1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 48 rcu_read_lock(); 49 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 50 if (pag) { 51 trace_xfs_perag_get(pag, _RET_IP_); 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 atomic_inc(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 return pag; 57 } 58 59 /* 60 * search from @first to find the next perag with the given tag set. 61 */ 62 struct xfs_perag * 63 xfs_perag_get_tag( 64 struct xfs_mount *mp, 65 xfs_agnumber_t first, 66 unsigned int tag) 67 { 68 struct xfs_perag *pag; 69 int found; 70 71 rcu_read_lock(); 72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 73 (void **)&pag, first, 1, tag); 74 if (found <= 0) { 75 rcu_read_unlock(); 76 return NULL; 77 } 78 trace_xfs_perag_get_tag(pag, _RET_IP_); 79 atomic_inc(&pag->pag_ref); 80 rcu_read_unlock(); 81 return pag; 82 } 83 84 void 85 xfs_perag_put( 86 struct xfs_perag *pag) 87 { 88 trace_xfs_perag_put(pag, _RET_IP_); 89 ASSERT(atomic_read(&pag->pag_ref) > 0); 90 atomic_dec(&pag->pag_ref); 91 } 92 93 /* 94 * Active references for perag structures. This is for short term access to the 95 * per ag structures for walking trees or accessing state. If an AG is being 96 * shrunk or is offline, then this will fail to find that AG and return NULL 97 * instead. 98 */ 99 struct xfs_perag * 100 xfs_perag_grab( 101 struct xfs_mount *mp, 102 xfs_agnumber_t agno) 103 { 104 struct xfs_perag *pag; 105 106 rcu_read_lock(); 107 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 108 if (pag) { 109 trace_xfs_perag_grab(pag, _RET_IP_); 110 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 111 pag = NULL; 112 } 113 rcu_read_unlock(); 114 return pag; 115 } 116 117 /* 118 * search from @first to find the next perag with the given tag set. 119 */ 120 struct xfs_perag * 121 xfs_perag_grab_tag( 122 struct xfs_mount *mp, 123 xfs_agnumber_t first, 124 int tag) 125 { 126 struct xfs_perag *pag; 127 int found; 128 129 rcu_read_lock(); 130 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 131 (void **)&pag, first, 1, tag); 132 if (found <= 0) { 133 rcu_read_unlock(); 134 return NULL; 135 } 136 trace_xfs_perag_grab_tag(pag, _RET_IP_); 137 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 138 pag = NULL; 139 rcu_read_unlock(); 140 return pag; 141 } 142 143 void 144 xfs_perag_rele( 145 struct xfs_perag *pag) 146 { 147 trace_xfs_perag_rele(pag, _RET_IP_); 148 if (atomic_dec_and_test(&pag->pag_active_ref)) 149 wake_up(&pag->pag_active_wq); 150 } 151 152 /* 153 * xfs_initialize_perag_data 154 * 155 * Read in each per-ag structure so we can count up the number of 156 * allocated inodes, free inodes and used filesystem blocks as this 157 * information is no longer persistent in the superblock. Once we have 158 * this information, write it into the in-core superblock structure. 159 */ 160 int 161 xfs_initialize_perag_data( 162 struct xfs_mount *mp, 163 xfs_agnumber_t agcount) 164 { 165 xfs_agnumber_t index; 166 struct xfs_perag *pag; 167 struct xfs_sb *sbp = &mp->m_sb; 168 uint64_t ifree = 0; 169 uint64_t ialloc = 0; 170 uint64_t bfree = 0; 171 uint64_t bfreelst = 0; 172 uint64_t btree = 0; 173 uint64_t fdblocks; 174 int error = 0; 175 176 for (index = 0; index < agcount; index++) { 177 /* 178 * Read the AGF and AGI buffers to populate the per-ag 179 * structures for us. 180 */ 181 pag = xfs_perag_get(mp, index); 182 error = xfs_alloc_read_agf(pag, NULL, 0, NULL); 183 if (!error) 184 error = xfs_ialloc_read_agi(pag, NULL, NULL); 185 if (error) { 186 xfs_perag_put(pag); 187 return error; 188 } 189 190 ifree += pag->pagi_freecount; 191 ialloc += pag->pagi_count; 192 bfree += pag->pagf_freeblks; 193 bfreelst += pag->pagf_flcount; 194 btree += pag->pagf_btreeblks; 195 xfs_perag_put(pag); 196 } 197 fdblocks = bfree + bfreelst + btree; 198 199 /* 200 * If the new summary counts are obviously incorrect, fail the 201 * mount operation because that implies the AGFs are also corrupt. 