1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 int ref = 0; 48 49 rcu_read_lock(); 50 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 51 if (pag) { 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 ref = atomic_inc_return(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 57 return pag; 58 } 59 60 /* 61 * search from @first to find the next perag with the given tag set. 62 */ 63 struct xfs_perag * 64 xfs_perag_get_tag( 65 struct xfs_mount *mp, 66 xfs_agnumber_t first, 67 unsigned int tag) 68 { 69 struct xfs_perag *pag; 70 int found; 71 int ref; 72 73 rcu_read_lock(); 74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 75 (void **)&pag, first, 1, tag); 76 if (found <= 0) { 77 rcu_read_unlock(); 78 return NULL; 79 } 80 ref = atomic_inc_return(&pag->pag_ref); 81 rcu_read_unlock(); 82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 83 return pag; 84 } 85 86 void 87 xfs_perag_put( 88 struct xfs_perag *pag) 89 { 90 int ref; 91 92 ASSERT(atomic_read(&pag->pag_ref) > 0); 93 ref = atomic_dec_return(&pag->pag_ref); 94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 95 } 96 97 /* 98 * xfs_initialize_perag_data 99 * 100 * Read in each per-ag structure so we can count up the number of 101 * allocated inodes, free inodes and used filesystem blocks as this 102 * information is no longer persistent in the superblock. Once we have 103 * this information, write it into the in-core superblock structure. 104 */ 105 int 106 xfs_initialize_perag_data( 107 struct xfs_mount *mp, 108 xfs_agnumber_t agcount) 109 { 110 xfs_agnumber_t index; 111 struct xfs_perag *pag; 112 struct xfs_sb *sbp = &mp->m_sb; 113 uint64_t ifree = 0; 114 uint64_t ialloc = 0; 115 uint64_t bfree = 0; 116 uint64_t bfreelst = 0; 117 uint64_t btree = 0; 118 uint64_t fdblocks; 119 int error = 0; 120 121 for (index = 0; index < agcount; index++) { 122 /* 123 * read the agf, then the agi. This gets us 124 * all the information we need and populates the 125 * per-ag structures for us. 126 */ 127 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 128 if (error) 129 return error; 130 131 error = xfs_ialloc_pagi_init(mp, NULL, index); 132 if (error) 133 return error; 134 pag = xfs_perag_get(mp, index); 135 ifree += pag->pagi_freecount; 136 ialloc += pag->pagi_count; 137 bfree += pag->pagf_freeblks; 138 bfreelst += pag->pagf_flcount; 139 btree += pag->pagf_btreeblks; 140 xfs_perag_put(pag); 141 } 142 fdblocks = bfree + bfreelst + btree; 143 144 /* 145 * If the new summary counts are obviously incorrect, fail the 146 * mount operation because that implies the AGFs are also corrupt. 147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 148 * will prevent xfs_repair from fixing anything. 149 */ 150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 151 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 152 error = -EFSCORRUPTED; 153 goto out; 154 } 155 156 /* Overwrite incore superblock counters with just-read data */ 157 spin_lock(&mp->m_sb_lock); 158 sbp->sb_ifree = ifree; 159 sbp->sb_icount = ialloc; 160 sbp->sb_fdblocks = fdblocks; 161 spin_unlock(&mp->m_sb_lock); 162 163 xfs_reinit_percpu_counters(mp); 164 out: 165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 166 return error; 167 } 168 169 STATIC void 170 __xfs_free_perag( 171 struct rcu_head *head) 172 { 173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 174 175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 176 ASSERT(atomic_read(&pag->pag_ref) == 0); 177 kmem_free(pag); 178 } 179 180 /* 181 * Free up the per-ag resources associated with the mount structure. 