xref: /openbmc/linux/fs/xfs/libxfs/xfs_alloc.c (revision 86e281fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29 
30 struct kmem_cache	*xfs_extfree_item_cache;
31 
32 struct workqueue_struct *xfs_alloc_wq;
33 
34 #define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35 
36 #define	XFSA_FIXUP_BNO_OK	1
37 #define	XFSA_FIXUP_CNT_OK	2
38 
39 /*
40  * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
41  * the beginning of the block for a proper header with the location information
42  * and CRC.
43  */
44 unsigned int
45 xfs_agfl_size(
46 	struct xfs_mount	*mp)
47 {
48 	unsigned int		size = mp->m_sb.sb_sectsize;
49 
50 	if (xfs_has_crc(mp))
51 		size -= sizeof(struct xfs_agfl);
52 
53 	return size / sizeof(xfs_agblock_t);
54 }
55 
56 unsigned int
57 xfs_refc_block(
58 	struct xfs_mount	*mp)
59 {
60 	if (xfs_has_rmapbt(mp))
61 		return XFS_RMAP_BLOCK(mp) + 1;
62 	if (xfs_has_finobt(mp))
63 		return XFS_FIBT_BLOCK(mp) + 1;
64 	return XFS_IBT_BLOCK(mp) + 1;
65 }
66 
67 xfs_extlen_t
68 xfs_prealloc_blocks(
69 	struct xfs_mount	*mp)
70 {
71 	if (xfs_has_reflink(mp))
72 		return xfs_refc_block(mp) + 1;
73 	if (xfs_has_rmapbt(mp))
74 		return XFS_RMAP_BLOCK(mp) + 1;
75 	if (xfs_has_finobt(mp))
76 		return XFS_FIBT_BLOCK(mp) + 1;
77 	return XFS_IBT_BLOCK(mp) + 1;
78 }
79 
80 /*
81  * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82  * guarantee that we can refill the AGFL prior to allocating space in a nearly
83  * full AG.  Although the space described by the free space btrees, the
84  * blocks used by the freesp btrees themselves, and the blocks owned by the
85  * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86  * free space in the AG drop so low that the free space btrees cannot refill an
87  * empty AGFL up to the minimum level.  Rather than grind through empty AGs
88  * until the fs goes down, we subtract this many AG blocks from the incore
89  * fdblocks to ensure user allocation does not overcommit the space the
90  * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
91  * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92  */
93 #define XFS_ALLOCBT_AGFL_RESERVE	4
94 
95 /*
96  * Compute the number of blocks that we set aside to guarantee the ability to
97  * refill the AGFL and handle a full bmap btree split.
98  *
99  * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100  * AGF buffer (PV 947395), we place constraints on the relationship among
101  * actual allocations for data blocks, freelist blocks, and potential file data
102  * bmap btree blocks. However, these restrictions may result in no actual space
103  * allocated for a delayed extent, for example, a data block in a certain AG is
104  * allocated but there is no additional block for the additional bmap btree
105  * block due to a split of the bmap btree of the file. The result of this may
106  * lead to an infinite loop when the file gets flushed to disk and all delayed
107  * extents need to be actually allocated. To get around this, we explicitly set
108  * aside a few blocks which will not be reserved in delayed allocation.
109  *
110  * For each AG, we need to reserve enough blocks to replenish a totally empty
111  * AGFL and 4 more to handle a potential split of the file's bmap btree.
112  */
113 unsigned int
114 xfs_alloc_set_aside(
115 	struct xfs_mount	*mp)
116 {
117 	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119 
120 /*
121  * When deciding how much space to allocate out of an AG, we limit the
122  * allocation maximum size to the size the AG. However, we cannot use all the
123  * blocks in the AG - some are permanently used by metadata. These
124  * blocks are generally:
125  *	- the AG superblock, AGF, AGI and AGFL
126  *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
127  *	  the AGI free inode and rmap btree root blocks.
128  *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
129  *	- the rmapbt root block
130  *
131  * The AG headers are sector sized, so the amount of space they take up is
132  * dependent on filesystem geometry. The others are all single blocks.
133  */
134 unsigned int
135 xfs_alloc_ag_max_usable(
136 	struct xfs_mount	*mp)
137 {
138 	unsigned int		blocks;
139 
140 	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 	blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 	blocks += 3;			/* AGF, AGI btree root blocks */
143 	if (xfs_has_finobt(mp))
144 		blocks++;		/* finobt root block */
145 	if (xfs_has_rmapbt(mp))
146 		blocks++;		/* rmap root block */
147 	if (xfs_has_reflink(mp))
148 		blocks++;		/* refcount root block */
149 
150 	return mp->m_sb.sb_agblocks - blocks;
151 }
152 
153 /*
154  * Lookup the record equal to [bno, len] in the btree given by cur.
155  */
156 STATIC int				/* error */
157 xfs_alloc_lookup_eq(
158 	struct xfs_btree_cur	*cur,	/* btree cursor */
159 	xfs_agblock_t		bno,	/* starting block of extent */
160 	xfs_extlen_t		len,	/* length of extent */
161 	int			*stat)	/* success/failure */
162 {
163 	int			error;
164 
165 	cur->bc_rec.a.ar_startblock = bno;
166 	cur->bc_rec.a.ar_blockcount = len;
167 	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 	cur->bc_ag.abt.active = (*stat == 1);
169 	return error;
170 }
171 
172 /*
173  * Lookup the first record greater than or equal to [bno, len]
174  * in the btree given by cur.
175  */
176 int				/* error */
177 xfs_alloc_lookup_ge(
178 	struct xfs_btree_cur	*cur,	/* btree cursor */
179 	xfs_agblock_t		bno,	/* starting block of extent */
180 	xfs_extlen_t		len,	/* length of extent */
181 	int			*stat)	/* success/failure */
182 {
183 	int			error;
184 
185 	cur->bc_rec.a.ar_startblock = bno;
186 	cur->bc_rec.a.ar_blockcount = len;
187 	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 	cur->bc_ag.abt.active = (*stat == 1);
189 	return error;
190 }
191 
192 /*
193  * Lookup the first record less than or equal to [bno, len]
194  * in the btree given by cur.
195  */
196 int					/* error */
197 xfs_alloc_lookup_le(
198 	struct xfs_btree_cur	*cur,	/* btree cursor */
199 	xfs_agblock_t		bno,	/* starting block of extent */
200 	xfs_extlen_t		len,	/* length of extent */
201 	int			*stat)	/* success/failure */
202 {
203 	int			error;
204 	cur->bc_rec.a.ar_startblock = bno;
205 	cur->bc_rec.a.ar_blockcount = len;
206 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 	cur->bc_ag.abt.active = (*stat == 1);
208 	return error;
209 }
210 
211 static inline bool
212 xfs_alloc_cur_active(
213 	struct xfs_btree_cur	*cur)
214 {
215 	return cur && cur->bc_ag.abt.active;
216 }
217 
218 /*
219  * Update the record referred to by cur to the value given
220  * by [bno, len].
221  * This either works (return 0) or gets an EFSCORRUPTED error.
222  */
223 STATIC int				/* error */
224 xfs_alloc_update(
225 	struct xfs_btree_cur	*cur,	/* btree cursor */
226 	xfs_agblock_t		bno,	/* starting block of extent */
227 	xfs_extlen_t		len)	/* length of extent */
228 {
229 	union xfs_btree_rec	rec;
230 
231 	rec.alloc.ar_startblock = cpu_to_be32(bno);
232 	rec.alloc.ar_blockcount = cpu_to_be32(len);
233 	return xfs_btree_update(cur, &rec);
234 }
235 
236 /* Convert the ondisk btree record to its incore representation. */
237 void
238 xfs_alloc_btrec_to_irec(
239 	const union xfs_btree_rec	*rec,
240 	struct xfs_alloc_rec_incore	*irec)
241 {
242 	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
243 	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
244 }
245 
246 /* Simple checks for free space records. */
247 xfs_failaddr_t
248 xfs_alloc_check_irec(
249 	struct xfs_btree_cur		*cur,
250 	const struct xfs_alloc_rec_incore *irec)
251 {
252 	struct xfs_perag		*pag = cur->bc_ag.pag;
253 
254 	if (irec->ar_blockcount == 0)
255 		return __this_address;
256 
257 	/* check for valid extent range, including overflow */
258 	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
259 		return __this_address;
260 
261 	return NULL;
262 }
263 
264 static inline int
265 xfs_alloc_complain_bad_rec(
266 	struct xfs_btree_cur		*cur,
267 	xfs_failaddr_t			fa,
268 	const struct xfs_alloc_rec_incore *irec)
269 {
270 	struct xfs_mount		*mp = cur->bc_mp;
271 
272 	xfs_warn(mp,
273 		"%s Freespace BTree record corruption in AG %d detected at %pS!",
274 		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
275 		cur->bc_ag.pag->pag_agno, fa);
276 	xfs_warn(mp,
277 		"start block 0x%x block count 0x%x", irec->ar_startblock,
278 		irec->ar_blockcount);
279 	return -EFSCORRUPTED;
280 }
281 
282 /*
283  * Get the data from the pointed-to record.
284  */
285 int					/* error */
286 xfs_alloc_get_rec(
287 	struct xfs_btree_cur	*cur,	/* btree cursor */
288 	xfs_agblock_t		*bno,	/* output: starting block of extent */
289 	xfs_extlen_t		*len,	/* output: length of extent */
290 	int			*stat)	/* output: success/failure */
291 {
292 	struct xfs_alloc_rec_incore irec;
293 	union xfs_btree_rec	*rec;
294 	xfs_failaddr_t		fa;
295 	int			error;
296 
297 	error = xfs_btree_get_rec(cur, &rec, stat);
298 	if (error || !(*stat))
299 		return error;
300 
301 	xfs_alloc_btrec_to_irec(rec, &irec);
302 	fa = xfs_alloc_check_irec(cur, &irec);
303 	if (fa)
304 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
305 
306 	*bno = irec.ar_startblock;
307 	*len = irec.ar_blockcount;
308 	return 0;
309 }
310 
311 /*
312  * Compute aligned version of the found extent.
313  * Takes alignment and min length into account.
314  */
315 STATIC bool
316 xfs_alloc_compute_aligned(
317 	xfs_alloc_arg_t	*args,		/* allocation argument structure */
318 	xfs_agblock_t	foundbno,	/* starting block in found extent */
319 	xfs_extlen_t	foundlen,	/* length in found extent */
320 	xfs_agblock_t	*resbno,	/* result block number */
321 	xfs_extlen_t	*reslen,	/* result length */
322 	unsigned	*busy_gen)
323 {
324 	xfs_agblock_t	bno = foundbno;
325 	xfs_extlen_t	len = foundlen;
326 	xfs_extlen_t	diff;
327 	bool		busy;
328 
329 	/* Trim busy sections out of found extent */
330 	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
331 
332 	/*
333 	 * If we have a largish extent that happens to start before min_agbno,
334 	 * see if we can shift it into range...
335 	 */
336 	if (bno < args->min_agbno && bno + len > args->min_agbno) {
337 		diff = args->min_agbno - bno;
338 		if (len > diff) {
339 			bno += diff;
340 			len -= diff;
341 		}
342 	}
343 
344 	if (args->alignment > 1 && len >= args->minlen) {
345 		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
346 
347 		diff = aligned_bno - bno;
348 
349 		*resbno = aligned_bno;
350 		*reslen = diff >= len ? 0 : len - diff;
351 	} else {
352 		*resbno = bno;
353 		*reslen = len;
354 	}
355 
356 	return busy;
357 }
358 
359 /*
360  * Compute best start block and diff for "near" allocations.
361  * freelen >= wantlen already checked by caller.
362  */
363 STATIC xfs_extlen_t			/* difference value (absolute) */
364 xfs_alloc_compute_diff(
365 	xfs_agblock_t	wantbno,	/* target starting block */
366 	xfs_extlen_t	wantlen,	/* target length */
367 	xfs_extlen_t	alignment,	/* target alignment */
368 	int		datatype,	/* are we allocating data? */
369 	xfs_agblock_t	freebno,	/* freespace's starting block */
370 	xfs_extlen_t	freelen,	/* freespace's length */
371 	xfs_agblock_t	*newbnop)	/* result: best start block from free */
372 {
373 	xfs_agblock_t	freeend;	/* end of freespace extent */
374 	xfs_agblock_t	newbno1;	/* return block number */
375 	xfs_agblock_t	newbno2;	/* other new block number */
376 	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
377 	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
378 	xfs_agblock_t	wantend;	/* end of target extent */
379 	bool		userdata = datatype & XFS_ALLOC_USERDATA;
380 
381 	ASSERT(freelen >= wantlen);
382 	freeend = freebno + freelen;
383 	wantend = wantbno + wantlen;
384 	/*
385 	 * We want to allocate from the start of a free extent if it is past
386 	 * the desired block or if we are allocating user data and the free
387 	 * extent is before desired block. The second case is there to allow
388 	 * for contiguous allocation from the remaining free space if the file
389 	 * grows in the short term.
390 	 */
391 	if (freebno >= wantbno || (userdata && freeend < wantend)) {
392 		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
393 			newbno1 = NULLAGBLOCK;
394 	} else if (freeend >= wantend && alignment > 1) {
395 		newbno1 = roundup(wantbno, alignment);
396 		newbno2 = newbno1 - alignment;
397 		if (newbno1 >= freeend)
398 			newbno1 = NULLAGBLOCK;
399 		else
400 			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
401 		if (newbno2 < freebno)
402 			newbno2 = NULLAGBLOCK;
403 		else
404 			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
405 		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
406 			if (newlen1 < newlen2 ||
407 			    (newlen1 == newlen2 &&
408 			     XFS_ABSDIFF(newbno1, wantbno) >
409 			     XFS_ABSDIFF(newbno2, wantbno)))
410 				newbno1 = newbno2;
411 		} else if (newbno2 != NULLAGBLOCK)
412 			newbno1 = newbno2;
413 	} else if (freeend >= wantend) {
414 		newbno1 = wantbno;
415 	} else if (alignment > 1) {
416 		newbno1 = roundup(freeend - wantlen, alignment);
417 		if (newbno1 > freeend - wantlen &&
418 		    newbno1 - alignment >= freebno)
419 			newbno1 -= alignment;
420 		else if (newbno1 >= freeend)
421 			newbno1 = NULLAGBLOCK;
422 	} else
423 		newbno1 = freeend - wantlen;
424 	*newbnop = newbno1;
425 	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
426 }
427 
428 /*
429  * Fix up the length, based on mod and prod.
430  * len should be k * prod + mod for some k.
431  * If len is too small it is returned unchanged.
432  * If len hits maxlen it is left alone.
433  */
434 STATIC void
435 xfs_alloc_fix_len(
436 	xfs_alloc_arg_t	*args)		/* allocation argument structure */
437 {
438 	xfs_extlen_t	k;
439 	xfs_extlen_t	rlen;
440 
441 	ASSERT(args->mod < args->prod);
442 	rlen = args->len;
443 	ASSERT(rlen >= args->minlen);
444 	ASSERT(rlen <= args->maxlen);
445 	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
446 	    (args->mod == 0 && rlen < args->prod))
447 		return;
448 	k = rlen % args->prod;
449 	if (k == args->mod)
450 		return;
451 	if (k > args->mod)
452 		rlen = rlen - (k - args->mod);
453 	else
454 		rlen = rlen - args->prod + (args->mod - k);
455 	/* casts to (int) catch length underflows */
456 	if ((int)rlen < (int)args->minlen)
457 		return;
458 	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
459 	ASSERT(rlen % args->prod == args->mod);
460 	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
461 		rlen + args->minleft);
462 	args->len = rlen;
463 }
464 
465 /*
466  * Update the two btrees, logically removing from freespace the extent
467  * starting at rbno, rlen blocks.  The extent is contained within the
468  * actual (current) free extent fbno for flen blocks.
