1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 30 struct kmem_cache *xfs_extfree_item_cache; 31 32 struct workqueue_struct *xfs_alloc_wq; 33 34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 35 36 #define XFSA_FIXUP_BNO_OK 1 37 #define XFSA_FIXUP_CNT_OK 2 38 39 /* 40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 41 * the beginning of the block for a proper header with the location information 42 * and CRC. 43 */ 44 unsigned int 45 xfs_agfl_size( 46 struct xfs_mount *mp) 47 { 48 unsigned int size = mp->m_sb.sb_sectsize; 49 50 if (xfs_has_crc(mp)) 51 size -= sizeof(struct xfs_agfl); 52 53 return size / sizeof(xfs_agblock_t); 54 } 55 56 unsigned int 57 xfs_refc_block( 58 struct xfs_mount *mp) 59 { 60 if (xfs_has_rmapbt(mp)) 61 return XFS_RMAP_BLOCK(mp) + 1; 62 if (xfs_has_finobt(mp)) 63 return XFS_FIBT_BLOCK(mp) + 1; 64 return XFS_IBT_BLOCK(mp) + 1; 65 } 66 67 xfs_extlen_t 68 xfs_prealloc_blocks( 69 struct xfs_mount *mp) 70 { 71 if (xfs_has_reflink(mp)) 72 return xfs_refc_block(mp) + 1; 73 if (xfs_has_rmapbt(mp)) 74 return XFS_RMAP_BLOCK(mp) + 1; 75 if (xfs_has_finobt(mp)) 76 return XFS_FIBT_BLOCK(mp) + 1; 77 return XFS_IBT_BLOCK(mp) + 1; 78 } 79 80 /* 81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to 82 * guarantee that we can refill the AGFL prior to allocating space in a nearly 83 * full AG. Although the space described by the free space btrees, the 84 * blocks used by the freesp btrees themselves, and the blocks owned by the 85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk 86 * free space in the AG drop so low that the free space btrees cannot refill an 87 * empty AGFL up to the minimum level. Rather than grind through empty AGs 88 * until the fs goes down, we subtract this many AG blocks from the incore 89 * fdblocks to ensure user allocation does not overcommit the space the 90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to 91 * withhold space from xfs_mod_fdblocks, so we do not account for that here. 92 */ 93 #define XFS_ALLOCBT_AGFL_RESERVE 4 94 95 /* 96 * Compute the number of blocks that we set aside to guarantee the ability to 97 * refill the AGFL and handle a full bmap btree split. 98 * 99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 100 * AGF buffer (PV 947395), we place constraints on the relationship among 101 * actual allocations for data blocks, freelist blocks, and potential file data 102 * bmap btree blocks. However, these restrictions may result in no actual space 103 * allocated for a delayed extent, for example, a data block in a certain AG is 104 * allocated but there is no additional block for the additional bmap btree 105 * block due to a split of the bmap btree of the file. The result of this may 106 * lead to an infinite loop when the file gets flushed to disk and all delayed 107 * extents need to be actually allocated. To get around this, we explicitly set 108 * aside a few blocks which will not be reserved in delayed allocation. 109 * 110 * For each AG, we need to reserve enough blocks to replenish a totally empty 111 * AGFL and 4 more to handle a potential split of the file's bmap btree. 112 */ 113 unsigned int 114 xfs_alloc_set_aside( 115 struct xfs_mount *mp) 116 { 117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); 118 } 119 120 /* 121 * When deciding how much space to allocate out of an AG, we limit the 122 * allocation maximum size to the size the AG. However, we cannot use all the 123 * blocks in the AG - some are permanently used by metadata. These 124 * blocks are generally: 125 * - the AG superblock, AGF, AGI and AGFL 126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 127 * the AGI free inode and rmap btree root blocks. 128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 129 * - the rmapbt root block 130 * 131 * The AG headers are sector sized, so the amount of space they take up is 132 * dependent on filesystem geometry. The others are all single blocks. 133 */ 134 unsigned int 135 xfs_alloc_ag_max_usable( 136 struct xfs_mount *mp) 137 { 138 unsigned int blocks; 139 140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 141 blocks += XFS_ALLOCBT_AGFL_RESERVE; 142 blocks += 3; /* AGF, AGI btree root blocks */ 143 if (xfs_has_finobt(mp)) 144 blocks++; /* finobt root block */ 145 if (xfs_has_rmapbt(mp)) 146 blocks++; /* rmap root block */ 147 if (xfs_has_reflink(mp)) 148 blocks++; /* refcount root block */ 149 150 return mp->m_sb.sb_agblocks - blocks; 151 } 152 153 /* 154 * Lookup the record equal to [bno, len] in the btree given by cur. 155 */ 156 STATIC int /* error */ 157 xfs_alloc_lookup_eq( 158 struct xfs_btree_cur *cur, /* btree cursor */ 159 xfs_agblock_t bno, /* starting block of extent */ 160 xfs_extlen_t len, /* length of extent */ 161 int *stat) /* success/failure */ 162 { 163 int error; 164 165 cur->bc_rec.a.ar_startblock = bno; 166 cur->bc_rec.a.ar_blockcount = len; 167 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); 168 cur->bc_ag.abt.active = (*stat == 1); 169 return error; 170 } 171 172 /* 173 * Lookup the first record greater than or equal to [bno, len] 174 * in the btree given by cur. 175 */ 176 int /* error */ 177 xfs_alloc_lookup_ge( 178 struct xfs_btree_cur *cur, /* btree cursor */ 179 xfs_agblock_t bno, /* starting block of extent */ 180 xfs_extlen_t len, /* length of extent */ 181 int *stat) /* success/failure */ 182 { 183 int error; 184 185 cur->bc_rec.a.ar_startblock = bno; 186 cur->bc_rec.a.ar_blockcount = len; 187 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); 188 cur->bc_ag.abt.active = (*stat == 1); 189 return error; 190 } 191 192 /* 193 * Lookup the first record less than or equal to [bno, len] 194 * in the btree given by cur. 195 */ 196 int /* error */ 197 xfs_alloc_lookup_le( 198 struct xfs_btree_cur *cur, /* btree cursor */ 199 xfs_agblock_t bno, /* starting block of extent */ 200 xfs_extlen_t len, /* length of extent */ 201 int *stat) /* success/failure */ 202 { 203 int error; 204 cur->bc_rec.a.ar_startblock = bno; 205 cur->bc_rec.a.ar_blockcount = len; 206 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); 207 cur->bc_ag.abt.active = (*stat == 1); 208 return error; 209 } 210 211 static inline bool 212 xfs_alloc_cur_active( 213 struct xfs_btree_cur *cur) 214 { 215 return cur && cur->bc_ag.abt.active; 216 } 217 218 /* 219 * Update the record referred to by cur to the value given 220 * by [bno, len]. 221 * This either works (return 0) or gets an EFSCORRUPTED error. 222 */ 223 STATIC int /* error */ 224 xfs_alloc_update( 225 struct xfs_btree_cur *cur, /* btree cursor */ 226 xfs_agblock_t bno, /* starting block of extent */ 227 xfs_extlen_t len) /* length of extent */ 228 { 229 union xfs_btree_rec rec; 230 231 rec.alloc.ar_startblock = cpu_to_be32(bno); 232 rec.alloc.ar_blockcount = cpu_to_be32(len); 233 return xfs_btree_update(cur, &rec); 234 } 235 236 /* Convert the ondisk btree record to its incore representation. */ 237 void 238 xfs_alloc_btrec_to_irec( 239 const union xfs_btree_rec *rec, 240 struct xfs_alloc_rec_incore *irec) 241 { 242 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 243 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 244 } 245 246 /* Simple checks for free space records. */ 247 xfs_failaddr_t 248 xfs_alloc_check_irec( 249 struct xfs_btree_cur *cur, 250 const struct xfs_alloc_rec_incore *irec) 251 { 252 struct xfs_perag *pag = cur->bc_ag.pag; 253 254 if (irec->ar_blockcount == 0) 255 return __this_address; 256 257 /* check for valid extent range, including overflow */ 258 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount)) 259 return __this_address; 260 261 return NULL; 262 } 263 264 static inline int 265 xfs_alloc_complain_bad_rec( 266 struct xfs_btree_cur *cur, 267 xfs_failaddr_t fa, 268 const struct xfs_alloc_rec_incore *irec) 269 { 270 struct xfs_mount *mp = cur->bc_mp; 271 272 xfs_warn(mp, 273 "%s Freespace BTree record corruption in AG %d detected at %pS!", 274 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", 275 cur->bc_ag.pag->pag_agno, fa); 276 xfs_warn(mp, 277 "start block 0x%x block count 0x%x", irec->ar_startblock, 278 irec->ar_blockcount); 279 return -EFSCORRUPTED; 280 } 281 282 /* 283 * Get the data from the pointed-to record. 284 */ 285 int /* error */ 286 xfs_alloc_get_rec( 287 struct xfs_btree_cur *cur, /* btree cursor */ 288 xfs_agblock_t *bno, /* output: starting block of extent */ 289 xfs_extlen_t *len, /* output: length of extent */ 290 int *stat) /* output: success/failure */ 291 { 292 struct xfs_alloc_rec_incore irec; 293 union xfs_btree_rec *rec; 294 xfs_failaddr_t fa; 295 int error; 296 297 error = xfs_btree_get_rec(cur, &rec, stat); 298 if (error || !(*stat)) 299 return error; 300 301 xfs_alloc_btrec_to_irec(rec, &irec); 302 fa = xfs_alloc_check_irec(cur, &irec); 303 if (fa) 304 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 305 306 *bno = irec.ar_startblock; 307 *len = irec.ar_blockcount; 308 return 0; 309 } 310 311 /* 312 * Compute aligned version of the found extent. 313 * Takes alignment and min length into account. 314 */ 315 STATIC bool 316 xfs_alloc_compute_aligned( 317 xfs_alloc_arg_t *args, /* allocation argument structure */ 318 xfs_agblock_t foundbno, /* starting block in found extent */ 319 xfs_extlen_t foundlen, /* length in found extent */ 320 xfs_agblock_t *resbno, /* result block number */ 321 xfs_extlen_t *reslen, /* result length */ 322 unsigned *busy_gen) 323 { 324 xfs_agblock_t bno = foundbno; 325 xfs_extlen_t len = foundlen; 326 xfs_extlen_t diff; 327 bool busy; 328 329 /* Trim busy sections out of found extent */ 330 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); 331 332 /* 333 * If we have a largish extent that happens to start before min_agbno, 334 * see if we can shift it into range... 335 */ 336 if (bno < args->min_agbno && bno + len > args->min_agbno) { 337 diff = args->min_agbno - bno; 338 if (len > diff) { 339 bno += diff; 340 len -= diff; 341 } 342 } 343 344 if (args->alignment > 1 && len >= args->minlen) { 345 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 346 347 diff = aligned_bno - bno; 348 349 *resbno = aligned_bno; 350 *reslen = diff >= len ? 0 : len - diff; 351 } else { 352 *resbno = bno; 353 *reslen = len; 354 } 355 356 return busy; 357 } 358 359 /* 360 * Compute best start block and diff for "near" allocations. 361 * freelen >= wantlen already checked by caller. 362 */ 363 STATIC xfs_extlen_t /* difference value (absolute) */ 364 xfs_alloc_compute_diff( 365 xfs_agblock_t wantbno, /* target starting block */ 366 xfs_extlen_t wantlen, /* target length */ 367 xfs_extlen_t alignment, /* target alignment */ 368 int datatype, /* are we allocating data? */ 369 xfs_agblock_t freebno, /* freespace's starting block */ 370 xfs_extlen_t freelen, /* freespace's length */ 371 xfs_agblock_t *newbnop) /* result: best start block from free */ 372 { 373 xfs_agblock_t freeend; /* end of freespace extent */ 374 xfs_agblock_t newbno1; /* return block number */ 375 xfs_agblock_t newbno2; /* other new block number */ 376 xfs_extlen_t newlen1=0; /* length with newbno1 */ 377 xfs_extlen_t newlen2=0; /* length with newbno2 */ 378 xfs_agblock_t wantend; /* end of target extent */ 379 bool userdata = datatype & XFS_ALLOC_USERDATA; 380 381 ASSERT(freelen >= wantlen); 382 freeend = freebno + freelen; 383 wantend = wantbno + wantlen; 384 /* 385 * We want to allocate from the start of a free extent if it is past 386 * the desired block or if we are allocating user data and the free 387 * extent is before desired block. The second case is there to allow 388 * for contiguous allocation from the remaining free space if the file 389 * grows in the short term. 390 */ 391 if (freebno >= wantbno || (userdata && freeend < wantend)) { 392 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 393 newbno1 = NULLAGBLOCK; 394 } else if (freeend >= wantend && alignment > 1) { 395 newbno1 = roundup(wantbno, alignment); 396 newbno2 = newbno1 - alignment; 397 if (newbno1 >= freeend) 398 newbno1 = NULLAGBLOCK; 399 else 400 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 401 if (newbno2 < freebno) 402 newbno2 = NULLAGBLOCK; 403 else 404 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 405 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 406 if (newlen1 < newlen2 || 407 (newlen1 == newlen2 && 408 XFS_ABSDIFF(newbno1, wantbno) > 409 XFS_ABSDIFF(newbno2, wantbno))) 410 newbno1 = newbno2; 411 } else if (newbno2 != NULLAGBLOCK) 412 newbno1 = newbno2; 413 } else if (freeend >= wantend) { 414 newbno1 = wantbno; 415 } else if (alignment > 1) { 416 newbno1 = roundup(freeend - wantlen, alignment); 417 if (newbno1 > freeend - wantlen && 418 newbno1 - alignment >= freebno) 419 newbno1 -= alignment; 420 else if (newbno1 >= freeend) 421 newbno1 = NULLAGBLOCK; 422 } else 423 newbno1 = freeend - wantlen; 424 *newbnop = newbno1; 425 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 426 } 427 428 /* 429 * Fix up the length, based on mod and prod. 430 * len should be k * prod + mod for some k. 431 * If len is too small it is returned unchanged. 432 * If len hits maxlen it is left alone. 433 */ 434 STATIC void 435 xfs_alloc_fix_len( 436 xfs_alloc_arg_t *args) /* allocation argument structure */ 437 { 438 xfs_extlen_t k; 439 xfs_extlen_t rlen; 440 441 ASSERT(args->mod < args->prod); 442 rlen = args->len; 443 ASSERT(rlen >= args->minlen); 444 ASSERT(rlen <= args->maxlen); 445 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 446 (args->mod == 0 && rlen < args->prod)) 447 return; 448 k = rlen % args->prod; 449 if (k == args->mod) 450 return; 451 if (k > args->mod) 452 rlen = rlen - (k - args->mod); 453 else 454 rlen = rlen - args->prod + (args->mod - k); 455 /* casts to (int) catch length underflows */ 456 if ((int)rlen < (int)args->minlen) 457 return; 458 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 459 ASSERT(rlen % args->prod == args->mod); 460 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 461 rlen + args->minleft); 462 args->len = rlen; 463 } 464 465 /* 466 * Update the two btrees, logically removing from freespace the extent 467 * starting at rbno, rlen blocks. The extent is contained within the 468 * actual (current) free extent fbno for flen blocks. 469 * Flags are passed in indicating whether the cursors are set to the 470 * relevant records. 