202 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 203 * will prevent xfs_repair from fixing anything. 204 */ 205 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 206 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 207 error = -EFSCORRUPTED; 208 goto out; 209 } 210 211 /* Overwrite incore superblock counters with just-read data */ 212 spin_lock(&mp->m_sb_lock); 213 sbp->sb_ifree = ifree; 214 sbp->sb_icount = ialloc; 215 sbp->sb_fdblocks = fdblocks; 216 spin_unlock(&mp->m_sb_lock); 217 218 xfs_reinit_percpu_counters(mp); 219 out: 220 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 221 return error; 222 } 223 224 STATIC void 225 __xfs_free_perag( 226 struct rcu_head *head) 227 { 228 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 229 230 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 231 kmem_free(pag); 232 } 233 234 /* 235 * Free up the per-ag resources associated with the mount structure. 236 */ 237 void 238 xfs_free_perag( 239 struct xfs_mount *mp) 240 { 241 struct xfs_perag *pag; 242 xfs_agnumber_t agno; 243 244 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 245 spin_lock(&mp->m_perag_lock); 246 pag = radix_tree_delete(&mp->m_perag_tree, agno); 247 spin_unlock(&mp->m_perag_lock); 248 ASSERT(pag); 249 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 250 251 cancel_delayed_work_sync(&pag->pag_blockgc_work); 252 xfs_buf_hash_destroy(pag); 253 254 /* drop the mount's active reference */ 255 xfs_perag_rele(pag); 256 XFS_IS_CORRUPT(pag->pag_mount, 257 atomic_read(&pag->pag_active_ref) != 0); 258 call_rcu(&pag->rcu_head, __xfs_free_perag); 259 } 260 } 261 262 /* Find the size of the AG, in blocks. */ 263 static xfs_agblock_t 264 __xfs_ag_block_count( 265 struct xfs_mount *mp, 266 xfs_agnumber_t agno, 267 xfs_agnumber_t agcount, 268 xfs_rfsblock_t dblocks) 269 { 270 ASSERT(agno < agcount); 271 272 if (agno < agcount - 1) 273 return mp->m_sb.sb_agblocks; 274 return dblocks - (agno * mp->m_sb.sb_agblocks); 275 } 276 277 xfs_agblock_t 278 xfs_ag_block_count( 279 struct xfs_mount *mp, 280 xfs_agnumber_t agno) 281 { 282 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount, 283 mp->m_sb.sb_dblocks); 284 } 285 286 /* Calculate the first and last possible inode number in an AG. */ 287 static void 288 __xfs_agino_range( 289 struct xfs_mount *mp, 290 xfs_agblock_t eoag, 291 xfs_agino_t *first, 292 xfs_agino_t *last) 293 { 294 xfs_agblock_t bno; 295 296 /* 297 * Calculate the first inode, which will be in the first 298 * cluster-aligned block after the AGFL. 299 */ 300 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align); 301 *first = XFS_AGB_TO_AGINO(mp, bno); 302 303 /* 304 * Calculate the last inode, which will be at the end of the 305 * last (aligned) cluster that can be allocated in the AG. 306 */ 307 bno = round_down(eoag, M_IGEO(mp)->cluster_align); 308 *last = XFS_AGB_TO_AGINO(mp, bno) - 1; 309 } 310 311 void 312 xfs_agino_range( 313 struct xfs_mount *mp, 314 xfs_agnumber_t agno, 315 xfs_agino_t *first, 316 xfs_agino_t *last) 317 { 318 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last); 319 } 320 321 int 322 xfs_initialize_perag( 323 struct xfs_mount *mp, 324 xfs_agnumber_t agcount, 325 xfs_rfsblock_t dblocks, 326 xfs_agnumber_t *maxagi) 327 { 328 struct xfs_perag *pag; 329 xfs_agnumber_t index; 330 xfs_agnumber_t first_initialised = NULLAGNUMBER; 331 int error; 332 333 /* 334 * Walk the current per-ag tree so we don't try to initialise AGs 335 * that already exist (growfs case). Allocate and insert all the 336 * AGs we don't find ready for initialisation. 