1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 int ref = 0; 48 49 rcu_read_lock(); 50 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 51 if (pag) { 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 ref = atomic_inc_return(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 57 return pag; 58 } 59 60 /* 61 * search from @first to find the next perag with the given tag set. 62 */ 63 struct xfs_perag * 64 xfs_perag_get_tag( 65 struct xfs_mount *mp, 66 xfs_agnumber_t first, 67 unsigned int tag) 68 { 69 struct xfs_perag *pag; 70 int found; 71 int ref; 72 73 rcu_read_lock(); 74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 75 (void **)&pag, first, 1, tag); 76 if (found <= 0) { 77 rcu_read_unlock(); 78 return NULL; 79 } 80 ref = atomic_inc_return(&pag->pag_ref); 81 rcu_read_unlock(); 82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 83 return pag; 84 } 85 86 void 87 xfs_perag_put( 88 struct xfs_perag *pag) 89 { 90 int ref; 91 92 ASSERT(atomic_read(&pag->pag_ref) > 0); 93 ref = atomic_dec_return(&pag->pag_ref); 94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 95 } 96 97 /* 98 * xfs_initialize_perag_data 99 * 100 * Read in each per-ag structure so we can count up the number of 101 * allocated inodes, free inodes and used filesystem blocks as this 102 * information is no longer persistent in the superblock. Once we have 103 * this information, write it into the in-core superblock structure. 104 */ 105 int 106 xfs_initialize_perag_data( 107 struct xfs_mount *mp, 108 xfs_agnumber_t agcount) 109 { 110 xfs_agnumber_t index; 111 struct xfs_perag *pag; 112 struct xfs_sb *sbp = &mp->m_sb; 113 uint64_t ifree = 0; 114 uint64_t ialloc = 0; 115 uint64_t bfree = 0; 116 uint64_t bfreelst = 0; 117 uint64_t btree = 0; 118 uint64_t fdblocks; 119 int error = 0; 120 121 for (index = 0; index < agcount; index++) { 122 /* 123 * read the agf, then the agi. This gets us 124 * all the information we need and populates the 125 * per-ag structures for us. 126 */ 127 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 128 if (error) 129 return error; 130 131 error = xfs_ialloc_pagi_init(mp, NULL, index); 132 if (error) 133 return error; 134 pag = xfs_perag_get(mp, index); 135 ifree += pag->pagi_freecount; 136 ialloc += pag->pagi_count; 137 bfree += pag->pagf_freeblks; 138 bfreelst += pag->pagf_flcount; 139 btree += pag->pagf_btreeblks; 140 xfs_perag_put(pag); 141 } 142 fdblocks = bfree + bfreelst + btree; 143 144 /* 145 * If the new summary counts are obviously incorrect, fail the 146 * mount operation because that implies the AGFs are also corrupt. 147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 148 * will prevent xfs_repair from fixing anything. 149 */ 150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 151 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 152 error = -EFSCORRUPTED; 153 goto out; 154 } 155 156 /* Overwrite incore superblock counters with just-read data */ 157 spin_lock(&mp->m_sb_lock); 158 sbp->sb_ifree = ifree; 159 sbp->sb_icount = ialloc; 160 sbp->sb_fdblocks = fdblocks; 161 spin_unlock(&mp->m_sb_lock); 162 163 xfs_reinit_percpu_counters(mp); 164 out: 165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 166 return error; 167 } 168 169 STATIC void 170 __xfs_free_perag( 171 struct rcu_head *head) 172 { 173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 174 175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 176 kmem_free(pag); 177 } 178 179 /* 180 * Free up the per-ag resources associated with the mount structure. 