469  * Flags are passed in indicating whether the cursors are set to the
470  * relevant records.
471  */
472 STATIC int				/* error code */
473 xfs_alloc_fixup_trees(
474 	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
475 	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
476 	xfs_agblock_t	fbno,		/* starting block of free extent */
477 	xfs_extlen_t	flen,		/* length of free extent */
478 	xfs_agblock_t	rbno,		/* starting block of returned extent */
479 	xfs_extlen_t	rlen,		/* length of returned extent */
480 	int		flags)		/* flags, XFSA_FIXUP_... */
481 {
482 	int		error;		/* error code */
483 	int		i;		/* operation results */
484 	xfs_agblock_t	nfbno1;		/* first new free startblock */
485 	xfs_agblock_t	nfbno2;		/* second new free startblock */
486 	xfs_extlen_t	nflen1=0;	/* first new free length */
487 	xfs_extlen_t	nflen2=0;	/* second new free length */
488 	struct xfs_mount *mp;
489 
490 	mp = cnt_cur->bc_mp;
491 
492 	/*
493 	 * Look up the record in the by-size tree if necessary.
494 	 */
495 	if (flags & XFSA_FIXUP_CNT_OK) {
496 #ifdef DEBUG
497 		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
498 			return error;
499 		if (XFS_IS_CORRUPT(mp,
500 				   i != 1 ||
501 				   nfbno1 != fbno ||
502 				   nflen1 != flen))
503 			return -EFSCORRUPTED;
504 #endif
505 	} else {
506 		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
507 			return error;
508 		if (XFS_IS_CORRUPT(mp, i != 1))
509 			return -EFSCORRUPTED;
510 	}
511 	/*
512 	 * Look up the record in the by-block tree if necessary.
513 	 */
514 	if (flags & XFSA_FIXUP_BNO_OK) {
515 #ifdef DEBUG
516 		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
517 			return error;
518 		if (XFS_IS_CORRUPT(mp,
519 				   i != 1 ||
520 				   nfbno1 != fbno ||
521 				   nflen1 != flen))
522 			return -EFSCORRUPTED;
523 #endif
524 	} else {
525 		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
526 			return error;
527 		if (XFS_IS_CORRUPT(mp, i != 1))
528 			return -EFSCORRUPTED;
529 	}
530 
531 #ifdef DEBUG
532 	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
533 		struct xfs_btree_block	*bnoblock;
534 		struct xfs_btree_block	*cntblock;
535 
536 		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
537 		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
538 
539 		if (XFS_IS_CORRUPT(mp,
540 				   bnoblock->bb_numrecs !=
541 				   cntblock->bb_numrecs))
542 			return -EFSCORRUPTED;
543 	}
544 #endif
545 
546 	/*
547 	 * Deal with all four cases: the allocated record is contained
548 	 * within the freespace record, so we can have new freespace
549 	 * at either (or both) end, or no freespace remaining.
550 	 */
551 	if (rbno == fbno && rlen == flen)
552 		nfbno1 = nfbno2 = NULLAGBLOCK;
553 	else if (rbno == fbno) {
554 		nfbno1 = rbno + rlen;
555 		nflen1 = flen - rlen;
556 		nfbno2 = NULLAGBLOCK;
557 	} else if (rbno + rlen == fbno + flen) {
558 		nfbno1 = fbno;
559 		nflen1 = flen - rlen;
560 		nfbno2 = NULLAGBLOCK;
561 	} else {
562 		nfbno1 = fbno;
563 		nflen1 = rbno - fbno;
564 		nfbno2 = rbno + rlen;
565 		nflen2 = (fbno + flen) - nfbno2;
566 	}
567 	/*
568 	 * Delete the entry from the by-size btree.
569 	 */
570 	if ((error = xfs_btree_delete(cnt_cur, &i)))
571 		return error;
572 	if (XFS_IS_CORRUPT(mp, i != 1))
573 		return -EFSCORRUPTED;
574 	/*
575 	 * Add new by-size btree entry(s).
576 	 */
577 	if (nfbno1 != NULLAGBLOCK) {
578 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
579 			return error;
580 		if (XFS_IS_CORRUPT(mp, i != 0))
581 			return -EFSCORRUPTED;
582 		if ((error = xfs_btree_insert(cnt_cur, &i)))
583 			return error;
584 		if (XFS_IS_CORRUPT(mp, i != 1))
585 			return -EFSCORRUPTED;
586 	}
587 	if (nfbno2 != NULLAGBLOCK) {
588 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
589 			return error;
590 		if (XFS_IS_CORRUPT(mp, i != 0))
591 			return -EFSCORRUPTED;
592 		if ((error = xfs_btree_insert(cnt_cur, &i)))
593 			return error;
594 		if (XFS_IS_CORRUPT(mp, i != 1))
595 			return -EFSCORRUPTED;
596 	}
597 	/*
598 	 * Fix up the by-block btree entry(s).
599 	 */
600 	if (nfbno1 == NULLAGBLOCK) {
601 		/*
602 		 * No remaining freespace, just delete the by-block tree entry.
603 		 */
604 		if ((error = xfs_btree_delete(bno_cur, &i)))
605 			return error;
606 		if (XFS_IS_CORRUPT(mp, i != 1))
607 			return -EFSCORRUPTED;
608 	} else {
609 		/*
610 		 * Update the by-block entry to start later|be shorter.
611 		 */
612 		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
613 			return error;
614 	}
615 	if (nfbno2 != NULLAGBLOCK) {
616 		/*
617 		 * 2 resulting free entries, need to add one.
618 		 */
619 		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
620 			return error;
621 		if (XFS_IS_CORRUPT(mp, i != 0))
622 			return -EFSCORRUPTED;
623 		if ((error = xfs_btree_insert(bno_cur, &i)))
624 			return error;
625 		if (XFS_IS_CORRUPT(mp, i != 1))
626 			return -EFSCORRUPTED;
627 	}
628 	return 0;
629 }
630 
631 /*
632  * We do not verify the AGFL contents against AGF-based index counters here,
633  * even though we may have access to the perag that contains shadow copies. We
634  * don't know if the AGF based counters have been checked, and if they have they
635  * still may be inconsistent because they haven't yet been reset on the first
636  * allocation after the AGF has been read in.
637  *
638  * This means we can only check that all agfl entries contain valid or null
639  * values because we can't reliably determine the active range to exclude
640  * NULLAGBNO as a valid value.
641  *
642  * However, we can't even do that for v4 format filesystems because there are
643  * old versions of mkfs out there that does not initialise the AGFL to known,
644  * verifiable values. HEnce we can't tell the difference between a AGFL block
645  * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
646  *
647  * As a result, we can only fully validate AGFL block numbers when we pull them
648  * from the freelist in xfs_alloc_get_freelist().
649  */
650 static xfs_failaddr_t
651 xfs_agfl_verify(
652 	struct xfs_buf	*bp)
653 {
654 	struct xfs_mount *mp = bp->b_mount;
655 	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
656 	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
657 	int		i;
658 
659 	if (!xfs_has_crc(mp))
660 		return NULL;
661 
662 	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
663 		return __this_address;
664 	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
665 		return __this_address;
666 	/*
667 	 * during growfs operations, the perag is not fully initialised,
668 	 * so we can't use it for any useful checking. growfs ensures we can't
669 	 * use it by using uncached buffers that don't have the perag attached
670 	 * so we can detect and avoid this problem.
671 	 */
672 	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
673 		return __this_address;
674 
675 	for (i = 0; i < xfs_agfl_size(mp); i++) {
676 		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
677 		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
678 			return __this_address;
679 	}
680 
681 	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
682 		return __this_address;
683 	return NULL;
684 }
685 
686 static void
687 xfs_agfl_read_verify(
688 	struct xfs_buf	*bp)
689 {
690 	struct xfs_mount *mp = bp->b_mount;
691 	xfs_failaddr_t	fa;
692 
693 	/*
694 	 * There is no verification of non-crc AGFLs because mkfs does not
695 	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
696 	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
697 	 * can't verify just those entries are valid.
698 	 */
699 	if (!xfs_has_crc(mp))
700 		return;
701 
702 	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
703 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
704 	else {
705 		fa = xfs_agfl_verify(bp);
706 		if (fa)
707 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
708 	}
709 }
710 
711 static void
712 xfs_agfl_write_verify(
713 	struct xfs_buf	*bp)
714 {
715 	struct xfs_mount	*mp = bp->b_mount;
716 	struct xfs_buf_log_item	*bip = bp->b_log_item;
717 	xfs_failaddr_t		fa;
718 
719 	/* no verification of non-crc AGFLs */
720 	if (!xfs_has_crc(mp))
721 		return;
722 
723 	fa = xfs_agfl_verify(bp);
724 	if (fa) {
725 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
726 		return;
727 	}
728 
729 	if (bip)
730 		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
731 
732 	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
733 }
734 
735 const struct xfs_buf_ops xfs_agfl_buf_ops = {
736 	.name = "xfs_agfl",
737 	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
738 	.verify_read = xfs_agfl_read_verify,
739 	.verify_write = xfs_agfl_write_verify,
740 	.verify_struct = xfs_agfl_verify,
741 };
742 
743 /*
744  * Read in the allocation group free block array.
745  */
746 int
747 xfs_alloc_read_agfl(
748 	struct xfs_perag	*pag,
749 	struct xfs_trans	*tp,
750 	struct xfs_buf		**bpp)
751 {
752 	struct xfs_mount	*mp = pag->pag_mount;
753 	struct xfs_buf		*bp;
754 	int			error;
755 
756 	error = xfs_trans_read_buf(
757 			mp, tp, mp->m_ddev_targp,
758 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
759 			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
760 	if (error)
761 		return error;
762 	xfs_buf_set_ref(bp, XFS_AGFL_REF);
763 	*bpp = bp;
764 	return 0;
765 }
766 
767 STATIC int
768 xfs_alloc_update_counters(
769 	struct xfs_trans	*tp,
770 	struct xfs_buf		*agbp,
771 	long			len)
772 {
773 	struct xfs_agf		*agf = agbp->b_addr;
774 
775 	agbp->b_pag->pagf_freeblks += len;
776 	be32_add_cpu(&agf->agf_freeblks, len);
777 
778 	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
779 		     be32_to_cpu(agf->agf_length))) {
780 		xfs_buf_mark_corrupt(agbp);
781 		return -EFSCORRUPTED;
782 	}
783 
784 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
785 	return 0;
786 }
787 
788 /*
789  * Block allocation algorithm and data structures.
790  */
791 struct xfs_alloc_cur {
792 	struct xfs_btree_cur		*cnt;	/* btree cursors */
793 	struct xfs_btree_cur		*bnolt;
794 	struct xfs_btree_cur		*bnogt;
795 	xfs_extlen_t			cur_len;/* current search length */
796 	xfs_agblock_t			rec_bno;/* extent startblock */
797 	xfs_extlen_t			rec_len;/* extent length */
798 	xfs_agblock_t			bno;	/* alloc bno */
799 	xfs_extlen_t			len;	/* alloc len */
800 	xfs_extlen_t			diff;	/* diff from search bno */
801 	unsigned int			busy_gen;/* busy state */
802 	bool				busy;
803 };
804 
805 /*
806  * Set up cursors, etc. in the extent allocation cursor. This function can be
807  * called multiple times to reset an initialized structure without having to
808  * reallocate cursors.
809  */
810 static int
811 xfs_alloc_cur_setup(
812 	struct xfs_alloc_arg	*args,
813 	struct xfs_alloc_cur	*acur)
814 {
815 	int			error;
816 	int			i;
817 
818 	acur->cur_len = args->maxlen;
819 	acur->rec_bno = 0;
820 	acur->rec_len = 0;
821 	acur->bno = 0;
822 	acur->len = 0;
823 	acur->diff = -1;
824 	acur->busy = false;
825 	acur->busy_gen = 0;
826 
827 	/*
828 	 * Perform an initial cntbt lookup to check for availability of maxlen
829 	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
830 	 * attempt a small allocation.
831 	 */
832 	if (!acur->cnt)
833 		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
834 					args->agbp, args->pag, XFS_BTNUM_CNT);
835 	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
836 	if (error)
837 		return error;
838 
839 	/*
840 	 * Allocate the bnobt left and right search cursors.
841 	 */
842 	if (!acur->bnolt)
843 		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
844 					args->agbp, args->pag, XFS_BTNUM_BNO);
845 	if (!acur->bnogt)
846 		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
847 					args->agbp, args->pag, XFS_BTNUM_BNO);
848 	return i == 1 ? 0 : -ENOSPC;
849 }
850 
851 static void
852 xfs_alloc_cur_close(
853 	struct xfs_alloc_cur	*acur,
854 	bool			error)
855 {
856 	int			cur_error = XFS_BTREE_NOERROR;
857 
858 	if (error)
859 		cur_error = XFS_BTREE_ERROR;
860 
861 	if (acur->cnt)
862 		xfs_btree_del_cursor(acur->cnt, cur_error);
863 	if (acur->bnolt)
864 		xfs_btree_del_cursor(acur->bnolt, cur_error);
865 	if (acur->bnogt)
866 		xfs_btree_del_cursor(acur->bnogt, cur_error);
867 	acur->cnt = acur->bnolt = acur->bnogt = NULL;
868 }
869 
870 /*
871  * Check an extent for allocation and track the best available candidate in the
872  * allocation structure. The cursor is deactivated if it has entered an out of
873  * range state based on allocation arguments. Optionally return the extent
874  * extent geometry and allocation status if requested by the caller.
875  */
876 static int
877 xfs_alloc_cur_check(
878 	struct xfs_alloc_arg	*args,
879 	struct xfs_alloc_cur	*acur,
880 	struct xfs_btree_cur	*cur,
881 	int			*new)
882 {
883 	int			error, i;
884 	xfs_agblock_t		bno, bnoa, bnew;
885 	xfs_extlen_t		len, lena, diff = -1;
886 	bool			busy;
887 	unsigned		busy_gen = 0;
888 	bool			deactivate = false;
889 	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
890 
891 	*new = 0;
892 
893 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
894 	if (error)
895 		return error;
896 	if (XFS_IS_CORRUPT(args->mp, i != 1))
897 		return -EFSCORRUPTED;
898 
899 	/*
900 	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
901 	 * range (i.e., walking backwards looking for a minlen extent).
902 	 */
903 	if (len < args->minlen) {
904 		deactivate = !isbnobt;
905 		goto out;
906 	}
907 
908 	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
909 					 &busy_gen);
910 	acur->busy |= busy;
911 	if (busy)
912 		acur->busy_gen = busy_gen;
913 	/* deactivate a bnobt cursor outside of locality range */
914 	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
915 		deactivate = isbnobt;
916 		goto out;
917 	}
918 	if (lena < args->minlen)
919 		goto out;
920 
921 	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
922 	xfs_alloc_fix_len(args);
923 	ASSERT(args->len >= args->minlen);
924 	if (args->len < acur->len)
925 		goto out;
926 
927 	/*
928 	 * We have an aligned record that satisfies minlen and beats or matches
929 	 * the candidate extent size. Compare locality for near allocation mode.
930 	 */
931 	diff = xfs_alloc_compute_diff(args->agbno, args->len,
932 				      args->alignment, args->datatype,
933 				      bnoa, lena, &bnew);
934 	if (bnew == NULLAGBLOCK)
935 		goto out;
936 
937 	/*
938 	 * Deactivate a bnobt cursor with worse locality than the current best.
939 	 */
940 	if (diff > acur->diff) {
941 		deactivate = isbnobt;
942 		goto out;
943 	}
944 
945 	ASSERT(args->len > acur->len ||
946 	       (args->len == acur->len && diff <= acur->diff));
947 	acur->rec_bno = bno;
948 	acur->rec_len = len;
949 	acur->bno = bnew;
950 	acur->len = args->len;
951 	acur->diff = diff;
952 	*new = 1;
953 
954 	/*
955 	 * We're done if we found a perfect allocation. This only deactivates
956 	 * the current cursor, but this is just an optimization to terminate a
957 	 * cntbt search that otherwise runs to the edge of the tree.