337 */ 338 for (index = 0; index < agcount; index++) { 339 pag = xfs_perag_get(mp, index); 340 if (pag) { 341 xfs_perag_put(pag); 342 continue; 343 } 344 345 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 346 if (!pag) { 347 error = -ENOMEM; 348 goto out_unwind_new_pags; 349 } 350 pag->pag_agno = index; 351 pag->pag_mount = mp; 352 353 error = radix_tree_preload(GFP_NOFS); 354 if (error) 355 goto out_free_pag; 356 357 spin_lock(&mp->m_perag_lock); 358 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 359 WARN_ON_ONCE(1); 360 spin_unlock(&mp->m_perag_lock); 361 radix_tree_preload_end(); 362 error = -EEXIST; 363 goto out_free_pag; 364 } 365 spin_unlock(&mp->m_perag_lock); 366 radix_tree_preload_end(); 367 368 #ifdef __KERNEL__ 369 /* Place kernel structure only init below this point. */ 370 spin_lock_init(&pag->pag_ici_lock); 371 spin_lock_init(&pag->pagb_lock); 372 spin_lock_init(&pag->pag_state_lock); 373 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 374 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 375 init_waitqueue_head(&pag->pagb_wait); 376 init_waitqueue_head(&pag->pag_active_wq); 377 pag->pagb_count = 0; 378 pag->pagb_tree = RB_ROOT; 379 #endif /* __KERNEL__ */ 380 381 error = xfs_buf_hash_init(pag); 382 if (error) 383 goto out_remove_pag; 384 385 /* Active ref owned by mount indicates AG is online. */ 386 atomic_set(&pag->pag_active_ref, 1); 387 388 /* first new pag is fully initialized */ 389 if (first_initialised == NULLAGNUMBER) 390 first_initialised = index; 391 392 /* 393 * Pre-calculated geometry 394 */ 395 pag->block_count = __xfs_ag_block_count(mp, index, agcount, 396 dblocks); 397 pag->min_block = XFS_AGFL_BLOCK(mp); 398 __xfs_agino_range(mp, pag->block_count, &pag->agino_min, 399 &pag->agino_max); 400 } 401 402 index = xfs_set_inode_alloc(mp, agcount); 403 404 if (maxagi) 405 *maxagi = index; 406 407 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 408 return 0; 409 410 out_remove_pag: 411 radix_tree_delete(&mp->m_perag_tree, index); 412 out_free_pag: 413 kmem_free(pag); 414 out_unwind_new_pags: 415 /* unwind any prior newly initialized pags */ 416 for (index = first_initialised; index < agcount; index++) { 417 pag = radix_tree_delete(&mp->m_perag_tree, index); 418 if (!pag) 419 break; 420 xfs_buf_hash_destroy(pag); 421 kmem_free(pag); 422 } 423 return error; 424 } 425 426 static int 427 xfs_get_aghdr_buf( 428 struct xfs_mount *mp, 429 xfs_daddr_t blkno, 430 size_t numblks, 431 struct xfs_buf **bpp, 432 const struct xfs_buf_ops *ops) 433 { 434 struct xfs_buf *bp; 435 int error; 436 437 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 438 if (error) 439 return error; 440 441 bp->b_maps[0].bm_bn = blkno; 442 bp->b_ops = ops; 443 444 *bpp = bp; 445 return 0; 446 } 447 448 /* 449 * Generic btree root block init function 450 */ 451 static void 452 xfs_btroot_init( 453 struct xfs_mount *mp, 454 struct xfs_buf *bp, 455 struct aghdr_init_data *id) 456 { 457 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 458 } 459 460 /* Finish initializing a free space btree. */ 461 static void 462 xfs_freesp_init_recs( 463 struct xfs_mount *mp, 464 struct xfs_buf *bp, 465 struct aghdr_init_data *id) 466 { 467 struct xfs_alloc_rec *arec; 468 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 469 470 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 471 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 472 473 if (xfs_ag_contains_log(mp, id->agno)) { 474 struct xfs_alloc_rec *nrec; 475 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 476 mp->m_sb.sb_logstart); 477 478 ASSERT(start >= mp->m_ag_prealloc_blocks); 479 if (start != mp->m_ag_prealloc_blocks) { 480 /* 481 * Modify first record to pad stripe align of log 482 */ 483 arec->ar_blockcount = cpu_to_be32(start - 484 mp->m_ag_prealloc_blocks); 485 nrec = arec + 1; 486 487 /* 488 * Insert second record at start of internal log 489 * which then gets trimmed. 