471 */ 472 STATIC int /* error code */ 473 xfs_alloc_fixup_trees( 474 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 475 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 476 xfs_agblock_t fbno, /* starting block of free extent */ 477 xfs_extlen_t flen, /* length of free extent */ 478 xfs_agblock_t rbno, /* starting block of returned extent */ 479 xfs_extlen_t rlen, /* length of returned extent */ 480 int flags) /* flags, XFSA_FIXUP_... */ 481 { 482 int error; /* error code */ 483 int i; /* operation results */ 484 xfs_agblock_t nfbno1; /* first new free startblock */ 485 xfs_agblock_t nfbno2; /* second new free startblock */ 486 xfs_extlen_t nflen1=0; /* first new free length */ 487 xfs_extlen_t nflen2=0; /* second new free length */ 488 struct xfs_mount *mp; 489 490 mp = cnt_cur->bc_mp; 491 492 /* 493 * Look up the record in the by-size tree if necessary. 494 */ 495 if (flags & XFSA_FIXUP_CNT_OK) { 496 #ifdef DEBUG 497 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 498 return error; 499 if (XFS_IS_CORRUPT(mp, 500 i != 1 || 501 nfbno1 != fbno || 502 nflen1 != flen)) 503 return -EFSCORRUPTED; 504 #endif 505 } else { 506 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 507 return error; 508 if (XFS_IS_CORRUPT(mp, i != 1)) 509 return -EFSCORRUPTED; 510 } 511 /* 512 * Look up the record in the by-block tree if necessary. 513 */ 514 if (flags & XFSA_FIXUP_BNO_OK) { 515 #ifdef DEBUG 516 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 517 return error; 518 if (XFS_IS_CORRUPT(mp, 519 i != 1 || 520 nfbno1 != fbno || 521 nflen1 != flen)) 522 return -EFSCORRUPTED; 523 #endif 524 } else { 525 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 526 return error; 527 if (XFS_IS_CORRUPT(mp, i != 1)) 528 return -EFSCORRUPTED; 529 } 530 531 #ifdef DEBUG 532 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 533 struct xfs_btree_block *bnoblock; 534 struct xfs_btree_block *cntblock; 535 536 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 537 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 538 539 if (XFS_IS_CORRUPT(mp, 540 bnoblock->bb_numrecs != 541 cntblock->bb_numrecs)) 542 return -EFSCORRUPTED; 543 } 544 #endif 545 546 /* 547 * Deal with all four cases: the allocated record is contained 548 * within the freespace record, so we can have new freespace 549 * at either (or both) end, or no freespace remaining. 550 */ 551 if (rbno == fbno && rlen == flen) 552 nfbno1 = nfbno2 = NULLAGBLOCK; 553 else if (rbno == fbno) { 554 nfbno1 = rbno + rlen; 555 nflen1 = flen - rlen; 556 nfbno2 = NULLAGBLOCK; 557 } else if (rbno + rlen == fbno + flen) { 558 nfbno1 = fbno; 559 nflen1 = flen - rlen; 560 nfbno2 = NULLAGBLOCK; 561 } else { 562 nfbno1 = fbno; 563 nflen1 = rbno - fbno; 564 nfbno2 = rbno + rlen; 565 nflen2 = (fbno + flen) - nfbno2; 566 } 567 /* 568 * Delete the entry from the by-size btree. 569 */ 570 if ((error = xfs_btree_delete(cnt_cur, &i))) 571 return error; 572 if (XFS_IS_CORRUPT(mp, i != 1)) 573 return -EFSCORRUPTED; 574 /* 575 * Add new by-size btree entry(s). 576 */ 577 if (nfbno1 != NULLAGBLOCK) { 578 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 579 return error; 580 if (XFS_IS_CORRUPT(mp, i != 0)) 581 return -EFSCORRUPTED; 582 if ((error = xfs_btree_insert(cnt_cur, &i))) 583 return error; 584 if (XFS_IS_CORRUPT(mp, i != 1)) 585 return -EFSCORRUPTED; 586 } 587 if (nfbno2 != NULLAGBLOCK) { 588 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 589 return error; 590 if (XFS_IS_CORRUPT(mp, i != 0)) 591 return -EFSCORRUPTED; 592 if ((error = xfs_btree_insert(cnt_cur, &i))) 593 return error; 594 if (XFS_IS_CORRUPT(mp, i != 1)) 595 return -EFSCORRUPTED; 596 } 597 /* 598 * Fix up the by-block btree entry(s). 599 */ 600 if (nfbno1 == NULLAGBLOCK) { 601 /* 602 * No remaining freespace, just delete the by-block tree entry. 603 */ 604 if ((error = xfs_btree_delete(bno_cur, &i))) 605 return error; 606 if (XFS_IS_CORRUPT(mp, i != 1)) 607 return -EFSCORRUPTED; 608 } else { 609 /* 610 * Update the by-block entry to start later|be shorter. 611 */ 612 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 613 return error; 614 } 615 if (nfbno2 != NULLAGBLOCK) { 616 /* 617 * 2 resulting free entries, need to add one. 618 */ 619 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 620 return error; 621 if (XFS_IS_CORRUPT(mp, i != 0)) 622 return -EFSCORRUPTED; 623 if ((error = xfs_btree_insert(bno_cur, &i))) 624 return error; 625 if (XFS_IS_CORRUPT(mp, i != 1)) 626 return -EFSCORRUPTED; 627 } 628 return 0; 629 } 630 631 /* 632 * We do not verify the AGFL contents against AGF-based index counters here, 633 * even though we may have access to the perag that contains shadow copies. We 634 * don't know if the AGF based counters have been checked, and if they have they 635 * still may be inconsistent because they haven't yet been reset on the first 636 * allocation after the AGF has been read in. 637 * 638 * This means we can only check that all agfl entries contain valid or null 639 * values because we can't reliably determine the active range to exclude 640 * NULLAGBNO as a valid value. 641 * 642 * However, we can't even do that for v4 format filesystems because there are 643 * old versions of mkfs out there that does not initialise the AGFL to known, 644 * verifiable values. HEnce we can't tell the difference between a AGFL block 645 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems. 646 * 647 * As a result, we can only fully validate AGFL block numbers when we pull them 648 * from the freelist in xfs_alloc_get_freelist(). 649 */ 650 static xfs_failaddr_t 651 xfs_agfl_verify( 652 struct xfs_buf *bp) 653 { 654 struct xfs_mount *mp = bp->b_mount; 655 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 656 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 657 int i; 658 659 if (!xfs_has_crc(mp)) 660 return NULL; 661 662 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 663 return __this_address; 664 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 665 return __this_address; 666 /* 667 * during growfs operations, the perag is not fully initialised, 668 * so we can't use it for any useful checking. growfs ensures we can't 669 * use it by using uncached buffers that don't have the perag attached 670 * so we can detect and avoid this problem. 671 */ 672 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) 673 return __this_address; 674 675 for (i = 0; i < xfs_agfl_size(mp); i++) { 676 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 677 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 678 return __this_address; 679 } 680 681 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 682 return __this_address; 683 return NULL; 684 } 685 686 static void 687 xfs_agfl_read_verify( 688 struct xfs_buf *bp) 689 { 690 struct xfs_mount *mp = bp->b_mount; 691 xfs_failaddr_t fa; 692 693 /* 694 * There is no verification of non-crc AGFLs because mkfs does not 695 * initialise the AGFL to zero or NULL. Hence the only valid part of the 696 * AGFL is what the AGF says is active. We can't get to the AGF, so we 697 * can't verify just those entries are valid. 698 */ 699 if (!xfs_has_crc(mp)) 700 return; 701 702 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 703 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 704 else { 705 fa = xfs_agfl_verify(bp); 706 if (fa) 707 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 708 } 709 } 710 711 static void 712 xfs_agfl_write_verify( 713 struct xfs_buf *bp) 714 { 715 struct xfs_mount *mp = bp->b_mount; 716 struct xfs_buf_log_item *bip = bp->b_log_item; 717 xfs_failaddr_t fa; 718 719 /* no verification of non-crc AGFLs */ 720 if (!xfs_has_crc(mp)) 721 return; 722 723 fa = xfs_agfl_verify(bp); 724 if (fa) { 725 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 726 return; 727 } 728 729 if (bip) 730 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 731 732 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 733 } 734 735 const struct xfs_buf_ops xfs_agfl_buf_ops = { 736 .name = "xfs_agfl", 737 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 738 .verify_read = xfs_agfl_read_verify, 739 .verify_write = xfs_agfl_write_verify, 740 .verify_struct = xfs_agfl_verify, 741 }; 742 743 /* 744 * Read in the allocation group free block array. 745 */ 746 int 747 xfs_alloc_read_agfl( 748 struct xfs_perag *pag, 749 struct xfs_trans *tp, 750 struct xfs_buf **bpp) 751 { 752 struct xfs_mount *mp = pag->pag_mount; 753 struct xfs_buf *bp; 754 int error; 755 756 error = xfs_trans_read_buf( 757 mp, tp, mp->m_ddev_targp, 758 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)), 759 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 760 if (error) 761 return error; 762 xfs_buf_set_ref(bp, XFS_AGFL_REF); 763 *bpp = bp; 764 return 0; 765 } 766 767 STATIC int 768 xfs_alloc_update_counters( 769 struct xfs_trans *tp, 770 struct xfs_buf *agbp, 771 long len) 772 { 773 struct xfs_agf *agf = agbp->b_addr; 774 775 agbp->b_pag->pagf_freeblks += len; 776 be32_add_cpu(&agf->agf_freeblks, len); 777 778 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 779 be32_to_cpu(agf->agf_length))) { 780 xfs_buf_mark_corrupt(agbp); 781 return -EFSCORRUPTED; 782 } 783 784 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 785 return 0; 786 } 787 788 /* 789 * Block allocation algorithm and data structures. 790 */ 791 struct xfs_alloc_cur { 792 struct xfs_btree_cur *cnt; /* btree cursors */ 793 struct xfs_btree_cur *bnolt; 794 struct xfs_btree_cur *bnogt; 795 xfs_extlen_t cur_len;/* current search length */ 796 xfs_agblock_t rec_bno;/* extent startblock */ 797 xfs_extlen_t rec_len;/* extent length */ 798 xfs_agblock_t bno; /* alloc bno */ 799 xfs_extlen_t len; /* alloc len */ 800 xfs_extlen_t diff; /* diff from search bno */ 801 unsigned int busy_gen;/* busy state */ 802 bool busy; 803 }; 804 805 /* 806 * Set up cursors, etc. in the extent allocation cursor. This function can be 807 * called multiple times to reset an initialized structure without having to 808 * reallocate cursors. 809 */ 810 static int 811 xfs_alloc_cur_setup( 812 struct xfs_alloc_arg *args, 813 struct xfs_alloc_cur *acur) 814 { 815 int error; 816 int i; 817 818 acur->cur_len = args->maxlen; 819 acur->rec_bno = 0; 820 acur->rec_len = 0; 821 acur->bno = 0; 822 acur->len = 0; 823 acur->diff = -1; 824 acur->busy = false; 825 acur->busy_gen = 0; 826 827 /* 828 * Perform an initial cntbt lookup to check for availability of maxlen 829 * extents. If this fails, we'll return -ENOSPC to signal the caller to 830 * attempt a small allocation. 831 */ 832 if (!acur->cnt) 833 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp, 834 args->agbp, args->pag, XFS_BTNUM_CNT); 835 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 836 if (error) 837 return error; 838 839 /* 840 * Allocate the bnobt left and right search cursors. 841 */ 842 if (!acur->bnolt) 843 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp, 844 args->agbp, args->pag, XFS_BTNUM_BNO); 845 if (!acur->bnogt) 846 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp, 847 args->agbp, args->pag, XFS_BTNUM_BNO); 848 return i == 1 ? 0 : -ENOSPC; 849 } 850 851 static void 852 xfs_alloc_cur_close( 853 struct xfs_alloc_cur *acur, 854 bool error) 855 { 856 int cur_error = XFS_BTREE_NOERROR; 857 858 if (error) 859 cur_error = XFS_BTREE_ERROR; 860 861 if (acur->cnt) 862 xfs_btree_del_cursor(acur->cnt, cur_error); 863 if (acur->bnolt) 864 xfs_btree_del_cursor(acur->bnolt, cur_error); 865 if (acur->bnogt) 866 xfs_btree_del_cursor(acur->bnogt, cur_error); 867 acur->cnt = acur->bnolt = acur->bnogt = NULL; 868 } 869 870 /* 871 * Check an extent for allocation and track the best available candidate in the 872 * allocation structure. The cursor is deactivated if it has entered an out of 873 * range state based on allocation arguments. Optionally return the extent 874 * extent geometry and allocation status if requested by the caller. 875 */ 876 static int 877 xfs_alloc_cur_check( 878 struct xfs_alloc_arg *args, 879 struct xfs_alloc_cur *acur, 880 struct xfs_btree_cur *cur, 881 int *new) 882 { 883 int error, i; 884 xfs_agblock_t bno, bnoa, bnew; 885 xfs_extlen_t len, lena, diff = -1; 886 bool busy; 887 unsigned busy_gen = 0; 888 bool deactivate = false; 889 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO; 890 891 *new = 0; 892 893 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 894 if (error) 895 return error; 896 if (XFS_IS_CORRUPT(args->mp, i != 1)) 897 return -EFSCORRUPTED; 898 899 /* 900 * Check minlen and deactivate a cntbt cursor if out of acceptable size 901 * range (i.e., walking backwards looking for a minlen extent). 902 */ 903 if (len < args->minlen) { 904 deactivate = !isbnobt; 905 goto out; 906 } 907 908 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 909 &busy_gen); 910 acur->busy |= busy; 911 if (busy) 912 acur->busy_gen = busy_gen; 913 /* deactivate a bnobt cursor outside of locality range */ 914 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 915 deactivate = isbnobt; 916 goto out; 917 } 918 if (lena < args->minlen) 919 goto out; 920 921 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 922 xfs_alloc_fix_len(args); 923 ASSERT(args->len >= args->minlen); 924 if (args->len < acur->len) 925 goto out; 926 927 /* 928 * We have an aligned record that satisfies minlen and beats or matches 929 * the candidate extent size. Compare locality for near allocation mode. 930 */ 931 diff = xfs_alloc_compute_diff(args->agbno, args->len, 932 args->alignment, args->datatype, 933 bnoa, lena, &bnew); 934 if (bnew == NULLAGBLOCK) 935 goto out; 936 937 /* 938 * Deactivate a bnobt cursor with worse locality than the current best. 939 */ 940 if (diff > acur->diff) { 941 deactivate = isbnobt; 942 goto out; 943 } 944 945 ASSERT(args->len > acur->len || 946 (args->len == acur->len && diff <= acur->diff)); 947 acur->rec_bno = bno; 948 acur->rec_len = len; 949 acur->bno = bnew; 950 acur->len = args->len; 951 acur->diff = diff; 952 *new = 1; 953 954 /* 955 * We're done if we found a perfect allocation. This only deactivates 956 * the current cursor, but this is just an optimization to terminate a 957 * cntbt search that otherwise runs to the edge of the tree. 958 */ 959 if (acur->diff == 0 && acur->len == args->maxlen) 960 deactivate = true; 961 out: 962 if (deactivate) 963 cur->bc_ag.abt.active = false; 964 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff, 965 *new); 966 return 0; 967 } 968 969 /* 970 * Complete an allocation of a candidate extent. Remove the extent from both 971 * trees and update the args structure. 