1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 int ref = 0; 48 49 rcu_read_lock(); 50 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 51 if (pag) { 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 ref = atomic_inc_return(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 57 return pag; 58 } 59 60 /* 61 * search from @first to find the next perag with the given tag set. 62 */ 63 struct xfs_perag * 64 xfs_perag_get_tag( 65 struct xfs_mount *mp, 66 xfs_agnumber_t first, 67 unsigned int tag) 68 { 69 struct xfs_perag *pag; 70 int found; 71 int ref; 72 73 rcu_read_lock(); 74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 75 (void **)&pag, first, 1, tag); 76 if (found <= 0) { 77 rcu_read_unlock(); 78 return NULL; 79 } 80 ref = atomic_inc_return(&pag->pag_ref); 81 rcu_read_unlock(); 82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 83 return pag; 84 } 85 86 void 87 xfs_perag_put( 88 struct xfs_perag *pag) 89 { 90 int ref; 91 92 ASSERT(atomic_read(&pag->pag_ref) > 0); 93 ref = atomic_dec_return(&pag->pag_ref); 94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 95 } 96 97 /* 98 * xfs_initialize_perag_data 99 * 100 * Read in each per-ag structure so we can count up the number of 101 * allocated inodes, free inodes and used filesystem blocks as this 102 * information is no longer persistent in the superblock. Once we have 103 * this information, write it into the in-core superblock structure. 104 */ 105 int 106 xfs_initialize_perag_data( 107 struct xfs_mount *mp, 108 xfs_agnumber_t agcount) 109 { 110 xfs_agnumber_t index; 111 struct xfs_perag *pag; 112 struct xfs_sb *sbp = &mp->m_sb; 113 uint64_t ifree = 0; 114 uint64_t ialloc = 0; 115 uint64_t bfree = 0; 116 uint64_t bfreelst = 0; 117 uint64_t btree = 0; 118 uint64_t fdblocks; 119 int error = 0; 120 121 for (index = 0; index < agcount; index++) { 122 /* 123 * read the agf, then the agi. This gets us 124 * all the information we need and populates the 125 * per-ag structures for us. 126 */ 127 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 128 if (error) 129 return error; 130 131 error = xfs_ialloc_pagi_init(mp, NULL, index); 132 if (error) 133 return error; 134 pag = xfs_perag_get(mp, index); 135 ifree += pag->pagi_freecount; 136 ialloc += pag->pagi_count; 137 bfree += pag->pagf_freeblks; 138 bfreelst += pag->pagf_flcount; 139 btree += pag->pagf_btreeblks; 140 xfs_perag_put(pag); 141 } 142 fdblocks = bfree + bfreelst + btree; 143 144 /* 145 * If the new summary counts are obviously incorrect, fail the 146 * mount operation because that implies the AGFs are also corrupt. 147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 148 * will prevent xfs_repair from fixing anything. 149 */ 150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 151 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 152 error = -EFSCORRUPTED; 153 goto out; 154 } 155 156 /* Overwrite incore superblock counters with just-read data */ 157 spin_lock(&mp->m_sb_lock); 158 sbp->sb_ifree = ifree; 159 sbp->sb_icount = ialloc; 160 sbp->sb_fdblocks = fdblocks; 161 spin_unlock(&mp->m_sb_lock); 162 163 xfs_reinit_percpu_counters(mp); 164 out: 165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 166 return error; 167 } 168 169 STATIC void 170 __xfs_free_perag( 171 struct rcu_head *head) 172 { 173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 174 175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 176 ASSERT(atomic_read(&pag->pag_ref) == 0); 177 kmem_free(pag); 178 } 179 180 /* 181 * Free up the per-ag resources associated with the mount structure. 