958 	 */
959 	if (acur->diff == 0 && acur->len == args->maxlen)
960 		deactivate = true;
961 out:
962 	if (deactivate)
963 		cur->bc_ag.abt.active = false;
964 	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
965 				  *new);
966 	return 0;
967 }
968 
969 /*
970  * Complete an allocation of a candidate extent. Remove the extent from both
971  * trees and update the args structure.
972  */
973 STATIC int
974 xfs_alloc_cur_finish(
975 	struct xfs_alloc_arg	*args,
976 	struct xfs_alloc_cur	*acur)
977 {
978 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
979 	int			error;
980 
981 	ASSERT(acur->cnt && acur->bnolt);
982 	ASSERT(acur->bno >= acur->rec_bno);
983 	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
984 	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
985 
986 	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
987 				      acur->rec_len, acur->bno, acur->len, 0);
988 	if (error)
989 		return error;
990 
991 	args->agbno = acur->bno;
992 	args->len = acur->len;
993 	args->wasfromfl = 0;
994 
995 	trace_xfs_alloc_cur(args);
996 	return 0;
997 }
998 
999 /*
1000  * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1001  * bno optimized lookup to search for extents with ideal size and locality.
1002  */
1003 STATIC int
1004 xfs_alloc_cntbt_iter(
1005 	struct xfs_alloc_arg		*args,
1006 	struct xfs_alloc_cur		*acur)
1007 {
1008 	struct xfs_btree_cur	*cur = acur->cnt;
1009 	xfs_agblock_t		bno;
1010 	xfs_extlen_t		len, cur_len;
1011 	int			error;
1012 	int			i;
1013 
1014 	if (!xfs_alloc_cur_active(cur))
1015 		return 0;
1016 
1017 	/* locality optimized lookup */
1018 	cur_len = acur->cur_len;
1019 	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1020 	if (error)
1021 		return error;
1022 	if (i == 0)
1023 		return 0;
1024 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 	if (error)
1026 		return error;
1027 
1028 	/* check the current record and update search length from it */
1029 	error = xfs_alloc_cur_check(args, acur, cur, &i);
1030 	if (error)
1031 		return error;
1032 	ASSERT(len >= acur->cur_len);
1033 	acur->cur_len = len;
1034 
1035 	/*
1036 	 * We looked up the first record >= [agbno, len] above. The agbno is a
1037 	 * secondary key and so the current record may lie just before or after
1038 	 * agbno. If it is past agbno, check the previous record too so long as
1039 	 * the length matches as it may be closer. Don't check a smaller record
1040 	 * because that could deactivate our cursor.
1041 	 */
1042 	if (bno > args->agbno) {
1043 		error = xfs_btree_decrement(cur, 0, &i);
1044 		if (!error && i) {
1045 			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1046 			if (!error && i && len == acur->cur_len)
1047 				error = xfs_alloc_cur_check(args, acur, cur,
1048 							    &i);
1049 		}
1050 		if (error)
1051 			return error;
1052 	}
1053 
1054 	/*
1055 	 * Increment the search key until we find at least one allocation
1056 	 * candidate or if the extent we found was larger. Otherwise, double the
1057 	 * search key to optimize the search. Efficiency is more important here
1058 	 * than absolute best locality.
1059 	 */
1060 	cur_len <<= 1;
1061 	if (!acur->len || acur->cur_len >= cur_len)
1062 		acur->cur_len++;
1063 	else
1064 		acur->cur_len = cur_len;
1065 
1066 	return error;
1067 }
1068 
1069 /*
1070  * Deal with the case where only small freespaces remain. Either return the
1071  * contents of the last freespace record, or allocate space from the freelist if
1072  * there is nothing in the tree.
1073  */
1074 STATIC int			/* error */
1075 xfs_alloc_ag_vextent_small(
1076 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1077 	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1078 	xfs_agblock_t		*fbnop,	/* result block number */
1079 	xfs_extlen_t		*flenp,	/* result length */
1080 	int			*stat)	/* status: 0-freelist, 1-normal/none */
1081 {
1082 	struct xfs_agf		*agf = args->agbp->b_addr;
1083 	int			error = 0;
1084 	xfs_agblock_t		fbno = NULLAGBLOCK;
1085 	xfs_extlen_t		flen = 0;
1086 	int			i = 0;
1087 
1088 	/*
1089 	 * If a cntbt cursor is provided, try to allocate the largest record in
1090 	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1091 	 * allocation. Make sure to respect minleft even when pulling from the
1092 	 * freelist.
1093 	 */
1094 	if (ccur)
1095 		error = xfs_btree_decrement(ccur, 0, &i);
1096 	if (error)
1097 		goto error;
1098 	if (i) {
1099 		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1100 		if (error)
1101 			goto error;
1102 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1103 			error = -EFSCORRUPTED;
1104 			goto error;
1105 		}
1106 		goto out;
1107 	}
1108 
1109 	if (args->minlen != 1 || args->alignment != 1 ||
1110 	    args->resv == XFS_AG_RESV_AGFL ||
1111 	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1112 		goto out;
1113 
1114 	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1115 			&fbno, 0);
1116 	if (error)
1117 		goto error;
1118 	if (fbno == NULLAGBLOCK)
1119 		goto out;
1120 
1121 	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1122 			      (args->datatype & XFS_ALLOC_NOBUSY));
1123 
1124 	if (args->datatype & XFS_ALLOC_USERDATA) {
1125 		struct xfs_buf	*bp;
1126 
1127 		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1128 				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1129 				args->mp->m_bsize, 0, &bp);
1130 		if (error)
1131 			goto error;
1132 		xfs_trans_binval(args->tp, bp);
1133 	}
1134 	*fbnop = args->agbno = fbno;
1135 	*flenp = args->len = 1;
1136 	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1137 		error = -EFSCORRUPTED;
1138 		goto error;
1139 	}
1140 	args->wasfromfl = 1;
1141 	trace_xfs_alloc_small_freelist(args);
1142 
1143 	/*
1144 	 * If we're feeding an AGFL block to something that doesn't live in the
1145 	 * free space, we need to clear out the OWN_AG rmap.
1146 	 */
1147 	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1148 			      &XFS_RMAP_OINFO_AG);
1149 	if (error)
1150 		goto error;
1151 
1152 	*stat = 0;
1153 	return 0;
1154 
1155 out:
1156 	/*
1157 	 * Can't do the allocation, give up.
1158 	 */
1159 	if (flen < args->minlen) {
1160 		args->agbno = NULLAGBLOCK;
1161 		trace_xfs_alloc_small_notenough(args);
1162 		flen = 0;
1163 	}
1164 	*fbnop = fbno;
1165 	*flenp = flen;
1166 	*stat = 1;
1167 	trace_xfs_alloc_small_done(args);
1168 	return 0;
1169 
1170 error:
1171 	trace_xfs_alloc_small_error(args);
1172 	return error;
1173 }
1174 
1175 /*
1176  * Allocate a variable extent at exactly agno/bno.
1177  * Extent's length (returned in *len) will be between minlen and maxlen,
1178  * and of the form k * prod + mod unless there's nothing that large.
1179  * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1180  */
1181 STATIC int			/* error */
1182 xfs_alloc_ag_vextent_exact(
1183 	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1184 {
1185 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1186 	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1187 	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1188 	int		error;
1189 	xfs_agblock_t	fbno;	/* start block of found extent */
1190 	xfs_extlen_t	flen;	/* length of found extent */
1191 	xfs_agblock_t	tbno;	/* start block of busy extent */
1192 	xfs_extlen_t	tlen;	/* length of busy extent */
1193 	xfs_agblock_t	tend;	/* end block of busy extent */
1194 	int		i;	/* success/failure of operation */
1195 	unsigned	busy_gen;
1196 
1197 	ASSERT(args->alignment == 1);
1198 
1199 	/*
1200 	 * Allocate/initialize a cursor for the by-number freespace btree.
1201 	 */
1202 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1203 					  args->pag, XFS_BTNUM_BNO);
1204 
1205 	/*
1206 	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1207 	 * Look for the closest free block <= bno, it must contain bno
1208 	 * if any free block does.
1209 	 */
1210 	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1211 	if (error)
1212 		goto error0;
1213 	if (!i)
1214 		goto not_found;
1215 
1216 	/*
1217 	 * Grab the freespace record.
1218 	 */
1219 	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1220 	if (error)
1221 		goto error0;
1222 	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1223 		error = -EFSCORRUPTED;
1224 		goto error0;
1225 	}
1226 	ASSERT(fbno <= args->agbno);
1227 
1228 	/*
1229 	 * Check for overlapping busy extents.
1230 	 */
1231 	tbno = fbno;
1232 	tlen = flen;
1233 	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1234 
1235 	/*
1236 	 * Give up if the start of the extent is busy, or the freespace isn't
1237 	 * long enough for the minimum request.
1238 	 */
1239 	if (tbno > args->agbno)
1240 		goto not_found;
1241 	if (tlen < args->minlen)
1242 		goto not_found;
1243 	tend = tbno + tlen;
1244 	if (tend < args->agbno + args->minlen)
1245 		goto not_found;
1246 
1247 	/*
1248 	 * End of extent will be smaller of the freespace end and the
1249 	 * maximal requested end.
1250 	 *
1251 	 * Fix the length according to mod and prod if given.
1252 	 */
1253 	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1254 						- args->agbno;
1255 	xfs_alloc_fix_len(args);
1256 	ASSERT(args->agbno + args->len <= tend);
1257 
1258 	/*
1259 	 * We are allocating agbno for args->len
1260 	 * Allocate/initialize a cursor for the by-size btree.
1261 	 */
1262 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1263 					args->pag, XFS_BTNUM_CNT);
1264 	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1265 	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1266 				      args->len, XFSA_FIXUP_BNO_OK);
1267 	if (error) {
1268 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1269 		goto error0;
1270 	}
1271 
1272 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1273 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1274 
1275 	args->wasfromfl = 0;
1276 	trace_xfs_alloc_exact_done(args);
1277 	return 0;
1278 
1279 not_found:
1280 	/* Didn't find it, return null. */
1281 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1282 	args->agbno = NULLAGBLOCK;
1283 	trace_xfs_alloc_exact_notfound(args);
1284 	return 0;
1285 
1286 error0:
1287 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1288 	trace_xfs_alloc_exact_error(args);
1289 	return error;
1290 }
1291 
1292 /*
1293  * Search a given number of btree records in a given direction. Check each
1294  * record against the good extent we've already found.
1295  */
1296 STATIC int
1297 xfs_alloc_walk_iter(
1298 	struct xfs_alloc_arg	*args,
1299 	struct xfs_alloc_cur	*acur,
1300 	struct xfs_btree_cur	*cur,
1301 	bool			increment,
1302 	bool			find_one, /* quit on first candidate */
1303 	int			count,    /* rec count (-1 for infinite) */
1304 	int			*stat)
1305 {
1306 	int			error;
1307 	int			i;
1308 
1309 	*stat = 0;
1310 
1311 	/*
1312 	 * Search so long as the cursor is active or we find a better extent.
1313 	 * The cursor is deactivated if it extends beyond the range of the
1314 	 * current allocation candidate.
1315 	 */
1316 	while (xfs_alloc_cur_active(cur) && count) {
1317 		error = xfs_alloc_cur_check(args, acur, cur, &i);
1318 		if (error)
1319 			return error;
1320 		if (i == 1) {
1321 			*stat = 1;
1322 			if (find_one)
1323 				break;
1324 		}
1325 		if (!xfs_alloc_cur_active(cur))
1326 			break;
1327 
1328 		if (increment)
1329 			error = xfs_btree_increment(cur, 0, &i);
1330 		else
1331 			error = xfs_btree_decrement(cur, 0, &i);
1332 		if (error)
1333 			return error;
1334 		if (i == 0)
1335 			cur->bc_ag.abt.active = false;
1336 
1337 		if (count > 0)
1338 			count--;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Search the by-bno and by-size btrees in parallel in search of an extent with
1346  * ideal locality based on the NEAR mode ->agbno locality hint.
1347  */
1348 STATIC int
1349 xfs_alloc_ag_vextent_locality(
1350 	struct xfs_alloc_arg	*args,
1351 	struct xfs_alloc_cur	*acur,
1352 	int			*stat)
1353 {
1354 	struct xfs_btree_cur	*fbcur = NULL;
1355 	int			error;
1356 	int			i;
1357 	bool			fbinc;
1358 
1359 	ASSERT(acur->len == 0);
1360 
1361 	*stat = 0;
1362 
1363 	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1364 	if (error)
1365 		return error;
1366 	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1367 	if (error)
1368 		return error;
1369 	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1370 	if (error)
1371 		return error;
1372 
1373 	/*
1374 	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1375 	 * right and lookup the closest extent to the locality hint for each
1376 	 * extent size key in the cntbt. The entire search terminates
1377 	 * immediately on a bnobt hit because that means we've found best case
1378 	 * locality. Otherwise the search continues until the cntbt cursor runs
1379 	 * off the end of the tree. If no allocation candidate is found at this
1380 	 * point, give up on locality, walk backwards from the end of the cntbt
1381 	 * and take the first available extent.
1382 	 *
1383 	 * The parallel tree searches balance each other out to provide fairly
1384 	 * consistent performance for various situations. The bnobt search can
1385 	 * have pathological behavior in the worst case scenario of larger
1386 	 * allocation requests and fragmented free space. On the other hand, the
1387 	 * bnobt is able to satisfy most smaller allocation requests much more
1388 	 * quickly than the cntbt. The cntbt search can sift through fragmented
1389 	 * free space and sets of free extents for larger allocation requests
1390 	 * more quickly than the bnobt. Since the locality hint is just a hint
1391 	 * and we don't want to scan the entire bnobt for perfect locality, the
1392 	 * cntbt search essentially bounds the bnobt search such that we can
1393 	 * find good enough locality at reasonable performance in most cases.
1394 	 */
1395 	while (xfs_alloc_cur_active(acur->bnolt) ||
1396 	       xfs_alloc_cur_active(acur->bnogt) ||
1397 	       xfs_alloc_cur_active(acur->cnt)) {
1398 
1399 		trace_xfs_alloc_cur_lookup(args);
1400 
1401 		/*
1402 		 * Search the bnobt left and right. In the case of a hit, finish
1403 		 * the search in the opposite direction and we're done.
1404 		 */
1405 		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1406 					    true, 1, &i);
1407 		if (error)
1408 			return error;
1409 		if (i == 1) {
1410 			trace_xfs_alloc_cur_left(args);
1411 			fbcur = acur->bnogt;
1412 			fbinc = true;
1413 			break;
1414 		}
1415 		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1416 					    1, &i);
1417 		if (error)
1418 			return error;
1419 		if (i == 1) {
1420 			trace_xfs_alloc_cur_right(args);
1421 			fbcur = acur->bnolt;
1422 			fbinc = false;
1423 			break;
1424 		}
1425 
1426 		/*
1427 		 * Check the extent with best locality based on the current
1428 		 * extent size search key and keep track of the best candidate.
1429 		 */
1430 		error = xfs_alloc_cntbt_iter(args, acur);
1431 		if (error)
1432 			return error;
1433 		if (!xfs_alloc_cur_active(acur->cnt)) {
1434 			trace_xfs_alloc_cur_lookup_done(args);
1435 			break;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * If we failed to find anything due to busy extents, return empty
1441 	 * handed so the caller can flush and retry. If no busy extents were
1442 	 * found, walk backwards from the end of the cntbt as a last resort.