182 */ 183 void 184 xfs_free_perag( 185 struct xfs_mount *mp) 186 { 187 struct xfs_perag *pag; 188 xfs_agnumber_t agno; 189 190 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 191 spin_lock(&mp->m_perag_lock); 192 pag = radix_tree_delete(&mp->m_perag_tree, agno); 193 spin_unlock(&mp->m_perag_lock); 194 ASSERT(pag); 195 ASSERT(atomic_read(&pag->pag_ref) == 0); 196 197 cancel_delayed_work_sync(&pag->pag_blockgc_work); 198 xfs_iunlink_destroy(pag); 199 xfs_buf_hash_destroy(pag); 200 201 call_rcu(&pag->rcu_head, __xfs_free_perag); 202 } 203 } 204 205 int 206 xfs_initialize_perag( 207 struct xfs_mount *mp, 208 xfs_agnumber_t agcount, 209 xfs_agnumber_t *maxagi) 210 { 211 struct xfs_perag *pag; 212 xfs_agnumber_t index; 213 xfs_agnumber_t first_initialised = NULLAGNUMBER; 214 int error; 215 216 /* 217 * Walk the current per-ag tree so we don't try to initialise AGs 218 * that already exist (growfs case). Allocate and insert all the 219 * AGs we don't find ready for initialisation. 220 */ 221 for (index = 0; index < agcount; index++) { 222 pag = xfs_perag_get(mp, index); 223 if (pag) { 224 xfs_perag_put(pag); 225 continue; 226 } 227 228 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 229 if (!pag) { 230 error = -ENOMEM; 231 goto out_unwind_new_pags; 232 } 233 pag->pag_agno = index; 234 pag->pag_mount = mp; 235 236 error = radix_tree_preload(GFP_NOFS); 237 if (error) 238 goto out_free_pag; 239 240 spin_lock(&mp->m_perag_lock); 241 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 242 WARN_ON_ONCE(1); 243 spin_unlock(&mp->m_perag_lock); 244 radix_tree_preload_end(); 245 error = -EEXIST; 246 goto out_free_pag; 247 } 248 spin_unlock(&mp->m_perag_lock); 249 radix_tree_preload_end(); 250 251 #ifdef __KERNEL__ 252 /* Place kernel structure only init below this point. */ 253 spin_lock_init(&pag->pag_ici_lock); 254 spin_lock_init(&pag->pagb_lock); 255 spin_lock_init(&pag->pag_state_lock); 256 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 257 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 258 init_waitqueue_head(&pag->pagb_wait); 259 pag->pagb_count = 0; 260 pag->pagb_tree = RB_ROOT; 261 #endif /* __KERNEL__ */ 262 263 error = xfs_buf_hash_init(pag); 264 if (error) 265 goto out_remove_pag; 266 267 error = xfs_iunlink_init(pag); 268 if (error) 269 goto out_hash_destroy; 270 271 /* first new pag is fully initialized */ 272 if (first_initialised == NULLAGNUMBER) 273 first_initialised = index; 274 } 275 276 index = xfs_set_inode_alloc(mp, agcount); 277 278 if (maxagi) 279 *maxagi = index; 280 281 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 282 return 0; 283 284 out_hash_destroy: 285 xfs_buf_hash_destroy(pag); 286 out_remove_pag: 287 radix_tree_delete(&mp->m_perag_tree, index); 288 out_free_pag: 289 kmem_free(pag); 290 out_unwind_new_pags: 291 /* unwind any prior newly initialized pags */ 292 for (index = first_initialised; index < agcount; index++) { 293 pag = radix_tree_delete(&mp->m_perag_tree, index); 294 if (!pag) 295 break; 296 xfs_buf_hash_destroy(pag); 297 xfs_iunlink_destroy(pag); 298 kmem_free(pag); 299 } 300 return error; 301 } 302 303 static int 304 xfs_get_aghdr_buf( 305 struct xfs_mount *mp, 306 xfs_daddr_t blkno, 307 size_t numblks, 308 struct xfs_buf **bpp, 309 const struct xfs_buf_ops *ops) 310 { 311 struct xfs_buf *bp; 312 int error; 313 314 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 315 if (error) 316 return error; 317 318 bp->b_maps[0].bm_bn = blkno; 319 bp->b_ops = ops; 320 321 *bpp = bp; 322 return 0; 323 } 324 325 static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id) 326 { 327 return mp->m_sb.sb_logstart > 0 && 328 id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart); 329 } 330 331 /* 332 * Generic btree root block init function 333 */ 334 static void 335 xfs_btroot_init( 336 struct xfs_mount *mp, 337 struct xfs_buf *bp, 338 struct aghdr_init_data *id) 339 { 340 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 341 } 342 343 /* Finish initializing a free space btree. */ 