181 */ 182 void 183 xfs_free_perag( 184 struct xfs_mount *mp) 185 { 186 struct xfs_perag *pag; 187 xfs_agnumber_t agno; 188 189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 190 spin_lock(&mp->m_perag_lock); 191 pag = radix_tree_delete(&mp->m_perag_tree, agno); 192 spin_unlock(&mp->m_perag_lock); 193 ASSERT(pag); 194 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 195 196 cancel_delayed_work_sync(&pag->pag_blockgc_work); 197 xfs_iunlink_destroy(pag); 198 xfs_buf_hash_destroy(pag); 199 200 call_rcu(&pag->rcu_head, __xfs_free_perag); 201 } 202 } 203 204 int 205 xfs_initialize_perag( 206 struct xfs_mount *mp, 207 xfs_agnumber_t agcount, 208 xfs_agnumber_t *maxagi) 209 { 210 struct xfs_perag *pag; 211 xfs_agnumber_t index; 212 xfs_agnumber_t first_initialised = NULLAGNUMBER; 213 int error; 214 215 /* 216 * Walk the current per-ag tree so we don't try to initialise AGs 217 * that already exist (growfs case). Allocate and insert all the 218 * AGs we don't find ready for initialisation. 219 */ 220 for (index = 0; index < agcount; index++) { 221 pag = xfs_perag_get(mp, index); 222 if (pag) { 223 xfs_perag_put(pag); 224 continue; 225 } 226 227 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 228 if (!pag) { 229 error = -ENOMEM; 230 goto out_unwind_new_pags; 231 } 232 pag->pag_agno = index; 233 pag->pag_mount = mp; 234 235 error = radix_tree_preload(GFP_NOFS); 236 if (error) 237 goto out_free_pag; 238 239 spin_lock(&mp->m_perag_lock); 240 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 241 WARN_ON_ONCE(1); 242 spin_unlock(&mp->m_perag_lock); 243 radix_tree_preload_end(); 244 error = -EEXIST; 245 goto out_free_pag; 246 } 247 spin_unlock(&mp->m_perag_lock); 248 radix_tree_preload_end(); 249 250 #ifdef __KERNEL__ 251 /* Place kernel structure only init below this point. */ 252 spin_lock_init(&pag->pag_ici_lock); 253 spin_lock_init(&pag->pagb_lock); 254 spin_lock_init(&pag->pag_state_lock); 255 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 256 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 257 init_waitqueue_head(&pag->pagb_wait); 258 pag->pagb_count = 0; 259 pag->pagb_tree = RB_ROOT; 260 #endif /* __KERNEL__ */ 261 262 error = xfs_buf_hash_init(pag); 263 if (error) 264 goto out_remove_pag; 265 266 error = xfs_iunlink_init(pag); 267 if (error) 268 goto out_hash_destroy; 269 270 /* first new pag is fully initialized */ 271 if (first_initialised == NULLAGNUMBER) 272 first_initialised = index; 273 } 274 275 index = xfs_set_inode_alloc(mp, agcount); 276 277 if (maxagi) 278 *maxagi = index; 279 280 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 281 return 0; 282 283 out_hash_destroy: 284 xfs_buf_hash_destroy(pag); 285 out_remove_pag: 286 radix_tree_delete(&mp->m_perag_tree, index); 287 out_free_pag: 288 kmem_free(pag); 289 out_unwind_new_pags: 290 /* unwind any prior newly initialized pags */ 291 for (index = first_initialised; index < agcount; index++) { 292 pag = radix_tree_delete(&mp->m_perag_tree, index); 293 if (!pag) 294 break; 295 xfs_buf_hash_destroy(pag); 296 xfs_iunlink_destroy(pag); 297 kmem_free(pag); 298 } 299 return error; 300 } 301 302 static int 303 xfs_get_aghdr_buf( 304 struct xfs_mount *mp, 305 xfs_daddr_t blkno, 306 size_t numblks, 307 struct xfs_buf **bpp, 308 const struct xfs_buf_ops *ops) 309 { 310 struct xfs_buf *bp; 311 int error; 312 313 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 314 if (error) 315 return error; 316 317 bp->b_maps[0].bm_bn = blkno; 318 bp->b_ops = ops; 319 320 *bpp = bp; 321 return 0; 322 } 323 324 static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id) 325 { 326 return mp->m_sb.sb_logstart > 0 && 327 id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart); 328 } 329 330 /* 331 * Generic btree root block init function 332 */ 333 static void 334 xfs_btroot_init( 335 struct xfs_mount *mp, 336 struct xfs_buf *bp, 337 struct aghdr_init_data *id) 338 { 339 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 340 } 341 342 /* Finish initializing a free space btree. */ 343 static void 344 