1443 	 */
1444 	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1445 		error = xfs_btree_decrement(acur->cnt, 0, &i);
1446 		if (error)
1447 			return error;
1448 		if (i) {
1449 			acur->cnt->bc_ag.abt.active = true;
1450 			fbcur = acur->cnt;
1451 			fbinc = false;
1452 		}
1453 	}
1454 
1455 	/*
1456 	 * Search in the opposite direction for a better entry in the case of
1457 	 * a bnobt hit or walk backwards from the end of the cntbt.
1458 	 */
1459 	if (fbcur) {
1460 		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1461 					    &i);
1462 		if (error)
1463 			return error;
1464 	}
1465 
1466 	if (acur->len)
1467 		*stat = 1;
1468 
1469 	return 0;
1470 }
1471 
1472 /* Check the last block of the cnt btree for allocations. */
1473 static int
1474 xfs_alloc_ag_vextent_lastblock(
1475 	struct xfs_alloc_arg	*args,
1476 	struct xfs_alloc_cur	*acur,
1477 	xfs_agblock_t		*bno,
1478 	xfs_extlen_t		*len,
1479 	bool			*allocated)
1480 {
1481 	int			error;
1482 	int			i;
1483 
1484 #ifdef DEBUG
1485 	/* Randomly don't execute the first algorithm. */
1486 	if (get_random_u32_below(2))
1487 		return 0;
1488 #endif
1489 
1490 	/*
1491 	 * Start from the entry that lookup found, sequence through all larger
1492 	 * free blocks.  If we're actually pointing at a record smaller than
1493 	 * maxlen, go to the start of this block, and skip all those smaller
1494 	 * than minlen.
1495 	 */
1496 	if (*len || args->alignment > 1) {
1497 		acur->cnt->bc_levels[0].ptr = 1;
1498 		do {
1499 			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1500 			if (error)
1501 				return error;
1502 			if (XFS_IS_CORRUPT(args->mp, i != 1))
1503 				return -EFSCORRUPTED;
1504 			if (*len >= args->minlen)
1505 				break;
1506 			error = xfs_btree_increment(acur->cnt, 0, &i);
1507 			if (error)
1508 				return error;
1509 		} while (i);
1510 		ASSERT(*len >= args->minlen);
1511 		if (!i)
1512 			return 0;
1513 	}
1514 
1515 	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1516 	if (error)
1517 		return error;
1518 
1519 	/*
1520 	 * It didn't work.  We COULD be in a case where there's a good record
1521 	 * somewhere, so try again.
1522 	 */
1523 	if (acur->len == 0)
1524 		return 0;
1525 
1526 	trace_xfs_alloc_near_first(args);
1527 	*allocated = true;
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Allocate a variable extent near bno in the allocation group agno.
1533  * Extent's length (returned in len) will be between minlen and maxlen,
1534  * and of the form k * prod + mod unless there's nothing that large.
1535  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1536  */
1537 STATIC int
1538 xfs_alloc_ag_vextent_near(
1539 	struct xfs_alloc_arg	*args,
1540 	uint32_t		alloc_flags)
1541 {
1542 	struct xfs_alloc_cur	acur = {};
1543 	int			error;		/* error code */
1544 	int			i;		/* result code, temporary */
1545 	xfs_agblock_t		bno;
1546 	xfs_extlen_t		len;
1547 
1548 	/* handle uninitialized agbno range so caller doesn't have to */
1549 	if (!args->min_agbno && !args->max_agbno)
1550 		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1551 	ASSERT(args->min_agbno <= args->max_agbno);
1552 
1553 	/* clamp agbno to the range if it's outside */
1554 	if (args->agbno < args->min_agbno)
1555 		args->agbno = args->min_agbno;
1556 	if (args->agbno > args->max_agbno)
1557 		args->agbno = args->max_agbno;
1558 
1559 	/* Retry once quickly if we find busy extents before blocking. */
1560 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1561 restart:
1562 	len = 0;
1563 
1564 	/*
1565 	 * Set up cursors and see if there are any free extents as big as
1566 	 * maxlen. If not, pick the last entry in the tree unless the tree is
1567 	 * empty.
1568 	 */
1569 	error = xfs_alloc_cur_setup(args, &acur);
1570 	if (error == -ENOSPC) {
1571 		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1572 				&len, &i);
1573 		if (error)
1574 			goto out;
1575 		if (i == 0 || len == 0) {
1576 			trace_xfs_alloc_near_noentry(args);
1577 			goto out;
1578 		}
1579 		ASSERT(i == 1);
1580 	} else if (error) {
1581 		goto out;
1582 	}
1583 
1584 	/*
1585 	 * First algorithm.
1586 	 * If the requested extent is large wrt the freespaces available
1587 	 * in this a.g., then the cursor will be pointing to a btree entry
1588 	 * near the right edge of the tree.  If it's in the last btree leaf
1589 	 * block, then we just examine all the entries in that block
1590 	 * that are big enough, and pick the best one.
1591 	 */
1592 	if (xfs_btree_islastblock(acur.cnt, 0)) {
1593 		bool		allocated = false;
1594 
1595 		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1596 				&allocated);
1597 		if (error)
1598 			goto out;
1599 		if (allocated)
1600 			goto alloc_finish;
1601 	}
1602 
1603 	/*
1604 	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1605 	 * locality.
1606 	 */
1607 	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1608 	if (error)
1609 		goto out;
1610 
1611 	/*
1612 	 * If we couldn't get anything, give up.
1613 	 */
1614 	if (!acur.len) {
1615 		if (acur.busy) {
1616 			/*
1617 			 * Our only valid extents must have been busy. Flush and
1618 			 * retry the allocation again. If we get an -EAGAIN
1619 			 * error, we're being told that a deadlock was avoided
1620 			 * and the current transaction needs committing before
1621 			 * the allocation can be retried.
1622 			 */
1623 			trace_xfs_alloc_near_busy(args);
1624 			error = xfs_extent_busy_flush(args->tp, args->pag,
1625 					acur.busy_gen, alloc_flags);
1626 			if (error)
1627 				goto out;
1628 
1629 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1630 			goto restart;
1631 		}
1632 		trace_xfs_alloc_size_neither(args);
1633 		args->agbno = NULLAGBLOCK;
1634 		goto out;
1635 	}
1636 
1637 alloc_finish:
1638 	/* fix up btrees on a successful allocation */
1639 	error = xfs_alloc_cur_finish(args, &acur);
1640 
1641 out:
1642 	xfs_alloc_cur_close(&acur, error);
1643 	return error;
1644 }
1645 
1646 /*
1647  * Allocate a variable extent anywhere in the allocation group agno.
1648  * Extent's length (returned in len) will be between minlen and maxlen,
1649  * and of the form k * prod + mod unless there's nothing that large.
1650  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1651  */
1652 static int
1653 xfs_alloc_ag_vextent_size(
1654 	struct xfs_alloc_arg	*args,
1655 	uint32_t		alloc_flags)
1656 {
1657 	struct xfs_agf		*agf = args->agbp->b_addr;
1658 	struct xfs_btree_cur	*bno_cur;
1659 	struct xfs_btree_cur	*cnt_cur;
1660 	xfs_agblock_t		fbno;		/* start of found freespace */
1661 	xfs_extlen_t		flen;		/* length of found freespace */
1662 	xfs_agblock_t		rbno;		/* returned block number */
1663 	xfs_extlen_t		rlen;		/* length of returned extent */
1664 	bool			busy;
1665 	unsigned		busy_gen;
1666 	int			error;
1667 	int			i;
1668 
1669 	/* Retry once quickly if we find busy extents before blocking. */
1670 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1671 restart:
1672 	/*
1673 	 * Allocate and initialize a cursor for the by-size btree.
1674 	 */
1675 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1676 					args->pag, XFS_BTNUM_CNT);
1677 	bno_cur = NULL;
1678 
1679 	/*
1680 	 * Look for an entry >= maxlen+alignment-1 blocks.
1681 	 */
1682 	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1683 			args->maxlen + args->alignment - 1, &i)))
1684 		goto error0;
1685 
1686 	/*
1687 	 * If none then we have to settle for a smaller extent. In the case that
1688 	 * there are no large extents, this will return the last entry in the
1689 	 * tree unless the tree is empty. In the case that there are only busy
1690 	 * large extents, this will return the largest small extent unless there
1691 	 * are no smaller extents available.
1692 	 */
1693 	if (!i) {
1694 		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1695 						   &fbno, &flen, &i);
1696 		if (error)
1697 			goto error0;
1698 		if (i == 0 || flen == 0) {
1699 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1700 			trace_xfs_alloc_size_noentry(args);
1701 			return 0;
1702 		}
1703 		ASSERT(i == 1);
1704 		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1705 				&rlen, &busy_gen);
1706 	} else {
1707 		/*
1708 		 * Search for a non-busy extent that is large enough.
1709 		 */
1710 		for (;;) {
1711 			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1712 			if (error)
1713 				goto error0;
1714 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1715 				error = -EFSCORRUPTED;
1716 				goto error0;
1717 			}
1718 
1719 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1720 					&rbno, &rlen, &busy_gen);
1721 
1722 			if (rlen >= args->maxlen)
1723 				break;
1724 
1725 			error = xfs_btree_increment(cnt_cur, 0, &i);
1726 			if (error)
1727 				goto error0;
1728 			if (i)
1729 				continue;
1730 
1731 			/*
1732 			 * Our only valid extents must have been busy. Flush and
1733 			 * retry the allocation again. If we get an -EAGAIN
1734 			 * error, we're being told that a deadlock was avoided
1735 			 * and the current transaction needs committing before
1736 			 * the allocation can be retried.
1737 			 */
1738 			trace_xfs_alloc_size_busy(args);
1739 			error = xfs_extent_busy_flush(args->tp, args->pag,
1740 					busy_gen, alloc_flags);
1741 			if (error)
1742 				goto error0;
1743 
1744 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1745 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1746 			goto restart;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * In the first case above, we got the last entry in the
1752 	 * by-size btree.  Now we check to see if the space hits maxlen
1753 	 * once aligned; if not, we search left for something better.
1754 	 * This can't happen in the second case above.
1755 	 */
1756 	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1757 	if (XFS_IS_CORRUPT(args->mp,
1758 			   rlen != 0 &&
1759 			   (rlen > flen ||
1760 			    rbno + rlen > fbno + flen))) {
1761 		error = -EFSCORRUPTED;
1762 		goto error0;
1763 	}
1764 	if (rlen < args->maxlen) {
1765 		xfs_agblock_t	bestfbno;
1766 		xfs_extlen_t	bestflen;
1767 		xfs_agblock_t	bestrbno;
1768 		xfs_extlen_t	bestrlen;
1769 
1770 		bestrlen = rlen;
1771 		bestrbno = rbno;
1772 		bestflen = flen;
1773 		bestfbno = fbno;
1774 		for (;;) {
1775 			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1776 				goto error0;
1777 			if (i == 0)
1778 				break;
1779 			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1780 					&i)))
1781 				goto error0;
1782 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1783 				error = -EFSCORRUPTED;
1784 				goto error0;
1785 			}
1786 			if (flen < bestrlen)
1787 				break;
1788 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1789 					&rbno, &rlen, &busy_gen);
1790 			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1791 			if (XFS_IS_CORRUPT(args->mp,
1792 					   rlen != 0 &&
1793 					   (rlen > flen ||
1794 					    rbno + rlen > fbno + flen))) {
1795 				error = -EFSCORRUPTED;
1796 				goto error0;
1797 			}
1798 			if (rlen > bestrlen) {
1799 				bestrlen = rlen;
1800 				bestrbno = rbno;
1801 				bestflen = flen;
1802 				bestfbno = fbno;
1803 				if (rlen == args->maxlen)
1804 					break;
1805 			}
1806 		}
1807 		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1808 				&i)))
1809 			goto error0;
1810 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1811 			error = -EFSCORRUPTED;
1812 			goto error0;
1813 		}
1814 		rlen = bestrlen;
1815 		rbno = bestrbno;
1816 		flen = bestflen;
1817 		fbno = bestfbno;
1818 	}
1819 	args->wasfromfl = 0;
1820 	/*
1821 	 * Fix up the length.
1822 	 */
1823 	args->len = rlen;
1824 	if (rlen < args->minlen) {
1825 		if (busy) {
1826 			/*
1827 			 * Our only valid extents must have been busy. Flush and
1828 			 * retry the allocation again. If we get an -EAGAIN
1829 			 * error, we're being told that a deadlock was avoided
1830 			 * and the current transaction needs committing before
1831 			 * the allocation can be retried.
1832 			 */
1833 			trace_xfs_alloc_size_busy(args);
1834 			error = xfs_extent_busy_flush(args->tp, args->pag,
1835 					busy_gen, alloc_flags);
1836 			if (error)
1837 				goto error0;
1838 
1839 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1840 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1841 			goto restart;
1842 		}
1843 		goto out_nominleft;
1844 	}
1845 	xfs_alloc_fix_len(args);
1846 
1847 	rlen = args->len;
1848 	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1849 		error = -EFSCORRUPTED;
1850 		goto error0;
1851 	}
1852 	/*
1853 	 * Allocate and initialize a cursor for the by-block tree.
1854 	 */
1855 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1856 					args->pag, XFS_BTNUM_BNO);
1857 	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1858 			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1859 		goto error0;
1860 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1861 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1862 	cnt_cur = bno_cur = NULL;
1863 	args->len = rlen;
1864 	args->agbno = rbno;
1865 	if (XFS_IS_CORRUPT(args->mp,
1866 			   args->agbno + args->len >
1867 			   be32_to_cpu(agf->agf_length))) {
1868 		error = -EFSCORRUPTED;
1869 		goto error0;
1870 	}
1871 	trace_xfs_alloc_size_done(args);
1872 	return 0;
1873 
1874 error0:
1875 	trace_xfs_alloc_size_error(args);
1876 	if (cnt_cur)
1877 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1878 	if (bno_cur)
1879 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1880 	return error;
1881 
1882 out_nominleft:
1883 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884 	trace_xfs_alloc_size_nominleft(args);
1885 	args->agbno = NULLAGBLOCK;
1886 	return 0;
1887 }
1888 
1889 /*
1890  * Free the extent starting at agno/bno for length.
1891  */
1892 STATIC int
1893 xfs_free_ag_extent(
1894 	struct xfs_trans		*tp,
1895 	struct xfs_buf			*agbp,
1896 	xfs_agnumber_t			agno,
1897 	xfs_agblock_t			bno,
1898 	xfs_extlen_t			len,
1899 	const struct xfs_owner_info	*oinfo,
1900 	enum xfs_ag_resv_type		type)
1901 {
1902 	struct xfs_mount		*mp;
1903 	struct xfs_btree_cur		*bno_cur;
1904 	struct xfs_btree_cur		*cnt_cur;
1905 	xfs_agblock_t			gtbno; /* start of right neighbor */
1906 	xfs_extlen_t			gtlen; /* length of right neighbor */
1907 	xfs_agblock_t			ltbno; /* start of left neighbor */
1908 	xfs_extlen_t			ltlen; /* length of left neighbor */
1909 	xfs_agblock_t			nbno; /* new starting block of freesp */
1910 	xfs_extlen_t			nlen; /* new length of freespace */
1911 	int				haveleft; /* have a left neighbor */
1912 	int				haveright; /* have a right neighbor */
1913 	int				i;
1914 	int				error;
1915 	struct xfs_perag		*pag = agbp->b_pag;
1916 
1917 	bno_cur = cnt_cur = NULL;
1918 	mp = tp->t_mountp;
1919 
1920 	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1921 		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1922 		if (error)
1923 			goto error0;
1924 	}
1925 
1926 	/*
1927 	 * Allocate and initialize a cursor for the by-block btree.
1928 	 */
1929 	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1930 	/*
1931 	 * Look for a neighboring block on the left (lower block numbers)
1932 	 * that is contiguous with this space.