344 static void 345 xfs_freesp_init_recs( 346 struct xfs_mount *mp, 347 struct xfs_buf *bp, 348 struct aghdr_init_data *id) 349 { 350 struct xfs_alloc_rec *arec; 351 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 352 353 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 354 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 355 356 if (is_log_ag(mp, id)) { 357 struct xfs_alloc_rec *nrec; 358 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 359 mp->m_sb.sb_logstart); 360 361 ASSERT(start >= mp->m_ag_prealloc_blocks); 362 if (start != mp->m_ag_prealloc_blocks) { 363 /* 364 * Modify first record to pad stripe align of log 365 */ 366 arec->ar_blockcount = cpu_to_be32(start - 367 mp->m_ag_prealloc_blocks); 368 nrec = arec + 1; 369 370 /* 371 * Insert second record at start of internal log 372 * which then gets trimmed. 373 */ 374 nrec->ar_startblock = cpu_to_be32( 375 be32_to_cpu(arec->ar_startblock) + 376 be32_to_cpu(arec->ar_blockcount)); 377 arec = nrec; 378 be16_add_cpu(&block->bb_numrecs, 1); 379 } 380 /* 381 * Change record start to after the internal log 382 */ 383 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 384 } 385 386 /* 387 * Calculate the record block count and check for the case where 388 * the log might have consumed all available space in the AG. If 389 * so, reset the record count to 0 to avoid exposure of an invalid 390 * record start block. 391 */ 392 arec->ar_blockcount = cpu_to_be32(id->agsize - 393 be32_to_cpu(arec->ar_startblock)); 394 if (!arec->ar_blockcount) 395 block->bb_numrecs = 0; 396 } 397 398 /* 399 * Alloc btree root block init functions 400 */ 401 static void 402 xfs_bnoroot_init( 403 struct xfs_mount *mp, 404 struct xfs_buf *bp, 405 struct aghdr_init_data *id) 406 { 407 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 408 xfs_freesp_init_recs(mp, bp, id); 409 } 410 411 static void 412 xfs_cntroot_init( 413 struct xfs_mount *mp, 414 struct xfs_buf *bp, 415 struct aghdr_init_data *id) 416 { 417 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 418 xfs_freesp_init_recs(mp, bp, id); 419 } 420 421 /* 422 * Reverse map root block init 423 */ 424 static void 425 xfs_rmaproot_init( 426 struct xfs_mount *mp, 427 struct xfs_buf *bp, 428 struct aghdr_init_data *id) 429 { 430 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 431 struct xfs_rmap_rec *rrec; 432 433 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 434 435 /* 436 * mark the AG header regions as static metadata The BNO 437 * btree block is the first block after the headers, so 438 * it's location defines the size of region the static 439 * metadata consumes. 440 * 441 * Note: unlike mkfs, we never have to account for log 442 * space when growing the data regions 443 */ 444 rrec = XFS_RMAP_REC_ADDR(block, 1); 445 rrec->rm_startblock = 0; 446 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 447 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 448 rrec->rm_offset = 0; 449 450 /* account freespace btree root blocks */ 451 rrec = XFS_RMAP_REC_ADDR(block, 2); 452 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 453 rrec->rm_blockcount = cpu_to_be32(2); 454 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 455 rrec->rm_offset = 0; 456 457 /* account inode btree root blocks */ 458 rrec = XFS_RMAP_REC_ADDR(block, 3); 459 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 460 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 461 XFS_IBT_BLOCK(mp)); 462 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 463 rrec->rm_offset = 0; 464 465 /* account for rmap btree root */ 466 rrec = XFS_RMAP_REC_ADDR(block, 4); 467 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 468 rrec->rm_blockcount = cpu_to_be32(1); 469 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 470 rrec->rm_offset = 