1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 26 static struct xfs_buf * 27 xfs_get_aghdr_buf( 28 struct xfs_mount *mp, 29 xfs_daddr_t blkno, 30 size_t numblks, 31 int flags, 32 const struct xfs_buf_ops *ops) 33 { 34 struct xfs_buf *bp; 35 36 bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags); 37 if (!bp) 38 return NULL; 39 40 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 41 bp->b_bn = blkno; 42 bp->b_maps[0].bm_bn = blkno; 43 bp->b_ops = ops; 44 45 return bp; 46 } 47 48 static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id) 49 { 50 return mp->m_sb.sb_logstart > 0 && 51 id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart); 52 } 53 54 /* 55 * Generic btree root block init function 56 */ 57 static void 58 xfs_btroot_init( 59 struct xfs_mount *mp, 60 struct xfs_buf *bp, 61 struct aghdr_init_data *id) 62 { 63 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 64 } 65 66 /* Finish initializing a free space btree. */ 67 static void 68 xfs_freesp_init_recs( 69 struct xfs_mount *mp, 70 struct xfs_buf *bp, 71 struct aghdr_init_data *id) 72 { 73 struct xfs_alloc_rec *arec; 74 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 75 76 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 77 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 78 79 if (is_log_ag(mp, id)) { 80 struct xfs_alloc_rec *nrec; 81 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 82 mp->m_sb.sb_logstart); 83 84 ASSERT(start >= mp->m_ag_prealloc_blocks); 85 if (start != mp->m_ag_prealloc_blocks) { 86 /* 87 * Modify first record to pad stripe align of log 88 */ 89 arec->ar_blockcount = cpu_to_be32(start - 90 mp->m_ag_prealloc_blocks); 91 nrec = arec + 1; 92 93 /* 94 * Insert second record at start of internal log 95 * which then gets trimmed. 96 */ 97 nrec->ar_startblock = cpu_to_be32( 98 be32_to_cpu(arec->ar_startblock) + 99 be32_to_cpu(arec->ar_blockcount)); 100 arec = nrec; 101 be16_add_cpu(&block->bb_numrecs, 1); 102 } 103 /* 104 * Change record start to after the internal log 105 */ 106 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 107 } 108 109 /* 110 * Calculate the record block count and check for the case where 111 * the log might have consumed all available space in the AG. If 112 * so, reset the record count to 0 to avoid exposure of an invalid 113 * record start block. 114 */ 115 arec->ar_blockcount = cpu_to_be32(id->agsize - 116 be32_to_cpu(arec->ar_startblock)); 117 if (!arec->ar_blockcount) 118 block->bb_numrecs = 0; 119 } 120 121 /* 122 * Alloc btree root block init functions 123 */ 124 static void 125 xfs_bnoroot_init( 126 struct xfs_mount *mp, 127 struct xfs_buf *bp, 128 struct aghdr_init_data *id) 129 { 130 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 131 xfs_freesp_init_recs(mp, bp, id); 132 } 133 134 static void 135 xfs_cntroot_init( 136 struct xfs_mount *mp, 137 struct xfs_buf *bp, 138 struct aghdr_init_data *id) 139 { 140 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 141 xfs_freesp_init_recs(mp, bp, id); 142 } 143 144 /* 145 * Reverse map root block init 146 */ 147 static void 148 xfs_rmaproot_init( 149 struct xfs_mount *mp, 150 struct xfs_buf *bp, 151 struct aghdr_init_data *id) 152 { 153 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 154 struct xfs_rmap_rec *rrec; 155 156 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 157 158 /* 159 * mark the AG header regions as static metadata The BNO 160 * btree block is the first block after the headers, so 161 * it's location defines the size of region the static 162 * metadata consumes. 163 * 164 * Note: unlike mkfs, we never have to account for log 165 * space when growing the data regions 166 */ 167 rrec = XFS_RMAP_REC_ADDR(block, 1); 168 rrec->rm_startblock = 0; 169 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 170 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 171 rrec->rm_offset = 0; 172 173 /* account freespace btree root blocks */ 174 rrec = XFS_RMAP_REC_ADDR(block, 2); 175 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 176 rrec->rm_blockcount = cpu_to_be32(2); 177 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 178 rrec->rm_offset = 0; 179 180 /* account inode btree root blocks */ 181 