972 */ 973 STATIC int 974 xfs_alloc_cur_finish( 975 struct xfs_alloc_arg *args, 976 struct xfs_alloc_cur *acur) 977 { 978 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 979 int error; 980 981 ASSERT(acur->cnt && acur->bnolt); 982 ASSERT(acur->bno >= acur->rec_bno); 983 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 984 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length)); 985 986 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 987 acur->rec_len, acur->bno, acur->len, 0); 988 if (error) 989 return error; 990 991 args->agbno = acur->bno; 992 args->len = acur->len; 993 args->wasfromfl = 0; 994 995 trace_xfs_alloc_cur(args); 996 return 0; 997 } 998 999 /* 1000 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 1001 * bno optimized lookup to search for extents with ideal size and locality. 1002 */ 1003 STATIC int 1004 xfs_alloc_cntbt_iter( 1005 struct xfs_alloc_arg *args, 1006 struct xfs_alloc_cur *acur) 1007 { 1008 struct xfs_btree_cur *cur = acur->cnt; 1009 xfs_agblock_t bno; 1010 xfs_extlen_t len, cur_len; 1011 int error; 1012 int i; 1013 1014 if (!xfs_alloc_cur_active(cur)) 1015 return 0; 1016 1017 /* locality optimized lookup */ 1018 cur_len = acur->cur_len; 1019 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 1020 if (error) 1021 return error; 1022 if (i == 0) 1023 return 0; 1024 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1025 if (error) 1026 return error; 1027 1028 /* check the current record and update search length from it */ 1029 error = xfs_alloc_cur_check(args, acur, cur, &i); 1030 if (error) 1031 return error; 1032 ASSERT(len >= acur->cur_len); 1033 acur->cur_len = len; 1034 1035 /* 1036 * We looked up the first record >= [agbno, len] above. The agbno is a 1037 * secondary key and so the current record may lie just before or after 1038 * agbno. If it is past agbno, check the previous record too so long as 1039 * the length matches as it may be closer. Don't check a smaller record 1040 * because that could deactivate our cursor. 1041 */ 1042 if (bno > args->agbno) { 1043 error = xfs_btree_decrement(cur, 0, &i); 1044 if (!error && i) { 1045 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1046 if (!error && i && len == acur->cur_len) 1047 error = xfs_alloc_cur_check(args, acur, cur, 1048 &i); 1049 } 1050 if (error) 1051 return error; 1052 } 1053 1054 /* 1055 * Increment the search key until we find at least one allocation 1056 * candidate or if the extent we found was larger. Otherwise, double the 1057 * search key to optimize the search. Efficiency is more important here 1058 * than absolute best locality. 1059 */ 1060 cur_len <<= 1; 1061 if (!acur->len || acur->cur_len >= cur_len) 1062 acur->cur_len++; 1063 else 1064 acur->cur_len = cur_len; 1065 1066 return error; 1067 } 1068 1069 /* 1070 * Deal with the case where only small freespaces remain. Either return the 1071 * contents of the last freespace record, or allocate space from the freelist if 1072 * there is nothing in the tree. 1073 */ 1074 STATIC int /* error */ 1075 xfs_alloc_ag_vextent_small( 1076 struct xfs_alloc_arg *args, /* allocation argument structure */ 1077 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1078 xfs_agblock_t *fbnop, /* result block number */ 1079 xfs_extlen_t *flenp, /* result length */ 1080 int *stat) /* status: 0-freelist, 1-normal/none */ 1081 { 1082 struct xfs_agf *agf = args->agbp->b_addr; 1083 int error = 0; 1084 xfs_agblock_t fbno = NULLAGBLOCK; 1085 xfs_extlen_t flen = 0; 1086 int i = 0; 1087 1088 /* 1089 * If a cntbt cursor is provided, try to allocate the largest record in 1090 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1091 * allocation. Make sure to respect minleft even when pulling from the 1092 * freelist. 1093 */ 1094 if (ccur) 1095 error = xfs_btree_decrement(ccur, 0, &i); 1096 if (error) 1097 goto error; 1098 if (i) { 1099 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1100 if (error) 1101 goto error; 1102 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1103 error = -EFSCORRUPTED; 1104 goto error; 1105 } 1106 goto out; 1107 } 1108 1109 if (args->minlen != 1 || args->alignment != 1 || 1110 args->resv == XFS_AG_RESV_AGFL || 1111 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1112 goto out; 1113 1114 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp, 1115 &fbno, 0); 1116 if (error) 1117 goto error; 1118 if (fbno == NULLAGBLOCK) 1119 goto out; 1120 1121 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, 1122 (args->datatype & XFS_ALLOC_NOBUSY)); 1123 1124 if (args->datatype & XFS_ALLOC_USERDATA) { 1125 struct xfs_buf *bp; 1126 1127 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1128 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), 1129 args->mp->m_bsize, 0, &bp); 1130 if (error) 1131 goto error; 1132 xfs_trans_binval(args->tp, bp); 1133 } 1134 *fbnop = args->agbno = fbno; 1135 *flenp = args->len = 1; 1136 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1137 error = -EFSCORRUPTED; 1138 goto error; 1139 } 1140 args->wasfromfl = 1; 1141 trace_xfs_alloc_small_freelist(args); 1142 1143 /* 1144 * If we're feeding an AGFL block to something that doesn't live in the 1145 * free space, we need to clear out the OWN_AG rmap. 1146 */ 1147 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1148 &XFS_RMAP_OINFO_AG); 1149 if (error) 1150 goto error; 1151 1152 *stat = 0; 1153 return 0; 1154 1155 out: 1156 /* 1157 * Can't do the allocation, give up. 1158 */ 1159 if (flen < args->minlen) { 1160 args->agbno = NULLAGBLOCK; 1161 trace_xfs_alloc_small_notenough(args); 1162 flen = 0; 1163 } 1164 *fbnop = fbno; 1165 *flenp = flen; 1166 *stat = 1; 1167 trace_xfs_alloc_small_done(args); 1168 return 0; 1169 1170 error: 1171 trace_xfs_alloc_small_error(args); 1172 return error; 1173 } 1174 1175 /* 1176 * Allocate a variable extent at exactly agno/bno. 1177 * Extent's length (returned in *len) will be between minlen and maxlen, 1178 * and of the form k * prod + mod unless there's nothing that large. 1179 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1180 */ 1181 STATIC int /* error */ 1182 xfs_alloc_ag_vextent_exact( 1183 xfs_alloc_arg_t *args) /* allocation argument structure */ 1184 { 1185 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 1186 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1187 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1188 int error; 1189 xfs_agblock_t fbno; /* start block of found extent */ 1190 xfs_extlen_t flen; /* length of found extent */ 1191 xfs_agblock_t tbno; /* start block of busy extent */ 1192 xfs_extlen_t tlen; /* length of busy extent */ 1193 xfs_agblock_t tend; /* end block of busy extent */ 1194 int i; /* success/failure of operation */ 1195 unsigned busy_gen; 1196 1197 ASSERT(args->alignment == 1); 1198 1199 /* 1200 * Allocate/initialize a cursor for the by-number freespace btree. 1201 */ 1202 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1203 args->pag, XFS_BTNUM_BNO); 1204 1205 /* 1206 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1207 * Look for the closest free block <= bno, it must contain bno 1208 * if any free block does. 1209 */ 1210 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1211 if (error) 1212 goto error0; 1213 if (!i) 1214 goto not_found; 1215 1216 /* 1217 * Grab the freespace record. 1218 */ 1219 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1220 if (error) 1221 goto error0; 1222 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1223 error = -EFSCORRUPTED; 1224 goto error0; 1225 } 1226 ASSERT(fbno <= args->agbno); 1227 1228 /* 1229 * Check for overlapping busy extents. 1230 */ 1231 tbno = fbno; 1232 tlen = flen; 1233 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); 1234 1235 /* 1236 * Give up if the start of the extent is busy, or the freespace isn't 1237 * long enough for the minimum request. 1238 */ 1239 if (tbno > args->agbno) 1240 goto not_found; 1241 if (tlen < args->minlen) 1242 goto not_found; 1243 tend = tbno + tlen; 1244 if (tend < args->agbno + args->minlen) 1245 goto not_found; 1246 1247 /* 1248 * End of extent will be smaller of the freespace end and the 1249 * maximal requested end. 1250 * 1251 * Fix the length according to mod and prod if given. 1252 */ 1253 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1254 - args->agbno; 1255 xfs_alloc_fix_len(args); 1256 ASSERT(args->agbno + args->len <= tend); 1257 1258 /* 1259 * We are allocating agbno for args->len 1260 * Allocate/initialize a cursor for the by-size btree. 1261 */ 1262 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1263 args->pag, XFS_BTNUM_CNT); 1264 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length)); 1265 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1266 args->len, XFSA_FIXUP_BNO_OK); 1267 if (error) { 1268 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1269 goto error0; 1270 } 1271 1272 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1273 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1274 1275 args->wasfromfl = 0; 1276 trace_xfs_alloc_exact_done(args); 1277 return 0; 1278 1279 not_found: 1280 /* Didn't find it, return null. */ 1281 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1282 args->agbno = NULLAGBLOCK; 1283 trace_xfs_alloc_exact_notfound(args); 1284 return 0; 1285 1286 error0: 1287 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1288 trace_xfs_alloc_exact_error(args); 1289 return error; 1290 } 1291 1292 /* 1293 * Search a given number of btree records in a given direction. Check each 1294 * record against the good extent we've already found. 1295 */ 1296 STATIC int 1297 xfs_alloc_walk_iter( 1298 struct xfs_alloc_arg *args, 1299 struct xfs_alloc_cur *acur, 1300 struct xfs_btree_cur *cur, 1301 bool increment, 1302 bool find_one, /* quit on first candidate */ 1303 int count, /* rec count (-1 for infinite) */ 1304 int *stat) 1305 { 1306 int error; 1307 int i; 1308 1309 *stat = 0; 1310 1311 /* 1312 * Search so long as the cursor is active or we find a better extent. 1313 * The cursor is deactivated if it extends beyond the range of the 1314 * current allocation candidate. 1315 */ 1316 while (xfs_alloc_cur_active(cur) && count) { 1317 error = xfs_alloc_cur_check(args, acur, cur, &i); 1318 if (error) 1319 return error; 1320 if (i == 1) { 1321 *stat = 1; 1322 if (find_one) 1323 break; 1324 } 1325 if (!xfs_alloc_cur_active(cur)) 1326 break; 1327 1328 if (increment) 1329 error = xfs_btree_increment(cur, 0, &i); 1330 else 1331 error = xfs_btree_decrement(cur, 0, &i); 1332 if (error) 1333 return error; 1334 if (i == 0) 1335 cur->bc_ag.abt.active = false; 1336 1337 if (count > 0) 1338 count--; 1339 } 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * Search the by-bno and by-size btrees in parallel in search of an extent with 1346 * ideal locality based on the NEAR mode ->agbno locality hint. 1347 */ 1348 STATIC int 1349 xfs_alloc_ag_vextent_locality( 1350 struct xfs_alloc_arg *args, 1351 struct xfs_alloc_cur *acur, 1352 int *stat) 1353 { 1354 struct xfs_btree_cur *fbcur = NULL; 1355 int error; 1356 int i; 1357 bool fbinc; 1358 1359 ASSERT(acur->len == 0); 1360 1361 *stat = 0; 1362 1363 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1364 if (error) 1365 return error; 1366 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1367 if (error) 1368 return error; 1369 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1370 if (error) 1371 return error; 1372 1373 /* 1374 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1375 * right and lookup the closest extent to the locality hint for each 1376 * extent size key in the cntbt. The entire search terminates 1377 * immediately on a bnobt hit because that means we've found best case 1378 * locality. Otherwise the search continues until the cntbt cursor runs 1379 * off the end of the tree. If no allocation candidate is found at this 1380 * point, give up on locality, walk backwards from the end of the cntbt 1381 * and take the first available extent. 1382 * 1383 * The parallel tree searches balance each other out to provide fairly 1384 * consistent performance for various situations. The bnobt search can 1385 * have pathological behavior in the worst case scenario of larger 1386 * allocation requests and fragmented free space. On the other hand, the 1387 * bnobt is able to satisfy most smaller allocation requests much more 1388 * quickly than the cntbt. The cntbt search can sift through fragmented 1389 * free space and sets of free extents for larger allocation requests 1390 * more quickly than the bnobt. Since the locality hint is just a hint 1391 * and we don't want to scan the entire bnobt for perfect locality, the 1392 * cntbt search essentially bounds the bnobt search such that we can 1393 * find good enough locality at reasonable performance in most cases. 1394 */ 1395 while (xfs_alloc_cur_active(acur->bnolt) || 1396 xfs_alloc_cur_active(acur->bnogt) || 1397 xfs_alloc_cur_active(acur->cnt)) { 1398 1399 trace_xfs_alloc_cur_lookup(args); 1400 1401 /* 1402 * Search the bnobt left and right. In the case of a hit, finish 1403 * the search in the opposite direction and we're done. 1404 */ 1405 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1406 true, 1, &i); 1407 if (error) 1408 return error; 1409 if (i == 1) { 1410 trace_xfs_alloc_cur_left(args); 1411 fbcur = acur->bnogt; 1412 fbinc = true; 1413 break; 1414 } 1415 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1416 1, &i); 1417 if (error) 1418 return error; 1419 if (i == 1) { 1420 trace_xfs_alloc_cur_right(args); 1421 fbcur = acur->bnolt; 1422 fbinc = false; 1423 break; 1424 } 1425 1426 /* 1427 * Check the extent with best locality based on the current 1428 * extent size search key and keep track of the best candidate. 1429 */ 1430 error = xfs_alloc_cntbt_iter(args, acur); 1431 if (error) 1432 return error; 1433 if (!xfs_alloc_cur_active(acur->cnt)) { 1434 trace_xfs_alloc_cur_lookup_done(args); 1435 break; 1436 } 1437 } 1438 1439 /* 1440 * If we failed to find anything due to busy extents, return empty 1441 * handed so the caller can flush and retry. If no busy extents were 1442 * found, walk backwards from the end of the cntbt as a last resort. 