0; 471 472 /* account for refc btree root */ 473 if (xfs_has_reflink(mp)) { 474 rrec = XFS_RMAP_REC_ADDR(block, 5); 475 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 476 rrec->rm_blockcount = cpu_to_be32(1); 477 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 478 rrec->rm_offset = 0; 479 be16_add_cpu(&block->bb_numrecs, 1); 480 } 481 482 /* account for the log space */ 483 if (is_log_ag(mp, id)) { 484 rrec = XFS_RMAP_REC_ADDR(block, 485 be16_to_cpu(block->bb_numrecs) + 1); 486 rrec->rm_startblock = cpu_to_be32( 487 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 488 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 489 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 490 rrec->rm_offset = 0; 491 be16_add_cpu(&block->bb_numrecs, 1); 492 } 493 } 494 495 /* 496 * Initialise new secondary superblocks with the pre-grow geometry, but mark 497 * them as "in progress" so we know they haven't yet been activated. This will 498 * get cleared when the update with the new geometry information is done after 499 * changes to the primary are committed. This isn't strictly necessary, but we 500 * get it for free with the delayed buffer write lists and it means we can tell 501 * if a grow operation didn't complete properly after the fact. 502 */ 503 static void 504 xfs_sbblock_init( 505 struct xfs_mount *mp, 506 struct xfs_buf *bp, 507 struct aghdr_init_data *id) 508 { 509 struct xfs_dsb *dsb = bp->b_addr; 510 511 xfs_sb_to_disk(dsb, &mp->m_sb); 512 dsb->sb_inprogress = 1; 513 } 514 515 static void 516 xfs_agfblock_init( 517 struct xfs_mount *mp, 518 struct xfs_buf *bp, 519 struct aghdr_init_data *id) 520 { 521 struct xfs_agf *agf = bp->b_addr; 522 xfs_extlen_t tmpsize; 523 524 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 525 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 526 agf->agf_seqno = cpu_to_be32(id->agno); 527 agf->agf_length = cpu_to_be32(id->agsize); 528 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 529 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 530 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 531 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 532 if (xfs_has_rmapbt(mp)) { 533 agf->agf_roots[XFS_BTNUM_RMAPi] = 534 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 535 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 536 agf->agf_rmap_blocks = cpu_to_be32(1); 537 } 538 539 agf->agf_flfirst = cpu_to_be32(1); 540 agf->agf_fllast = 0; 541 agf->agf_flcount = 0; 542 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 543 agf->agf_freeblks = cpu_to_be32(tmpsize); 544 agf->agf_longest = cpu_to_be32(tmpsize); 545 if (xfs_has_crc(mp)) 546 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 547 if (xfs_has_reflink(mp)) { 548 agf->agf_refcount_root = cpu_to_be32( 549 xfs_refc_block(mp)); 550 agf->agf_refcount_level = cpu_to_be32(1); 551 agf->agf_refcount_blocks = cpu_to_be32(1); 552 } 553 554 if (is_log_ag(mp, id)) { 555 int64_t logblocks = mp->m_sb.sb_logblocks; 556 557 be32_add_cpu(&agf->agf_freeblks, -logblocks); 558 agf->agf_longest = cpu_to_be32(id->agsize - 559 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 560 } 561 } 562 563 static void 564 xfs_agflblock_init( 565 struct xfs_mount *mp, 566 struct xfs_buf *bp, 567 struct aghdr_init_data *id) 568 { 569 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 570 __be32 *agfl_bno; 571 int bucket; 572 573 if (xfs_has_crc(mp)) { 574 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 575 agfl->agfl_seqno = cpu_to_be32(id->agno); 576 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 577 } 578 579 agfl_bno = xfs_buf_to_agfl_bno(bp); 580 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 581 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 582 } 583 584 static void 585 xfs_agiblock_init( 586 