xfs_freesp_init_recs( 345 struct xfs_mount *mp, 346 struct xfs_buf *bp, 347 struct aghdr_init_data *id) 348 { 349 struct xfs_alloc_rec *arec; 350 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 351 352 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 353 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 354 355 if (is_log_ag(mp, id)) { 356 struct xfs_alloc_rec *nrec; 357 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 358 mp->m_sb.sb_logstart); 359 360 ASSERT(start >= mp->m_ag_prealloc_blocks); 361 if (start != mp->m_ag_prealloc_blocks) { 362 /* 363 * Modify first record to pad stripe align of log 364 */ 365 arec->ar_blockcount = cpu_to_be32(start - 366 mp->m_ag_prealloc_blocks); 367 nrec = arec + 1; 368 369 /* 370 * Insert second record at start of internal log 371 * which then gets trimmed. 372 */ 373 nrec->ar_startblock = cpu_to_be32( 374 be32_to_cpu(arec->ar_startblock) + 375 be32_to_cpu(arec->ar_blockcount)); 376 arec = nrec; 377 be16_add_cpu(&block->bb_numrecs, 1); 378 } 379 /* 380 * Change record start to after the internal log 381 */ 382 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 383 } 384 385 /* 386 * Calculate the record block count and check for the case where 387 * the log might have consumed all available space in the AG. If 388 * so, reset the record count to 0 to avoid exposure of an invalid 389 * record start block. 390 */ 391 arec->ar_blockcount = cpu_to_be32(id->agsize - 392 be32_to_cpu(arec->ar_startblock)); 393 if (!arec->ar_blockcount) 394 block->bb_numrecs = 0; 395 } 396 397 /* 398 * Alloc btree root block init functions 399 */ 400 static void 401 xfs_bnoroot_init( 402 struct xfs_mount *mp, 403 struct xfs_buf *bp, 404 struct aghdr_init_data *id) 405 { 406 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 407 xfs_freesp_init_recs(mp, bp, id); 408 } 409 410 static void 411 xfs_cntroot_init( 412 struct xfs_mount *mp, 413 struct xfs_buf *bp, 414 struct aghdr_init_data *id) 415 { 416 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 417 xfs_freesp_init_recs(mp, bp, id); 418 } 419 420 /* 421 * Reverse map root block init 422 */ 423 static void 424 xfs_rmaproot_init( 425 struct xfs_mount *mp, 426 struct xfs_buf *bp, 427 struct aghdr_init_data *id) 428 { 429 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 430 struct xfs_rmap_rec *rrec; 431 432 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 433 434 /* 435 * mark the AG header regions as static metadata The BNO 436 * btree block is the first block after the headers, so 437 * it's location defines the size of region the static 438 * metadata consumes. 439 * 440 * Note: unlike mkfs, we never have to account for log 441 * space when growing the data regions 442 */ 443 rrec = XFS_RMAP_REC_ADDR(block, 1); 444 rrec->rm_startblock = 0; 445 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 446 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 447 rrec->rm_offset = 0; 448 449 /* account freespace btree root blocks */ 450 rrec = XFS_RMAP_REC_ADDR(block, 2); 451 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 452 rrec->rm_blockcount = cpu_to_be32(2); 453 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 454 rrec->rm_offset = 0; 455 456 /* account inode btree root blocks */ 457 rrec = XFS_RMAP_REC_ADDR(block, 3); 458 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 459 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 460 XFS_IBT_BLOCK(mp)); 461 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 462 rrec->rm_offset = 0; 463 464 /* account for rmap btree root */ 465 rrec = XFS_RMAP_REC_ADDR(block, 4); 466 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 467 rrec->rm_blockcount = cpu_to_be32(1); 468 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 469 rrec->rm_offset = 0; 470 471 /* account