1443 */ 1444 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1445 error = xfs_btree_decrement(acur->cnt, 0, &i); 1446 if (error) 1447 return error; 1448 if (i) { 1449 acur->cnt->bc_ag.abt.active = true; 1450 fbcur = acur->cnt; 1451 fbinc = false; 1452 } 1453 } 1454 1455 /* 1456 * Search in the opposite direction for a better entry in the case of 1457 * a bnobt hit or walk backwards from the end of the cntbt. 1458 */ 1459 if (fbcur) { 1460 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1461 &i); 1462 if (error) 1463 return error; 1464 } 1465 1466 if (acur->len) 1467 *stat = 1; 1468 1469 return 0; 1470 } 1471 1472 /* Check the last block of the cnt btree for allocations. */ 1473 static int 1474 xfs_alloc_ag_vextent_lastblock( 1475 struct xfs_alloc_arg *args, 1476 struct xfs_alloc_cur *acur, 1477 xfs_agblock_t *bno, 1478 xfs_extlen_t *len, 1479 bool *allocated) 1480 { 1481 int error; 1482 int i; 1483 1484 #ifdef DEBUG 1485 /* Randomly don't execute the first algorithm. */ 1486 if (get_random_u32_below(2)) 1487 return 0; 1488 #endif 1489 1490 /* 1491 * Start from the entry that lookup found, sequence through all larger 1492 * free blocks. If we're actually pointing at a record smaller than 1493 * maxlen, go to the start of this block, and skip all those smaller 1494 * than minlen. 1495 */ 1496 if (*len || args->alignment > 1) { 1497 acur->cnt->bc_levels[0].ptr = 1; 1498 do { 1499 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1500 if (error) 1501 return error; 1502 if (XFS_IS_CORRUPT(args->mp, i != 1)) 1503 return -EFSCORRUPTED; 1504 if (*len >= args->minlen) 1505 break; 1506 error = xfs_btree_increment(acur->cnt, 0, &i); 1507 if (error) 1508 return error; 1509 } while (i); 1510 ASSERT(*len >= args->minlen); 1511 if (!i) 1512 return 0; 1513 } 1514 1515 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1516 if (error) 1517 return error; 1518 1519 /* 1520 * It didn't work. We COULD be in a case where there's a good record 1521 * somewhere, so try again. 1522 */ 1523 if (acur->len == 0) 1524 return 0; 1525 1526 trace_xfs_alloc_near_first(args); 1527 *allocated = true; 1528 return 0; 1529 } 1530 1531 /* 1532 * Allocate a variable extent near bno in the allocation group agno. 1533 * Extent's length (returned in len) will be between minlen and maxlen, 1534 * and of the form k * prod + mod unless there's nothing that large. 1535 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1536 */ 1537 STATIC int 1538 xfs_alloc_ag_vextent_near( 1539 struct xfs_alloc_arg *args) 1540 { 1541 struct xfs_alloc_cur acur = {}; 1542 int error; /* error code */ 1543 int i; /* result code, temporary */ 1544 xfs_agblock_t bno; 1545 xfs_extlen_t len; 1546 1547 /* handle uninitialized agbno range so caller doesn't have to */ 1548 if (!args->min_agbno && !args->max_agbno) 1549 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1550 ASSERT(args->min_agbno <= args->max_agbno); 1551 1552 /* clamp agbno to the range if it's outside */ 1553 if (args->agbno < args->min_agbno) 1554 args->agbno = args->min_agbno; 1555 if (args->agbno > args->max_agbno) 1556 args->agbno = args->max_agbno; 1557 1558 restart: 1559 len = 0; 1560 1561 /* 1562 * Set up cursors and see if there are any free extents as big as 1563 * maxlen. If not, pick the last entry in the tree unless the tree is 1564 * empty. 1565 */ 1566 error = xfs_alloc_cur_setup(args, &acur); 1567 if (error == -ENOSPC) { 1568 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1569 &len, &i); 1570 if (error) 1571 goto out; 1572 if (i == 0 || len == 0) { 1573 trace_xfs_alloc_near_noentry(args); 1574 goto out; 1575 } 1576 ASSERT(i == 1); 1577 } else if (error) { 1578 goto out; 1579 } 1580 1581 /* 1582 * First algorithm. 1583 * If the requested extent is large wrt the freespaces available 1584 * in this a.g., then the cursor will be pointing to a btree entry 1585 * near the right edge of the tree. If it's in the last btree leaf 1586 * block, then we just examine all the entries in that block 1587 * that are big enough, and pick the best one. 1588 */ 1589 if (xfs_btree_islastblock(acur.cnt, 0)) { 1590 bool allocated = false; 1591 1592 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1593 &allocated); 1594 if (error) 1595 goto out; 1596 if (allocated) 1597 goto alloc_finish; 1598 } 1599 1600 /* 1601 * Second algorithm. Combined cntbt and bnobt search to find ideal 1602 * locality. 1603 */ 1604 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1605 if (error) 1606 goto out; 1607 1608 /* 1609 * If we couldn't get anything, give up. 1610 */ 1611 if (!acur.len) { 1612 if (acur.busy) { 1613 trace_xfs_alloc_near_busy(args); 1614 xfs_extent_busy_flush(args->mp, args->pag, 1615 acur.busy_gen); 1616 goto restart; 1617 } 1618 trace_xfs_alloc_size_neither(args); 1619 args->agbno = NULLAGBLOCK; 1620 goto out; 1621 } 1622 1623 alloc_finish: 1624 /* fix up btrees on a successful allocation */ 1625 error = xfs_alloc_cur_finish(args, &acur); 1626 1627 out: 1628 xfs_alloc_cur_close(&acur, error); 1629 return error; 1630 } 1631 1632 /* 1633 * Allocate a variable extent anywhere in the allocation group agno. 1634 * Extent's length (returned in len) will be between minlen and maxlen, 1635 * and of the form k * prod + mod unless there's nothing that large. 1636 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1637 */ 1638 STATIC int /* error */ 1639 xfs_alloc_ag_vextent_size( 1640 xfs_alloc_arg_t *args) /* allocation argument structure */ 1641 { 1642 struct xfs_agf *agf = args->agbp->b_addr; 1643 struct xfs_btree_cur *bno_cur; /* cursor for bno btree */ 1644 struct xfs_btree_cur *cnt_cur; /* cursor for cnt btree */ 1645 int error; /* error result */ 1646 xfs_agblock_t fbno; /* start of found freespace */ 1647 xfs_extlen_t flen; /* length of found freespace */ 1648 int i; /* temp status variable */ 1649 xfs_agblock_t rbno; /* returned block number */ 1650 xfs_extlen_t rlen; /* length of returned extent */ 1651 bool busy; 1652 unsigned busy_gen; 1653 1654 restart: 1655 /* 1656 * Allocate and initialize a cursor for the by-size btree. 1657 */ 1658 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1659 args->pag, XFS_BTNUM_CNT); 1660 bno_cur = NULL; 1661 1662 /* 1663 * Look for an entry >= maxlen+alignment-1 blocks. 1664 */ 1665 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1666 args->maxlen + args->alignment - 1, &i))) 1667 goto error0; 1668 1669 /* 1670 * If none then we have to settle for a smaller extent. In the case that 1671 * there are no large extents, this will return the last entry in the 1672 * tree unless the tree is empty. In the case that there are only busy 1673 * large extents, this will return the largest small extent unless there 1674 * are no smaller extents available. 1675 */ 1676 if (!i) { 1677 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1678 &fbno, &flen, &i); 1679 if (error) 1680 goto error0; 1681 if (i == 0 || flen == 0) { 1682 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1683 trace_xfs_alloc_size_noentry(args); 1684 return 0; 1685 } 1686 ASSERT(i == 1); 1687 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1688 &rlen, &busy_gen); 1689 } else { 1690 /* 1691 * Search for a non-busy extent that is large enough. 1692 */ 1693 for (;;) { 1694 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1695 if (error) 1696 goto error0; 1697 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1698 error = -EFSCORRUPTED; 1699 goto error0; 1700 } 1701 1702 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1703 &rbno, &rlen, &busy_gen); 1704 1705 if (rlen >= args->maxlen) 1706 break; 1707 1708 error = xfs_btree_increment(cnt_cur, 0, &i); 1709 if (error) 1710 goto error0; 1711 if (i == 0) { 1712 /* 1713 * Our only valid extents must have been busy. 1714 * Make it unbusy by forcing the log out and 1715 * retrying. 1716 */ 1717 xfs_btree_del_cursor(cnt_cur, 1718 XFS_BTREE_NOERROR); 1719 trace_xfs_alloc_size_busy(args); 1720 xfs_extent_busy_flush(args->mp, 1721 args->pag, busy_gen); 1722 goto restart; 1723 } 1724 } 1725 } 1726 1727 /* 1728 * In the first case above, we got the last entry in the 1729 * by-size btree. Now we check to see if the space hits maxlen 1730 * once aligned; if not, we search left for something better. 1731 * This can't happen in the second case above. 1732 */ 1733 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1734 if (XFS_IS_CORRUPT(args->mp, 1735 rlen != 0 && 1736 (rlen > flen || 1737 rbno + rlen > fbno + flen))) { 1738 error = -EFSCORRUPTED; 1739 goto error0; 1740 } 1741 if (rlen < args->maxlen) { 1742 xfs_agblock_t bestfbno; 1743 xfs_extlen_t bestflen; 1744 xfs_agblock_t bestrbno; 1745 xfs_extlen_t bestrlen; 1746 1747 bestrlen = rlen; 1748 bestrbno = rbno; 1749 bestflen = flen; 1750 bestfbno = fbno; 1751 for (;;) { 1752 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1753 goto error0; 1754 if (i == 0) 1755 break; 1756 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1757 &i))) 1758 goto error0; 1759 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1760 error = -EFSCORRUPTED; 1761 goto error0; 1762 } 1763 if (flen < bestrlen) 1764 break; 1765 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1766 &rbno, &rlen, &busy_gen); 1767 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1768 if (XFS_IS_CORRUPT(args->mp, 1769 rlen != 0 && 1770 (rlen > flen || 1771 rbno + rlen > fbno + flen))) { 1772 error = -EFSCORRUPTED; 1773 goto error0; 1774 } 1775 if (rlen > bestrlen) { 1776 bestrlen = rlen; 1777 bestrbno = rbno; 1778 bestflen = flen; 1779 bestfbno = fbno; 1780 if (rlen == args->maxlen) 1781 break; 1782 } 1783 } 1784 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1785 &i))) 1786 goto error0; 1787 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1788 error = -EFSCORRUPTED; 1789 goto error0; 1790 } 1791 rlen = bestrlen; 1792 rbno = bestrbno; 1793 flen = bestflen; 1794 fbno = bestfbno; 1795 } 1796 args->wasfromfl = 0; 1797 /* 1798 * Fix up the length. 1799 */ 1800 args->len = rlen; 1801 if (rlen < args->minlen) { 1802 if (busy) { 1803 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1804 trace_xfs_alloc_size_busy(args); 1805 xfs_extent_busy_flush(args->mp, args->pag, busy_gen); 1806 goto restart; 1807 } 1808 goto out_nominleft; 1809 } 1810 xfs_alloc_fix_len(args); 1811 1812 rlen = args->len; 1813 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1814 error = -EFSCORRUPTED; 1815 goto error0; 1816 } 1817 /* 1818 * Allocate and initialize a cursor for the by-block tree. 1819 */ 1820 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1821 args->pag, XFS_BTNUM_BNO); 1822 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 1823 rbno, rlen, XFSA_FIXUP_CNT_OK))) 1824 goto error0; 1825 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1826 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1827 cnt_cur = bno_cur = NULL; 1828 args->len = rlen; 1829 args->agbno = rbno; 1830 if (XFS_IS_CORRUPT(args->mp, 1831 args->agbno + args->len > 1832 be32_to_cpu(agf->agf_length))) { 1833 error = -EFSCORRUPTED; 1834 goto error0; 1835 } 1836 trace_xfs_alloc_size_done(args); 1837 return 0; 1838 1839 error0: 1840 trace_xfs_alloc_size_error(args); 1841 if (cnt_cur) 1842 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1843 if (bno_cur) 1844 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1845 return error; 1846 1847 out_nominleft: 1848 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1849 trace_xfs_alloc_size_nominleft(args); 1850 args->agbno = NULLAGBLOCK; 1851 return 0; 1852 } 1853 1854 /* 1855 * Free the extent starting at agno/bno for length. 1856 */ 1857 STATIC int 1858 xfs_free_ag_extent( 1859 struct xfs_trans *tp, 1860 struct xfs_buf *agbp, 1861 xfs_agnumber_t agno, 1862 xfs_agblock_t bno, 1863 xfs_extlen_t len, 1864 const struct xfs_owner_info *oinfo, 1865 enum xfs_ag_resv_type type) 1866 { 1867 struct xfs_mount *mp; 1868 struct xfs_btree_cur *bno_cur; 1869 struct xfs_btree_cur *cnt_cur; 1870 xfs_agblock_t gtbno; /* start of right neighbor */ 1871 xfs_extlen_t gtlen; /* length of right neighbor */ 1872 xfs_agblock_t ltbno; /* start of left neighbor */ 1873 xfs_extlen_t ltlen; /* length of left neighbor */ 1874 xfs_agblock_t nbno; /* new starting block of freesp */ 1875 xfs_extlen_t nlen; /* new length of freespace */ 1876 int haveleft; /* have a left neighbor */ 1877 int haveright; /* have a right neighbor */ 1878 int i; 1879 int error; 1880 struct xfs_perag *pag = agbp->b_pag; 1881 1882 bno_cur = cnt_cur = NULL; 1883 mp = tp->t_mountp; 1884 1885 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 1886 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 1887 if (error) 1888 goto error0; 1889 } 1890 1891 /* 1892 * Allocate and initialize a cursor for the by-block btree. 1893 */ 1894 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO); 1895 /* 1896 * Look for a neighboring block on the left (lower block numbers) 1897 * that is contiguous with this space. 1898 */ 1899 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 1900 goto error0; 1901 if (haveleft) { 1902 /* 1903 * There is a block to our left. 1904 */ 1905 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 1906 goto error0; 1907 if (XFS_IS_CORRUPT(mp, i != 1)) { 1908 error = -EFSCORRUPTED; 1909 goto error0; 1910 } 1911 /* 1912 * It's not contiguous, though. 1913 */ 1914 if (ltbno + ltlen < bno) 1915 haveleft = 0; 1916 else { 1917 /* 1918 * If this failure happens the request to free this 1919 * space was invalid, it's (partly) already free. 1920 * Very bad. 1921 */ 1922 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 1923 error = -EFSCORRUPTED; 1924 goto error0; 1925 } 1926 } 1927 } 1928 /* 1929 * Look for a neighboring block on the right (higher block numbers) 1930 * that is contiguous with this space. 1931 */ 1932 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 1933 goto error0; 1934 if (haveright) { 1935 /* 1936 * There is a block to our right. 1937 */ 1938 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 1939 goto error0; 1940 if (XFS_IS_CORRUPT(mp, i != 1)) { 1941 error = -EFSCORRUPTED; 1942 goto error0; 1943 } 1944 /* 1945 * It's not contiguous, though. 1946 */ 1947 if (bno + len < gtbno) 1948 haveright = 0; 1949 else { 1950 /* 1951 * If this failure happens the request to free this 1952 * space was invalid, it's (partly) already free. 1953 * Very bad. 1954 */ 1955 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 1956 error = -EFSCORRUPTED; 1957 goto error0; 1958 } 1959 } 1960 } 1961 /* 1962 * Now allocate and initialize a cursor for the by-size tree. 1963 */ 1964 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT); 1965 /* 1966 * Have both left and right contiguous neighbors. 