1933 	 */
1934 	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1935 		goto error0;
1936 	if (haveleft) {
1937 		/*
1938 		 * There is a block to our left.
1939 		 */
1940 		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1941 			goto error0;
1942 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1943 			error = -EFSCORRUPTED;
1944 			goto error0;
1945 		}
1946 		/*
1947 		 * It's not contiguous, though.
1948 		 */
1949 		if (ltbno + ltlen < bno)
1950 			haveleft = 0;
1951 		else {
1952 			/*
1953 			 * If this failure happens the request to free this
1954 			 * space was invalid, it's (partly) already free.
1955 			 * Very bad.
1956 			 */
1957 			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1958 				error = -EFSCORRUPTED;
1959 				goto error0;
1960 			}
1961 		}
1962 	}
1963 	/*
1964 	 * Look for a neighboring block on the right (higher block numbers)
1965 	 * that is contiguous with this space.
1966 	 */
1967 	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1968 		goto error0;
1969 	if (haveright) {
1970 		/*
1971 		 * There is a block to our right.
1972 		 */
1973 		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1974 			goto error0;
1975 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 			error = -EFSCORRUPTED;
1977 			goto error0;
1978 		}
1979 		/*
1980 		 * It's not contiguous, though.
1981 		 */
1982 		if (bno + len < gtbno)
1983 			haveright = 0;
1984 		else {
1985 			/*
1986 			 * If this failure happens the request to free this
1987 			 * space was invalid, it's (partly) already free.
1988 			 * Very bad.
1989 			 */
1990 			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1991 				error = -EFSCORRUPTED;
1992 				goto error0;
1993 			}
1994 		}
1995 	}
1996 	/*
1997 	 * Now allocate and initialize a cursor for the by-size tree.
1998 	 */
1999 	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
2000 	/*
2001 	 * Have both left and right contiguous neighbors.
2002 	 * Merge all three into a single free block.
2003 	 */
2004 	if (haveleft && haveright) {
2005 		/*
2006 		 * Delete the old by-size entry on the left.
2007 		 */
2008 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2009 			goto error0;
2010 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2011 			error = -EFSCORRUPTED;
2012 			goto error0;
2013 		}
2014 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2015 			goto error0;
2016 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2017 			error = -EFSCORRUPTED;
2018 			goto error0;
2019 		}
2020 		/*
2021 		 * Delete the old by-size entry on the right.
2022 		 */
2023 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2024 			goto error0;
2025 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2026 			error = -EFSCORRUPTED;
2027 			goto error0;
2028 		}
2029 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2030 			goto error0;
2031 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2032 			error = -EFSCORRUPTED;
2033 			goto error0;
2034 		}
2035 		/*
2036 		 * Delete the old by-block entry for the right block.
2037 		 */
2038 		if ((error = xfs_btree_delete(bno_cur, &i)))
2039 			goto error0;
2040 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2041 			error = -EFSCORRUPTED;
2042 			goto error0;
2043 		}
2044 		/*
2045 		 * Move the by-block cursor back to the left neighbor.
2046 		 */
2047 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2048 			goto error0;
2049 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2050 			error = -EFSCORRUPTED;
2051 			goto error0;
2052 		}
2053 #ifdef DEBUG
2054 		/*
2055 		 * Check that this is the right record: delete didn't
2056 		 * mangle the cursor.
2057 		 */
2058 		{
2059 			xfs_agblock_t	xxbno;
2060 			xfs_extlen_t	xxlen;
2061 
2062 			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2063 					&i)))
2064 				goto error0;
2065 			if (XFS_IS_CORRUPT(mp,
2066 					   i != 1 ||
2067 					   xxbno != ltbno ||
2068 					   xxlen != ltlen)) {
2069 				error = -EFSCORRUPTED;
2070 				goto error0;
2071 			}
2072 		}
2073 #endif
2074 		/*
2075 		 * Update remaining by-block entry to the new, joined block.
2076 		 */
2077 		nbno = ltbno;
2078 		nlen = len + ltlen + gtlen;
2079 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2080 			goto error0;
2081 	}
2082 	/*
2083 	 * Have only a left contiguous neighbor.
2084 	 * Merge it together with the new freespace.
2085 	 */
2086 	else if (haveleft) {
2087 		/*
2088 		 * Delete the old by-size entry on the left.
2089 		 */
2090 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2091 			goto error0;
2092 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 			error = -EFSCORRUPTED;
2094 			goto error0;
2095 		}
2096 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2097 			goto error0;
2098 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2099 			error = -EFSCORRUPTED;
2100 			goto error0;
2101 		}
2102 		/*
2103 		 * Back up the by-block cursor to the left neighbor, and
2104 		 * update its length.
2105 		 */
2106 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2107 			goto error0;
2108 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 			error = -EFSCORRUPTED;
2110 			goto error0;
2111 		}
2112 		nbno = ltbno;
2113 		nlen = len + ltlen;
2114 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2115 			goto error0;
2116 	}
2117 	/*
2118 	 * Have only a right contiguous neighbor.
2119 	 * Merge it together with the new freespace.
2120 	 */
2121 	else if (haveright) {
2122 		/*
2123 		 * Delete the old by-size entry on the right.
2124 		 */
2125 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2126 			goto error0;
2127 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2128 			error = -EFSCORRUPTED;
2129 			goto error0;
2130 		}
2131 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2132 			goto error0;
2133 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2134 			error = -EFSCORRUPTED;
2135 			goto error0;
2136 		}
2137 		/*
2138 		 * Update the starting block and length of the right
2139 		 * neighbor in the by-block tree.
2140 		 */
2141 		nbno = bno;
2142 		nlen = len + gtlen;
2143 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2144 			goto error0;
2145 	}
2146 	/*
2147 	 * No contiguous neighbors.
2148 	 * Insert the new freespace into the by-block tree.
2149 	 */
2150 	else {
2151 		nbno = bno;
2152 		nlen = len;
2153 		if ((error = xfs_btree_insert(bno_cur, &i)))
2154 			goto error0;
2155 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2156 			error = -EFSCORRUPTED;
2157 			goto error0;
2158 		}
2159 	}
2160 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2161 	bno_cur = NULL;
2162 	/*
2163 	 * In all cases we need to insert the new freespace in the by-size tree.
2164 	 */
2165 	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2166 		goto error0;
2167 	if (XFS_IS_CORRUPT(mp, i != 0)) {
2168 		error = -EFSCORRUPTED;
2169 		goto error0;
2170 	}
2171 	if ((error = xfs_btree_insert(cnt_cur, &i)))
2172 		goto error0;
2173 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2174 		error = -EFSCORRUPTED;
2175 		goto error0;
2176 	}
2177 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2178 	cnt_cur = NULL;
2179 
2180 	/*
2181 	 * Update the freespace totals in the ag and superblock.
2182 	 */
2183 	error = xfs_alloc_update_counters(tp, agbp, len);
2184 	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2185 	if (error)
2186 		goto error0;
2187 
2188 	XFS_STATS_INC(mp, xs_freex);
2189 	XFS_STATS_ADD(mp, xs_freeb, len);
2190 
2191 	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2192 
2193 	return 0;
2194 
2195  error0:
2196 	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2197 	if (bno_cur)
2198 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2199 	if (cnt_cur)
2200 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2201 	return error;
2202 }
2203 
2204 /*
2205  * Visible (exported) allocation/free functions.
2206  * Some of these are used just by xfs_alloc_btree.c and this file.
2207  */
2208 
2209 /*
2210  * Compute and fill in value of m_alloc_maxlevels.
2211  */
2212 void
2213 xfs_alloc_compute_maxlevels(
2214 	xfs_mount_t	*mp)	/* file system mount structure */
2215 {
2216 	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2217 			(mp->m_sb.sb_agblocks + 1) / 2);
2218 	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2219 }
2220 
2221 /*
2222  * Find the length of the longest extent in an AG.  The 'need' parameter
2223  * specifies how much space we're going to need for the AGFL and the
2224  * 'reserved' parameter tells us how many blocks in this AG are reserved for
2225  * other callers.
2226  */
2227 xfs_extlen_t
2228 xfs_alloc_longest_free_extent(
2229 	struct xfs_perag	*pag,
2230 	xfs_extlen_t		need,
2231 	xfs_extlen_t		reserved)
2232 {
2233 	xfs_extlen_t		delta = 0;
2234 
2235 	/*
2236 	 * If the AGFL needs a recharge, we'll have to subtract that from the
2237 	 * longest extent.
2238 	 */
2239 	if (need > pag->pagf_flcount)
2240 		delta = need - pag->pagf_flcount;
2241 
2242 	/*
2243 	 * If we cannot maintain others' reservations with space from the
2244 	 * not-longest freesp extents, we'll have to subtract /that/ from
2245 	 * the longest extent too.
2246 	 */
2247 	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2248 		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2249 
2250 	/*
2251 	 * If the longest extent is long enough to satisfy all the
2252 	 * reservations and AGFL rules in place, we can return this extent.
2253 	 */
2254 	if (pag->pagf_longest > delta)
2255 		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2256 				pag->pagf_longest - delta);
2257 
2258 	/* Otherwise, let the caller try for 1 block if there's space. */
2259 	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2260 }
2261 
2262 /*
2263  * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2264  * return the largest possible minimum length.
2265  */
2266 unsigned int
2267 xfs_alloc_min_freelist(
2268 	struct xfs_mount	*mp,
2269 	struct xfs_perag	*pag)
2270 {
2271 	/* AG btrees have at least 1 level. */
2272 	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2273 	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
2274 	unsigned int		min_free;
2275 
2276 	ASSERT(mp->m_alloc_maxlevels > 0);
2277 
2278 	/* space needed by-bno freespace btree */
2279 	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2280 				       mp->m_alloc_maxlevels);
2281 	/* space needed by-size freespace btree */
2282 	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2283 				       mp->m_alloc_maxlevels);
2284 	/* space needed reverse mapping used space btree */
2285 	if (xfs_has_rmapbt(mp))
2286 		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2287 						mp->m_rmap_maxlevels);
2288 
2289 	return min_free;
2290 }
2291 
2292 /*
2293  * Check if the operation we are fixing up the freelist for should go ahead or
2294  * not. If we are freeing blocks, we always allow it, otherwise the allocation
2295  * is dependent on whether the size and shape of free space available will
2296  * permit the requested allocation to take place.
2297  */
2298 static bool
2299 xfs_alloc_space_available(
2300 	struct xfs_alloc_arg	*args,
2301 	xfs_extlen_t		min_free,
2302 	int			flags)
2303 {
2304 	struct xfs_perag	*pag = args->pag;
2305 	xfs_extlen_t		alloc_len, longest;
2306 	xfs_extlen_t		reservation; /* blocks that are still reserved */
2307 	int			available;
2308 	xfs_extlen_t		agflcount;
2309 
2310 	if (flags & XFS_ALLOC_FLAG_FREEING)
2311 		return true;
2312 
2313 	reservation = xfs_ag_resv_needed(pag, args->resv);
2314 
2315 	/* do we have enough contiguous free space for the allocation? */
2316 	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2317 	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2318 	if (longest < alloc_len)
2319 		return false;
2320 
2321 	/*
2322 	 * Do we have enough free space remaining for the allocation? Don't
2323 	 * account extra agfl blocks because we are about to defer free them,
2324 	 * making them unavailable until the current transaction commits.
2325 	 */
2326 	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2327 	available = (int)(pag->pagf_freeblks + agflcount -
2328 			  reservation - min_free - args->minleft);
2329 	if (available < (int)max(args->total, alloc_len))
2330 		return false;
2331 
2332 	/*
2333 	 * Clamp maxlen to the amount of free space available for the actual
2334 	 * extent allocation.
2335 	 */
2336 	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2337 		args->maxlen = available;
2338 		ASSERT(args->maxlen > 0);
2339 		ASSERT(args->maxlen >= args->minlen);
2340 	}
2341 
2342 	return true;
2343 }
2344 
2345 int
2346 xfs_free_agfl_block(
2347 	struct xfs_trans	*tp,
2348 	xfs_agnumber_t		agno,
2349 	xfs_agblock_t		agbno,
2350 	struct xfs_buf		*agbp,
2351 	struct xfs_owner_info	*oinfo)
2352 {
2353 	int			error;
2354 	struct xfs_buf		*bp;
2355 
2356 	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2357 				   XFS_AG_RESV_AGFL);
2358 	if (error)
2359 		return error;
2360 
2361 	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2362 			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2363 			tp->t_mountp->m_bsize, 0, &bp);
2364 	if (error)
2365 		return error;
2366 	xfs_trans_binval(tp, bp);
2367 
2368 	return 0;
2369 }
2370 
2371 /*
2372  * Check the agfl fields of the agf for inconsistency or corruption.
2373  *
2374  * The original purpose was to detect an agfl header padding mismatch between
2375  * current and early v5 kernels. This problem manifests as a 1-slot size
2376  * difference between the on-disk flcount and the active [first, last] range of
2377  * a wrapped agfl.
2378  *
2379  * However, we need to use these same checks to catch agfl count corruptions
2380  * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2381  * way, we need to reset the agfl and warn the user.
2382  *
2383  * Return true if a reset is required before the agfl can be used, false
2384  * otherwise.
2385  */
2386 static bool
2387 xfs_agfl_needs_reset(
2388 	struct xfs_mount	*mp,
2389 	struct xfs_agf		*agf)
2390 {
2391 	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2392 	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2393 	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2394 	int			agfl_size = xfs_agfl_size(mp);
2395 	int			active;
2396 
2397 	/*
2398 	 * The agf read verifier catches severe corruption of these fields.
2399 	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2400 	 * the verifier allows it.
2401 	 */
2402 	if (f >= agfl_size || l >= agfl_size)
2403 		return true;
2404 	if (c > agfl_size)
2405 		return true;
2406 
2407 	/*
2408 	 * Check consistency between the on-disk count and the active range. An
2409 	 * agfl padding mismatch manifests as an inconsistent flcount.
2410 	 */
2411 	if (c && l >= f)
2412 		active = l - f + 1;
2413 	else if (c)
2414 		active = agfl_size - f + l + 1;
2415 	else
2416 		active = 0;
2417 
2418 	return active != c;
2419 }
2420 
2421 /*
2422  * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2423  * agfl content cannot be trusted. Warn the user that a repair is required to
2424  * recover leaked blocks.
2425  *
2426  * The purpose of this mechanism is to handle filesystems affected by the agfl
2427  * header padding mismatch problem. A reset keeps the filesystem online with a
2428  * relatively minor free space accounting inconsistency rather than suffer the
2429  * inevitable crash from use of an invalid agfl block.
2430  */
2431 static void
2432 xfs_agfl_reset(
2433 	struct xfs_trans	*tp,
2434 	struct xfs_buf		*agbp,
2435 	struct xfs_perag	*pag)
2436 {
2437 	struct xfs_mount	*mp = tp->t_mountp;
2438 	struct xfs_agf		*agf = agbp->b_addr;
2439 
2440 	ASSERT(xfs_perag_agfl_needs_reset(pag));
2441 	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2442 
2443 	xfs_warn(mp,
2444 	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2445 	       "Please unmount and run xfs_repair.",
2446 	         pag->pag_agno, pag->pagf_flcount);
2447 
2448 	agf->agf_flfirst = 0;
2449 	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2450 	agf->agf_flcount = 0;
2451 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2452 				    XFS_AGF_FLCOUNT);
2453 
2454 	pag->pagf_flcount = 0;
2455 	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2456 }
2457 
2458 /*
2459  * Defer an AGFL block free. This is effectively equivalent to
2460  * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2461  *
2462  * Deferring AGFL frees helps prevent log reservation overruns due to too many
2463  * allocation operations in a transaction. AGFL frees are prone to this problem
2464  * because for one they are always freed one at a time. Further, an immediate
2465  * AGFL block free can cause a btree join and require another block free before
2466  * the real allocation can proceed. Deferring the free disconnects freeing up
2467  * the AGFL slot from freeing the block.