for refc btree root */ 472 if (xfs_has_reflink(mp)) { 473 rrec = XFS_RMAP_REC_ADDR(block, 5); 474 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 475 rrec->rm_blockcount = cpu_to_be32(1); 476 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 477 rrec->rm_offset = 0; 478 be16_add_cpu(&block->bb_numrecs, 1); 479 } 480 481 /* account for the log space */ 482 if (is_log_ag(mp, id)) { 483 rrec = XFS_RMAP_REC_ADDR(block, 484 be16_to_cpu(block->bb_numrecs) + 1); 485 rrec->rm_startblock = cpu_to_be32( 486 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 487 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 488 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 489 rrec->rm_offset = 0; 490 be16_add_cpu(&block->bb_numrecs, 1); 491 } 492 } 493 494 /* 495 * Initialise new secondary superblocks with the pre-grow geometry, but mark 496 * them as "in progress" so we know they haven't yet been activated. This will 497 * get cleared when the update with the new geometry information is done after 498 * changes to the primary are committed. This isn't strictly necessary, but we 499 * get it for free with the delayed buffer write lists and it means we can tell 500 * if a grow operation didn't complete properly after the fact. 501 */ 502 static void 503 xfs_sbblock_init( 504 struct xfs_mount *mp, 505 struct xfs_buf *bp, 506 struct aghdr_init_data *id) 507 { 508 struct xfs_dsb *dsb = bp->b_addr; 509 510 xfs_sb_to_disk(dsb, &mp->m_sb); 511 dsb->sb_inprogress = 1; 512 } 513 514 static void 515 xfs_agfblock_init( 516 struct xfs_mount *mp, 517 struct xfs_buf *bp, 518 struct aghdr_init_data *id) 519 { 520 struct xfs_agf *agf = bp->b_addr; 521 xfs_extlen_t tmpsize; 522 523 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 524 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 525 agf->agf_seqno = cpu_to_be32(id->agno); 526 agf->agf_length = cpu_to_be32(id->agsize); 527 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 528 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 529 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 530 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 531 if (xfs_has_rmapbt(mp)) { 532 agf->agf_roots[XFS_BTNUM_RMAPi] = 533 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 534 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 535 agf->agf_rmap_blocks = cpu_to_be32(1); 536 } 537 538 agf->agf_flfirst = cpu_to_be32(1); 539 agf->agf_fllast = 0; 540 agf->agf_flcount = 0; 541 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 542 agf->agf_freeblks = cpu_to_be32(tmpsize); 543 agf->agf_longest = cpu_to_be32(tmpsize); 544 if (xfs_has_crc(mp)) 545 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 546 if (xfs_has_reflink(mp)) { 547 agf->agf_refcount_root = cpu_to_be32( 548 xfs_refc_block(mp)); 549 agf->agf_refcount_level = cpu_to_be32(1); 550 agf->agf_refcount_blocks = cpu_to_be32(1); 551 } 552 553 if (is_log_ag(mp, id)) { 554 int64_t logblocks = mp->m_sb.sb_logblocks; 555 556 be32_add_cpu(&agf->agf_freeblks, -logblocks); 557 agf->agf_longest = cpu_to_be32(id->agsize - 558 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 559 } 560 } 561 562 static void 563 xfs_agflblock_init( 564 struct xfs_mount *mp, 565 struct xfs_buf *bp, 566 struct aghdr_init_data *id) 567 { 568 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 569 __be32 *agfl_bno; 570 int bucket; 571 572 if (xfs_has_crc(mp)) { 573 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 574 agfl->agfl_seqno = cpu_to_be32(id->agno); 575 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 576 } 577 578 agfl_bno = xfs_buf_to_agfl_bno(bp); 579 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 580 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 581 } 582 583 static void 584 xfs_agiblock_init( 585 struct xfs_mount *mp, 586 struct xfs_buf *bp, 587 struct aghdr_init_data *id) 588 { 589 struct xfs_agi *agi = bp->b_addr; 590 int bucket; 591 592 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 593 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 594 agi->agi_seqno = cpu_to_be32(id->agno); 595 agi->agi_length = cpu_to_be32(id->agsize); 596 agi->agi_count = 0; 597 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 598 agi->agi_level = cpu_to_be32(1); 599 agi->agi_freecount = 0; 600 agi->agi_newino = cpu_to_be32(NULLAGINO); 601 agi->agi_dirino = cpu_to_be32(NULLAGINO); 602 if (xfs_has_crc(mp)) 603 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 604 if (xfs_has_finobt(mp)) { 605 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 606 agi->agi_free_level = cpu_to_be32(1); 607 } 608 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 609 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 610 if (xfs_has_inobtcounts(mp)) { 611 agi->agi_iblocks = cpu_to_be32(1); 612 if (xfs_has_finobt(mp)) 613 agi->agi_fblocks = cpu_to_be32(1); 614 } 615 } 616 617 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 618 struct aghdr_init_data *id); 619 static int 620 xfs_ag_init_hdr( 621 struct xfs_mount *mp, 622 struct aghdr_init_data *id, 623 aghdr_init_work_f work, 624 const struct xfs_buf_ops *ops) 625 { 626 struct xfs_buf *bp; 627 int error; 628 629 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 630 if (error) 631 return error; 632 633 (*work)(mp, bp, id); 634 635 xfs_buf_delwri_queue(bp, &id->buffer_list); 636 xfs_buf_relse(bp); 637 return 0; 638 } 639 640 struct xfs_aghdr_grow_data { 641 xfs_daddr_t daddr; 642 size_t numblks; 643 const struct xfs_buf_ops *ops; 644 aghdr_init_work_f work; 645 xfs_btnum_t type; 646 bool need_init; 647 }; 648 649 /* 650 * Prepare new AG headers to be written to disk. We use uncached buffers here, 651 * as it is assumed these new AG headers are currently beyond the currently 652 * valid filesystem address space. Using cached buffers would trip over EOFS 653 * corruption detection alogrithms in the buffer cache lookup routines. 654 * 655 * This is a non-transactional function, but the prepared buffers are added to a 656 * delayed write buffer list supplied by the caller so they can submit them to 657 * disk and wait on them as required. 658 */ 659 int 660 xfs_ag_init_headers( 661 struct xfs_mount *mp, 662 struct aghdr_init_data *id) 663 664 { 665 struct xfs_aghdr_grow_data aghdr_data[] = { 666 { /* SB */ 667 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 668 .numblks = XFS_FSS_TO_BB(mp, 1), 669 .ops = &xfs_sb_buf_ops, 670 .work = &xfs_sbblock_init, 671 .need_init = true 672 }, 673 { /* AGF */ 674 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 675 .numblks = XFS_FSS_TO_BB(mp, 1), 676 .ops = &xfs_agf_buf_ops, 677 .work = &xfs_agfblock_init, 678 .need_init = true 679 }, 680 { /* AGFL */ 681 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 682 .numblks = XFS_FSS_TO_BB(mp, 1), 683 .ops = &xfs_agfl_buf_ops, 684 .work = &xfs_agflblock_init, 685 .need_init = true 686 }, 687 { /* AGI */ 688 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 689 .numblks = XFS_FSS_TO_BB(mp, 1), 690 .ops = &xfs_agi_buf_ops, 691 .work = &xfs_agiblock_init, 692 .need_init = true 693 }, 694 { /* BNO root block */ 695 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 696 .numblks = BTOBB(mp->m_sb.sb_blocksize), 697 .ops = &xfs_bnobt_buf_ops, 698 .work = &xfs_bnoroot_init, 699 .need_init = true 700 }, 701 { /* CNT root block */ 702 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 703 .numblks = BTOBB(mp->m_sb.sb_blocksize), 704 .ops = &xfs_cntbt_buf_ops, 705 .work = &xfs_cntroot_init, 706 .need_init = true 707 }, 708 { /* INO root block */ 709 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 