490 */ 491 nrec->ar_startblock = cpu_to_be32( 492 be32_to_cpu(arec->ar_startblock) + 493 be32_to_cpu(arec->ar_blockcount)); 494 arec = nrec; 495 be16_add_cpu(&block->bb_numrecs, 1); 496 } 497 /* 498 * Change record start to after the internal log 499 */ 500 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 501 } 502 503 /* 504 * Calculate the record block count and check for the case where 505 * the log might have consumed all available space in the AG. If 506 * so, reset the record count to 0 to avoid exposure of an invalid 507 * record start block. 508 */ 509 arec->ar_blockcount = cpu_to_be32(id->agsize - 510 be32_to_cpu(arec->ar_startblock)); 511 if (!arec->ar_blockcount) 512 block->bb_numrecs = 0; 513 } 514 515 /* 516 * Alloc btree root block init functions 517 */ 518 static void 519 xfs_bnoroot_init( 520 struct xfs_mount *mp, 521 struct xfs_buf *bp, 522 struct aghdr_init_data *id) 523 { 524 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 525 xfs_freesp_init_recs(mp, bp, id); 526 } 527 528 static void 529 xfs_cntroot_init( 530 struct xfs_mount *mp, 531 struct xfs_buf *bp, 532 struct aghdr_init_data *id) 533 { 534 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 535 xfs_freesp_init_recs(mp, bp, id); 536 } 537 538 /* 539 * Reverse map root block init 540 */ 541 static void 542 xfs_rmaproot_init( 543 struct xfs_mount *mp, 544 struct xfs_buf *bp, 545 struct aghdr_init_data *id) 546 { 547 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 548 struct xfs_rmap_rec *rrec; 549 550 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 551 552 /* 553 * mark the AG header regions as static metadata The BNO 554 * btree block is the first block after the headers, so 555 * it's location defines the size of region the static 556 * metadata consumes. 557 * 558 * Note: unlike mkfs, we never have to account for log 559 * space when growing the data regions 560 */ 561 rrec = XFS_RMAP_REC_ADDR(block, 1); 562 rrec->rm_startblock = 0; 563 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 564 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 565 rrec->rm_offset = 0; 566 567 /* account freespace btree root blocks */ 568 rrec = XFS_RMAP_REC_ADDR(block, 2); 569 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 570 rrec->rm_blockcount = cpu_to_be32(2); 571 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 572 rrec->rm_offset = 0; 573 574 /* account inode btree root blocks */ 575 rrec = XFS_RMAP_REC_ADDR(block, 3); 576 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 577 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 578 XFS_IBT_BLOCK(mp)); 579 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 580 rrec->rm_offset = 0; 581 582 /* account for rmap btree root */ 583 rrec = XFS_RMAP_REC_ADDR(block, 4); 584 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 585 rrec->rm_blockcount = cpu_to_be32(1); 586 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 587 rrec->rm_offset = 0; 588 589 /* account for refc btree root */ 590 if (xfs_has_reflink(mp)) { 591 rrec = XFS_RMAP_REC_ADDR(block, 5); 592 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 593 rrec->rm_blockcount = cpu_to_be32(1); 594 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 595 rrec->rm_offset = 0; 596 be16_add_cpu(&block->bb_numrecs, 1); 597 } 598 599 /* account for the log space */ 600 if (xfs_ag_contains_log(mp, id->agno)) { 