182 */ 183 void 184 xfs_free_perag( 185 struct xfs_mount *mp) 186 { 187 struct xfs_perag *pag; 188 xfs_agnumber_t agno; 189 190 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 191 spin_lock(&mp->m_perag_lock); 192 pag = radix_tree_delete(&mp->m_perag_tree, agno); 193 spin_unlock(&mp->m_perag_lock); 194 ASSERT(pag); 195 ASSERT(atomic_read(&pag->pag_ref) == 0); 196 197 cancel_delayed_work_sync(&pag->pag_blockgc_work); 198 xfs_iunlink_destroy(pag); 199 xfs_buf_hash_destroy(pag); 200 201 call_rcu(&pag->rcu_head, __xfs_free_perag); 202 } 203 } 204 205 int 206 xfs_initialize_perag( 207 struct xfs_mount *mp, 208 xfs_agnumber_t agcount, 209 xfs_agnumber_t *maxagi) 210 { 211 struct xfs_perag *pag; 212 xfs_agnumber_t index; 213 xfs_agnumber_t first_initialised = NULLAGNUMBER; 214 int error; 215 216 /* 217 * Walk the current per-ag tree so we don't try to initialise AGs 218 * that already exist (growfs case). Allocate and insert all the 219 * AGs we don't find ready for initialisation. 220 */ 221 for (index = 0; index < agcount; index++) { 222 pag = xfs_perag_get(mp, index); 223 if (pag) { 224 xfs_perag_put(pag); 225 continue; 226 } 227 228 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 229 if (!pag) { 230 error = -ENOMEM; 231 goto out_unwind_new_pags; 232 } 233 pag->pag_agno = index; 234 pag->pag_mount = mp; 235 236 error = radix_tree_preload(GFP_NOFS); 237 if (error) 238 goto out_free_pag; 239 240 spin_lock(&mp->m_perag_lock); 241 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 242 WARN_ON_ONCE(1); 243 spin_unlock(&mp->m_perag_lock); 244 radix_tree_preload_end(); 245 error = -EEXIST; 246 goto out_free_pag; 247 } 248 spin_unlock(&mp->m_perag_lock); 249 radix_tree_preload_end(); 250 251 /* Place kernel structure only init below this point. */ 252 spin_lock_init(&pag->pag_ici_lock); 253 spin_lock_init(&pag->pagb_lock); 254 spin_lock_init(&pag->pag_state_lock); 255 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 256 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 257 init_waitqueue_head(&pag->pagb_wait); 258 pag->pagb_count = 0; 259 pag->pagb_tree = RB_ROOT; 260 261 error = xfs_buf_hash_init(pag); 262 if (error) 263 goto out_remove_pag; 264 265 error = xfs_iunlink_init(pag); 266 if (error) 267 goto out_hash_destroy; 268 269 /* first new pag is fully initialized */ 270 if (first_initialised == NULLAGNUMBER) 271 first_initialised = index; 272 } 273 274 index = xfs_set_inode_alloc(mp, agcount); 275 276 if (maxagi) 277 *maxagi = index; 278 279 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 280 return 0; 281 282 out_hash_destroy: 283 xfs_buf_hash_destroy(pag); 284 out_remove_pag: 285 radix_tree_delete(&mp->m_perag_tree, index); 286 out_free_pag: 287 kmem_free(pag); 288 out_unwind_new_pags: 289 /* unwind any prior newly initialized pags */ 290 for (index = first_initialised; index < agcount; index++) { 291 pag = radix_tree_delete(&mp->m_perag_tree, index); 292 if (!pag) 293 break; 294 xfs_buf_hash_destroy(pag); 295 xfs_iunlink_destroy(pag); 296 kmem_free(pag); 297 } 298 return error; 299 } 300 301 static int 302 xfs_get_aghdr_buf( 303 struct xfs_mount *mp, 304 xfs_daddr_t blkno, 305 size_t numblks, 306 struct xfs_buf **bpp, 307 const struct xfs_buf_ops *ops) 308 { 309 struct xfs_buf *bp; 310 int error; 311 312 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 313 if (error) 314 return error; 315 316 bp->b_maps[0].bm_bn = blkno; 317 bp->b_ops = ops; 318 319 *bpp = bp; 320 return 0; 321 } 322 323 static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id) 324 { 325 return mp->m_sb.sb_logstart > 0 && 326 id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart); 327 } 328 329 /* 330 * Generic btree root block init function 331 */ 332 static void 333 xfs_btroot_init( 334 struct xfs_mount *mp, 335 struct xfs_buf *bp, 336 struct aghdr_init_data *id) 337 { 338 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 339 } 340 341 /* Finish initializing a free space btree. */ 342 static void 343 xfs_freesp_init_recs( 