rrec = XFS_RMAP_REC_ADDR(block, 3); 182 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 183 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 184 XFS_IBT_BLOCK(mp)); 185 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 186 rrec->rm_offset = 0; 187 188 /* account for rmap btree root */ 189 rrec = XFS_RMAP_REC_ADDR(block, 4); 190 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 191 rrec->rm_blockcount = cpu_to_be32(1); 192 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 193 rrec->rm_offset = 0; 194 195 /* account for refc btree root */ 196 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 197 rrec = XFS_RMAP_REC_ADDR(block, 5); 198 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 199 rrec->rm_blockcount = cpu_to_be32(1); 200 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 201 rrec->rm_offset = 0; 202 be16_add_cpu(&block->bb_numrecs, 1); 203 } 204 205 /* account for the log space */ 206 if (is_log_ag(mp, id)) { 207 rrec = XFS_RMAP_REC_ADDR(block, 208 be16_to_cpu(block->bb_numrecs) + 1); 209 rrec->rm_startblock = cpu_to_be32( 210 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 211 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 212 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 213 rrec->rm_offset = 0; 214 be16_add_cpu(&block->bb_numrecs, 1); 215 } 216 } 217 218 /* 219 * Initialise new secondary superblocks with the pre-grow geometry, but mark 220 * them as "in progress" so we know they haven't yet been activated. This will 221 * get cleared when the update with the new geometry information is done after 222 * changes to the primary are committed. This isn't strictly necessary, but we 223 * get it for free with the delayed buffer write lists and it means we can tell 224 * if a grow operation didn't complete properly after the fact. 225 */ 226 static void 227 xfs_sbblock_init( 228 struct xfs_mount *mp, 229 struct xfs_buf *bp, 230 struct aghdr_init_data *id) 231 { 232 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 233 234 xfs_sb_to_disk(dsb, &mp->m_sb); 235 dsb->sb_inprogress = 1; 236 } 237 238 static void 239 xfs_agfblock_init( 240 struct xfs_mount *mp, 241 struct xfs_buf *bp, 242 struct aghdr_init_data *id) 243 { 244 struct xfs_agf *agf = XFS_BUF_TO_AGF(bp); 245 xfs_extlen_t tmpsize; 246 247 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 248 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 249 agf->agf_seqno = cpu_to_be32(id->agno); 250 agf->agf_length = cpu_to_be32(id->agsize); 251 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 252 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 253 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 254 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 255 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 256 agf->agf_roots[XFS_BTNUM_RMAPi] = 257 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 258 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 259 agf->agf_rmap_blocks = cpu_to_be32(1); 260 } 261 262 agf->agf_flfirst = cpu_to_be32(1); 263 agf->agf_fllast = 0; 264 agf->agf_flcount = 0; 265 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 266 agf->agf_freeblks = cpu_to_be32(tmpsize); 267 agf->agf_longest = cpu_to_be32(tmpsize); 268 if (xfs_sb_version_hascrc(&mp->m_sb)) 269 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 270 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 271 agf->agf_refcount_root = cpu_to_be32( 272 xfs_refc_block(mp)); 273 agf->agf_refcount_level = cpu_to_be32(1); 274 agf->agf_refcount_blocks = cpu_to_be32(1); 275 } 276 277 if (is_log_ag(mp, id)) { 278 int64_t logblocks = mp->m_sb.sb_logblocks; 279 280 be32_add_cpu(&agf->agf_freeblks, -logblocks); 281 agf->agf_longest = cpu_to_be32(id->agsize - 282 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 283 } 284 } 285 286 static void 287 xfs_agflblock_init( 288 struct xfs_mount *mp, 289 struct xfs_buf *bp, 290 struct aghdr_init_data *id) 291 { 292 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 293 __be32 *agfl_bno; 294 int bucket; 295 296 if (xfs_sb_version_hascrc(&mp->m_sb)) { 297 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 298 agfl->agfl_seqno = cpu_to_be32(id->agno); 299 