2468  */
2469 static int
2470 xfs_defer_agfl_block(
2471 	struct xfs_trans		*tp,
2472 	xfs_agnumber_t			agno,
2473 	xfs_agblock_t			agbno,
2474 	struct xfs_owner_info		*oinfo)
2475 {
2476 	struct xfs_mount		*mp = tp->t_mountp;
2477 	struct xfs_extent_free_item	*xefi;
2478 	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2479 
2480 	ASSERT(xfs_extfree_item_cache != NULL);
2481 	ASSERT(oinfo != NULL);
2482 
2483 	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2484 		return -EFSCORRUPTED;
2485 
2486 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2487 			       GFP_KERNEL | __GFP_NOFAIL);
2488 	xefi->xefi_startblock = fsbno;
2489 	xefi->xefi_blockcount = 1;
2490 	xefi->xefi_owner = oinfo->oi_owner;
2491 	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2492 
2493 	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2494 
2495 	xfs_extent_free_get_group(mp, xefi);
2496 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Add the extent to the list of extents to be free at transaction end.
2502  * The list is maintained sorted (by block number).
2503  */
2504 int
2505 __xfs_free_extent_later(
2506 	struct xfs_trans		*tp,
2507 	xfs_fsblock_t			bno,
2508 	xfs_filblks_t			len,
2509 	const struct xfs_owner_info	*oinfo,
2510 	enum xfs_ag_resv_type		type,
2511 	bool				skip_discard)
2512 {
2513 	struct xfs_extent_free_item	*xefi;
2514 	struct xfs_mount		*mp = tp->t_mountp;
2515 #ifdef DEBUG
2516 	xfs_agnumber_t			agno;
2517 	xfs_agblock_t			agbno;
2518 
2519 	ASSERT(bno != NULLFSBLOCK);
2520 	ASSERT(len > 0);
2521 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2522 	ASSERT(!isnullstartblock(bno));
2523 	agno = XFS_FSB_TO_AGNO(mp, bno);
2524 	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2525 	ASSERT(agno < mp->m_sb.sb_agcount);
2526 	ASSERT(agbno < mp->m_sb.sb_agblocks);
2527 	ASSERT(len < mp->m_sb.sb_agblocks);
2528 	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2529 #endif
2530 	ASSERT(xfs_extfree_item_cache != NULL);
2531 	ASSERT(type != XFS_AG_RESV_AGFL);
2532 
2533 	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2534 		return -EFSCORRUPTED;
2535 
2536 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2537 			       GFP_KERNEL | __GFP_NOFAIL);
2538 	xefi->xefi_startblock = bno;
2539 	xefi->xefi_blockcount = (xfs_extlen_t)len;
2540 	xefi->xefi_agresv = type;
2541 	if (skip_discard)
2542 		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2543 	if (oinfo) {
2544 		ASSERT(oinfo->oi_offset == 0);
2545 
2546 		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2547 			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2548 		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2549 			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2550 		xefi->xefi_owner = oinfo->oi_owner;
2551 	} else {
2552 		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2553 	}
2554 	trace_xfs_bmap_free_defer(mp,
2555 			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2556 			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2557 
2558 	xfs_extent_free_get_group(mp, xefi);
2559 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
2560 	return 0;
2561 }
2562 
2563 #ifdef DEBUG
2564 /*
2565  * Check if an AGF has a free extent record whose length is equal to
2566  * args->minlen.
2567  */
2568 STATIC int
2569 xfs_exact_minlen_extent_available(
2570 	struct xfs_alloc_arg	*args,
2571 	struct xfs_buf		*agbp,
2572 	int			*stat)
2573 {
2574 	struct xfs_btree_cur	*cnt_cur;
2575 	xfs_agblock_t		fbno;
2576 	xfs_extlen_t		flen;
2577 	int			error = 0;
2578 
2579 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2580 					args->pag, XFS_BTNUM_CNT);
2581 	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2582 	if (error)
2583 		goto out;
2584 
2585 	if (*stat == 0) {
2586 		error = -EFSCORRUPTED;
2587 		goto out;
2588 	}
2589 
2590 	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2591 	if (error)
2592 		goto out;
2593 
2594 	if (*stat == 1 && flen != args->minlen)
2595 		*stat = 0;
2596 
2597 out:
2598 	xfs_btree_del_cursor(cnt_cur, error);
2599 
2600 	return error;
2601 }
2602 #endif
2603 
2604 /*
2605  * Decide whether to use this allocation group for this allocation.
2606  * If so, fix up the btree freelist's size.
2607  */
2608 int			/* error */
2609 xfs_alloc_fix_freelist(
2610 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2611 	uint32_t		alloc_flags)
2612 {
2613 	struct xfs_mount	*mp = args->mp;
2614 	struct xfs_perag	*pag = args->pag;
2615 	struct xfs_trans	*tp = args->tp;
2616 	struct xfs_buf		*agbp = NULL;
2617 	struct xfs_buf		*agflbp = NULL;
2618 	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2619 	xfs_agblock_t		bno;	/* freelist block */
2620 	xfs_extlen_t		need;	/* total blocks needed in freelist */
2621 	int			error = 0;
2622 
2623 	/* deferred ops (AGFL block frees) require permanent transactions */
2624 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2625 
2626 	if (!xfs_perag_initialised_agf(pag)) {
2627 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2628 		if (error) {
2629 			/* Couldn't lock the AGF so skip this AG. */
2630 			if (error == -EAGAIN)
2631 				error = 0;
2632 			goto out_no_agbp;
2633 		}
2634 	}
2635 
2636 	/*
2637 	 * If this is a metadata preferred pag and we are user data then try
2638 	 * somewhere else if we are not being asked to try harder at this
2639 	 * point
2640 	 */
2641 	if (xfs_perag_prefers_metadata(pag) &&
2642 	    (args->datatype & XFS_ALLOC_USERDATA) &&
2643 	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2644 		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2645 		goto out_agbp_relse;
2646 	}
2647 
2648 	need = xfs_alloc_min_freelist(mp, pag);
2649 	if (!xfs_alloc_space_available(args, need, alloc_flags |
2650 			XFS_ALLOC_FLAG_CHECK))
2651 		goto out_agbp_relse;
2652 
2653 	/*
2654 	 * Get the a.g. freespace buffer.
2655 	 * Can fail if we're not blocking on locks, and it's held.
2656 	 */
2657 	if (!agbp) {
2658 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2659 		if (error) {
2660 			/* Couldn't lock the AGF so skip this AG. */
2661 			if (error == -EAGAIN)
2662 				error = 0;
2663 			goto out_no_agbp;
2664 		}
2665 	}
2666 
2667 	/* reset a padding mismatched agfl before final free space check */
2668 	if (xfs_perag_agfl_needs_reset(pag))
2669 		xfs_agfl_reset(tp, agbp, pag);
2670 
2671 	/* If there isn't enough total space or single-extent, reject it. */
2672 	need = xfs_alloc_min_freelist(mp, pag);
2673 	if (!xfs_alloc_space_available(args, need, alloc_flags))
2674 		goto out_agbp_relse;
2675 
2676 #ifdef DEBUG
2677 	if (args->alloc_minlen_only) {
2678 		int stat;
2679 
2680 		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2681 		if (error || !stat)
2682 			goto out_agbp_relse;
2683 	}
2684 #endif
2685 	/*
2686 	 * Make the freelist shorter if it's too long.
2687 	 *
2688 	 * Note that from this point onwards, we will always release the agf and
2689 	 * agfl buffers on error. This handles the case where we error out and
2690 	 * the buffers are clean or may not have been joined to the transaction
2691 	 * and hence need to be released manually. If they have been joined to
2692 	 * the transaction, then xfs_trans_brelse() will handle them
2693 	 * appropriately based on the recursion count and dirty state of the
2694 	 * buffer.
2695 	 *
2696 	 * XXX (dgc): When we have lots of free space, does this buy us
2697 	 * anything other than extra overhead when we need to put more blocks
2698 	 * back on the free list? Maybe we should only do this when space is
2699 	 * getting low or the AGFL is more than half full?
2700 	 *
2701 	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2702 	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2703 	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2704 	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2705 	 * both required to ensure that rmaps are correctly recorded for the
2706 	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2707 	 * repair/rmap.c in xfsprogs for details.
2708 	 */
2709 	memset(&targs, 0, sizeof(targs));
2710 	/* struct copy below */
2711 	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2712 		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2713 	else
2714 		targs.oinfo = XFS_RMAP_OINFO_AG;
2715 	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2716 			pag->pagf_flcount > need) {
2717 		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2718 		if (error)
2719 			goto out_agbp_relse;
2720 
2721 		/* defer agfl frees */
2722 		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2723 		if (error)
2724 			goto out_agbp_relse;
2725 	}
2726 
2727 	targs.tp = tp;
2728 	targs.mp = mp;
2729 	targs.agbp = agbp;
2730 	targs.agno = args->agno;
2731 	targs.alignment = targs.minlen = targs.prod = 1;
2732 	targs.pag = pag;
2733 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2734 	if (error)
2735 		goto out_agbp_relse;
2736 
2737 	/* Make the freelist longer if it's too short. */
2738 	while (pag->pagf_flcount < need) {
2739 		targs.agbno = 0;
2740 		targs.maxlen = need - pag->pagf_flcount;
2741 		targs.resv = XFS_AG_RESV_AGFL;
2742 
2743 		/* Allocate as many blocks as possible at once. */
2744 		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2745 		if (error)
2746 			goto out_agflbp_relse;
2747 
2748 		/*
2749 		 * Stop if we run out.  Won't happen if callers are obeying
2750 		 * the restrictions correctly.  Can happen for free calls
2751 		 * on a completely full ag.
2752 		 */
2753 		if (targs.agbno == NULLAGBLOCK) {
2754 			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2755 				break;
2756 			goto out_agflbp_relse;
2757 		}
2758 
2759 		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2760 			error = xfs_rmap_alloc(tp, agbp, pag,
2761 				       targs.agbno, targs.len, &targs.oinfo);
2762 			if (error)
2763 				goto out_agflbp_relse;
2764 		}
2765 		error = xfs_alloc_update_counters(tp, agbp,
2766 						  -((long)(targs.len)));
2767 		if (error)
2768 			goto out_agflbp_relse;
2769 
2770 		/*
2771 		 * Put each allocated block on the list.
2772 		 */
2773 		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2774 			error = xfs_alloc_put_freelist(pag, tp, agbp,
2775 							agflbp, bno, 0);
2776 			if (error)
2777 				goto out_agflbp_relse;
2778 		}
2779 	}
2780 	xfs_trans_brelse(tp, agflbp);
2781 	args->agbp = agbp;
2782 	return 0;
2783 
2784 out_agflbp_relse:
2785 	xfs_trans_brelse(tp, agflbp);
2786 out_agbp_relse:
2787 	if (agbp)
2788 		xfs_trans_brelse(tp, agbp);
2789 out_no_agbp:
2790 	args->agbp = NULL;
2791 	return error;
2792 }
2793 
2794 /*
2795  * Get a block from the freelist.
2796  * Returns with the buffer for the block gotten.
2797  */
2798 int
2799 xfs_alloc_get_freelist(
2800 	struct xfs_perag	*pag,
2801 	struct xfs_trans	*tp,
2802 	struct xfs_buf		*agbp,
2803 	xfs_agblock_t		*bnop,
2804 	int			btreeblk)
2805 {
2806 	struct xfs_agf		*agf = agbp->b_addr;
2807 	struct xfs_buf		*agflbp;
2808 	xfs_agblock_t		bno;
2809 	__be32			*agfl_bno;
2810 	int			error;
2811 	uint32_t		logflags;
2812 	struct xfs_mount	*mp = tp->t_mountp;
2813 
2814 	/*
2815 	 * Freelist is empty, give up.
2816 	 */
2817 	if (!agf->agf_flcount) {
2818 		*bnop = NULLAGBLOCK;
2819 		return 0;
2820 	}
2821 	/*
2822 	 * Read the array of free blocks.
2823 	 */
2824 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2825 	if (error)
2826 		return error;
2827 
2828 
2829 	/*
2830 	 * Get the block number and update the data structures.
2831 	 */
2832 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2833 	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2834 	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2835 		return -EFSCORRUPTED;
2836 
2837 	be32_add_cpu(&agf->agf_flfirst, 1);
2838 	xfs_trans_brelse(tp, agflbp);
2839 	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2840 		agf->agf_flfirst = 0;
2841 
2842 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2843 	be32_add_cpu(&agf->agf_flcount, -1);
2844 	pag->pagf_flcount--;
2845 
2846 	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2847 	if (btreeblk) {
2848 		be32_add_cpu(&agf->agf_btreeblks, 1);
2849 		pag->pagf_btreeblks++;
2850 		logflags |= XFS_AGF_BTREEBLKS;
2851 	}
2852 
2853 	xfs_alloc_log_agf(tp, agbp, logflags);
2854 	*bnop = bno;
2855 
2856 	return 0;
2857 }
2858 
2859 /*
2860  * Log the given fields from the agf structure.
2861  */
2862 void
2863 xfs_alloc_log_agf(
2864 	struct xfs_trans	*tp,
2865 	struct xfs_buf		*bp,
2866 	uint32_t		fields)
2867 {
2868 	int	first;		/* first byte offset */
2869 	int	last;		/* last byte offset */
2870 	static const short	offsets[] = {
2871 		offsetof(xfs_agf_t, agf_magicnum),
2872 		offsetof(xfs_agf_t, agf_versionnum),
2873 		offsetof(xfs_agf_t, agf_seqno),
2874 		offsetof(xfs_agf_t, agf_length),
2875 		offsetof(xfs_agf_t, agf_roots[0]),
2876 		offsetof(xfs_agf_t, agf_levels[0]),
2877 		offsetof(xfs_agf_t, agf_flfirst),
2878 		offsetof(xfs_agf_t, agf_fllast),
2879 		offsetof(xfs_agf_t, agf_flcount),
2880 		offsetof(xfs_agf_t, agf_freeblks),
2881 		offsetof(xfs_agf_t, agf_longest),
2882 		offsetof(xfs_agf_t, agf_btreeblks),
2883 		offsetof(xfs_agf_t, agf_uuid),
2884 		offsetof(xfs_agf_t, agf_rmap_blocks),
2885 		offsetof(xfs_agf_t, agf_refcount_blocks),
2886 		offsetof(xfs_agf_t, agf_refcount_root),
2887 		offsetof(xfs_agf_t, agf_refcount_level),
2888 		/* needed so that we don't log the whole rest of the structure: */
2889 		offsetof(xfs_agf_t, agf_spare64),
2890 		sizeof(xfs_agf_t)
2891 	};
2892 
2893 	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2894 
2895 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2896 
2897 	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2898 	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2899 }
2900 
2901 /*
2902  * Put the block on the freelist for the allocation group.