1967 * Merge all three into a single free block. 1968 */ 1969 if (haveleft && haveright) { 1970 /* 1971 * Delete the old by-size entry on the left. 1972 */ 1973 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 1974 goto error0; 1975 if (XFS_IS_CORRUPT(mp, i != 1)) { 1976 error = -EFSCORRUPTED; 1977 goto error0; 1978 } 1979 if ((error = xfs_btree_delete(cnt_cur, &i))) 1980 goto error0; 1981 if (XFS_IS_CORRUPT(mp, i != 1)) { 1982 error = -EFSCORRUPTED; 1983 goto error0; 1984 } 1985 /* 1986 * Delete the old by-size entry on the right. 1987 */ 1988 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 1989 goto error0; 1990 if (XFS_IS_CORRUPT(mp, i != 1)) { 1991 error = -EFSCORRUPTED; 1992 goto error0; 1993 } 1994 if ((error = xfs_btree_delete(cnt_cur, &i))) 1995 goto error0; 1996 if (XFS_IS_CORRUPT(mp, i != 1)) { 1997 error = -EFSCORRUPTED; 1998 goto error0; 1999 } 2000 /* 2001 * Delete the old by-block entry for the right block. 2002 */ 2003 if ((error = xfs_btree_delete(bno_cur, &i))) 2004 goto error0; 2005 if (XFS_IS_CORRUPT(mp, i != 1)) { 2006 error = -EFSCORRUPTED; 2007 goto error0; 2008 } 2009 /* 2010 * Move the by-block cursor back to the left neighbor. 2011 */ 2012 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2013 goto error0; 2014 if (XFS_IS_CORRUPT(mp, i != 1)) { 2015 error = -EFSCORRUPTED; 2016 goto error0; 2017 } 2018 #ifdef DEBUG 2019 /* 2020 * Check that this is the right record: delete didn't 2021 * mangle the cursor. 2022 */ 2023 { 2024 xfs_agblock_t xxbno; 2025 xfs_extlen_t xxlen; 2026 2027 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2028 &i))) 2029 goto error0; 2030 if (XFS_IS_CORRUPT(mp, 2031 i != 1 || 2032 xxbno != ltbno || 2033 xxlen != ltlen)) { 2034 error = -EFSCORRUPTED; 2035 goto error0; 2036 } 2037 } 2038 #endif 2039 /* 2040 * Update remaining by-block entry to the new, joined block. 2041 */ 2042 nbno = ltbno; 2043 nlen = len + ltlen + gtlen; 2044 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2045 goto error0; 2046 } 2047 /* 2048 * Have only a left contiguous neighbor. 2049 * Merge it together with the new freespace. 2050 */ 2051 else if (haveleft) { 2052 /* 2053 * Delete the old by-size entry on the left. 2054 */ 2055 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2056 goto error0; 2057 if (XFS_IS_CORRUPT(mp, i != 1)) { 2058 error = -EFSCORRUPTED; 2059 goto error0; 2060 } 2061 if ((error = xfs_btree_delete(cnt_cur, &i))) 2062 goto error0; 2063 if (XFS_IS_CORRUPT(mp, i != 1)) { 2064 error = -EFSCORRUPTED; 2065 goto error0; 2066 } 2067 /* 2068 * Back up the by-block cursor to the left neighbor, and 2069 * update its length. 2070 */ 2071 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2072 goto error0; 2073 if (XFS_IS_CORRUPT(mp, i != 1)) { 2074 error = -EFSCORRUPTED; 2075 goto error0; 2076 } 2077 nbno = ltbno; 2078 nlen = len + ltlen; 2079 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2080 goto error0; 2081 } 2082 /* 2083 * Have only a right contiguous neighbor. 2084 * Merge it together with the new freespace. 2085 */ 2086 else if (haveright) { 2087 /* 2088 * Delete the old by-size entry on the right. 2089 */ 2090 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2091 goto error0; 2092 if (XFS_IS_CORRUPT(mp, i != 1)) { 2093 error = -EFSCORRUPTED; 2094 goto error0; 2095 } 2096 if ((error = xfs_btree_delete(cnt_cur, &i))) 2097 goto error0; 2098 if (XFS_IS_CORRUPT(mp, i != 1)) { 2099 error = -EFSCORRUPTED; 2100 goto error0; 2101 } 2102 /* 2103 * Update the starting block and length of the right 2104 * neighbor in the by-block tree. 2105 */ 2106 nbno = bno; 2107 nlen = len + gtlen; 2108 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2109 goto error0; 2110 } 2111 /* 2112 * No contiguous neighbors. 2113 * Insert the new freespace into the by-block tree. 2114 */ 2115 else { 2116 nbno = bno; 2117 nlen = len; 2118 if ((error = xfs_btree_insert(bno_cur, &i))) 2119 goto error0; 2120 if (XFS_IS_CORRUPT(mp, i != 1)) { 2121 error = -EFSCORRUPTED; 2122 goto error0; 2123 } 2124 } 2125 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2126 bno_cur = NULL; 2127 /* 2128 * In all cases we need to insert the new freespace in the by-size tree. 2129 */ 2130 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2131 goto error0; 2132 if (XFS_IS_CORRUPT(mp, i != 0)) { 2133 error = -EFSCORRUPTED; 2134 goto error0; 2135 } 2136 if ((error = xfs_btree_insert(cnt_cur, &i))) 2137 goto error0; 2138 if (XFS_IS_CORRUPT(mp, i != 1)) { 2139 error = -EFSCORRUPTED; 2140 goto error0; 2141 } 2142 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2143 cnt_cur = NULL; 2144 2145 /* 2146 * Update the freespace totals in the ag and superblock. 2147 */ 2148 error = xfs_alloc_update_counters(tp, agbp, len); 2149 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); 2150 if (error) 2151 goto error0; 2152 2153 XFS_STATS_INC(mp, xs_freex); 2154 XFS_STATS_ADD(mp, xs_freeb, len); 2155 2156 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); 2157 2158 return 0; 2159 2160 error0: 2161 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); 2162 if (bno_cur) 2163 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2164 if (cnt_cur) 2165 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2166 return error; 2167 } 2168 2169 /* 2170 * Visible (exported) allocation/free functions. 2171 * Some of these are used just by xfs_alloc_btree.c and this file. 2172 */ 2173 2174 /* 2175 * Compute and fill in value of m_alloc_maxlevels. 2176 */ 2177 void 2178 xfs_alloc_compute_maxlevels( 2179 xfs_mount_t *mp) /* file system mount structure */ 2180 { 2181 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2182 (mp->m_sb.sb_agblocks + 1) / 2); 2183 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2184 } 2185 2186 /* 2187 * Find the length of the longest extent in an AG. The 'need' parameter 2188 * specifies how much space we're going to need for the AGFL and the 2189 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2190 * other callers. 2191 */ 2192 xfs_extlen_t 2193 xfs_alloc_longest_free_extent( 2194 struct xfs_perag *pag, 2195 xfs_extlen_t need, 2196 xfs_extlen_t reserved) 2197 { 2198 xfs_extlen_t delta = 0; 2199 2200 /* 2201 * If the AGFL needs a recharge, we'll have to subtract that from the 2202 * longest extent. 2203 */ 2204 if (need > pag->pagf_flcount) 2205 delta = need - pag->pagf_flcount; 2206 2207 /* 2208 * If we cannot maintain others' reservations with space from the 2209 * not-longest freesp extents, we'll have to subtract /that/ from 2210 * the longest extent too. 2211 */ 2212 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2213 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2214 2215 /* 2216 * If the longest extent is long enough to satisfy all the 2217 * reservations and AGFL rules in place, we can return this extent. 2218 */ 2219 if (pag->pagf_longest > delta) 2220 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, 2221 pag->pagf_longest - delta); 2222 2223 /* Otherwise, let the caller try for 1 block if there's space. */ 2224 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2225 } 2226 2227 /* 2228 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2229 * return the largest possible minimum length. 2230 */ 2231 unsigned int 2232 xfs_alloc_min_freelist( 2233 struct xfs_mount *mp, 2234 struct xfs_perag *pag) 2235 { 2236 /* AG btrees have at least 1 level. */ 2237 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1}; 2238 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels; 2239 unsigned int min_free; 2240 2241 ASSERT(mp->m_alloc_maxlevels > 0); 2242 2243 /* space needed by-bno freespace btree */ 2244 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1, 2245 mp->m_alloc_maxlevels); 2246 /* space needed by-size freespace btree */ 2247 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1, 2248 mp->m_alloc_maxlevels); 2249 /* space needed reverse mapping used space btree */ 2250 if (xfs_has_rmapbt(mp)) 2251 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1, 2252 mp->m_rmap_maxlevels); 2253 2254 return min_free; 2255 } 2256 2257 /* 2258 * Check if the operation we are fixing up the freelist for should go ahead or 2259 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2260 * is dependent on whether the size and shape of free space available will 2261 * permit the requested allocation to take place. 2262 */ 2263 static bool 2264 xfs_alloc_space_available( 2265 struct xfs_alloc_arg *args, 2266 xfs_extlen_t min_free, 2267 int flags) 2268 { 2269 struct xfs_perag *pag = args->pag; 2270 xfs_extlen_t alloc_len, longest; 2271 xfs_extlen_t reservation; /* blocks that are still reserved */ 2272 int available; 2273 xfs_extlen_t agflcount; 2274 2275 if (flags & XFS_ALLOC_FLAG_FREEING) 2276 return true; 2277 2278 reservation = xfs_ag_resv_needed(pag, args->resv); 2279 2280 /* do we have enough contiguous free space for the allocation? */ 2281 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2282 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2283 if (longest < alloc_len) 2284 return false; 2285 2286 /* 2287 * Do we have enough free space remaining for the allocation? Don't 2288 * account extra agfl blocks because we are about to defer free them, 2289 * making them unavailable until the current transaction commits. 2290 */ 2291 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2292 available = (int)(pag->pagf_freeblks + agflcount - 2293 reservation - min_free - args->minleft); 2294 if (available < (int)max(args->total, alloc_len)) 2295 return false; 2296 2297 /* 2298 * Clamp maxlen to the amount of free space available for the actual 2299 * extent allocation. 2300 */ 2301 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2302 args->maxlen = available; 2303 ASSERT(args->maxlen > 0); 2304 ASSERT(args->maxlen >= args->minlen); 2305 } 2306 2307 return true; 2308 } 2309 2310 int 2311 xfs_free_agfl_block( 2312 struct xfs_trans *tp, 2313 xfs_agnumber_t agno, 2314 xfs_agblock_t agbno, 2315 struct xfs_buf *agbp, 2316 struct xfs_owner_info *oinfo) 2317 { 2318 int error; 2319 struct xfs_buf *bp; 2320 2321 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo, 2322 XFS_AG_RESV_AGFL); 2323 if (error) 2324 return error; 2325 2326 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp, 2327 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno), 2328 tp->t_mountp->m_bsize, 0, &bp); 2329 if (error) 2330 return error; 2331 xfs_trans_binval(tp, bp); 2332 2333 return 0; 2334 } 2335 2336 /* 2337 * Check the agfl fields of the agf for inconsistency or corruption. 2338 * 2339 * The original purpose was to detect an agfl header padding mismatch between 2340 * current and early v5 kernels. This problem manifests as a 1-slot size 2341 * difference between the on-disk flcount and the active [first, last] range of 2342 * a wrapped agfl. 2343 * 2344 * However, we need to use these same checks to catch agfl count corruptions 2345 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either 2346 * way, we need to reset the agfl and warn the user. 2347 * 2348 * Return true if a reset is required before the agfl can be used, false 2349 * otherwise. 2350 */ 2351 static bool 2352 xfs_agfl_needs_reset( 2353 struct xfs_mount *mp, 2354 struct xfs_agf *agf) 2355 { 2356 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2357 uint32_t l = be32_to_cpu(agf->agf_fllast); 2358 uint32_t c = be32_to_cpu(agf->agf_flcount); 2359 int agfl_size = xfs_agfl_size(mp); 2360 int active; 2361 2362 /* 2363 * The agf read verifier catches severe corruption of these fields. 2364 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2365 * the verifier allows it. 2366 */ 2367 if (f >= agfl_size || l >= agfl_size) 2368 return true; 2369 if (c > agfl_size) 2370 return true; 2371 2372 /* 2373 * Check consistency between the on-disk count and the active range. An 2374 * agfl padding mismatch manifests as an inconsistent flcount. 2375 */ 2376 if (c && l >= f) 2377 active = l - f + 1; 2378 else if (c) 2379 active = agfl_size - f + l + 1; 2380 else 2381 active = 0; 2382 2383 return active != c; 2384 } 2385 2386 /* 2387 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2388 * agfl content cannot be trusted. Warn the user that a repair is required to 2389 * recover leaked blocks. 2390 * 2391 * The purpose of this mechanism is to handle filesystems affected by the agfl 2392 * header padding mismatch problem. A reset keeps the filesystem online with a 2393 * relatively minor free space accounting inconsistency rather than suffer the 2394 * inevitable crash from use of an invalid agfl block. 2395 */ 2396 static void 2397 xfs_agfl_reset( 2398 struct xfs_trans *tp, 2399 struct xfs_buf *agbp, 2400 struct xfs_perag *pag) 2401 { 2402 struct xfs_mount *mp = tp->t_mountp; 2403 struct xfs_agf *agf = agbp->b_addr; 2404 2405 ASSERT(xfs_perag_agfl_needs_reset(pag)); 2406 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2407 2408 xfs_warn(mp, 2409 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2410 "Please unmount and run xfs_repair.", 2411 pag->pag_agno, pag->pagf_flcount); 2412 2413 agf->agf_flfirst = 0; 2414 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2415 agf->agf_flcount = 0; 2416 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2417 XFS_AGF_FLCOUNT); 2418 2419 pag->pagf_flcount = 0; 2420 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 2421 } 2422 2423 /* 2424 * Defer an AGFL block free. This is effectively equivalent to 2425 * xfs_free_extent_later() with some special handling particular to AGFL blocks. 2426 * 2427 * Deferring AGFL frees helps prevent log reservation overruns due to too many 2428 * allocation operations in a transaction. AGFL frees are prone to this problem 2429 * because for one they are always freed one at a time. Further, an immediate 2430 * AGFL block free can cause a btree join and require another block free before 2431 * the real allocation can proceed. Deferring the free disconnects freeing up 2432 * the AGFL slot from freeing the block. 