601 rrec = XFS_RMAP_REC_ADDR(block, 602 be16_to_cpu(block->bb_numrecs) + 1); 603 rrec->rm_startblock = cpu_to_be32( 604 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 605 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 606 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 607 rrec->rm_offset = 0; 608 be16_add_cpu(&block->bb_numrecs, 1); 609 } 610 } 611 612 /* 613 * Initialise new secondary superblocks with the pre-grow geometry, but mark 614 * them as "in progress" so we know they haven't yet been activated. This will 615 * get cleared when the update with the new geometry information is done after 616 * changes to the primary are committed. This isn't strictly necessary, but we 617 * get it for free with the delayed buffer write lists and it means we can tell 618 * if a grow operation didn't complete properly after the fact. 619 */ 620 static void 621 xfs_sbblock_init( 622 struct xfs_mount *mp, 623 struct xfs_buf *bp, 624 struct aghdr_init_data *id) 625 { 626 struct xfs_dsb *dsb = bp->b_addr; 627 628 xfs_sb_to_disk(dsb, &mp->m_sb); 629 dsb->sb_inprogress = 1; 630 } 631 632 static void 633 xfs_agfblock_init( 634 struct xfs_mount *mp, 635 struct xfs_buf *bp, 636 struct aghdr_init_data *id) 637 { 638 struct xfs_agf *agf = bp->b_addr; 639 xfs_extlen_t tmpsize; 640 641 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 642 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 643 agf->agf_seqno = cpu_to_be32(id->agno); 644 agf->agf_length = cpu_to_be32(id->agsize); 645 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 646 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 647 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 648 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 649 if (xfs_has_rmapbt(mp)) { 650 agf->agf_roots[XFS_BTNUM_RMAPi] = 651 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 652 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 653 agf->agf_rmap_blocks = cpu_to_be32(1); 654 } 655 656 agf->agf_flfirst = cpu_to_be32(1); 657 agf->agf_fllast = 0; 658 agf->agf_flcount = 0; 659 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 660 agf->agf_freeblks = cpu_to_be32(tmpsize); 661 agf->agf_longest = cpu_to_be32(tmpsize); 662 if (xfs_has_crc(mp)) 663 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 664 if (xfs_has_reflink(mp)) { 665 agf->agf_refcount_root = cpu_to_be32( 666 xfs_refc_block(mp)); 667 agf->agf_refcount_level = cpu_to_be32(1); 668 agf->agf_refcount_blocks = cpu_to_be32(1); 669 } 670 671 if (xfs_ag_contains_log(mp, id->agno)) { 672 int64_t logblocks = mp->m_sb.sb_logblocks; 673 674 be32_add_cpu(&agf->agf_freeblks, -logblocks); 675 agf->agf_longest = cpu_to_be32(id->agsize - 676 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 677 } 678 } 679 680 static void 681 xfs_agflblock_init( 682 struct xfs_mount *mp, 683 struct xfs_buf *bp, 684 struct aghdr_init_data *id) 685 { 686 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 687 __be32 *agfl_bno; 688 int bucket; 689 690 if (xfs_has_crc(mp)) { 691 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 692 agfl->agfl_seqno = cpu_to_be32(id->agno); 693 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 694 } 695 696 agfl_bno = xfs_buf_to_agfl_bno(bp); 697 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 698 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 699 } 700 701 static void 702 xfs_agiblock_init( 703 struct xfs_mount *mp, 704 struct xfs_buf *bp, 705 struct aghdr_init_data *id) 706 { 707 struct xfs_agi *agi = bp->b_addr; 708 int bucket; 709 710 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 711 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 712 agi->agi_seqno = cpu_to_be32(id->agno); 713 agi->agi_length = cpu_to_be32(id->agsize); 714 agi->agi_count = 0; 715 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 716 agi->agi_level = cpu_to_be32(1); 717 agi->agi_freecount = 0; 718 agi->agi_newino = cpu_to_be32(NULLAGINO); 719 agi->agi_dirino = cpu_to_be32(NULLAGINO); 720 if (xfs_has_crc(mp)) 721 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 722 if (xfs_has_finobt(mp)) { 723 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 724 agi->agi_free_level = cpu_to_be32(1); 725 } 726 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 727 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 728 if (xfs_has_inobtcounts(mp)) { 729 agi->agi_iblocks = cpu_to_be32(1); 730 if (xfs_has_finobt(mp)) 731 agi->agi_fblocks = cpu_to_be32(1); 732 } 733 } 734 735 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 736 struct aghdr_init_data *id); 737 static int 738 xfs_ag_init_hdr( 739 struct xfs_mount *mp, 740 struct aghdr_init_data *id, 741 aghdr_init_work_f work, 742 const struct xfs_buf_ops *ops) 743 { 744 struct xfs_buf *bp; 745 int error; 746 747 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 748 if (error) 749 return error; 750 751 (*work)(mp, bp, id); 752 753 xfs_buf_delwri_queue(bp, &id->buffer_list); 754 xfs_buf_relse(bp); 755 return 0; 756 } 757 758 struct xfs_aghdr_grow_data { 759 xfs_daddr_t daddr; 760 size_t numblks; 761 const struct xfs_buf_ops *ops; 762 aghdr_init_work_f work; 763 xfs_btnum_t type; 764 bool need_init; 765 }; 766 767 /* 768 * Prepare new AG headers to be written to disk. We use uncached buffers here, 769 * as it is assumed these new AG headers are currently beyond the currently 770 * valid filesystem address space. Using cached buffers would trip over EOFS 771 * corruption detection alogrithms in the buffer cache lookup routines. 772 * 773 * This is a non-transactional function, but the prepared buffers are added to a 774 * delayed write buffer list supplied by the caller so they can submit them to 775 * disk and wait on them as required. 776 */ 777 int 778 xfs_ag_init_headers( 779 struct xfs_mount *mp, 780 struct aghdr_init_data *id) 781 782 { 783 struct xfs_aghdr_grow_data aghdr_data[] = { 784 { /* SB */ 785 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 786 .numblks = XFS_FSS_TO_BB(mp, 1), 787 .ops = &xfs_sb_buf_ops, 788 .work = &xfs_sbblock_init, 789 .need_init = true 790 }, 791 { /* AGF */ 792 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 793 .numblks = XFS_FSS_TO_BB(mp, 1), 794 .ops = &xfs_agf_buf_ops, 795 .work = &xfs_agfblock_init, 796 .need_init = true 797 }, 798 { /* AGFL */ 799 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 800 .numblks = XFS_FSS_TO_BB(mp, 1), 801 .ops = &xfs_agfl_buf_ops, 802 .work = &xfs_agflblock_init, 803 .need_init = true 804 }, 805 { /* AGI */ 806 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 807 .numblks = XFS_FSS_TO_BB(mp, 1), 808 .ops = &xfs_agi_buf_ops, 809 .work = &xfs_agiblock_init, 810 .need_init = true 811 }, 812 { /* BNO root block */ 813 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 814 .numblks = BTOBB(mp->m_sb.sb_blocksize), 815 .ops = &xfs_bnobt_buf_ops, 816 .work = &xfs_bnoroot_init, 817 .need_init = true 818 }, 819 { /* CNT root block */ 820 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 821 .numblks = BTOBB(mp->m_sb.sb_blocksize), 822 .ops = &xfs_cntbt_buf_ops, 823 .work = &xfs_cntroot_init, 824 .need_init = true 825 }, 826 { /* INO root block */ 827 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 828 .numblks = BTOBB(mp->m_sb.sb_blocksize), 829 .ops = &xfs_inobt_buf_ops, 830 .work = &xfs_btroot_init, 831 .type = XFS_BTNUM_INO, 832 .need_init = true 833 }, 834 { /* FINO root