2903  */
2904 int
2905 xfs_alloc_put_freelist(
2906 	struct xfs_perag	*pag,
2907 	struct xfs_trans	*tp,
2908 	struct xfs_buf		*agbp,
2909 	struct xfs_buf		*agflbp,
2910 	xfs_agblock_t		bno,
2911 	int			btreeblk)
2912 {
2913 	struct xfs_mount	*mp = tp->t_mountp;
2914 	struct xfs_agf		*agf = agbp->b_addr;
2915 	__be32			*blockp;
2916 	int			error;
2917 	uint32_t		logflags;
2918 	__be32			*agfl_bno;
2919 	int			startoff;
2920 
2921 	if (!agflbp) {
2922 		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2923 		if (error)
2924 			return error;
2925 	}
2926 
2927 	be32_add_cpu(&agf->agf_fllast, 1);
2928 	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2929 		agf->agf_fllast = 0;
2930 
2931 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2932 	be32_add_cpu(&agf->agf_flcount, 1);
2933 	pag->pagf_flcount++;
2934 
2935 	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2936 	if (btreeblk) {
2937 		be32_add_cpu(&agf->agf_btreeblks, -1);
2938 		pag->pagf_btreeblks--;
2939 		logflags |= XFS_AGF_BTREEBLKS;
2940 	}
2941 
2942 	xfs_alloc_log_agf(tp, agbp, logflags);
2943 
2944 	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2945 
2946 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2947 	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2948 	*blockp = cpu_to_be32(bno);
2949 	startoff = (char *)blockp - (char *)agflbp->b_addr;
2950 
2951 	xfs_alloc_log_agf(tp, agbp, logflags);
2952 
2953 	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2954 	xfs_trans_log_buf(tp, agflbp, startoff,
2955 			  startoff + sizeof(xfs_agblock_t) - 1);
2956 	return 0;
2957 }
2958 
2959 /*
2960  * Check that this AGF/AGI header's sequence number and length matches the AG
2961  * number and size in fsblocks.
2962  */
2963 xfs_failaddr_t
2964 xfs_validate_ag_length(
2965 	struct xfs_buf		*bp,
2966 	uint32_t		seqno,
2967 	uint32_t		length)
2968 {
2969 	struct xfs_mount	*mp = bp->b_mount;
2970 	/*
2971 	 * During growfs operations, the perag is not fully initialised,
2972 	 * so we can't use it for any useful checking. growfs ensures we can't
2973 	 * use it by using uncached buffers that don't have the perag attached
2974 	 * so we can detect and avoid this problem.
2975 	 */
2976 	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
2977 		return __this_address;
2978 
2979 	/*
2980 	 * Only the last AG in the filesystem is allowed to be shorter
2981 	 * than the AG size recorded in the superblock.
2982 	 */
2983 	if (length != mp->m_sb.sb_agblocks) {
2984 		/*
2985 		 * During growfs, the new last AG can get here before we
2986 		 * have updated the superblock. Give it a pass on the seqno
2987 		 * check.
2988 		 */
2989 		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
2990 			return __this_address;
2991 		if (length < XFS_MIN_AG_BLOCKS)
2992 			return __this_address;
2993 		if (length > mp->m_sb.sb_agblocks)
2994 			return __this_address;
2995 	}
2996 
2997 	return NULL;
2998 }
2999 
3000 /*
3001  * Verify the AGF is consistent.
3002  *
3003  * We do not verify the AGFL indexes in the AGF are fully consistent here
3004  * because of issues with variable on-disk structure sizes. Instead, we check
3005  * the agfl indexes for consistency when we initialise the perag from the AGF
3006  * information after a read completes.
3007  *
3008  * If the index is inconsistent, then we mark the perag as needing an AGFL
3009  * reset. The first AGFL update performed then resets the AGFL indexes and
3010  * refills the AGFL with known good free blocks, allowing the filesystem to
3011  * continue operating normally at the cost of a few leaked free space blocks.
3012  */
3013 static xfs_failaddr_t
3014 xfs_agf_verify(
3015 	struct xfs_buf		*bp)
3016 {
3017 	struct xfs_mount	*mp = bp->b_mount;
3018 	struct xfs_agf		*agf = bp->b_addr;
3019 	xfs_failaddr_t		fa;
3020 	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3021 	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3022 
3023 	if (xfs_has_crc(mp)) {
3024 		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3025 			return __this_address;
3026 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3027 			return __this_address;
3028 	}
3029 
3030 	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3031 		return __this_address;
3032 
3033 	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3034 		return __this_address;
3035 
3036 	/*
3037 	 * Both agf_seqno and agf_length need to validated before anything else
3038 	 * block number related in the AGF or AGFL can be checked.
3039 	 */
3040 	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3041 	if (fa)
3042 		return fa;
3043 
3044 	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3045 		return __this_address;
3046 	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3047 		return __this_address;
3048 	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3049 		return __this_address;
3050 
3051 	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3052 	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3053 		return __this_address;
3054 
3055 	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3056 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3057 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3058 						mp->m_alloc_maxlevels ||
3059 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3060 						mp->m_alloc_maxlevels)
3061 		return __this_address;
3062 
3063 	if (xfs_has_lazysbcount(mp) &&
3064 	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3065 		return __this_address;
3066 
3067 	if (xfs_has_rmapbt(mp)) {
3068 		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3069 			return __this_address;
3070 
3071 		if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3072 		    be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3073 							mp->m_rmap_maxlevels)
3074 			return __this_address;
3075 	}
3076 
3077 	if (xfs_has_reflink(mp)) {
3078 		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3079 			return __this_address;
3080 
3081 		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3082 		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3083 			return __this_address;
3084 	}
3085 
3086 	return NULL;
3087 }
3088 
3089 static void
3090 xfs_agf_read_verify(
3091 	struct xfs_buf	*bp)
3092 {
3093 	struct xfs_mount *mp = bp->b_mount;
3094 	xfs_failaddr_t	fa;
3095 
3096 	if (xfs_has_crc(mp) &&
3097 	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3098 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3099 	else {
3100 		fa = xfs_agf_verify(bp);
3101 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3102 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3103 	}
3104 }
3105 
3106 static void
3107 xfs_agf_write_verify(
3108 	struct xfs_buf	*bp)
3109 {
3110 	struct xfs_mount	*mp = bp->b_mount;
3111 	struct xfs_buf_log_item	*bip = bp->b_log_item;
3112 	struct xfs_agf		*agf = bp->b_addr;
3113 	xfs_failaddr_t		fa;
3114 
3115 	fa = xfs_agf_verify(bp);
3116 	if (fa) {
3117 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3118 		return;
3119 	}
3120 
3121 	if (!xfs_has_crc(mp))
3122 		return;
3123 
3124 	if (bip)
3125 		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3126 
3127 	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3128 }
3129 
3130 const struct xfs_buf_ops xfs_agf_buf_ops = {
3131 	.name = "xfs_agf",
3132 	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3133 	.verify_read = xfs_agf_read_verify,
3134 	.verify_write = xfs_agf_write_verify,
3135 	.verify_struct = xfs_agf_verify,
3136 };
3137 
3138 /*
3139  * Read in the allocation group header (free/alloc section).
3140  */
3141 int
3142 xfs_read_agf(
3143 	struct xfs_perag	*pag,
3144 	struct xfs_trans	*tp,
3145 	int			flags,
3146 	struct xfs_buf		**agfbpp)
3147 {
3148 	struct xfs_mount	*mp = pag->pag_mount;
3149 	int			error;
3150 
3151 	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3152 
3153 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3154 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3155 			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3156 	if (error)
3157 		return error;
3158 
3159 	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3160 	return 0;
3161 }
3162 
3163 /*
3164  * Read in the allocation group header (free/alloc section) and initialise the
3165  * perag structure if necessary. If the caller provides @agfbpp, then return the
3166  * locked buffer to the caller, otherwise free it.
3167  */
3168 int
3169 xfs_alloc_read_agf(
3170 	struct xfs_perag	*pag,
3171 	struct xfs_trans	*tp,
3172 	int			flags,
3173 	struct xfs_buf		**agfbpp)
3174 {
3175 	struct xfs_buf		*agfbp;
3176 	struct xfs_agf		*agf;
3177 	int			error;
3178 	int			allocbt_blks;
3179 
3180 	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3181 
3182 	/* We don't support trylock when freeing. */
3183 	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3184 			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3185 	error = xfs_read_agf(pag, tp,
3186 			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3187 			&agfbp);
3188 	if (error)
3189 		return error;
3190 
3191 	agf = agfbp->b_addr;
3192 	if (!xfs_perag_initialised_agf(pag)) {
3193 		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3194 		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3195 		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3196 		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3197 		pag->pagf_levels[XFS_BTNUM_BNOi] =
3198 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3199 		pag->pagf_levels[XFS_BTNUM_CNTi] =
3200 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3201 		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3202 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3203 		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3204 		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3205 			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3206 		else
3207 			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3208 
3209 		/*
3210 		 * Update the in-core allocbt counter. Filter out the rmapbt
3211 		 * subset of the btreeblks counter because the rmapbt is managed
3212 		 * by perag reservation. Subtract one for the rmapbt root block
3213 		 * because the rmap counter includes it while the btreeblks
3214 		 * counter only tracks non-root blocks.
3215 		 */
3216 		allocbt_blks = pag->pagf_btreeblks;
3217 		if (xfs_has_rmapbt(pag->pag_mount))
3218 			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3219 		if (allocbt_blks > 0)
3220 			atomic64_add(allocbt_blks,
3221 					&pag->pag_mount->m_allocbt_blks);
3222 
3223 		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3224 	}
3225 #ifdef DEBUG
3226 	else if (!xfs_is_shutdown(pag->pag_mount)) {
3227 		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3228 		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3229 		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3230 		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3231 		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3232 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3233 		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3234 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3235 	}
3236 #endif
3237 	if (agfbpp)
3238 		*agfbpp = agfbp;
3239 	else
3240 		xfs_trans_brelse(tp, agfbp);
3241 	return 0;
3242 }
3243 
3244 /*
3245  * Pre-proces allocation arguments to set initial state that we don't require
3246  * callers to set up correctly, as well as bounds check the allocation args
3247  * that are set up.
3248  */
3249 static int
3250 xfs_alloc_vextent_check_args(
3251 	struct xfs_alloc_arg	*args,
3252 	xfs_fsblock_t		target,
3253 	xfs_agnumber_t		*minimum_agno)
3254 {
3255 	struct xfs_mount	*mp = args->mp;
3256 	xfs_agblock_t		agsize;
3257 
3258 	args->fsbno = NULLFSBLOCK;
3259 
3260 	*minimum_agno = 0;
3261 	if (args->tp->t_highest_agno != NULLAGNUMBER)
3262 		*minimum_agno = args->tp->t_highest_agno;
3263 
3264 	/*
3265 	 * Just fix this up, for the case where the last a.g. is shorter
3266 	 * (or there's only one a.g.) and the caller couldn't easily figure
3267 	 * that out (xfs_bmap_alloc).
3268 	 */
3269 	agsize = mp->m_sb.sb_agblocks;
3270 	if (args->maxlen > agsize)
3271 		args->maxlen = agsize;
3272 	if (args->alignment == 0)
3273 		args->alignment = 1;
3274 
3275 	ASSERT(args->minlen > 0);
3276 	ASSERT(args->maxlen > 0);
3277 	ASSERT(args->alignment > 0);
3278 	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3279 
3280 	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3281 	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3282 	ASSERT(args->minlen <= args->maxlen);
3283 	ASSERT(args->minlen <= agsize);
3284 	ASSERT(args->mod < args->prod);
3285 
3286 	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3287 	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3288 	    args->minlen > args->maxlen || args->minlen > agsize ||
3289 	    args->mod >= args->prod) {
3290 		trace_xfs_alloc_vextent_badargs(args);
3291 		return -ENOSPC;
3292 	}
3293 
3294 	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3295 		trace_xfs_alloc_vextent_skip_deadlock(args);
3296 		return -ENOSPC;
3297 	}
3298 	return 0;
3299 
3300 }
3301 
3302 /*
3303  * Prepare an AG for allocation. If the AG is not prepared to accept the
3304  * allocation, return failure.
3305  *
3306  * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3307  * modified to hold their own perag references.
3308  */
3309 static int
3310 xfs_alloc_vextent_prepare_ag(
3311 	struct xfs_alloc_arg	*args,
3312 	uint32_t		alloc_flags)
3313 {
3314 	bool			need_pag = !args->pag;
3315 	int			error;
3316 
3317 	if (need_pag)
3318 		args->pag = xfs_perag_get(args->mp, args->agno);
3319 
3320 	args->agbp = NULL;
3321 	error = xfs_alloc_fix_freelist(args, alloc_flags);
3322 	if (error) {
3323 		trace_xfs_alloc_vextent_nofix(args);
3324 		if (need_pag)
3325 			xfs_perag_put(args->pag);
3326 		args->agbno = NULLAGBLOCK;
3327 		return error;
3328 	}
3329 	if (!args->agbp) {
3330 		/* cannot allocate in this AG at all */
3331 		trace_xfs_alloc_vextent_noagbp(args);
3332 		args->agbno = NULLAGBLOCK;
3333 		return 0;
3334 	}
3335 	args->wasfromfl = 0;
3336 	return 0;
3337 }
3338 
3339 /*
3340  * Post-process allocation results to account for the allocation if it succeed
3341  * and set the allocated block number correctly for the caller.
3342  *
3343  * XXX: we should really be returning ENOSPC for ENOSPC, not
3344  * hiding it behind a "successful" NULLFSBLOCK allocation.
3345  */
3346 static int
3347 xfs_alloc_vextent_finish(
3348 	struct xfs_alloc_arg	*args,
3349 	xfs_agnumber_t		minimum_agno,
3350 	int			alloc_error,
3351 	bool			drop_perag)
3352 {
3353 	struct xfs_mount	*mp = args->mp;
3354 	int			error = 0;
3355 
3356 	/*
3357 	 * We can end up here with a locked AGF. If we failed, the caller is
3358 	 * likely going to try to allocate again with different parameters, and
3359 	 * that can widen the AGs that are searched for free space. If we have
3360 	 * to do BMBT block allocation, we have to do a new allocation.
3361 	 *
3362 	 * Hence leaving this function with the AGF locked opens up potential
3363 	 * ABBA AGF deadlocks because a future allocation attempt in this
3364 	 * transaction may attempt to lock a lower number AGF.
3365 	 *
3366 	 * We can't release the AGF until the transaction is commited, so at
3367 	 * this point we must update the "first allocation" tracker to point at
3368 	 * this AG if the tracker is empty or points to a lower AG. This allows
3369 	 * the next allocation attempt to be modified appropriately to avoid
3370 	 * deadlocks.
3371 	 */
3372 	if (args->agbp &&
3373 	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3374 	     args->agno > minimum_agno))
3375 		args->tp->t_highest_agno = args->agno;
3376 
3377 	/*
3378 	 * If the allocation failed with an error or we had an ENOSPC result,
3379 	 * preserve the returned error whilst also marking the allocation result
3380 	 * as "no extent allocated". This ensures that callers that fail to
3381 	 * capture the error will still treat it as a failed allocation.
3382 	 */
3383 	if (alloc_error || args->agbno == NULLAGBLOCK) {
3384 		args->fsbno = NULLFSBLOCK;
3385 		error = alloc_error;
3386 		goto out_drop_perag;
3387 	}
3388 
3389 	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3390 
3391 	ASSERT(args->len >= args->minlen);
3392 	ASSERT(args->len <= args->maxlen);
3393 	ASSERT(args->agbno % args->alignment == 0);
3394 	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3395 
3396 	/* if not file data, insert new block into the reverse map btree */
3397 	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3398 		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3399 				       args->agbno, args->len, &args->oinfo);
3400 		if (error)
3401 			goto out_drop_perag;
3402 	}
3403 
3404 	if (!args->wasfromfl) {
3405 		error = xfs_alloc_update_counters(args->tp, args->agbp,
3406 						  -((long)(args->len)));
3407 		if (error)
3408 			goto out_drop_perag;
3409 
3410 		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3411 				args->len));
3412 	}
3413 
3414 	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3415 
3416 	XFS_STATS_INC(mp, xs_allocx);
3417 	XFS_STATS_ADD(mp, xs_allocb, args->len);
3418 
3419 	trace_xfs_alloc_vextent_finish(args);
3420 
3421 out_drop_perag:
3422 	if (drop_perag && args->pag) {
3423 		xfs_perag_rele(args->pag);
3424 		args->pag = NULL;
3425 	}
3426 	return error;
3427 }
3428 
3429 /*
3430  * Allocate within a single AG only. This uses a best-fit length algorithm so if
3431  * you need an exact sized allocation without locality constraints, this is the
3432  * fastest way to do it.
