_t			len,
3786 	const struct xfs_owner_info	*oinfo,
3787 	enum xfs_ag_resv_type		type,
3788 	bool				skip_discard)
3789 {
3790 	struct xfs_mount		*mp = tp->t_mountp;
3791 	struct xfs_buf			*agbp;
3792 	struct xfs_agf			*agf;
3793 	int				error;
3794 	unsigned int			busy_flags = 0;
3795 
3796 	ASSERT(len != 0);
3797 	ASSERT(type != XFS_AG_RESV_AGFL);
3798 
3799 	if (XFS_TEST_ERROR(false, mp,
3800 			XFS_ERRTAG_FREE_EXTENT))
3801 		return -EIO;
3802 
3803 	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3804 	if (error)
3805 		return error;
3806 	agf = agbp->b_addr;
3807 
3808 	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3809 		error = -EFSCORRUPTED;
3810 		goto err_release;
3811 	}
3812 
3813 	/* validate the extent size is legal now we have the agf locked */
3814 	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3815 		error = -EFSCORRUPTED;
3816 		goto err_release;
3817 	}
3818 
3819 	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3820 			type);
3821 	if (error)
3822 		goto err_release;
3823 
3824 	if (skip_discard)
3825 		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3826 	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3827 	return 0;
3828 
3829 err_release:
3830 	xfs_trans_brelse(tp, agbp);
3831 	return error;
3832 }
3833 
3834 struct xfs_alloc_query_range_info {
3835 	xfs_alloc_query_range_fn	fn;
3836 	void				*priv;
3837 };
3838 
3839 /* Format btree record and pass to our callback. */
3840 STATIC int
3841 xfs_alloc_query_range_helper(
3842 	struct xfs_btree_cur		*cur,
3843 	const union xfs_btree_rec	*rec,
3844 	void				*priv)
3845 {
3846 	struct xfs_alloc_query_range_info	*query = priv;
3847 	struct xfs_alloc_rec_incore		irec;
3848 	xfs_failaddr_t				fa;
3849 
3850 	xfs_alloc_btrec_to_irec(rec, &irec);
3851 	fa = xfs_alloc_check_irec(cur, &irec);
3852 	if (fa)
3853 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3854 
3855 	return query->fn(cur, &irec, query->priv);
3856 }
3857 
3858 /* Find all free space within a given range of blocks. */
3859 int
3860 xfs_alloc_query_range(
3861 	struct xfs_btree_cur			*cur,
3862 	const struct xfs_alloc_rec_incore	*low_rec,
3863 	const struct xfs_alloc_rec_incore	*high_rec,
3864 	xfs_alloc_query_range_fn		fn,
3865 	void					*priv)
3866 {
3867 	union xfs_btree_irec			low_brec = { .a = *low_rec };
3868 	union xfs_btree_irec			high_brec = { .a = *high_rec };
3869 	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
3870 
3871 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3872 	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3873 			xfs_alloc_query_range_helper, &query);
3874 }
3875 
3876 /* Find all free space records. */
3877 int
3878 xfs_alloc_query_all(
3879 	struct xfs_btree_cur			*cur,
3880 	xfs_alloc_query_range_fn		fn,
3881 	void					*priv)
3882 {
3883 	struct xfs_alloc_query_range_info	query;
3884 
3885 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3886 	query.priv = priv;
3887 	query.fn = fn;
3888 	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3889 }
3890 
3891 /*
3892  * Scan part of the keyspace of the free space and tell us if the area has no
3893  * records, is fully mapped by records, or is partially filled.
3894  */
3895 int
3896 xfs_alloc_has_records(
3897 	struct xfs_btree_cur	*cur,
3898 	xfs_agblock_t		bno,
3899 	xfs_extlen_t		len,
3900 	enum xbtree_recpacking	*outcome)
3901 {
3902 	union xfs_btree_irec	low;
3903 	union xfs_btree_irec	high;
3904 
3905 	memset(&low, 0, sizeof(low));
3906 	low.a.ar_startblock = bno;
3907 	memset(&high, 0xFF, sizeof(high));
3908 	high.a.ar_startblock = bno + len - 1;
3909 
3910 	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
3911 }
3912 
3913 /*
3914  * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3915  * error code or XFS_ITER_*.
3916  */
3917 int
3918 xfs_agfl_walk(
3919 	struct xfs_mount	*mp,
3920 	struct xfs_agf		*agf,
3921 	struct xfs_buf		*agflbp,
3922 	xfs_agfl_walk_fn	walk_fn,
3923 	void			*priv)
3924 {
3925 	__be32			*agfl_bno;
3926 	unsigned int		i;
3927 	int			error;
3928 
3929 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3930 	i = be32_to_cpu(agf->agf_flfirst);
3931 
3932 	/* Nothing to walk in an empty AGFL. */
3933 	if (agf->agf_flcount == cpu_to_be32(0))
3934 		return 0;
3935 
3936 	/* Otherwise, walk from first to last, wrapping as needed. */
3937 	for (;;) {
3938 		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3939 		if (error)
3940 			return error;
3941 		if (i == be32_to_cpu(agf->agf_fllast))
3942 			break;
3943 		if (++i == xfs_agfl_size(mp))
3944 			i = 0;
3945 	}
3946 
3947 	return 0;
3948 }
3949 
3950 int __init
3951 xfs_extfree_intent_init_cache(void)
3952 {
3953 	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3954 			sizeof(struct xfs_extent_free_item),
3955 			0, 0, NULL);
3956 
3957 	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3958 }
3959 
3960 void
3961 xfs_extfree_intent_destroy_cache(void)
3962 {
3963 	kmem_cache_destroy(xfs_extfree_item_cache);
3964 	xfs_extfree_item_cache = NULL;
3965 }
3966