struct xfs_mount *mp, 587 struct xfs_buf *bp, 588 struct aghdr_init_data *id) 589 { 590 struct xfs_agi *agi = bp->b_addr; 591 int bucket; 592 593 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 594 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 595 agi->agi_seqno = cpu_to_be32(id->agno); 596 agi->agi_length = cpu_to_be32(id->agsize); 597 agi->agi_count = 0; 598 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 599 agi->agi_level = cpu_to_be32(1); 600 agi->agi_freecount = 0; 601 agi->agi_newino = cpu_to_be32(NULLAGINO); 602 agi->agi_dirino = cpu_to_be32(NULLAGINO); 603 if (xfs_has_crc(mp)) 604 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 605 if (xfs_has_finobt(mp)) { 606 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 607 agi->agi_free_level = cpu_to_be32(1); 608 } 609 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 610 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 611 if (xfs_has_inobtcounts(mp)) { 612 agi->agi_iblocks = cpu_to_be32(1); 613 if (xfs_has_finobt(mp)) 614 agi->agi_fblocks = cpu_to_be32(1); 615 } 616 } 617 618 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 619 struct aghdr_init_data *id); 620 static int 621 xfs_ag_init_hdr( 622 struct xfs_mount *mp, 623 struct aghdr_init_data *id, 624 aghdr_init_work_f work, 625 const struct xfs_buf_ops *ops) 626 { 627 struct xfs_buf *bp; 628 int error; 629 630 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 631 if (error) 632 return error; 633 634 (*work)(mp, bp, id); 635 636 xfs_buf_delwri_queue(bp, &id->buffer_list); 637 xfs_buf_relse(bp); 638 return 0; 639 } 640 641 struct xfs_aghdr_grow_data { 642 xfs_daddr_t daddr; 643 size_t numblks; 644 const struct xfs_buf_ops *ops; 645 aghdr_init_work_f work; 646 xfs_btnum_t type; 647 bool need_init; 648 }; 649 650 /* 651 * Prepare new AG headers to be written to disk. We use uncached buffers here, 652 * as it is assumed these new AG headers are currently beyond the currently 653 * valid filesystem address space. Using cached buffers would trip over EOFS 654 * corruption detection alogrithms in the buffer cache lookup routines. 655 * 656 * This is a non-transactional function, but the prepared buffers are added to a 657 * delayed write buffer list supplied by the caller so they can submit them to 658 * disk and wait on them as required. 659 */ 660 int 661 xfs_ag_init_headers( 662 struct xfs_mount *mp, 663 struct aghdr_init_data *id) 664 665 { 666 struct xfs_aghdr_grow_data aghdr_data[] = { 667 { /* SB */ 668 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 669 .numblks = XFS_FSS_TO_BB(mp, 1), 670 .ops = &xfs_sb_buf_ops, 671 .work = &xfs_sbblock_init, 672 .need_init = true 673 }, 674 { /* AGF */ 675 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 676 .numblks = XFS_FSS_TO_BB(mp, 1), 677 .ops = &xfs_agf_buf_ops, 678 .work = &xfs_agfblock_init, 679 .need_init = true 680 }, 681 { /* AGFL */ 682 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 683 .numblks = XFS_FSS_TO_BB(mp, 1), 684 .ops = &xfs_agfl_buf_ops, 685 .work = &xfs_agflblock_init, 686 .need_init = true 687 }, 688 { /* AGI */ 689 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 690 .numblks = XFS_FSS_TO_BB(mp, 1), 691 .ops = &xfs_agi_buf_ops, 692 .work = &xfs_agiblock_init, 693 .need_init = true 694 }, 695 { /* BNO root block */ 696 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 697 .numblks = BTOBB(mp->m_sb.sb_blocksize), 698 .ops = &xfs_bnobt_buf_ops, 699 .work = &xfs_bnoroot_init, 700 .need_init = true 701 }, 702 { /* CNT root block */ 703 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 704 .numblks = BTOBB(mp->m_sb.sb_blocksize), 705 .ops = &xfs_cntbt_buf_ops, 706 .work = &xfs_cntroot_init, 707 .need_init = true 708 }, 709 { /* INO root block */ 710 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 