710 .numblks = BTOBB(mp->m_sb.sb_blocksize), 711 .ops = &xfs_inobt_buf_ops, 712 .work = &xfs_btroot_init, 713 .type = XFS_BTNUM_INO, 714 .need_init = true 715 }, 716 { /* FINO root block */ 717 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 718 .numblks = BTOBB(mp->m_sb.sb_blocksize), 719 .ops = &xfs_finobt_buf_ops, 720 .work = &xfs_btroot_init, 721 .type = XFS_BTNUM_FINO, 722 .need_init = xfs_has_finobt(mp) 723 }, 724 { /* RMAP root block */ 725 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 726 .numblks = BTOBB(mp->m_sb.sb_blocksize), 727 .ops = &xfs_rmapbt_buf_ops, 728 .work = &xfs_rmaproot_init, 729 .need_init = xfs_has_rmapbt(mp) 730 }, 731 { /* REFC root block */ 732 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 733 .numblks = BTOBB(mp->m_sb.sb_blocksize), 734 .ops = &xfs_refcountbt_buf_ops, 735 .work = &xfs_btroot_init, 736 .type = XFS_BTNUM_REFC, 737 .need_init = xfs_has_reflink(mp) 738 }, 739 { /* NULL terminating block */ 740 .daddr = XFS_BUF_DADDR_NULL, 741 } 742 }; 743 struct xfs_aghdr_grow_data *dp; 744 int error = 0; 745 746 /* Account for AG free space in new AG */ 747 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 748 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 749 if (!dp->need_init) 750 continue; 751 752 id->daddr = dp->daddr; 753 id->numblks = dp->numblks; 754 id->type = dp->type; 755 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 756 if (error) 757 break; 758 } 759 return error; 760 } 761 762 int 763 xfs_ag_shrink_space( 764 struct xfs_mount *mp, 765 struct xfs_trans **tpp, 766 xfs_agnumber_t agno, 767 xfs_extlen_t delta) 768 { 769 struct xfs_alloc_arg args = { 770 .tp = *tpp, 771 .mp = mp, 772 .type = XFS_ALLOCTYPE_THIS_BNO, 773 .minlen = delta, 774 .maxlen = delta, 775 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 776 .resv = XFS_AG_RESV_NONE, 777 .prod = 1 778 }; 779 struct xfs_buf *agibp, *agfbp; 780 struct xfs_agi *agi; 781 struct xfs_agf *agf; 782 xfs_agblock_t aglen; 783 int error, err2; 784 785 ASSERT(agno == mp->m_sb.sb_agcount - 1); 786 error = xfs_ialloc_read_agi(mp, *tpp, agno, &agibp); 787 if (error) 788 return error; 789 790 agi = agibp->b_addr; 791 792 error = xfs_alloc_read_agf(mp, *tpp, agno, 0, &agfbp); 793 if (error) 794 return error; 795 796 agf = agfbp->b_addr; 797 aglen = be32_to_cpu(agi->agi_length); 798 /* some extra paranoid checks before we shrink the ag */ 799 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) 800 return -EFSCORRUPTED; 801 if (delta >= aglen) 802 return -EINVAL; 803 804 args.fsbno = XFS_AGB_TO_FSB(mp, agno, aglen - delta); 805 806 /* 807 * Make sure that the last inode cluster cannot overlap with the new 808 * end of the AG, even if it's sparse. 809 */ 810 error = xfs_ialloc_check_shrink(*tpp, agno, agibp, aglen - delta); 811 if (error) 812 return error; 813 814 /* 815 * Disable perag reservations so it doesn't cause the allocation request 816 * to fail. We'll reestablish reservation before we return. 817 */ 818 error = xfs_ag_resv_free(agibp->b_pag); 819 if (error) 820 return error; 821 822 /* internal log shouldn't also show up in the free space btrees */ 823 error = xfs_alloc_vextent(&args); 824 if (!error && args.agbno == NULLAGBLOCK) 825 error = -ENOSPC; 826 827 if (error) { 828 /* 829 * if extent allocation fails, need to roll the transaction to 830 * ensure that the AGFL fixup has been committed anyway. 831 */ 832 xfs_trans_bhold(*tpp, agfbp); 833 err2 = xfs_trans_roll(tpp); 834 if (err2) 835 return err2; 836 xfs_trans_bjoin(*tpp, agfbp); 837 goto resv_init_out; 838 } 839 840 /* 841 * if successfully deleted from freespace btrees, need to confirm 842 * per-AG reservation works as expected. 