344 struct xfs_mount *mp, 345 struct xfs_buf *bp, 346 struct aghdr_init_data *id) 347 { 348 struct xfs_alloc_rec *arec; 349 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 350 351 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 352 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 353 354 if (is_log_ag(mp, id)) { 355 struct xfs_alloc_rec *nrec; 356 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 357 mp->m_sb.sb_logstart); 358 359 ASSERT(start >= mp->m_ag_prealloc_blocks); 360 if (start != mp->m_ag_prealloc_blocks) { 361 /* 362 * Modify first record to pad stripe align of log 363 */ 364 arec->ar_blockcount = cpu_to_be32(start - 365 mp->m_ag_prealloc_blocks); 366 nrec = arec + 1; 367 368 /* 369 * Insert second record at start of internal log 370 * which then gets trimmed. 371 */ 372 nrec->ar_startblock = cpu_to_be32( 373 be32_to_cpu(arec->ar_startblock) + 374 be32_to_cpu(arec->ar_blockcount)); 375 arec = nrec; 376 be16_add_cpu(&block->bb_numrecs, 1); 377 } 378 /* 379 * Change record start to after the internal log 380 */ 381 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 382 } 383 384 /* 385 * Calculate the record block count and check for the case where 386 * the log might have consumed all available space in the AG. If 387 * so, reset the record count to 0 to avoid exposure of an invalid 388 * record start block. 389 */ 390 arec->ar_blockcount = cpu_to_be32(id->agsize - 391 be32_to_cpu(arec->ar_startblock)); 392 if (!arec->ar_blockcount) 393 block->bb_numrecs = 0; 394 } 395 396 /* 397 * Alloc btree root block init functions 398 */ 399 static void 400 xfs_bnoroot_init( 401 struct xfs_mount *mp, 402 struct xfs_buf *bp, 403 struct aghdr_init_data *id) 404 { 405 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 406 xfs_freesp_init_recs(mp, bp, id); 407 } 408 409 static void 410 xfs_cntroot_init( 411 struct xfs_mount *mp, 412 struct xfs_buf *bp, 413 struct aghdr_init_data *id) 414 { 415 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 416 xfs_freesp_init_recs(mp, bp, id); 417 } 418 419 /* 420 * Reverse map root block init 421 */ 422 static void 423 xfs_rmaproot_init( 424 struct xfs_mount *mp, 425 struct xfs_buf *bp, 426 struct aghdr_init_data *id) 427 { 428 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 429 struct xfs_rmap_rec *rrec; 430 431 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 432 433 /* 434 * mark the AG header regions as static metadata The BNO 435 * btree block is the first block after the headers, so 436 * it's location defines the size of region the static 437 * metadata consumes. 438 * 439 * Note: unlike mkfs, we never have to account for log 440 * space when growing the data regions 441 */ 442 rrec = XFS_RMAP_REC_ADDR(block, 1); 443 rrec->rm_startblock = 0; 444 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 445 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 446 rrec->rm_offset = 0; 447 448 /* account freespace btree root blocks */ 449 rrec = XFS_RMAP_REC_ADDR(block, 2); 450 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 451 rrec->rm_blockcount = cpu_to_be32(2); 452 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 453 rrec->rm_offset = 0; 454 455 /* account inode btree root blocks */ 456 rrec = XFS_RMAP_REC_ADDR(block, 3); 457 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 458 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 459 XFS_IBT_BLOCK(mp)); 460 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 461 rrec->rm_offset = 0; 462 463 /* account for rmap btree root */ 464 rrec = XFS_RMAP_REC_ADDR(block, 4); 465 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 466 rrec->rm_blockcount = cpu_to_be32(1); 467 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 468 rrec->rm_offset = 0; 469 470 /* account for refc