711 .numblks = BTOBB(mp->m_sb.sb_blocksize), 712 .ops = &xfs_inobt_buf_ops, 713 .work = &xfs_btroot_init, 714 .type = XFS_BTNUM_INO, 715 .need_init = true 716 }, 717 { /* FINO root block */ 718 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 719 .numblks = BTOBB(mp->m_sb.sb_blocksize), 720 .ops = &xfs_finobt_buf_ops, 721 .work = &xfs_btroot_init, 722 .type = XFS_BTNUM_FINO, 723 .need_init = xfs_has_finobt(mp) 724 }, 725 { /* RMAP root block */ 726 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 727 .numblks = BTOBB(mp->m_sb.sb_blocksize), 728 .ops = &xfs_rmapbt_buf_ops, 729 .work = &xfs_rmaproot_init, 730 .need_init = xfs_has_rmapbt(mp) 731 }, 732 { /* REFC root block */ 733 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 734 .numblks = BTOBB(mp->m_sb.sb_blocksize), 735 .ops = &xfs_refcountbt_buf_ops, 736 .work = &xfs_btroot_init, 737 .type = XFS_BTNUM_REFC, 738 .need_init = xfs_has_reflink(mp) 739 }, 740 { /* NULL terminating block */ 741 .daddr = XFS_BUF_DADDR_NULL, 742 } 743 }; 744 struct xfs_aghdr_grow_data *dp; 745 int error = 0; 746 747 /* Account for AG free space in new AG */ 748 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 749 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 750 if (!dp->need_init) 751 continue; 752 753 id->daddr = dp->daddr; 754 id->numblks = dp->numblks; 755 id->type = dp->type; 756 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 757 if (error) 758 break; 759 } 760 return error; 761 } 762 763 int 764 xfs_ag_shrink_space( 765 struct xfs_mount *mp, 766 struct xfs_trans **tpp, 767 xfs_agnumber_t agno, 768 xfs_extlen_t delta) 769 { 770 struct xfs_alloc_arg args = { 771 .tp = *tpp, 772 .mp = mp, 773 .type = XFS_ALLOCTYPE_THIS_BNO, 774 .minlen = delta, 775 .maxlen = delta, 776 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 777 .resv = XFS_AG_RESV_NONE, 778 .prod = 1 779 }; 780 struct xfs_buf *agibp, *agfbp; 781 struct xfs_agi *agi; 782 struct xfs_agf *agf; 783 xfs_agblock_t aglen; 784 int error, err2; 785 786 ASSERT(agno == mp->m_sb.sb_agcount - 1); 787 error = xfs_ialloc_read_agi(mp, *tpp, agno, &agibp); 788 if (error) 789 return error; 790 791 agi = agibp->b_addr; 792 793 error = xfs_alloc_read_agf(mp, *tpp, agno, 0, &agfbp); 794 if (error) 795 return error; 796 797 agf = agfbp->b_addr; 798 aglen = be32_to_cpu(agi->agi_length); 799 /* some extra paranoid checks before we shrink the ag */ 800 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) 801 return -EFSCORRUPTED; 802 if (delta >= aglen) 803 return -EINVAL; 804 805 args.fsbno = XFS_AGB_TO_FSB(mp, agno, aglen - delta); 806 807 /* 808 * Make sure that the last inode cluster cannot overlap with the new 809 * end of the AG, even if it's sparse. 810 */ 811 error = xfs_ialloc_check_shrink(*tpp, agno, agibp, aglen - delta); 812 if (error) 813 return error; 814 815 /* 816 * Disable perag reservations so it doesn't cause the allocation request 817 * to fail. We'll reestablish reservation before we return. 818 */ 819 error = xfs_ag_resv_free(agibp->b_pag); 820 if (error) 821 return error; 822 823 /* internal log shouldn't also show up in the free space btrees */ 824 error = xfs_alloc_vextent(&args); 825 if (!error && args.agbno == NULLAGBLOCK) 826 error = -ENOSPC; 827 828 if (error) { 829 /* 830 * if extent allocation fails, need to roll the transaction to 831 * ensure that the AGFL fixup has been committed anyway. 832 */ 833 xfs_trans_bhold(*tpp, agfbp); 834 err2 = xfs_trans_roll(tpp); 835 if (err2) 836 return err2; 837 xfs_trans_bjoin(*tpp, agfbp); 838 goto resv_init_out; 839 } 840 841 /* 842 * if successfully deleted from freespace btrees, need to confirm 843 * per-AG reservation works as expected. 