2433 */ 2434 static int 2435 xfs_defer_agfl_block( 2436 struct xfs_trans *tp, 2437 xfs_agnumber_t agno, 2438 xfs_fsblock_t agbno, 2439 struct xfs_owner_info *oinfo) 2440 { 2441 struct xfs_mount *mp = tp->t_mountp; 2442 struct xfs_extent_free_item *xefi; 2443 2444 ASSERT(xfs_extfree_item_cache != NULL); 2445 ASSERT(oinfo != NULL); 2446 2447 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2448 GFP_KERNEL | __GFP_NOFAIL); 2449 xefi->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno); 2450 xefi->xefi_blockcount = 1; 2451 xefi->xefi_owner = oinfo->oi_owner; 2452 2453 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, xefi->xefi_startblock))) 2454 return -EFSCORRUPTED; 2455 2456 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1); 2457 2458 xfs_extent_free_get_group(mp, xefi); 2459 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list); 2460 return 0; 2461 } 2462 2463 /* 2464 * Add the extent to the list of extents to be free at transaction end. 2465 * The list is maintained sorted (by block number). 2466 */ 2467 int 2468 __xfs_free_extent_later( 2469 struct xfs_trans *tp, 2470 xfs_fsblock_t bno, 2471 xfs_filblks_t len, 2472 const struct xfs_owner_info *oinfo, 2473 bool skip_discard) 2474 { 2475 struct xfs_extent_free_item *xefi; 2476 struct xfs_mount *mp = tp->t_mountp; 2477 #ifdef DEBUG 2478 xfs_agnumber_t agno; 2479 xfs_agblock_t agbno; 2480 2481 ASSERT(bno != NULLFSBLOCK); 2482 ASSERT(len > 0); 2483 ASSERT(len <= XFS_MAX_BMBT_EXTLEN); 2484 ASSERT(!isnullstartblock(bno)); 2485 agno = XFS_FSB_TO_AGNO(mp, bno); 2486 agbno = XFS_FSB_TO_AGBNO(mp, bno); 2487 ASSERT(agno < mp->m_sb.sb_agcount); 2488 ASSERT(agbno < mp->m_sb.sb_agblocks); 2489 ASSERT(len < mp->m_sb.sb_agblocks); 2490 ASSERT(agbno + len <= mp->m_sb.sb_agblocks); 2491 #endif 2492 ASSERT(xfs_extfree_item_cache != NULL); 2493 2494 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len))) 2495 return -EFSCORRUPTED; 2496 2497 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2498 GFP_KERNEL | __GFP_NOFAIL); 2499 xefi->xefi_startblock = bno; 2500 xefi->xefi_blockcount = (xfs_extlen_t)len; 2501 if (skip_discard) 2502 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2503 if (oinfo) { 2504 ASSERT(oinfo->oi_offset == 0); 2505 2506 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2507 xefi->xefi_flags |= XFS_EFI_ATTR_FORK; 2508 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2509 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2510 xefi->xefi_owner = oinfo->oi_owner; 2511 } else { 2512 xefi->xefi_owner = XFS_RMAP_OWN_NULL; 2513 } 2514 trace_xfs_bmap_free_defer(mp, 2515 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0, 2516 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len); 2517 2518 xfs_extent_free_get_group(mp, xefi); 2519 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list); 2520 return 0; 2521 } 2522 2523 #ifdef DEBUG 2524 /* 2525 * Check if an AGF has a free extent record whose length is equal to 2526 * args->minlen. 2527 */ 2528 STATIC int 2529 xfs_exact_minlen_extent_available( 2530 struct xfs_alloc_arg *args, 2531 struct xfs_buf *agbp, 2532 int *stat) 2533 { 2534 struct xfs_btree_cur *cnt_cur; 2535 xfs_agblock_t fbno; 2536 xfs_extlen_t flen; 2537 int error = 0; 2538 2539 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp, 2540 args->pag, XFS_BTNUM_CNT); 2541 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2542 if (error) 2543 goto out; 2544 2545 if (*stat == 0) { 2546 error = -EFSCORRUPTED; 2547 goto out; 2548 } 2549 2550 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2551 if (error) 2552 goto out; 2553 2554 if (*stat == 1 && flen != args->minlen) 2555 *stat = 0; 2556 2557 out: 2558 xfs_btree_del_cursor(cnt_cur, error); 2559 2560 return error; 2561 } 2562 #endif 2563 2564 /* 2565 * Decide whether to use this allocation group for this allocation. 2566 * If so, fix up the btree freelist's size. 2567 */ 2568 int /* error */ 2569 xfs_alloc_fix_freelist( 2570 struct xfs_alloc_arg *args, /* allocation argument structure */ 2571 int flags) /* XFS_ALLOC_FLAG_... */ 2572 { 2573 struct xfs_mount *mp = args->mp; 2574 struct xfs_perag *pag = args->pag; 2575 struct xfs_trans *tp = args->tp; 2576 struct xfs_buf *agbp = NULL; 2577 struct xfs_buf *agflbp = NULL; 2578 struct xfs_alloc_arg targs; /* local allocation arguments */ 2579 xfs_agblock_t bno; /* freelist block */ 2580 xfs_extlen_t need; /* total blocks needed in freelist */ 2581 int error = 0; 2582 2583 /* deferred ops (AGFL block frees) require permanent transactions */ 2584 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2585 2586 if (!xfs_perag_initialised_agf(pag)) { 2587 error = xfs_alloc_read_agf(pag, tp, flags, &agbp); 2588 if (error) { 2589 /* Couldn't lock the AGF so skip this AG. */ 2590 if (error == -EAGAIN) 2591 error = 0; 2592 goto out_no_agbp; 2593 } 2594 } 2595 2596 /* 2597 * If this is a metadata preferred pag and we are user data then try 2598 * somewhere else if we are not being asked to try harder at this 2599 * point 2600 */ 2601 if (xfs_perag_prefers_metadata(pag) && 2602 (args->datatype & XFS_ALLOC_USERDATA) && 2603 (flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2604 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); 2605 goto out_agbp_relse; 2606 } 2607 2608 need = xfs_alloc_min_freelist(mp, pag); 2609 if (!xfs_alloc_space_available(args, need, flags | 2610 XFS_ALLOC_FLAG_CHECK)) 2611 goto out_agbp_relse; 2612 2613 /* 2614 * Get the a.g. freespace buffer. 2615 * Can fail if we're not blocking on locks, and it's held. 2616 */ 2617 if (!agbp) { 2618 error = xfs_alloc_read_agf(pag, tp, flags, &agbp); 2619 if (error) { 2620 /* Couldn't lock the AGF so skip this AG. */ 2621 if (error == -EAGAIN) 2622 error = 0; 2623 goto out_no_agbp; 2624 } 2625 } 2626 2627 /* reset a padding mismatched agfl before final free space check */ 2628 if (xfs_perag_agfl_needs_reset(pag)) 2629 xfs_agfl_reset(tp, agbp, pag); 2630 2631 /* If there isn't enough total space or single-extent, reject it. */ 2632 need = xfs_alloc_min_freelist(mp, pag); 2633 if (!xfs_alloc_space_available(args, need, flags)) 2634 goto out_agbp_relse; 2635 2636 #ifdef DEBUG 2637 if (args->alloc_minlen_only) { 2638 int stat; 2639 2640 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2641 if (error || !stat) 2642 goto out_agbp_relse; 2643 } 2644 #endif 2645 /* 2646 * Make the freelist shorter if it's too long. 2647 * 2648 * Note that from this point onwards, we will always release the agf and 2649 * agfl buffers on error. This handles the case where we error out and 2650 * the buffers are clean or may not have been joined to the transaction 2651 * and hence need to be released manually. If they have been joined to 2652 * the transaction, then xfs_trans_brelse() will handle them 2653 * appropriately based on the recursion count and dirty state of the 2654 * buffer. 2655 * 2656 * XXX (dgc): When we have lots of free space, does this buy us 2657 * anything other than extra overhead when we need to put more blocks 2658 * back on the free list? Maybe we should only do this when space is 2659 * getting low or the AGFL is more than half full? 2660 * 2661 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2662 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2663 * updating the rmapbt. Both flags are used in xfs_repair while we're 2664 * rebuilding the rmapbt, and neither are used by the kernel. They're 2665 * both required to ensure that rmaps are correctly recorded for the 2666 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2667 * repair/rmap.c in xfsprogs for details. 2668 */ 2669 memset(&targs, 0, sizeof(targs)); 2670 /* struct copy below */ 2671 if (flags & XFS_ALLOC_FLAG_NORMAP) 2672 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2673 else 2674 targs.oinfo = XFS_RMAP_OINFO_AG; 2675 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) { 2676 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0); 2677 if (error) 2678 goto out_agbp_relse; 2679 2680 /* defer agfl frees */ 2681 error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo); 2682 if (error) 2683 goto out_agbp_relse; 2684 } 2685 2686 targs.tp = tp; 2687 targs.mp = mp; 2688 targs.agbp = agbp; 2689 targs.agno = args->agno; 2690 targs.alignment = targs.minlen = targs.prod = 1; 2691 targs.pag = pag; 2692 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2693 if (error) 2694 goto out_agbp_relse; 2695 2696 /* Make the freelist longer if it's too short. */ 2697 while (pag->pagf_flcount < need) { 2698 targs.agbno = 0; 2699 targs.maxlen = need - pag->pagf_flcount; 2700 targs.resv = XFS_AG_RESV_AGFL; 2701 2702 /* Allocate as many blocks as possible at once. */ 2703 error = xfs_alloc_ag_vextent_size(&targs); 2704 if (error) 2705 goto out_agflbp_relse; 2706 2707 /* 2708 * Stop if we run out. Won't happen if callers are obeying 2709 * the restrictions correctly. Can happen for free calls 2710 * on a completely full ag. 2711 */ 2712 if (targs.agbno == NULLAGBLOCK) { 2713 if (flags & XFS_ALLOC_FLAG_FREEING) 2714 break; 2715 goto out_agflbp_relse; 2716 } 2717 2718 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) { 2719 error = xfs_rmap_alloc(tp, agbp, pag, 2720 targs.agbno, targs.len, &targs.oinfo); 2721 if (error) 2722 goto out_agflbp_relse; 2723 } 2724 error = xfs_alloc_update_counters(tp, agbp, 2725 -((long)(targs.len))); 2726 if (error) 2727 goto out_agflbp_relse; 2728 2729 /* 2730 * Put each allocated block on the list. 2731 */ 2732 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 2733 error = xfs_alloc_put_freelist(pag, tp, agbp, 2734 agflbp, bno, 0); 2735 if (error) 2736 goto out_agflbp_relse; 2737 } 2738 } 2739 xfs_trans_brelse(tp, agflbp); 2740 args->agbp = agbp; 2741 return 0; 2742 2743 out_agflbp_relse: 2744 xfs_trans_brelse(tp, agflbp); 2745 out_agbp_relse: 2746 if (agbp) 2747 xfs_trans_brelse(tp, agbp); 2748 out_no_agbp: 2749 args->agbp = NULL; 2750 return error; 2751 } 2752 2753 /* 2754 * Get a block from the freelist. 2755 * Returns with the buffer for the block gotten. 2756 */ 2757 int 2758 xfs_alloc_get_freelist( 2759 struct xfs_perag *pag, 2760 struct xfs_trans *tp, 2761 struct xfs_buf *agbp, 2762 xfs_agblock_t *bnop, 2763 int btreeblk) 2764 { 2765 struct xfs_agf *agf = agbp->b_addr; 2766 struct xfs_buf *agflbp; 2767 xfs_agblock_t bno; 2768 __be32 *agfl_bno; 2769 int error; 2770 uint32_t logflags; 2771 struct xfs_mount *mp = tp->t_mountp; 2772 2773 /* 2774 * Freelist is empty, give up. 2775 */ 2776 if (!agf->agf_flcount) { 2777 *bnop = NULLAGBLOCK; 2778 return 0; 2779 } 2780 /* 2781 * Read the array of free blocks. 2782 */ 2783 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2784 if (error) 2785 return error; 2786 2787 2788 /* 2789 * Get the block number and update the data structures. 2790 */ 2791 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2792 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 2793 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno))) 2794 return -EFSCORRUPTED; 2795 2796 be32_add_cpu(&agf->agf_flfirst, 1); 2797 xfs_trans_brelse(tp, agflbp); 2798 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 2799 agf->agf_flfirst = 0; 2800 2801 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 2802 be32_add_cpu(&agf->agf_flcount, -1); 2803 pag->pagf_flcount--; 2804 2805 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 2806 if (btreeblk) { 2807 be32_add_cpu(&agf->agf_btreeblks, 1); 2808 pag->pagf_btreeblks++; 2809 logflags |= XFS_AGF_BTREEBLKS; 2810 } 2811 2812 xfs_alloc_log_agf(tp, agbp, logflags); 2813 *bnop = bno; 2814 2815 return 0; 2816 } 2817 2818 /* 2819 * Log the given fields from the agf structure. 2820 */ 2821 void 2822 xfs_alloc_log_agf( 2823 struct xfs_trans *tp, 2824 struct xfs_buf *bp, 2825 uint32_t fields) 2826 { 2827 int first; /* first byte offset */ 2828 int last; /* last byte offset */ 2829 static const short offsets[] = { 2830 offsetof(xfs_agf_t, agf_magicnum), 2831 offsetof(xfs_agf_t, agf_versionnum), 2832 offsetof(xfs_agf_t, agf_seqno), 2833 offsetof(xfs_agf_t, agf_length), 2834 offsetof(xfs_agf_t, agf_roots[0]), 2835 offsetof(xfs_agf_t, agf_levels[0]), 2836 offsetof(xfs_agf_t, agf_flfirst), 2837 offsetof(xfs_agf_t, agf_fllast), 2838 offsetof(xfs_agf_t, agf_flcount), 2839 offsetof(xfs_agf_t, agf_freeblks), 2840 offsetof(xfs_agf_t, agf_longest), 2841 offsetof(xfs_agf_t, agf_btreeblks), 2842 offsetof(xfs_agf_t, agf_uuid), 2843 offsetof(xfs_agf_t, agf_rmap_blocks), 2844 offsetof(xfs_agf_t, agf_refcount_blocks), 2845 offsetof(xfs_agf_t, agf_refcount_root), 2846 offsetof(xfs_agf_t, agf_refcount_level), 2847 /* needed so that we don't log the whole rest of the structure: */ 2848 offsetof(xfs_agf_t, agf_spare64), 2849 sizeof(xfs_agf_t) 2850 }; 2851 2852 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 2853 2854 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 2855 2856 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 2857 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 2858 } 2859 2860 /* 2861 * Put the block on the freelist for the allocation group. 2862 */ 2863 int 2864 xfs_alloc_put_freelist( 2865 struct xfs_perag *pag, 2866 struct xfs_trans *tp, 2867 struct xfs_buf *agbp, 2868 struct xfs_buf *agflbp, 2869 xfs_agblock_t bno, 2870 int btreeblk) 2871 { 2872 struct xfs_mount *mp = tp->t_mountp; 2873 struct xfs_agf *agf = agbp->b_addr; 2874 __be32 *blockp; 2875 int error; 2876 uint32_t logflags; 2877 __be32 *agfl_bno; 2878 int startoff; 2879 2880 if (!agflbp) { 2881 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2882 if (error) 2883 return error; 2884 } 2885 2886 be32_add_cpu(&agf->agf_fllast, 1); 2887 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 2888 agf->agf_fllast = 0; 2889 2890 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 2891 be32_add_cpu(&agf->agf_flcount, 1); 2892 pag->pagf_flcount++; 2893 2894 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 2895 if (btreeblk) { 2896 be32_add_cpu(&agf->agf_btreeblks, -1); 2897 pag->pagf_btreeblks--; 2898 logflags |= XFS_AGF_BTREEBLKS; 2899 } 2900 2901 xfs_alloc_log_agf(tp, agbp, logflags); 2902 2903 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 2904 2905 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2906 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 2907 *blockp = cpu_to_be32(bno); 2908 startoff = (char *)blockp - (char *)agflbp->b_addr; 2909 2910 xfs_alloc_log_agf(tp, agbp, logflags); 2911 2912 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 2913 xfs_trans_log_buf(tp, agflbp, startoff, 2914 startoff + sizeof(xfs_agblock_t) - 1); 2915 return 0; 2916 } 2917 2918 /* 2919 * Verify the AGF is consistent. 