1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #ifndef __XFS_SUPPORT_KMEM_H__ 7 #define __XFS_SUPPORT_KMEM_H__ 8 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/mm.h> 12 #include <linux/vmalloc.h> 13 14 /* 15 * General memory allocation interfaces 16 */ 17 18 typedef unsigned __bitwise xfs_km_flags_t; 19 #define KM_NOFS ((__force xfs_km_flags_t)0x0004u) 20 #define KM_MAYFAIL ((__force xfs_km_flags_t)0x0008u) 21 #define KM_ZERO ((__force xfs_km_flags_t)0x0010u) 22 23 /* 24 * We use a special process flag to avoid recursive callbacks into 25 * the filesystem during transactions. We will also issue our own 26 * warnings, so we explicitly skip any generic ones (silly of us). 27 */ 28 static inline gfp_t 29 kmem_flags_convert(xfs_km_flags_t flags) 30 { 31 gfp_t lflags; 32 33 BUG_ON(flags & ~(KM_NOFS|KM_MAYFAIL|KM_ZERO)); 34 35 lflags = GFP_KERNEL | __GFP_NOWARN; 36 if (flags & KM_NOFS) 37 lflags &= ~__GFP_FS; 38 39 /* 40 * Default page/slab allocator behavior is to retry for ever 41 * for small allocations. We can override this behavior by using 42 * __GFP_RETRY_MAYFAIL which will tell the allocator to retry as long 43 * as it is feasible but rather fail than retry forever for all 44 * request sizes. 45 */ 46 if (flags & KM_MAYFAIL) 47 lflags |= __GFP_RETRY_MAYFAIL; 48 49 if (flags & KM_ZERO) 50 lflags |= __GFP_ZERO; 51 52 return lflags; 53 } 54 55 extern void *kmem_alloc(size_t, xfs_km_flags_t); 56 extern void *kmem_alloc_io(size_t size, int align_mask, xfs_km_flags_t flags); 57 extern void *kmem_alloc_large(size_t size, xfs_km_flags_t); 58 extern void *kmem_realloc(const void *, size_t, xfs_km_flags_t); 59 static inline void kmem_free(const void *ptr) 60 { 61 kvfree(ptr); 62 } 63 64 65 static inline void * 66 kmem_zalloc(size_t size, xfs_km_flags_t flags) 67 { 68 return kmem_alloc(size, flags | KM_ZERO); 69 } 70 71 static inline void * 72 kmem_zalloc_large(size_t size, xfs_km_flags_t flags) 73 { 74 return kmem_alloc_large(size, flags | KM_ZERO); 75 } 76 77 /* 78 * Zone interfaces 79 */ 80 81 #define KM_ZONE_HWALIGN SLAB_HWCACHE_ALIGN 82 #define KM_ZONE_RECLAIM SLAB_RECLAIM_ACCOUNT 83 #define KM_ZONE_SPREAD SLAB_MEM_SPREAD 84 #define KM_ZONE_ACCOUNT SLAB_ACCOUNT 85 86 #define kmem_zone kmem_cache 87 #define kmem_zone_t struct kmem_cache 88 89 static inline kmem_zone_t * 90 kmem_zone_init(int size, char *zone_name) 91 { 92 return kmem_cache_create(zone_name, size, 0, 0, NULL); 93 } 94 95 static inline kmem_zone_t * 96 kmem_zone_init_flags(int size, char *zone_name, slab_flags_t flags, 97 void (*construct)(void *)) 98 { 99 return kmem_cache_create(zone_name, size, 0, flags, construct); 100 } 101 102 static inline void 103 kmem_zone_free(kmem_zone_t *zone, void *ptr) 104 { 105 kmem_cache_free(zone, ptr); 106 } 107 108 static inline void 109 kmem_zone_destroy(kmem_zone_t *zone) 110 { 111 kmem_cache_destroy(zone); 112 } 113 114 extern void *kmem_zone_alloc(kmem_zone_t *, xfs_km_flags_t); 115 116 static inline void * 117 kmem_zone_zalloc(kmem_zone_t *zone, xfs_km_flags_t flags) 118 { 119 return kmem_zone_alloc(zone, flags | KM_ZERO); 120 } 121 122 static inline struct page * 123 kmem_to_page(void *addr) 124 { 125 if (is_vmalloc_addr(addr)) 126 return vmalloc_to_page(addr); 127 return virt_to_page(addr); 128 } 129 130 #endif /* __XFS_SUPPORT_KMEM_H__ */ 131