844 */ 845 be32_add_cpu(&agi->agi_length, -delta); 846 be32_add_cpu(&agf->agf_length, -delta); 847 848 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 849 if (err2) { 850 be32_add_cpu(&agi->agi_length, delta); 851 be32_add_cpu(&agf->agf_length, delta); 852 if (err2 != -ENOSPC) 853 goto resv_err; 854 855 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true); 856 857 /* 858 * Roll the transaction before trying to re-init the per-ag 859 * reservation. The new transaction is clean so it will cancel 860 * without any side effects. 861 */ 862 error = xfs_defer_finish(tpp); 863 if (error) 864 return error; 865 866 error = -ENOSPC; 867 goto resv_init_out; 868 } 869 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 870 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 871 return 0; 872 resv_init_out: 873 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 874 if (!err2) 875 return error; 876 resv_err: 877 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 878 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 879 return err2; 880 } 881 882 /* 883 * Extent the AG indicated by the @id by the length passed in 884 */ 885 int 886 xfs_ag_extend_space( 887 struct xfs_mount *mp, 888 struct xfs_trans *tp, 889 struct aghdr_init_data *id, 890 xfs_extlen_t len) 891 { 892 struct xfs_buf *bp; 893 struct xfs_agi *agi; 894 struct xfs_agf *agf; 895 int error; 896 897 /* 898 * Change the agi length. 899 */ 900 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 901 if (error) 902 return error; 903 904 agi = bp->b_addr; 905 be32_add_cpu(&agi->agi_length, len); 906 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 907 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 908 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 909 910 /* 911 * Change agf length. 912 */ 913 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 914 if (error) 915 return error; 916 917 agf = bp->b_addr; 918 be32_add_cpu(&agf->agf_length, len); 919 ASSERT(agf->agf_length == agi->agi_length); 920 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 921 922 /* 923 * Free the new space. 924 * 925 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 926 * this doesn't actually exist in the rmap btree. 927 */ 928 error = xfs_rmap_free(tp, bp, bp->b_pag, 929 be32_to_cpu(agf->agf_length) - len, 930 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 931 if (error) 932 return error; 933 934 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 935 be32_to_cpu(agf->agf_length) - len), 936 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 937 XFS_AG_RESV_NONE); 938 } 939 940 /* Retrieve AG geometry. */ 941 int 942 xfs_ag_get_geometry( 943 struct xfs_mount *mp, 944 xfs_agnumber_t agno, 945 struct xfs_ag_geometry *ageo) 946 { 947 struct xfs_buf *agi_bp; 948 struct xfs_buf *agf_bp; 949 struct xfs_agi *agi; 950 struct xfs_agf *agf; 951 struct xfs_perag *pag; 952 unsigned int freeblks; 953 int error; 954 955 if (agno >= mp->m_sb.sb_agcount) 956 return -EINVAL; 957 958 /* Lock the AG headers. */ 959 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp); 960 if (error) 961 return error; 962 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp); 963 if (error) 964 goto out_agi; 965 966 pag = agi_bp->b_pag; 967 968 /* Fill out form. */ 969 memset(ageo, 0, sizeof(*ageo)); 970 ageo->ag_number = agno; 971 972 agi = agi_bp->b_addr; 973 ageo->ag_icount = be32_to_cpu(agi->agi_count); 974 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 975 976 agf = agf_bp->b_addr; 977 ageo->ag_length = be32_to_cpu(agf->agf_length); 978 freeblks = pag->pagf_freeblks + 979 pag->pagf_flcount + 980 pag->pagf_btreeblks - 981 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 982 ageo->ag_freeblks = freeblks; 983 xfs_ag_geom_health(pag, ageo); 984 985 /* Release resources. */ 986 xfs_buf_relse(agf_bp); 987 out_agi: 988 xfs_buf_relse(agi_bp); 989 return error; 990 } 991