block */ 835 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 836 .numblks = BTOBB(mp->m_sb.sb_blocksize), 837 .ops = &xfs_finobt_buf_ops, 838 .work = &xfs_btroot_init, 839 .type = XFS_BTNUM_FINO, 840 .need_init = xfs_has_finobt(mp) 841 }, 842 { /* RMAP root block */ 843 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 844 .numblks = BTOBB(mp->m_sb.sb_blocksize), 845 .ops = &xfs_rmapbt_buf_ops, 846 .work = &xfs_rmaproot_init, 847 .need_init = xfs_has_rmapbt(mp) 848 }, 849 { /* REFC root block */ 850 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 851 .numblks = BTOBB(mp->m_sb.sb_blocksize), 852 .ops = &xfs_refcountbt_buf_ops, 853 .work = &xfs_btroot_init, 854 .type = XFS_BTNUM_REFC, 855 .need_init = xfs_has_reflink(mp) 856 }, 857 { /* NULL terminating block */ 858 .daddr = XFS_BUF_DADDR_NULL, 859 } 860 }; 861 struct xfs_aghdr_grow_data *dp; 862 int error = 0; 863 864 /* Account for AG free space in new AG */ 865 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 866 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 867 if (!dp->need_init) 868 continue; 869 870 id->daddr = dp->daddr; 871 id->numblks = dp->numblks; 872 id->type = dp->type; 873 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 874 if (error) 875 break; 876 } 877 return error; 878 } 879 880 int 881 xfs_ag_shrink_space( 882 struct xfs_perag *pag, 883 struct xfs_trans **tpp, 884 xfs_extlen_t delta) 885 { 886 struct xfs_mount *mp = pag->pag_mount; 887 struct xfs_alloc_arg args = { 888 .tp = *tpp, 889 .mp = mp, 890 .pag = pag, 891 .minlen = delta, 892 .maxlen = delta, 893 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 894 .resv = XFS_AG_RESV_NONE, 895 .prod = 1 896 }; 897 struct xfs_buf *agibp, *agfbp; 898 struct xfs_agi *agi; 899 struct xfs_agf *agf; 900 xfs_agblock_t aglen; 901 int error, err2; 902 903 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1); 904 error = xfs_ialloc_read_agi(pag, *tpp, &agibp); 905 if (error) 906 return error; 907 908 agi = agibp->b_addr; 909 910 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp); 911 if (error) 912 return error; 913 914 agf = agfbp->b_addr; 915 aglen = be32_to_cpu(agi->agi_length); 916 /* some extra paranoid checks before we shrink the ag */ 917 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) 918 return -EFSCORRUPTED; 919 if (delta >= aglen) 920 return -EINVAL; 921 922 /* 923 * Make sure that the last inode cluster cannot overlap with the new 924 * end of the AG, even if it's sparse. 925 */ 926 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta); 927 if (error) 928 return error; 929 930 /* 931 * Disable perag reservations so it doesn't cause the allocation request 932 * to fail. We'll reestablish reservation before we return. 933 */ 934 error = xfs_ag_resv_free(pag); 935 if (error) 936 return error; 937 938 /* internal log shouldn't also show up in the free space btrees */ 939 error = xfs_alloc_vextent_exact_bno(&args, 940 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta)); 941 if (!error && args.agbno == NULLAGBLOCK) 942 error = -ENOSPC; 943 944 if (error) { 945 /* 946 * if extent allocation fails, need to roll the transaction to 947 * ensure that the AGFL fixup has been committed anyway. 948 */ 949 xfs_trans_bhold(*tpp, agfbp); 950 err2 = xfs_trans_roll(tpp); 951 if (err2) 952 return err2; 953 xfs_trans_bjoin(*tpp, agfbp); 954 goto resv_init_out; 955 } 956 957 /* 958 * if successfully deleted from freespace btrees, need to confirm 959 * per-AG reservation works as expected. 