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 300 } 301 302 agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp); 303 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 304 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 305 } 306 307 static void 308 xfs_agiblock_init( 309 struct xfs_mount *mp, 310 struct xfs_buf *bp, 311 struct aghdr_init_data *id) 312 { 313 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 314 int bucket; 315 316 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 317 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 318 agi->agi_seqno = cpu_to_be32(id->agno); 319 agi->agi_length = cpu_to_be32(id->agsize); 320 agi->agi_count = 0; 321 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 322 agi->agi_level = cpu_to_be32(1); 323 agi->agi_freecount = 0; 324 agi->agi_newino = cpu_to_be32(NULLAGINO); 325 agi->agi_dirino = cpu_to_be32(NULLAGINO); 326 if (xfs_sb_version_hascrc(&mp->m_sb)) 327 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 328 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 329 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 330 agi->agi_free_level = cpu_to_be32(1); 331 } 332 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 333 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 334 } 335 336 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 337 struct aghdr_init_data *id); 338 static int 339 xfs_ag_init_hdr( 340 struct xfs_mount *mp, 341 struct aghdr_init_data *id, 342 aghdr_init_work_f work, 343 const struct xfs_buf_ops *ops) 344 345 { 346 struct xfs_buf *bp; 347 348 bp = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, 0, ops); 349 if (!bp) 350 return -ENOMEM; 351 352 (*work)(mp, bp, id); 353 354 xfs_buf_delwri_queue(bp, &id->buffer_list); 355 xfs_buf_relse(bp); 356 return 0; 357 } 358 359 struct xfs_aghdr_grow_data { 360 xfs_daddr_t daddr; 361 size_t numblks; 362 const struct xfs_buf_ops *ops; 363 aghdr_init_work_f work; 364 xfs_btnum_t type; 365 bool need_init; 366 }; 367 368 /* 369 * Prepare new AG headers to be written to disk. We use uncached buffers here, 370 * as it is assumed these new AG headers are currently beyond the currently 371 * valid filesystem address space. Using cached buffers would trip over EOFS 372 * corruption detection alogrithms in the buffer cache lookup routines. 373 * 374 * This is a non-transactional function, but the prepared buffers are added to a 375 * delayed write buffer list supplied by the caller so they can submit them to 376 * disk and wait on them as required. 377 */ 378 int 379 xfs_ag_init_headers( 380 struct xfs_mount *mp, 381 struct aghdr_init_data *id) 382 383 { 384 struct xfs_aghdr_grow_data aghdr_data[] = { 385 { /* SB */ 386 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 387 .numblks = XFS_FSS_TO_BB(mp, 1), 388 .ops = &xfs_sb_buf_ops, 389 .work = &xfs_sbblock_init, 390 .need_init = true 391 }, 392 { /* AGF */ 393 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 394 .numblks = XFS_FSS_TO_BB(mp, 1), 395 .ops = &xfs_agf_buf_ops, 396 .work = &xfs_agfblock_init, 397 .need_init = true 398 }, 399 { /* AGFL */ 400 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 401 .numblks = XFS_FSS_TO_BB(mp, 1), 402 .ops = &xfs_agfl_buf_ops, 403 .work = &xfs_agflblock_init, 404 .need_init = true 405 }, 406 { /* AGI */ 407 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 408 .numblks = XFS_FSS_TO_BB(mp, 1), 409 .ops = &xfs_agi_buf_ops, 410 .work = &xfs_agiblock_init, 411 .need_init = true 412 }, 413 { /* BNO root block */ 414 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 415 .numblks = BTOBB(mp->m_sb.sb_blocksize), 416 .ops = &xfs_bnobt_buf_ops, 417 .work = &xfs_bnoroot_init, 418 .need_init = true 419 }, 420 { /* CNT root block */ 421 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 422 .numblks = BTOBB(mp->m_sb.sb_blocksize), 423 .ops = &xfs_cntbt_buf_ops, 424 .work = &xfs_cntroot_init, 425 .need_init = true 426 }, 427 { /* INO root block */ 428 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 429 .numblks = BTOBB(mp->m_sb.sb_blocksize), 430 .ops = &xfs_inobt_buf_ops, 431 .work = &xfs_btroot_init, 432 .type = XFS_BTNUM_INO, 433 .need_init = true 434 }, 435 { /* FINO root block */ 436 