btree root */ 471 if (xfs_has_reflink(mp)) { 472 rrec = XFS_RMAP_REC_ADDR(block, 5); 473 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 474 rrec->rm_blockcount = cpu_to_be32(1); 475 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 476 rrec->rm_offset = 0; 477 be16_add_cpu(&block->bb_numrecs, 1); 478 } 479 480 /* account for the log space */ 481 if (is_log_ag(mp, id)) { 482 rrec = XFS_RMAP_REC_ADDR(block, 483 be16_to_cpu(block->bb_numrecs) + 1); 484 rrec->rm_startblock = cpu_to_be32( 485 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 486 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 487 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 488 rrec->rm_offset = 0; 489 be16_add_cpu(&block->bb_numrecs, 1); 490 } 491 } 492 493 /* 494 * Initialise new secondary superblocks with the pre-grow geometry, but mark 495 * them as "in progress" so we know they haven't yet been activated. This will 496 * get cleared when the update with the new geometry information is done after 497 * changes to the primary are committed. This isn't strictly necessary, but we 498 * get it for free with the delayed buffer write lists and it means we can tell 499 * if a grow operation didn't complete properly after the fact. 500 */ 501 static void 502 xfs_sbblock_init( 503 struct xfs_mount *mp, 504 struct xfs_buf *bp, 505 struct aghdr_init_data *id) 506 { 507 struct xfs_dsb *dsb = bp->b_addr; 508 509 xfs_sb_to_disk(dsb, &mp->m_sb); 510 dsb->sb_inprogress = 1; 511 } 512 513 static void 514 xfs_agfblock_init( 515 struct xfs_mount *mp, 516 struct xfs_buf *bp, 517 struct aghdr_init_data *id) 518 { 519 struct xfs_agf *agf = bp->b_addr; 520 xfs_extlen_t tmpsize; 521 522 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 523 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 524 agf->agf_seqno = cpu_to_be32(id->agno); 525 agf->agf_length = cpu_to_be32(id->agsize); 526 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 527 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 528 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 529 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 530 if (xfs_has_rmapbt(mp)) { 531 agf->agf_roots[XFS_BTNUM_RMAPi] = 532 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 533 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 534 agf->agf_rmap_blocks = cpu_to_be32(1); 535 } 536 537 agf->agf_flfirst = cpu_to_be32(1); 538 agf->agf_fllast = 0; 539 agf->agf_flcount = 0; 540 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 541 agf->agf_freeblks = cpu_to_be32(tmpsize); 542 agf->agf_longest = cpu_to_be32(tmpsize); 543 if (xfs_has_crc(mp)) 544 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 545 if (xfs_has_reflink(mp)) { 546 agf->agf_refcount_root = cpu_to_be32( 547 xfs_refc_block(mp)); 548 agf->agf_refcount_level = cpu_to_be32(1); 549 agf->agf_refcount_blocks = cpu_to_be32(1); 550 } 551 552 if (is_log_ag(mp, id)) { 553 int64_t logblocks = mp->m_sb.sb_logblocks; 554 555 be32_add_cpu(&agf->agf_freeblks, -logblocks); 556 agf->agf_longest = cpu_to_be32(id->agsize - 557 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 558 } 559 } 560 561 static void 562 xfs_agflblock_init( 563 struct xfs_mount *mp, 564 struct xfs_buf *bp, 565 struct aghdr_init_data *id) 566 { 567 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 568 __be32 *agfl_bno; 569 int bucket; 570 571 if (xfs_has_crc(mp)) { 572 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 573 agfl->agfl_seqno = cpu_to_be32(id->agno); 574 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 575 } 576 577 agfl_bno = xfs_buf_to_agfl_bno(bp); 578 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 579 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 580 } 581 582 static void 583 xfs_agiblock_init( 584 struct xfs_mount *mp, 585 struct xfs_buf *bp, 586 struct aghdr_init_data *id) 587 { 588 struct xfs_agi *agi = bp->b_addr; 589 int bucket; 590 591 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 592 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 593 agi->agi_seqno = cpu_to_be32(id->agno); 594 agi->agi_length = cpu_to_be32(id->agsize); 595 agi->agi_count = 0; 596 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 597 agi->agi_level = cpu_to_be32(1); 598 agi->agi_freecount = 0; 599 agi->agi_newino = cpu_to_be32(NULLAGINO); 600 agi->agi_dirino = cpu_to_be32(NULLAGINO); 601 if (xfs_has_crc(mp)) 602 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 603 if (xfs_has_finobt(mp)) { 604 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 605 agi->agi_free_level = cpu_to_be32(1); 606 } 607 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 608 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 609 if (xfs_has_inobtcounts(mp)) { 610 agi->agi_iblocks = cpu_to_be32(1); 611 if (xfs_has_finobt(mp)) 612 agi->agi_fblocks = cpu_to_be32(1); 613 } 614 } 615 616 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 617 struct aghdr_init_data *id); 618 static int 619 xfs_ag_init_hdr( 620 struct xfs_mount *mp, 621 struct aghdr_init_data *id, 622 aghdr_init_work_f work, 623 const struct xfs_buf_ops *ops) 624 { 625 struct xfs_buf *bp; 626 int error; 627 628 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 629 if (error) 630 return error; 631 632 (*work)(mp, bp, id); 633 634 xfs_buf_delwri_queue(bp, &id->buffer_list); 635 xfs_buf_relse(bp); 636 return 0; 637 } 638 639 struct xfs_aghdr_grow_data { 640 xfs_daddr_t daddr; 641 size_t numblks; 642 const struct xfs_buf_ops *ops; 643 aghdr_init_work_f work; 644 xfs_btnum_t type; 645 bool need_init; 646 }; 647 648 /* 649 * Prepare new AG headers to be written to disk. We use uncached buffers here, 650 * as it is assumed these new AG headers are currently beyond the currently 651 * valid filesystem address space. Using cached buffers would trip over EOFS 652 * corruption detection alogrithms in the buffer cache lookup routines. 653 * 654 * This is a non-transactional function, but the prepared buffers are added to a 655 * delayed write buffer list supplied by the caller so they can submit them to 656 * disk and wait on them as required. 657 */ 658 int 659 xfs_ag_init_headers( 660 struct xfs_mount *mp, 661 struct aghdr_init_data *id) 662 663 { 664 struct xfs_aghdr_grow_data aghdr_data[] = { 665 { /* SB */ 666 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 667 .numblks = XFS_FSS_TO_BB(mp, 1), 668 .ops = &xfs_sb_buf_ops, 669 .work = &xfs_sbblock_init, 670 .need_init = true 671 }, 672 { /* AGF */ 673 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 674 .numblks = XFS_FSS_TO_BB(mp, 1), 675 .ops = &xfs_agf_buf_ops, 676 .work = &xfs_agfblock_init, 677 .need_init = true 678 }, 679 { /* AGFL */ 680 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 681 .numblks = XFS_FSS_TO_BB(mp, 1), 682 .ops = &xfs_agfl_buf_ops, 683 .work = &xfs_agflblock_init, 684 .need_init = true 685 }, 686 { /* AGI */ 687 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 688 .numblks = XFS_FSS_TO_BB(mp, 1), 689 .ops = &xfs_agi_buf_ops, 690 .work = &xfs_agiblock_init, 691 .need_init = true 692 }, 693 { /* BNO root block */ 694 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 695 .numblks = BTOBB(mp->m_sb.sb_blocksize), 696 .ops = &xfs_bnobt_buf_ops, 697 .work = &xfs_bnoroot_init, 698 .need_init = true 699 }, 700 { /* CNT root block */ 701 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 702 .numblks = BTOBB(mp->m_sb.sb_blocksize), 703 .ops = &xfs_cntbt_buf_ops, 704 .work = &xfs_cntroot_init, 705 .need_init = true 706 }, 707 { /* INO root block */ 708 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 