2920 * 2921 * We do not verify the AGFL indexes in the AGF are fully consistent here 2922 * because of issues with variable on-disk structure sizes. Instead, we check 2923 * the agfl indexes for consistency when we initialise the perag from the AGF 2924 * information after a read completes. 2925 * 2926 * If the index is inconsistent, then we mark the perag as needing an AGFL 2927 * reset. The first AGFL update performed then resets the AGFL indexes and 2928 * refills the AGFL with known good free blocks, allowing the filesystem to 2929 * continue operating normally at the cost of a few leaked free space blocks. 2930 */ 2931 static xfs_failaddr_t 2932 xfs_agf_verify( 2933 struct xfs_buf *bp) 2934 { 2935 struct xfs_mount *mp = bp->b_mount; 2936 struct xfs_agf *agf = bp->b_addr; 2937 2938 if (xfs_has_crc(mp)) { 2939 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 2940 return __this_address; 2941 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 2942 return __this_address; 2943 } 2944 2945 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 2946 return __this_address; 2947 2948 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) && 2949 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) && 2950 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) && 2951 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) && 2952 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp))) 2953 return __this_address; 2954 2955 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks) 2956 return __this_address; 2957 2958 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 2959 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length)) 2960 return __this_address; 2961 2962 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 || 2963 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 || 2964 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > 2965 mp->m_alloc_maxlevels || 2966 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > 2967 mp->m_alloc_maxlevels) 2968 return __this_address; 2969 2970 if (xfs_has_rmapbt(mp) && 2971 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 || 2972 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > 2973 mp->m_rmap_maxlevels)) 2974 return __this_address; 2975 2976 if (xfs_has_rmapbt(mp) && 2977 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length)) 2978 return __this_address; 2979 2980 /* 2981 * during growfs operations, the perag is not fully initialised, 2982 * so we can't use it for any useful checking. growfs ensures we can't 2983 * use it by using uncached buffers that don't have the perag attached 2984 * so we can detect and avoid this problem. 2985 */ 2986 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno) 2987 return __this_address; 2988 2989 if (xfs_has_lazysbcount(mp) && 2990 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length)) 2991 return __this_address; 2992 2993 if (xfs_has_reflink(mp) && 2994 be32_to_cpu(agf->agf_refcount_blocks) > 2995 be32_to_cpu(agf->agf_length)) 2996 return __this_address; 2997 2998 if (xfs_has_reflink(mp) && 2999 (be32_to_cpu(agf->agf_refcount_level) < 1 || 3000 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)) 3001 return __this_address; 3002 3003 return NULL; 3004 } 3005 3006 static void 3007 xfs_agf_read_verify( 3008 struct xfs_buf *bp) 3009 { 3010 struct xfs_mount *mp = bp->b_mount; 3011 xfs_failaddr_t fa; 3012 3013 if (xfs_has_crc(mp) && 3014 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3015 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3016 else { 3017 fa = xfs_agf_verify(bp); 3018 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3019 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3020 } 3021 } 3022 3023 static void 3024 xfs_agf_write_verify( 3025 struct xfs_buf *bp) 3026 { 3027 struct xfs_mount *mp = bp->b_mount; 3028 struct xfs_buf_log_item *bip = bp->b_log_item; 3029 struct xfs_agf *agf = bp->b_addr; 3030 xfs_failaddr_t fa; 3031 3032 fa = xfs_agf_verify(bp); 3033 if (fa) { 3034 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3035 return; 3036 } 3037 3038 if (!xfs_has_crc(mp)) 3039 return; 3040 3041 if (bip) 3042 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3043 3044 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3045 } 3046 3047 const struct xfs_buf_ops xfs_agf_buf_ops = { 3048 .name = "xfs_agf", 3049 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3050 .verify_read = xfs_agf_read_verify, 3051 .verify_write = xfs_agf_write_verify, 3052 .verify_struct = xfs_agf_verify, 3053 }; 3054 3055 /* 3056 * Read in the allocation group header (free/alloc section). 3057 */ 3058 int 3059 xfs_read_agf( 3060 struct xfs_perag *pag, 3061 struct xfs_trans *tp, 3062 int flags, 3063 struct xfs_buf **agfbpp) 3064 { 3065 struct xfs_mount *mp = pag->pag_mount; 3066 int error; 3067 3068 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno); 3069 3070 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3071 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)), 3072 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops); 3073 if (error) 3074 return error; 3075 3076 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF); 3077 return 0; 3078 } 3079 3080 /* 3081 * Read in the allocation group header (free/alloc section) and initialise the 3082 * perag structure if necessary. If the caller provides @agfbpp, then return the 3083 * locked buffer to the caller, otherwise free it. 3084 */ 3085 int 3086 xfs_alloc_read_agf( 3087 struct xfs_perag *pag, 3088 struct xfs_trans *tp, 3089 int flags, 3090 struct xfs_buf **agfbpp) 3091 { 3092 struct xfs_buf *agfbp; 3093 struct xfs_agf *agf; 3094 int error; 3095 int allocbt_blks; 3096 3097 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno); 3098 3099 /* We don't support trylock when freeing. */ 3100 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3101 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3102 error = xfs_read_agf(pag, tp, 3103 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3104 &agfbp); 3105 if (error) 3106 return error; 3107 3108 agf = agfbp->b_addr; 3109 if (!xfs_perag_initialised_agf(pag)) { 3110 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3111 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3112 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3113 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3114 pag->pagf_levels[XFS_BTNUM_BNOi] = 3115 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); 3116 pag->pagf_levels[XFS_BTNUM_CNTi] = 3117 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); 3118 pag->pagf_levels[XFS_BTNUM_RMAPi] = 3119 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]); 3120 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3121 if (xfs_agfl_needs_reset(pag->pag_mount, agf)) 3122 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3123 else 3124 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3125 3126 /* 3127 * Update the in-core allocbt counter. Filter out the rmapbt 3128 * subset of the btreeblks counter because the rmapbt is managed 3129 * by perag reservation. Subtract one for the rmapbt root block 3130 * because the rmap counter includes it while the btreeblks 3131 * counter only tracks non-root blocks. 3132 */ 3133 allocbt_blks = pag->pagf_btreeblks; 3134 if (xfs_has_rmapbt(pag->pag_mount)) 3135 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3136 if (allocbt_blks > 0) 3137 atomic64_add(allocbt_blks, 3138 &pag->pag_mount->m_allocbt_blks); 3139 3140 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 3141 } 3142 #ifdef DEBUG 3143 else if (!xfs_is_shutdown(pag->pag_mount)) { 3144 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3145 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3146 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3147 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3148 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == 3149 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); 3150 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == 3151 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); 3152 } 3153 #endif 3154 if (agfbpp) 3155 *agfbpp = agfbp; 3156 else 3157 xfs_trans_brelse(tp, agfbp); 3158 return 0; 3159 } 3160 3161 /* 3162 * Pre-proces allocation arguments to set initial state that we don't require 3163 * callers to set up correctly, as well as bounds check the allocation args 3164 * that are set up. 3165 */ 3166 static int 3167 xfs_alloc_vextent_check_args( 3168 struct xfs_alloc_arg *args, 3169 xfs_fsblock_t target, 3170 xfs_agnumber_t *minimum_agno) 3171 { 3172 struct xfs_mount *mp = args->mp; 3173 xfs_agblock_t agsize; 3174 3175 args->fsbno = NULLFSBLOCK; 3176 3177 *minimum_agno = 0; 3178 if (args->tp->t_highest_agno != NULLAGNUMBER) 3179 *minimum_agno = args->tp->t_highest_agno; 3180 3181 /* 3182 * Just fix this up, for the case where the last a.g. is shorter 3183 * (or there's only one a.g.) and the caller couldn't easily figure 3184 * that out (xfs_bmap_alloc). 3185 */ 3186 agsize = mp->m_sb.sb_agblocks; 3187 if (args->maxlen > agsize) 3188 args->maxlen = agsize; 3189 if (args->alignment == 0) 3190 args->alignment = 1; 3191 3192 ASSERT(args->minlen > 0); 3193 ASSERT(args->maxlen > 0); 3194 ASSERT(args->alignment > 0); 3195 ASSERT(args->resv != XFS_AG_RESV_AGFL); 3196 3197 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount); 3198 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize); 3199 ASSERT(args->minlen <= args->maxlen); 3200 ASSERT(args->minlen <= agsize); 3201 ASSERT(args->mod < args->prod); 3202 3203 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount || 3204 XFS_FSB_TO_AGBNO(mp, target) >= agsize || 3205 args->minlen > args->maxlen || args->minlen > agsize || 3206 args->mod >= args->prod) { 3207 trace_xfs_alloc_vextent_badargs(args); 3208 return -ENOSPC; 3209 } 3210 3211 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) { 3212 trace_xfs_alloc_vextent_skip_deadlock(args); 3213 return -ENOSPC; 3214 } 3215 return 0; 3216 3217 } 3218 3219 /* 3220 * Prepare an AG for allocation. If the AG is not prepared to accept the 3221 * allocation, return failure. 3222 * 3223 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are 3224 * modified to hold their own perag references. 3225 */ 3226 static int 3227 xfs_alloc_vextent_prepare_ag( 3228 struct xfs_alloc_arg *args, 3229 uint32_t flags) 3230 { 3231 bool need_pag = !args->pag; 3232 int error; 3233 3234 if (need_pag) 3235 args->pag = xfs_perag_get(args->mp, args->agno); 3236 3237 args->agbp = NULL; 3238 error = xfs_alloc_fix_freelist(args, flags); 3239 if (error) { 3240 trace_xfs_alloc_vextent_nofix(args); 3241 if (need_pag) 3242 xfs_perag_put(args->pag); 3243 args->agbno = NULLAGBLOCK; 3244 return error; 3245 } 3246 if (!args->agbp) { 3247 /* cannot allocate in this AG at all */ 3248 trace_xfs_alloc_vextent_noagbp(args); 3249 args->agbno = NULLAGBLOCK; 3250 return 0; 3251 } 3252 args->wasfromfl = 0; 3253 return 0; 3254 } 3255 3256 /* 3257 * Post-process allocation results to account for the allocation if it succeed 3258 * and set the allocated block number correctly for the caller. 3259 * 3260 * XXX: we should really be returning ENOSPC for ENOSPC, not 3261 * hiding it behind a "successful" NULLFSBLOCK allocation. 3262 */ 3263 static int 3264 xfs_alloc_vextent_finish( 3265 struct xfs_alloc_arg *args, 3266 xfs_agnumber_t minimum_agno, 3267 int alloc_error, 3268 bool drop_perag) 3269 { 3270 struct xfs_mount *mp = args->mp; 3271 int error = 0; 3272 3273 /* 3274 * We can end up here with a locked AGF. If we failed, the caller is 3275 * likely going to try to allocate again with different parameters, and 3276 * that can widen the AGs that are searched for free space. If we have 3277 * to do BMBT block allocation, we have to do a new allocation. 3278 * 3279 * Hence leaving this function with the AGF locked opens up potential 3280 * ABBA AGF deadlocks because a future allocation attempt in this 3281 * transaction may attempt to lock a lower number AGF. 3282 * 3283 * We can't release the AGF until the transaction is commited, so at 3284 * this point we must update the "first allocation" tracker to point at 3285 * this AG if the tracker is empty or points to a lower AG. This allows 3286 * the next allocation attempt to be modified appropriately to avoid 3287 * deadlocks. 3288 */ 3289 if (args->agbp && 3290 (args->tp->t_highest_agno == NULLAGNUMBER || 3291 args->agno > minimum_agno)) 3292 args->tp->t_highest_agno = args->agno; 3293 3294 /* 3295 * If the allocation failed with an error or we had an ENOSPC result, 3296 * preserve the returned error whilst also marking the allocation result 3297 * as "no extent allocated". This ensures that callers that fail to 3298 * capture the error will still treat it as a failed allocation. 3299 */ 3300 if (alloc_error || args->agbno == NULLAGBLOCK) { 3301 args->fsbno = NULLFSBLOCK; 3302 error = alloc_error; 3303 goto out_drop_perag; 3304 } 3305 3306 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); 3307 3308 ASSERT(args->len >= args->minlen); 3309 ASSERT(args->len <= args->maxlen); 3310 ASSERT(args->agbno % args->alignment == 0); 3311 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); 3312 3313 /* if not file data, insert new block into the reverse map btree */ 3314 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 3315 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 3316 args->agbno, args->len, &args->oinfo); 3317 if (error) 3318 goto out_drop_perag; 3319 } 3320 3321 if (!args->wasfromfl) { 3322 error = xfs_alloc_update_counters(args->tp, args->agbp, 3323 -((long)(args->len))); 3324 if (error) 3325 goto out_drop_perag; 3326 3327 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno, 3328 args->len)); 3329 } 3330 3331 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 3332 3333 XFS_STATS_INC(mp, xs_allocx); 3334 XFS_STATS_ADD(mp, xs_allocb, args->len); 3335 3336 trace_xfs_alloc_vextent_finish(args); 3337 3338 out_drop_perag: 3339 if (drop_perag && args->pag) { 3340 xfs_perag_rele(args->pag); 3341 args->pag = NULL; 3342 } 3343 return error; 3344 } 3345 3346 /* 3347 * Allocate within a single AG only. This uses a best-fit length algorithm so if 3348 * you need an exact sized allocation without locality constraints, this is the 3349 * fastest way to do it. 3350 * 3351 * Caller is expected to hold a perag reference in args->pag. 3352 */ 3353 int 3354 xfs_alloc_vextent_this_ag( 3355 struct xfs_alloc_arg *args, 3356 xfs_agnumber_t agno) 3357 { 3358 struct xfs_mount *mp = args->mp; 3359 xfs_agnumber_t minimum_agno; 3360 int error; 3361 3362 ASSERT(args->pag != NULL); 3363 ASSERT(args->pag->pag_agno == agno); 3364 3365 args->agno = agno; 3366 args->agbno = 0; 3367 3368 trace_xfs_alloc_vextent_this_ag(args); 3369 3370 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0), 3371 &minimum_agno); 3372 if (error) { 3373 if (error == -ENOSPC) 3374 return 0; 3375 return error; 3376 } 3377 3378 error = xfs_alloc_vextent_prepare_ag(args, 0); 3379 if (!error && args->agbp) 3380 error = xfs_alloc_ag_vextent_size(args); 3381 3382 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3383 } 3384 3385 /* 3386 * Iterate all AGs trying to allocate an extent starting from @start_ag. 3387 * 3388 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the 3389 * allocation attempts in @start_agno have locality information. If we fail to 3390 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs 3391 * we attempt to allocation in as there is no locality optimisation possible for 3392 * those allocations. 