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 437 .numblks = BTOBB(mp->m_sb.sb_blocksize), 438 .ops = &xfs_finobt_buf_ops, 439 .work = &xfs_btroot_init, 440 .type = XFS_BTNUM_FINO, 441 .need_init = xfs_sb_version_hasfinobt(&mp->m_sb) 442 }, 443 { /* RMAP root block */ 444 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 445 .numblks = BTOBB(mp->m_sb.sb_blocksize), 446 .ops = &xfs_rmapbt_buf_ops, 447 .work = &xfs_rmaproot_init, 448 .need_init = xfs_sb_version_hasrmapbt(&mp->m_sb) 449 }, 450 { /* REFC root block */ 451 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 452 .numblks = BTOBB(mp->m_sb.sb_blocksize), 453 .ops = &xfs_refcountbt_buf_ops, 454 .work = &xfs_btroot_init, 455 .type = XFS_BTNUM_REFC, 456 .need_init = xfs_sb_version_hasreflink(&mp->m_sb) 457 }, 458 { /* NULL terminating block */ 459 .daddr = XFS_BUF_DADDR_NULL, 460 } 461 }; 462 struct xfs_aghdr_grow_data *dp; 463 int error = 0; 464 465 /* Account for AG free space in new AG */ 466 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 467 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 468 if (!dp->need_init) 469 continue; 470 471 id->daddr = dp->daddr; 472 id->numblks = dp->numblks; 473 id->type = dp->type; 474 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 475 if (error) 476 break; 477 } 478 return error; 479 } 480 481 /* 482 * Extent the AG indicated by the @id by the length passed in 483 */ 484 int 485 xfs_ag_extend_space( 486 struct xfs_mount *mp, 487 struct xfs_trans *tp, 488 struct aghdr_init_data *id, 489 xfs_extlen_t len) 490 { 491 struct xfs_buf *bp; 492 struct xfs_agi *agi; 493 struct xfs_agf *agf; 494 int error; 495 496 /* 497 * Change the agi length. 498 */ 499 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 500 if (error) 501 return error; 502 503 agi = XFS_BUF_TO_AGI(bp); 504 be32_add_cpu(&agi->agi_length, len); 505 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 506 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 507 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 508 509 /* 510 * Change agf length. 511 */ 512 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 513 if (error) 514 return error; 515 516 agf = XFS_BUF_TO_AGF(bp); 517 be32_add_cpu(&agf->agf_length, len); 518 ASSERT(agf->agf_length == agi->agi_length); 519 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 520 521 /* 522 * Free the new space. 523 * 524 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 525 * this doesn't actually exist in the rmap btree. 526 */ 527 error = xfs_rmap_free(tp, bp, id->agno, 528 be32_to_cpu(agf->agf_length) - len, 529 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 530 if (error) 531 return error; 532 533 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 534 be32_to_cpu(agf->agf_length) - len), 535 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 536 XFS_AG_RESV_NONE); 537 } 538 539 /* Retrieve AG geometry. */ 540 int 541 xfs_ag_get_geometry( 542 struct xfs_mount *mp, 543 xfs_agnumber_t agno, 544 struct xfs_ag_geometry *ageo) 545 { 546 struct xfs_buf *agi_bp; 547 struct xfs_buf *agf_bp; 548 struct xfs_agi *agi; 549 struct xfs_agf *agf; 550 struct xfs_perag *pag; 551 unsigned int freeblks; 552 int error; 553 554 if (agno >= mp->m_sb.sb_agcount) 555 return -EINVAL; 556 557 /* Lock the AG headers. */ 558 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp); 559 if (error) 560 return error; 561 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp); 562 if (error) 563 goto out_agi; 564 pag = xfs_perag_get(mp, agno); 565 566 /* Fill out form. */ 567 memset(ageo, 0, sizeof(*ageo)); 568 ageo->ag_number = agno; 569 570 agi = XFS_BUF_TO_AGI(agi_bp); 571 ageo->ag_icount = be32_to_cpu(agi->agi_count); 572 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 573 574 agf = XFS_BUF_TO_AGF(agf_bp); 575 ageo->ag_length = be32_to_cpu(agf->agf_length); 576 freeblks = pag->pagf_freeblks + 577 pag->pagf_flcount + 578 pag->pagf_btreeblks - 579 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 580 ageo->ag_freeblks = freeblks; 581 xfs_ag_geom_health(pag, ageo); 582 583 /* Release resources. */ 584 xfs_perag_put(pag); 585 xfs_buf_relse(agf_bp); 586 out_agi: 587 xfs_buf_relse(agi_bp); 588 return error; 589 } 590