960 */ 961 be32_add_cpu(&agi->agi_length, -delta); 962 be32_add_cpu(&agf->agf_length, -delta); 963 964 err2 = xfs_ag_resv_init(pag, *tpp); 965 if (err2) { 966 be32_add_cpu(&agi->agi_length, delta); 967 be32_add_cpu(&agf->agf_length, delta); 968 if (err2 != -ENOSPC) 969 goto resv_err; 970 971 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true); 972 973 /* 974 * Roll the transaction before trying to re-init the per-ag 975 * reservation. The new transaction is clean so it will cancel 976 * without any side effects. 977 */ 978 error = xfs_defer_finish(tpp); 979 if (error) 980 return error; 981 982 error = -ENOSPC; 983 goto resv_init_out; 984 } 985 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 986 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 987 return 0; 988 989 resv_init_out: 990 err2 = xfs_ag_resv_init(pag, *tpp); 991 if (!err2) 992 return error; 993 resv_err: 994 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 995 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 996 return err2; 997 } 998 999 /* 1000 * Extent the AG indicated by the @id by the length passed in 1001 */ 1002 int 1003 xfs_ag_extend_space( 1004 struct xfs_perag *pag, 1005 struct xfs_trans *tp, 1006 xfs_extlen_t len) 1007 { 1008 struct xfs_buf *bp; 1009 struct xfs_agi *agi; 1010 struct xfs_agf *agf; 1011 int error; 1012 1013 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1); 1014 1015 error = xfs_ialloc_read_agi(pag, tp, &bp); 1016 if (error) 1017 return error; 1018 1019 agi = bp->b_addr; 1020 be32_add_cpu(&agi->agi_length, len); 1021 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 1022 1023 /* 1024 * Change agf length. 1025 */ 1026 error = xfs_alloc_read_agf(pag, tp, 0, &bp); 1027 if (error) 1028 return error; 1029 1030 agf = bp->b_addr; 1031 be32_add_cpu(&agf->agf_length, len); 1032 ASSERT(agf->agf_length == agi->agi_length); 1033 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 1034 1035 /* 1036 * Free the new space. 1037 * 1038 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 1039 * this doesn't actually exist in the rmap btree. 1040 */ 1041 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len, 1042 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 1043 if (error) 1044 return error; 1045 1046 error = xfs_free_extent(tp, XFS_AGB_TO_FSB(pag->pag_mount, pag->pag_agno, 1047 be32_to_cpu(agf->agf_length) - len), 1048 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 1049 XFS_AG_RESV_NONE); 1050 if (error) 1051 return error; 1052 1053 /* Update perag geometry */ 1054 pag->block_count = be32_to_cpu(agf->agf_length); 1055 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 1056 &pag->agino_max); 1057 return 0; 1058 } 1059 1060 /* Retrieve AG geometry. */ 1061 int 1062 xfs_ag_get_geometry( 1063 struct xfs_perag *pag, 1064 struct xfs_ag_geometry *ageo) 1065 { 1066 struct xfs_buf *agi_bp; 1067 struct xfs_buf *agf_bp; 1068 struct xfs_agi *agi; 1069 struct xfs_agf *agf; 1070 unsigned int freeblks; 1071 int error; 1072 1073 /* Lock the AG headers. */ 1074 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp); 1075 if (error) 1076 return error; 1077 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp); 1078 if (error) 1079 goto out_agi; 1080 1081 /* Fill out form. */ 1082 memset(ageo, 0, sizeof(*ageo)); 1083 ageo->ag_number = pag->pag_agno; 1084 1085 agi = agi_bp->b_addr; 1086 ageo->ag_icount = be32_to_cpu(agi->agi_count); 1087 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 1088 1089 agf = agf_bp->b_addr; 1090 ageo->ag_length = be32_to_cpu(agf->agf_length); 1091 freeblks = pag->pagf_freeblks + 1092 pag->pagf_flcount + 1093 pag->pagf_btreeblks - 1094 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 1095 ageo->ag_freeblks = freeblks; 1096 xfs_ag_geom_health(pag, ageo); 1097 1098 /* Release resources. */ 1099 xfs_buf_relse(agf_bp); 1100 out_agi: 1101 xfs_buf_relse(agi_bp); 1102 return error; 1103 } 1104