709 .numblks = BTOBB(mp->m_sb.sb_blocksize), 710 .ops = &xfs_inobt_buf_ops, 711 .work = &xfs_btroot_init, 712 .type = XFS_BTNUM_INO, 713 .need_init = true 714 }, 715 { /* FINO root block */ 716 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 717 .numblks = BTOBB(mp->m_sb.sb_blocksize), 718 .ops = &xfs_finobt_buf_ops, 719 .work = &xfs_btroot_init, 720 .type = XFS_BTNUM_FINO, 721 .need_init = xfs_has_finobt(mp) 722 }, 723 { /* RMAP root block */ 724 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 725 .numblks = BTOBB(mp->m_sb.sb_blocksize), 726 .ops = &xfs_rmapbt_buf_ops, 727 .work = &xfs_rmaproot_init, 728 .need_init = xfs_has_rmapbt(mp) 729 }, 730 { /* REFC root block */ 731 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 732 .numblks = BTOBB(mp->m_sb.sb_blocksize), 733 .ops = &xfs_refcountbt_buf_ops, 734 .work = &xfs_btroot_init, 735 .type = XFS_BTNUM_REFC, 736 .need_init = xfs_has_reflink(mp) 737 }, 738 { /* NULL terminating block */ 739 .daddr = XFS_BUF_DADDR_NULL, 740 } 741 }; 742 struct xfs_aghdr_grow_data *dp; 743 int error = 0; 744 745 /* Account for AG free space in new AG */ 746 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 747 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 748 if (!dp->need_init) 749 continue; 750 751 id->daddr = dp->daddr; 752 id->numblks = dp->numblks; 753 id->type = dp->type; 754 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 755 if (error) 756 break; 757 } 758 return error; 759 } 760 761 int 762 xfs_ag_shrink_space( 763 struct xfs_mount *mp, 764 struct xfs_trans **tpp, 765 xfs_agnumber_t agno, 766 xfs_extlen_t delta) 767 { 768 struct xfs_alloc_arg args = { 769 .tp = *tpp, 770 .mp = mp, 771 .type = XFS_ALLOCTYPE_THIS_BNO, 772 .minlen = delta, 773 .maxlen = delta, 774 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 775 .resv = XFS_AG_RESV_NONE, 776 .prod = 1 777 }; 778 struct xfs_buf *agibp, *agfbp; 779 struct xfs_agi *agi; 780 struct xfs_agf *agf; 781 xfs_agblock_t aglen; 782 int error, err2; 783 784 ASSERT(agno == mp->m_sb.sb_agcount - 1); 785 error = xfs_ialloc_read_agi(mp, *tpp, agno, &agibp); 786 if (error) 787 return error; 788 789 agi = agibp->b_addr; 790 791 error = xfs_alloc_read_agf(mp, *tpp, agno, 0, &agfbp); 792 if (error) 793 return error; 794 795 agf = agfbp->b_addr; 796 aglen = be32_to_cpu(agi->agi_length); 797 /* some extra paranoid checks before we shrink the ag */ 798 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) 799 return -EFSCORRUPTED; 800 if (delta >= aglen) 801 return -EINVAL; 802 803 args.fsbno = XFS_AGB_TO_FSB(mp, agno, aglen - delta); 804 805 /* 806 * Make sure that the last inode cluster cannot overlap with the new 807 * end of the AG, even if it's sparse. 808 */ 809 error = xfs_ialloc_check_shrink(*tpp, agno, agibp, aglen - delta); 810 if (error) 811 return error; 812 813 /* 814 * Disable perag reservations so it doesn't cause the allocation request 815 * to fail. We'll reestablish reservation before we return. 816 */ 817 error = xfs_ag_resv_free(agibp->b_pag); 818 if (error) 819 return error; 820 821 /* internal log shouldn't also show up in the free space btrees */ 822 error = xfs_alloc_vextent(&args); 823 if (!error && args.agbno == NULLAGBLOCK) 824 error = -ENOSPC; 825 826 if (error) { 827 /* 828 * if extent allocation fails, need to roll the transaction to 829 * ensure that the AGFL fixup has been committed anyway. 830 */ 831 xfs_trans_bhold(*tpp, agfbp); 832 err2 = xfs_trans_roll(tpp); 833 if (err2) 834 return err2; 835 xfs_trans_bjoin(*tpp, agfbp); 836 goto resv_init_out; 837 } 838 839 /* 840 * if successfully deleted from freespace btrees, need to confirm 841 * per-AG reservation works as expected. 