xref: /openbmc/linux/fs/xfs/kmem.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include "xfs_message.h"
9 #include "xfs_trace.h"
10 
11 void *
12 kmem_alloc(size_t size, xfs_km_flags_t flags)
13 {
14 	int	retries = 0;
15 	gfp_t	lflags = kmem_flags_convert(flags);
16 	void	*ptr;
17 
18 	trace_kmem_alloc(size, flags, _RET_IP_);
19 
20 	do {
21 		ptr = kmalloc(size, lflags);
22 		if (ptr || (flags & KM_MAYFAIL))
23 			return ptr;
24 		if (!(++retries % 100))
25 			xfs_err(NULL,
26 	"%s(%u) possible memory allocation deadlock size %u in %s (mode:0x%x)",
27 				current->comm, current->pid,
28 				(unsigned int)size, __func__, lflags);
29 		congestion_wait(BLK_RW_ASYNC, HZ/50);
30 	} while (1);
31 }
32 
33 
34 /*
35  * __vmalloc() will allocate data pages and auxiliary structures (e.g.
36  * pagetables) with GFP_KERNEL, yet we may be under GFP_NOFS context here. Hence
37  * we need to tell memory reclaim that we are in such a context via
38  * PF_MEMALLOC_NOFS to prevent memory reclaim re-entering the filesystem here
39  * and potentially deadlocking.
40  */
41 static void *
42 __kmem_vmalloc(size_t size, xfs_km_flags_t flags)
43 {
44 	unsigned nofs_flag = 0;
45 	void	*ptr;
46 	gfp_t	lflags = kmem_flags_convert(flags);
47 
48 	if (flags & KM_NOFS)
49 		nofs_flag = memalloc_nofs_save();
50 
51 	ptr = __vmalloc(size, lflags);
52 
53 	if (flags & KM_NOFS)
54 		memalloc_nofs_restore(nofs_flag);
55 
56 	return ptr;
57 }
58 
59 /*
60  * Same as kmem_alloc_large, except we guarantee the buffer returned is aligned
61  * to the @align_mask. We only guarantee alignment up to page size, we'll clamp
62  * alignment at page size if it is larger. vmalloc always returns a PAGE_SIZE
63  * aligned region.
64  */
65 void *
66 kmem_alloc_io(size_t size, int align_mask, xfs_km_flags_t flags)
67 {
68 	void	*ptr;
69 
70 	trace_kmem_alloc_io(size, flags, _RET_IP_);
71 
72 	if (WARN_ON_ONCE(align_mask >= PAGE_SIZE))
73 		align_mask = PAGE_SIZE - 1;
74 
75 	ptr = kmem_alloc(size, flags | KM_MAYFAIL);
76 	if (ptr) {
77 		if (!((uintptr_t)ptr & align_mask))
78 			return ptr;
79 		kfree(ptr);
80 	}
81 	return __kmem_vmalloc(size, flags);
82 }
83 
84 void *
85 kmem_alloc_large(size_t size, xfs_km_flags_t flags)
86 {
87 	void	*ptr;
88 
89 	trace_kmem_alloc_large(size, flags, _RET_IP_);
90 
91 	ptr = kmem_alloc(size, flags | KM_MAYFAIL);
92 	if (ptr)
93 		return ptr;
94 	return __kmem_vmalloc(size, flags);
95 }
96 
97 void *
98 kmem_realloc(const void *old, size_t newsize, xfs_km_flags_t flags)
99 {
100 	int	retries = 0;
101 	gfp_t	lflags = kmem_flags_convert(flags);
102 	void	*ptr;
103 
104 	trace_kmem_realloc(newsize, flags, _RET_IP_);
105 
106 	do {
107 		ptr = krealloc(old, newsize, lflags);
108 		if (ptr || (flags & KM_MAYFAIL))
109 			return ptr;
110 		if (!(++retries % 100))
111 			xfs_err(NULL,
112 	"%s(%u) possible memory allocation deadlock size %zu in %s (mode:0x%x)",
113 				current->comm, current->pid,
114 				newsize, __func__, lflags);
115 		congestion_wait(BLK_RW_ASYNC, HZ/50);
116 	} while (1);
117 }
118 
119 void *
120 kmem_zone_alloc(kmem_zone_t *zone, xfs_km_flags_t flags)
121 {
122 	int	retries = 0;
123 	gfp_t	lflags = kmem_flags_convert(flags);
124 	void	*ptr;
125 
126 	trace_kmem_zone_alloc(kmem_cache_size(zone), flags, _RET_IP_);
127 	do {
128 		ptr = kmem_cache_alloc(zone, lflags);
129 		if (ptr || (flags & KM_MAYFAIL))
130 			return ptr;
131 		if (!(++retries % 100))
132 			xfs_err(NULL,
133 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
134 				current->comm, current->pid,
135 				__func__, lflags);
136 		congestion_wait(BLK_RW_ASYNC, HZ/50);
137 	} while (1);
138 }
139