3433  *
3434  * Caller is expected to hold a perag reference in args->pag.
3435  */
3436 int
3437 xfs_alloc_vextent_this_ag(
3438 	struct xfs_alloc_arg	*args,
3439 	xfs_agnumber_t		agno)
3440 {
3441 	struct xfs_mount	*mp = args->mp;
3442 	xfs_agnumber_t		minimum_agno;
3443 	uint32_t		alloc_flags = 0;
3444 	int			error;
3445 
3446 	ASSERT(args->pag != NULL);
3447 	ASSERT(args->pag->pag_agno == agno);
3448 
3449 	args->agno = agno;
3450 	args->agbno = 0;
3451 
3452 	trace_xfs_alloc_vextent_this_ag(args);
3453 
3454 	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3455 			&minimum_agno);
3456 	if (error) {
3457 		if (error == -ENOSPC)
3458 			return 0;
3459 		return error;
3460 	}
3461 
3462 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3463 	if (!error && args->agbp)
3464 		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3465 
3466 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3467 }
3468 
3469 /*
3470  * Iterate all AGs trying to allocate an extent starting from @start_ag.
3471  *
3472  * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3473  * allocation attempts in @start_agno have locality information. If we fail to
3474  * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3475  * we attempt to allocation in as there is no locality optimisation possible for
3476  * those allocations.
3477  *
3478  * On return, args->pag may be left referenced if we finish before the "all
3479  * failed" return point. The allocation finish still needs the perag, and
3480  * so the caller will release it once they've finished the allocation.
3481  *
3482  * When we wrap the AG iteration at the end of the filesystem, we have to be
3483  * careful not to wrap into AGs below ones we already have locked in the
3484  * transaction if we are doing a blocking iteration. This will result in an
3485  * out-of-order locking of AGFs and hence can cause deadlocks.
3486  */
3487 static int
3488 xfs_alloc_vextent_iterate_ags(
3489 	struct xfs_alloc_arg	*args,
3490 	xfs_agnumber_t		minimum_agno,
3491 	xfs_agnumber_t		start_agno,
3492 	xfs_agblock_t		target_agbno,
3493 	uint32_t		alloc_flags)
3494 {
3495 	struct xfs_mount	*mp = args->mp;
3496 	xfs_agnumber_t		restart_agno = minimum_agno;
3497 	xfs_agnumber_t		agno;
3498 	int			error = 0;
3499 
3500 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3501 		restart_agno = 0;
3502 restart:
3503 	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3504 			mp->m_sb.sb_agcount, agno, args->pag) {
3505 		args->agno = agno;
3506 		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3507 		if (error)
3508 			break;
3509 		if (!args->agbp) {
3510 			trace_xfs_alloc_vextent_loopfailed(args);
3511 			continue;
3512 		}
3513 
3514 		/*
3515 		 * Allocation is supposed to succeed now, so break out of the
3516 		 * loop regardless of whether we succeed or not.
3517 		 */
3518 		if (args->agno == start_agno && target_agbno) {
3519 			args->agbno = target_agbno;
3520 			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3521 		} else {
3522 			args->agbno = 0;
3523 			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3524 		}
3525 		break;
3526 	}
3527 	if (error) {
3528 		xfs_perag_rele(args->pag);
3529 		args->pag = NULL;
3530 		return error;
3531 	}
3532 	if (args->agbp)
3533 		return 0;
3534 
3535 	/*
3536 	 * We didn't find an AG we can alloation from. If we were given
3537 	 * constraining flags by the caller, drop them and retry the allocation
3538 	 * without any constraints being set.
3539 	 */
3540 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3541 		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3542 		restart_agno = minimum_agno;
3543 		goto restart;
3544 	}
3545 
3546 	ASSERT(args->pag == NULL);
3547 	trace_xfs_alloc_vextent_allfailed(args);
3548 	return 0;
3549 }
3550 
3551 /*
3552  * Iterate from the AGs from the start AG to the end of the filesystem, trying
3553  * to allocate blocks. It starts with a near allocation attempt in the initial
3554  * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3555  * back to zero if allowed by previous allocations in this transaction,
3556  * otherwise will wrap back to the start AG and run a second blocking pass to
3557  * the end of the filesystem.
3558  */
3559 int
3560 xfs_alloc_vextent_start_ag(
3561 	struct xfs_alloc_arg	*args,
3562 	xfs_fsblock_t		target)
3563 {
3564 	struct xfs_mount	*mp = args->mp;
3565 	xfs_agnumber_t		minimum_agno;
3566 	xfs_agnumber_t		start_agno;
3567 	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3568 	bool			bump_rotor = false;
3569 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3570 	int			error;
3571 
3572 	ASSERT(args->pag == NULL);
3573 
3574 	args->agno = NULLAGNUMBER;
3575 	args->agbno = NULLAGBLOCK;
3576 
3577 	trace_xfs_alloc_vextent_start_ag(args);
3578 
3579 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3580 	if (error) {
3581 		if (error == -ENOSPC)
3582 			return 0;
3583 		return error;
3584 	}
3585 
3586 	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3587 	    xfs_is_inode32(mp)) {
3588 		target = XFS_AGB_TO_FSB(mp,
3589 				((mp->m_agfrotor / rotorstep) %
3590 				mp->m_sb.sb_agcount), 0);
3591 		bump_rotor = 1;
3592 	}
3593 
3594 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3595 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3596 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3597 
3598 	if (bump_rotor) {
3599 		if (args->agno == start_agno)
3600 			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3601 				(mp->m_sb.sb_agcount * rotorstep);
3602 		else
3603 			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3604 				(mp->m_sb.sb_agcount * rotorstep);
3605 	}
3606 
3607 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3608 }
3609 
3610 /*
3611  * Iterate from the agno indicated via @target through to the end of the
3612  * filesystem attempting blocking allocation. This does not wrap or try a second
3613  * pass, so will not recurse into AGs lower than indicated by the target.
3614  */
3615 int
3616 xfs_alloc_vextent_first_ag(
3617 	struct xfs_alloc_arg	*args,
3618 	xfs_fsblock_t		target)
3619  {
3620 	struct xfs_mount	*mp = args->mp;
3621 	xfs_agnumber_t		minimum_agno;
3622 	xfs_agnumber_t		start_agno;
3623 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3624 	int			error;
3625 
3626 	ASSERT(args->pag == NULL);
3627 
3628 	args->agno = NULLAGNUMBER;
3629 	args->agbno = NULLAGBLOCK;
3630 
3631 	trace_xfs_alloc_vextent_first_ag(args);
3632 
3633 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3634 	if (error) {
3635 		if (error == -ENOSPC)
3636 			return 0;
3637 		return error;
3638 	}
3639 
3640 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3641 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3642 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3643 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3644 }
3645 
3646 /*
3647  * Allocate at the exact block target or fail. Caller is expected to hold a
3648  * perag reference in args->pag.
3649  */
3650 int
3651 xfs_alloc_vextent_exact_bno(
3652 	struct xfs_alloc_arg	*args,
3653 	xfs_fsblock_t		target)
3654 {
3655 	struct xfs_mount	*mp = args->mp;
3656 	xfs_agnumber_t		minimum_agno;
3657 	int			error;
3658 
3659 	ASSERT(args->pag != NULL);
3660 	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3661 
3662 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3663 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3664 
3665 	trace_xfs_alloc_vextent_exact_bno(args);
3666 
3667 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3668 	if (error) {
3669 		if (error == -ENOSPC)
3670 			return 0;
3671 		return error;
3672 	}
3673 
3674 	error = xfs_alloc_vextent_prepare_ag(args, 0);
3675 	if (!error && args->agbp)
3676 		error = xfs_alloc_ag_vextent_exact(args);
3677 
3678 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3679 }
3680 
3681 /*
3682  * Allocate an extent as close to the target as possible. If there are not
3683  * viable candidates in the AG, then fail the allocation.
3684  *
3685  * Caller may or may not have a per-ag reference in args->pag.
3686  */
3687 int
3688 xfs_alloc_vextent_near_bno(
3689 	struct xfs_alloc_arg	*args,
3690 	xfs_fsblock_t		target)
3691 {
3692 	struct xfs_mount	*mp = args->mp;
3693 	xfs_agnumber_t		minimum_agno;
3694 	bool			needs_perag = args->pag == NULL;
3695 	uint32_t		alloc_flags = 0;
3696 	int			error;
3697 
3698 	if (!needs_perag)
3699 		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3700 
3701 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3702 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3703 
3704 	trace_xfs_alloc_vextent_near_bno(args);
3705 
3706 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3707 	if (error) {
3708 		if (error == -ENOSPC)
3709 			return 0;
3710 		return error;
3711 	}
3712 
3713 	if (needs_perag)
3714 		args->pag = xfs_perag_grab(mp, args->agno);
3715 
3716 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3717 	if (!error && args->agbp)
3718 		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3719 
3720 	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3721 }
3722 
3723 /* Ensure that the freelist is at full capacity. */
3724 int
3725 xfs_free_extent_fix_freelist(
3726 	struct xfs_trans	*tp,
3727 	struct xfs_perag	*pag,
3728 	struct xfs_buf		**agbp)
3729 {
3730 	struct xfs_alloc_arg	args;
3731 	int			error;
3732 
3733 	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3734 	args.tp = tp;
3735 	args.mp = tp->t_mountp;
3736 	args.agno = pag->pag_agno;
3737 	args.pag = pag;
3738 
3739 	/*
3740 	 * validate that the block number is legal - the enables us to detect
3741 	 * and handle a silent filesystem corruption rather than crashing.
3742 	 */
3743 	if (args.agno >= args.mp->m_sb.sb_agcount)
3744 		return -EFSCORRUPTED;
3745 
3746 	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3747 	if (error)
3748 		return error;
3749 
3750 	*agbp = args.agbp;
3751 	return 0;
3752 }
3753 
3754 /*
3755  * Free an extent.
3756  * Just break up the extent address and hand off to xfs_free_ag_extent
3757  * after fixing up the freelist.
3758  */
3759 int
3760 __xfs_free_extent(
3761 	struct xfs_trans		*tp,
3762 	struct xfs_perag		*pag,
3763 	xfs_agblock_t			agbno,
3764 	xfs_extlen_t			len,
3765 	const struct xfs_owner_info	*oinfo,
3766 	enum xfs_ag_resv_type		type,
3767 	bool				skip_discard)
3768 {
3769 	struct xfs_mount		*mp = tp->t_mountp;
3770 	struct xfs_buf			*agbp;
3771 	struct xfs_agf			*agf;
3772 	int				error;
3773 	unsigned int			busy_flags = 0;
3774 
3775 	ASSERT(len != 0);
3776 	ASSERT(type != XFS_AG_RESV_AGFL);
3777 
3778 	if (XFS_TEST_ERROR(false, mp,
3779 			XFS_ERRTAG_FREE_EXTENT))
3780 		return -EIO;
3781 
3782 	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3783 	if (error)
3784 		return error;
3785 	agf = agbp->b_addr;
3786 
3787 	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3788 		error = -EFSCORRUPTED;
3789 		goto err_release;
3790 	}
3791 
3792 	/* validate the extent size is legal now we have the agf locked */
3793 	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3794 		error = -EFSCORRUPTED;
3795 		goto err_release;
3796 	}
3797 
3798 	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3799 			type);
3800 	if (error)
3801 		goto err_release;
3802 
3803 	if (skip_discard)
3804 		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3805 	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3806 	return 0;
3807 
3808 err_release:
3809 	xfs_trans_brelse(tp, agbp);
3810 	return error;
3811 }
3812 
3813 struct xfs_alloc_query_range_info {
3814 	xfs_alloc_query_range_fn	fn;
3815 	void				*priv;
3816 };
3817 
3818 /* Format btree record and pass to our callback. */
3819 STATIC int
3820 xfs_alloc_query_range_helper(
3821 	struct xfs_btree_cur		*cur,
3822 	const union xfs_btree_rec	*rec,
3823 	void				*priv)
3824 {
3825 	struct xfs_alloc_query_range_info	*query = priv;
3826 	struct xfs_alloc_rec_incore		irec;
3827 	xfs_failaddr_t				fa;
3828 
3829 	xfs_alloc_btrec_to_irec(rec, &irec);
3830 	fa = xfs_alloc_check_irec(cur, &irec);
3831 	if (fa)
3832 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3833 
3834 	return query->fn(cur, &irec, query->priv);
3835 }
3836 
3837 /* Find all free space within a given range of blocks. */
3838 int
3839 xfs_alloc_query_range(
3840 	struct xfs_btree_cur			*cur,
3841 	const struct xfs_alloc_rec_incore	*low_rec,
3842 	const struct xfs_alloc_rec_incore	*high_rec,
3843 	xfs_alloc_query_range_fn		fn,
3844 	void					*priv)
3845 {
3846 	union xfs_btree_irec			low_brec = { .a = *low_rec };
3847 	union xfs_btree_irec			high_brec = { .a = *high_rec };
3848 	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
3849 
3850 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3851 	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3852 			xfs_alloc_query_range_helper, &query);
3853 }
3854 
3855 /* Find all free space records. */
3856 int
3857 xfs_alloc_query_all(
3858 	struct xfs_btree_cur			*cur,
3859 	xfs_alloc_query_range_fn		fn,
3860 	void					*priv)
3861 {
3862 	struct xfs_alloc_query_range_info	query;
3863 
3864 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3865 	query.priv = priv;
3866 	query.fn = fn;
3867 	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3868 }
3869 
3870 /*
3871  * Scan part of the keyspace of the free space and tell us if the area has no
3872  * records, is fully mapped by records, or is partially filled.
3873  */
3874 int
3875 xfs_alloc_has_records(
3876 	struct xfs_btree_cur	*cur,
3877 	xfs_agblock_t		bno,
3878 	xfs_extlen_t		len,
3879 	enum xbtree_recpacking	*outcome)
3880 {
3881 	union xfs_btree_irec	low;
3882 	union xfs_btree_irec	high;
3883 
3884 	memset(&low, 0, sizeof(low));
3885 	low.a.ar_startblock = bno;
3886 	memset(&high, 0xFF, sizeof(high));
3887 	high.a.ar_startblock = bno + len - 1;
3888 
3889 	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
3890 }
3891 
3892 /*
3893  * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3894  * error code or XFS_ITER_*.
3895  */
3896 int
3897 xfs_agfl_walk(
3898 	struct xfs_mount	*mp,
3899 	struct xfs_agf		*agf,
3900 	struct xfs_buf		*agflbp,
3901 	xfs_agfl_walk_fn	walk_fn,
3902 	void			*priv)
3903 {
3904 	__be32			*agfl_bno;
3905 	unsigned int		i;
3906 	int			error;
3907 
3908 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3909 	i = be32_to_cpu(agf->agf_flfirst);
3910 
3911 	/* Nothing to walk in an empty AGFL. */
3912 	if (agf->agf_flcount == cpu_to_be32(0))
3913 		return 0;
3914 
3915 	/* Otherwise, walk from first to last, wrapping as needed. */
3916 	for (;;) {
3917 		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3918 		if (error)
3919 			return error;
3920 		if (i == be32_to_cpu(agf->agf_fllast))
3921 			break;
3922 		if (++i == xfs_agfl_size(mp))
3923 			i = 0;
3924 	}
3925 
3926 	return 0;
3927 }
3928 
3929 int __init
3930 xfs_extfree_intent_init_cache(void)
3931 {
3932 	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3933 			sizeof(struct xfs_extent_free_item),
3934 			0, 0, NULL);
3935 
3936 	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3937 }
3938 
3939 void
3940 xfs_extfree_intent_destroy_cache(void)
3941 {
3942 	kmem_cache_destroy(xfs_extfree_item_cache);
3943 	xfs_extfree_item_cache = NULL;
3944 }
3945