842 */ 843 be32_add_cpu(&agi->agi_length, -delta); 844 be32_add_cpu(&agf->agf_length, -delta); 845 846 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 847 if (err2) { 848 be32_add_cpu(&agi->agi_length, delta); 849 be32_add_cpu(&agf->agf_length, delta); 850 if (err2 != -ENOSPC) 851 goto resv_err; 852 853 __xfs_bmap_add_free(*tpp, args.fsbno, delta, NULL, true); 854 855 /* 856 * Roll the transaction before trying to re-init the per-ag 857 * reservation. The new transaction is clean so it will cancel 858 * without any side effects. 859 */ 860 error = xfs_defer_finish(tpp); 861 if (error) 862 return error; 863 864 error = -ENOSPC; 865 goto resv_init_out; 866 } 867 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 868 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 869 return 0; 870 resv_init_out: 871 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 872 if (!err2) 873 return error; 874 resv_err: 875 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 876 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 877 return err2; 878 } 879 880 /* 881 * Extent the AG indicated by the @id by the length passed in 882 */ 883 int 884 xfs_ag_extend_space( 885 struct xfs_mount *mp, 886 struct xfs_trans *tp, 887 struct aghdr_init_data *id, 888 xfs_extlen_t len) 889 { 890 struct xfs_buf *bp; 891 struct xfs_agi *agi; 892 struct xfs_agf *agf; 893 int error; 894 895 /* 896 * Change the agi length. 897 */ 898 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 899 if (error) 900 return error; 901 902 agi = bp->b_addr; 903 be32_add_cpu(&agi->agi_length, len); 904 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 905 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 906 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 907 908 /* 909 * Change agf length. 910 */ 911 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 912 if (error) 913 return error; 914 915 agf = bp->b_addr; 916 be32_add_cpu(&agf->agf_length, len); 917 ASSERT(agf->agf_length == agi->agi_length); 918 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 919 920 /* 921 * Free the new space. 922 * 923 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 924 * this doesn't actually exist in the rmap btree. 925 */ 926 error = xfs_rmap_free(tp, bp, bp->b_pag, 927 be32_to_cpu(agf->agf_length) - len, 928 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 929 if (error) 930 return error; 931 932 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 933 be32_to_cpu(agf->agf_length) - len), 934 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 935 XFS_AG_RESV_NONE); 936 } 937 938 /* Retrieve AG geometry. */ 939 int 940 xfs_ag_get_geometry( 941 struct xfs_mount *mp, 942 xfs_agnumber_t agno, 943 struct xfs_ag_geometry *ageo) 944 { 945 struct xfs_buf *agi_bp; 946 struct xfs_buf *agf_bp; 947 struct xfs_agi *agi; 948 struct xfs_agf *agf; 949 struct xfs_perag *pag; 950 unsigned int freeblks; 951 int error; 952 953 if (agno >= mp->m_sb.sb_agcount) 954 return -EINVAL; 955 956 /* Lock the AG headers. */ 957 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp); 958 if (error) 959 return error; 960 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp); 961 if (error) 962 goto out_agi; 963 964 pag = agi_bp->b_pag; 965 966 /* Fill out form. */ 967 memset(ageo, 0, sizeof(*ageo)); 968 ageo->ag_number = agno; 969 970 agi = agi_bp->b_addr; 971 ageo->ag_icount = be32_to_cpu(agi->agi_count); 972 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 973 974 agf = agf_bp->b_addr; 975 ageo->ag_length = be32_to_cpu(agf->agf_length); 976 freeblks = pag->pagf_freeblks + 977 pag->pagf_flcount + 978 pag->pagf_btreeblks - 979 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 980 ageo->ag_freeblks = freeblks; 981 xfs_ag_geom_health(pag, ageo); 982 983 /* Release resources. */ 984 xfs_buf_relse(agf_bp); 985 out_agi: 986 xfs_buf_relse(agi_bp); 987 return error; 988 } 989