3393 * 3394 * On return, args->pag may be left referenced if we finish before the "all 3395 * failed" return point. The allocation finish still needs the perag, and 3396 * so the caller will release it once they've finished the allocation. 3397 * 3398 * When we wrap the AG iteration at the end of the filesystem, we have to be 3399 * careful not to wrap into AGs below ones we already have locked in the 3400 * transaction if we are doing a blocking iteration. This will result in an 3401 * out-of-order locking of AGFs and hence can cause deadlocks. 3402 */ 3403 static int 3404 xfs_alloc_vextent_iterate_ags( 3405 struct xfs_alloc_arg *args, 3406 xfs_agnumber_t minimum_agno, 3407 xfs_agnumber_t start_agno, 3408 xfs_agblock_t target_agbno, 3409 uint32_t flags) 3410 { 3411 struct xfs_mount *mp = args->mp; 3412 xfs_agnumber_t restart_agno = minimum_agno; 3413 xfs_agnumber_t agno; 3414 int error = 0; 3415 3416 if (flags & XFS_ALLOC_FLAG_TRYLOCK) 3417 restart_agno = 0; 3418 restart: 3419 for_each_perag_wrap_range(mp, start_agno, restart_agno, 3420 mp->m_sb.sb_agcount, agno, args->pag) { 3421 args->agno = agno; 3422 error = xfs_alloc_vextent_prepare_ag(args, flags); 3423 if (error) 3424 break; 3425 if (!args->agbp) { 3426 trace_xfs_alloc_vextent_loopfailed(args); 3427 continue; 3428 } 3429 3430 /* 3431 * Allocation is supposed to succeed now, so break out of the 3432 * loop regardless of whether we succeed or not. 3433 */ 3434 if (args->agno == start_agno && target_agbno) { 3435 args->agbno = target_agbno; 3436 error = xfs_alloc_ag_vextent_near(args); 3437 } else { 3438 args->agbno = 0; 3439 error = xfs_alloc_ag_vextent_size(args); 3440 } 3441 break; 3442 } 3443 if (error) { 3444 xfs_perag_rele(args->pag); 3445 args->pag = NULL; 3446 return error; 3447 } 3448 if (args->agbp) 3449 return 0; 3450 3451 /* 3452 * We didn't find an AG we can alloation from. If we were given 3453 * constraining flags by the caller, drop them and retry the allocation 3454 * without any constraints being set. 3455 */ 3456 if (flags) { 3457 flags = 0; 3458 restart_agno = minimum_agno; 3459 goto restart; 3460 } 3461 3462 ASSERT(args->pag == NULL); 3463 trace_xfs_alloc_vextent_allfailed(args); 3464 return 0; 3465 } 3466 3467 /* 3468 * Iterate from the AGs from the start AG to the end of the filesystem, trying 3469 * to allocate blocks. It starts with a near allocation attempt in the initial 3470 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap 3471 * back to zero if allowed by previous allocations in this transaction, 3472 * otherwise will wrap back to the start AG and run a second blocking pass to 3473 * the end of the filesystem. 3474 */ 3475 int 3476 xfs_alloc_vextent_start_ag( 3477 struct xfs_alloc_arg *args, 3478 xfs_fsblock_t target) 3479 { 3480 struct xfs_mount *mp = args->mp; 3481 xfs_agnumber_t minimum_agno; 3482 xfs_agnumber_t start_agno; 3483 xfs_agnumber_t rotorstep = xfs_rotorstep; 3484 bool bump_rotor = false; 3485 int error; 3486 3487 ASSERT(args->pag == NULL); 3488 3489 args->agno = NULLAGNUMBER; 3490 args->agbno = NULLAGBLOCK; 3491 3492 trace_xfs_alloc_vextent_start_ag(args); 3493 3494 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3495 if (error) { 3496 if (error == -ENOSPC) 3497 return 0; 3498 return error; 3499 } 3500 3501 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3502 xfs_is_inode32(mp)) { 3503 target = XFS_AGB_TO_FSB(mp, 3504 ((mp->m_agfrotor / rotorstep) % 3505 mp->m_sb.sb_agcount), 0); 3506 bump_rotor = 1; 3507 } 3508 3509 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3510 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3511 XFS_FSB_TO_AGBNO(mp, target), XFS_ALLOC_FLAG_TRYLOCK); 3512 3513 if (bump_rotor) { 3514 if (args->agno == start_agno) 3515 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3516 (mp->m_sb.sb_agcount * rotorstep); 3517 else 3518 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3519 (mp->m_sb.sb_agcount * rotorstep); 3520 } 3521 3522 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3523 } 3524 3525 /* 3526 * Iterate from the agno indicated via @target through to the end of the 3527 * filesystem attempting blocking allocation. This does not wrap or try a second 3528 * pass, so will not recurse into AGs lower than indicated by the target. 3529 */ 3530 int 3531 xfs_alloc_vextent_first_ag( 3532 struct xfs_alloc_arg *args, 3533 xfs_fsblock_t target) 3534 { 3535 struct xfs_mount *mp = args->mp; 3536 xfs_agnumber_t minimum_agno; 3537 xfs_agnumber_t start_agno; 3538 int error; 3539 3540 ASSERT(args->pag == NULL); 3541 3542 args->agno = NULLAGNUMBER; 3543 args->agbno = NULLAGBLOCK; 3544 3545 trace_xfs_alloc_vextent_first_ag(args); 3546 3547 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3548 if (error) { 3549 if (error == -ENOSPC) 3550 return 0; 3551 return error; 3552 } 3553 3554 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3555 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3556 XFS_FSB_TO_AGBNO(mp, target), 0); 3557 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3558 } 3559 3560 /* 3561 * Allocate at the exact block target or fail. Caller is expected to hold a 3562 * perag reference in args->pag. 3563 */ 3564 int 3565 xfs_alloc_vextent_exact_bno( 3566 struct xfs_alloc_arg *args, 3567 xfs_fsblock_t target) 3568 { 3569 struct xfs_mount *mp = args->mp; 3570 xfs_agnumber_t minimum_agno; 3571 int error; 3572 3573 ASSERT(args->pag != NULL); 3574 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3575 3576 args->agno = XFS_FSB_TO_AGNO(mp, target); 3577 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3578 3579 trace_xfs_alloc_vextent_exact_bno(args); 3580 3581 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3582 if (error) { 3583 if (error == -ENOSPC) 3584 return 0; 3585 return error; 3586 } 3587 3588 error = xfs_alloc_vextent_prepare_ag(args, 0); 3589 if (!error && args->agbp) 3590 error = xfs_alloc_ag_vextent_exact(args); 3591 3592 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3593 } 3594 3595 /* 3596 * Allocate an extent as close to the target as possible. If there are not 3597 * viable candidates in the AG, then fail the allocation. 3598 * 3599 * Caller may or may not have a per-ag reference in args->pag. 3600 */ 3601 int 3602 xfs_alloc_vextent_near_bno( 3603 struct xfs_alloc_arg *args, 3604 xfs_fsblock_t target) 3605 { 3606 struct xfs_mount *mp = args->mp; 3607 xfs_agnumber_t minimum_agno; 3608 bool needs_perag = args->pag == NULL; 3609 int error; 3610 3611 if (!needs_perag) 3612 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3613 3614 args->agno = XFS_FSB_TO_AGNO(mp, target); 3615 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3616 3617 trace_xfs_alloc_vextent_near_bno(args); 3618 3619 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3620 if (error) { 3621 if (error == -ENOSPC) 3622 return 0; 3623 return error; 3624 } 3625 3626 if (needs_perag) 3627 args->pag = xfs_perag_grab(mp, args->agno); 3628 3629 error = xfs_alloc_vextent_prepare_ag(args, 0); 3630 if (!error && args->agbp) 3631 error = xfs_alloc_ag_vextent_near(args); 3632 3633 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag); 3634 } 3635 3636 /* Ensure that the freelist is at full capacity. */ 3637 int 3638 xfs_free_extent_fix_freelist( 3639 struct xfs_trans *tp, 3640 struct xfs_perag *pag, 3641 struct xfs_buf **agbp) 3642 { 3643 struct xfs_alloc_arg args; 3644 int error; 3645 3646 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3647 args.tp = tp; 3648 args.mp = tp->t_mountp; 3649 args.agno = pag->pag_agno; 3650 args.pag = pag; 3651 3652 /* 3653 * validate that the block number is legal - the enables us to detect 3654 * and handle a silent filesystem corruption rather than crashing. 3655 */ 3656 if (args.agno >= args.mp->m_sb.sb_agcount) 3657 return -EFSCORRUPTED; 3658 3659 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3660 if (error) 3661 return error; 3662 3663 *agbp = args.agbp; 3664 return 0; 3665 } 3666 3667 /* 3668 * Free an extent. 3669 * Just break up the extent address and hand off to xfs_free_ag_extent 3670 * after fixing up the freelist. 3671 */ 3672 int 3673 __xfs_free_extent( 3674 struct xfs_trans *tp, 3675 struct xfs_perag *pag, 3676 xfs_agblock_t agbno, 3677 xfs_extlen_t len, 3678 const struct xfs_owner_info *oinfo, 3679 enum xfs_ag_resv_type type, 3680 bool skip_discard) 3681 { 3682 struct xfs_mount *mp = tp->t_mountp; 3683 struct xfs_buf *agbp; 3684 struct xfs_agf *agf; 3685 int error; 3686 unsigned int busy_flags = 0; 3687 3688 ASSERT(len != 0); 3689 ASSERT(type != XFS_AG_RESV_AGFL); 3690 3691 if (XFS_TEST_ERROR(false, mp, 3692 XFS_ERRTAG_FREE_EXTENT)) 3693 return -EIO; 3694 3695 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 3696 if (error) 3697 return error; 3698 agf = agbp->b_addr; 3699 3700 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 3701 error = -EFSCORRUPTED; 3702 goto err_release; 3703 } 3704 3705 /* validate the extent size is legal now we have the agf locked */ 3706 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 3707 error = -EFSCORRUPTED; 3708 goto err_release; 3709 } 3710 3711 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo, 3712 type); 3713 if (error) 3714 goto err_release; 3715 3716 if (skip_discard) 3717 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 3718 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); 3719 return 0; 3720 3721 err_release: 3722 xfs_trans_brelse(tp, agbp); 3723 return error; 3724 } 3725 3726 struct xfs_alloc_query_range_info { 3727 xfs_alloc_query_range_fn fn; 3728 void *priv; 3729 }; 3730 3731 /* Format btree record and pass to our callback. */ 3732 STATIC int 3733 xfs_alloc_query_range_helper( 3734 struct xfs_btree_cur *cur, 3735 const union xfs_btree_rec *rec, 3736 void *priv) 3737 { 3738 struct xfs_alloc_query_range_info *query = priv; 3739 struct xfs_alloc_rec_incore irec; 3740 xfs_failaddr_t fa; 3741 3742 xfs_alloc_btrec_to_irec(rec, &irec); 3743 fa = xfs_alloc_check_irec(cur, &irec); 3744 if (fa) 3745 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 3746 3747 return query->fn(cur, &irec, query->priv); 3748 } 3749 3750 /* Find all free space within a given range of blocks. */ 3751 int 3752 xfs_alloc_query_range( 3753 struct xfs_btree_cur *cur, 3754 const struct xfs_alloc_rec_incore *low_rec, 3755 const struct xfs_alloc_rec_incore *high_rec, 3756 xfs_alloc_query_range_fn fn, 3757 void *priv) 3758 { 3759 union xfs_btree_irec low_brec; 3760 union xfs_btree_irec high_brec; 3761 struct xfs_alloc_query_range_info query; 3762 3763 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3764 low_brec.a = *low_rec; 3765 high_brec.a = *high_rec; 3766 query.priv = priv; 3767 query.fn = fn; 3768 return xfs_btree_query_range(cur, &low_brec, &high_brec, 3769 xfs_alloc_query_range_helper, &query); 3770 } 3771 3772 /* Find all free space records. */ 3773 int 3774 xfs_alloc_query_all( 3775 struct xfs_btree_cur *cur, 3776 xfs_alloc_query_range_fn fn, 3777 void *priv) 3778 { 3779 struct xfs_alloc_query_range_info query; 3780 3781 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3782 query.priv = priv; 3783 query.fn = fn; 3784 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 3785 } 3786 3787 /* 3788 * Scan part of the keyspace of the free space and tell us if the area has no 3789 * records, is fully mapped by records, or is partially filled. 3790 */ 3791 int 3792 xfs_alloc_has_records( 3793 struct xfs_btree_cur *cur, 3794 xfs_agblock_t bno, 3795 xfs_extlen_t len, 3796 enum xbtree_recpacking *outcome) 3797 { 3798 union xfs_btree_irec low; 3799 union xfs_btree_irec high; 3800 3801 memset(&low, 0, sizeof(low)); 3802 low.a.ar_startblock = bno; 3803 memset(&high, 0xFF, sizeof(high)); 3804 high.a.ar_startblock = bno + len - 1; 3805 3806 return xfs_btree_has_records(cur, &low, &high, NULL, outcome); 3807 } 3808 3809 /* 3810 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 3811 * error code or XFS_ITER_*. 3812 */ 3813 int 3814 xfs_agfl_walk( 3815 struct xfs_mount *mp, 3816 struct xfs_agf *agf, 3817 struct xfs_buf *agflbp, 3818 xfs_agfl_walk_fn walk_fn, 3819 void *priv) 3820 { 3821 __be32 *agfl_bno; 3822 unsigned int i; 3823 int error; 3824 3825 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3826 i = be32_to_cpu(agf->agf_flfirst); 3827 3828 /* Nothing to walk in an empty AGFL. */ 3829 if (agf->agf_flcount == cpu_to_be32(0)) 3830 return 0; 3831 3832 /* Otherwise, walk from first to last, wrapping as needed. */ 3833 for (;;) { 3834 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 3835 if (error) 3836 return error; 3837 if (i == be32_to_cpu(agf->agf_fllast)) 3838 break; 3839 if (++i == xfs_agfl_size(mp)) 3840 i = 0; 3841 } 3842 3843 return 0; 3844 } 3845 3846 int __init 3847 xfs_extfree_intent_init_cache(void) 3848 { 3849 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 3850 sizeof(struct xfs_extent_free_item), 3851 0, 0, NULL); 3852 3853 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 3854 } 3855 3856 void 3857 xfs_extfree_intent_destroy_cache(void) 3858 { 3859 kmem_cache_destroy(xfs_extfree_item_cache); 3860 xfs_extfree_item_cache = NULL; 3861 } 3862