843 */ 844 be32_add_cpu(&agi->agi_length, -delta); 845 be32_add_cpu(&agf->agf_length, -delta); 846 847 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 848 if (err2) { 849 be32_add_cpu(&agi->agi_length, delta); 850 be32_add_cpu(&agf->agf_length, delta); 851 if (err2 != -ENOSPC) 852 goto resv_err; 853 854 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true); 855 856 /* 857 * Roll the transaction before trying to re-init the per-ag 858 * reservation. The new transaction is clean so it will cancel 859 * without any side effects. 860 */ 861 error = xfs_defer_finish(tpp); 862 if (error) 863 return error; 864 865 error = -ENOSPC; 866 goto resv_init_out; 867 } 868 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 869 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 870 return 0; 871 resv_init_out: 872 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp); 873 if (!err2) 874 return error; 875 resv_err: 876 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 877 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 878 return err2; 879 } 880 881 /* 882 * Extent the AG indicated by the @id by the length passed in 883 */ 884 int 885 xfs_ag_extend_space( 886 struct xfs_mount *mp, 887 struct xfs_trans *tp, 888 struct aghdr_init_data *id, 889 xfs_extlen_t len) 890 { 891 struct xfs_buf *bp; 892 struct xfs_agi *agi; 893 struct xfs_agf *agf; 894 int error; 895 896 /* 897 * Change the agi length. 898 */ 899 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 900 if (error) 901 return error; 902 903 agi = bp->b_addr; 904 be32_add_cpu(&agi->agi_length, len); 905 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 906 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 907 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 908 909 /* 910 * Change agf length. 911 */ 912 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 913 if (error) 914 return error; 915 916 agf = bp->b_addr; 917 be32_add_cpu(&agf->agf_length, len); 918 ASSERT(agf->agf_length == agi->agi_length); 919 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 920 921 /* 922 * Free the new space. 923 * 924 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 925 * this doesn't actually exist in the rmap btree. 926 */ 927 error = xfs_rmap_free(tp, bp, bp->b_pag, 928 be32_to_cpu(agf->agf_length) - len, 929 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 930 if (error) 931 return error; 932 933 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 934 be32_to_cpu(agf->agf_length) - len), 935 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 936 XFS_AG_RESV_NONE); 937 } 938 939 /* Retrieve AG geometry. */ 940 int 941 xfs_ag_get_geometry( 942 struct xfs_mount *mp, 943 xfs_agnumber_t agno, 944 struct xfs_ag_geometry *ageo) 945 { 946 struct xfs_buf *agi_bp; 947 struct xfs_buf *agf_bp; 948 struct xfs_agi *agi; 949 struct xfs_agf *agf; 950 struct xfs_perag *pag; 951 unsigned int freeblks; 952 int error; 953 954 if (agno >= mp->m_sb.sb_agcount) 955 return -EINVAL; 956 957 /* Lock the AG headers. */ 958 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp); 959 if (error) 960 return error; 961 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp); 962 if (error) 963 goto out_agi; 964 965 pag = agi_bp->b_pag; 966 967 /* Fill out form. */ 968 memset(ageo, 0, sizeof(*ageo)); 969 ageo->ag_number = agno; 970 971 agi = agi_bp->b_addr; 972 ageo->ag_icount = be32_to_cpu(agi->agi_count); 973 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 974 975 agf = agf_bp->b_addr; 976 ageo->ag_length = be32_to_cpu(agf->agf_length); 977 freeblks = pag->pagf_freeblks + 978 pag->pagf_flcount + 979 pag->pagf_btreeblks - 980 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 981 ageo->ag_freeblks = freeblks; 982 xfs_ag_geom_health(pag, ageo); 983 984 /* Release resources. */ 985 xfs_buf_relse(agf_bp); 986 out_agi: 987 xfs_buf_relse(agi_bp); 988 return error; 989 } 990