xref: /openbmc/linux/fs/verity/verify.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data verification functions, i.e. hooks for ->readahead()
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 #include "fsverity_private.h"
9 
10 #include <crypto/hash.h>
11 #include <linux/bio.h>
12 
13 static struct workqueue_struct *fsverity_read_workqueue;
14 
15 static inline int cmp_hashes(const struct fsverity_info *vi,
16 			     const u8 *want_hash, const u8 *real_hash,
17 			     u64 data_pos, int level)
18 {
19 	const unsigned int hsize = vi->tree_params.digest_size;
20 
21 	if (memcmp(want_hash, real_hash, hsize) == 0)
22 		return 0;
23 
24 	fsverity_err(vi->inode,
25 		     "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
26 		     data_pos, level,
27 		     vi->tree_params.hash_alg->name, hsize, want_hash,
28 		     vi->tree_params.hash_alg->name, hsize, real_hash);
29 	return -EBADMSG;
30 }
31 
32 static bool data_is_zeroed(struct inode *inode, struct page *page,
33 			   unsigned int len, unsigned int offset)
34 {
35 	void *virt = kmap_local_page(page);
36 
37 	if (memchr_inv(virt + offset, 0, len)) {
38 		kunmap_local(virt);
39 		fsverity_err(inode,
40 			     "FILE CORRUPTED!  Data past EOF is not zeroed");
41 		return false;
42 	}
43 	kunmap_local(virt);
44 	return true;
45 }
46 
47 /*
48  * Returns true if the hash block with index @hblock_idx in the tree, located in
49  * @hpage, has already been verified.
50  */
51 static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
52 				   unsigned long hblock_idx)
53 {
54 	bool verified;
55 	unsigned int blocks_per_page;
56 	unsigned int i;
57 
58 	/*
59 	 * When the Merkle tree block size and page size are the same, then the
60 	 * ->hash_block_verified bitmap isn't allocated, and we use PG_checked
61 	 * to directly indicate whether the page's block has been verified.
62 	 *
63 	 * Using PG_checked also guarantees that we re-verify hash pages that
64 	 * get evicted and re-instantiated from the backing storage, as new
65 	 * pages always start out with PG_checked cleared.
66 	 */
67 	if (!vi->hash_block_verified)
68 		return PageChecked(hpage);
69 
70 	/*
71 	 * When the Merkle tree block size and page size differ, we use a bitmap
72 	 * to indicate whether each hash block has been verified.
73 	 *
74 	 * However, we still need to ensure that hash pages that get evicted and
75 	 * re-instantiated from the backing storage are re-verified.  To do
76 	 * this, we use PG_checked again, but now it doesn't really mean
77 	 * "checked".  Instead, now it just serves as an indicator for whether
78 	 * the hash page is newly instantiated or not.
79 	 *
80 	 * The first thread that sees PG_checked=0 must clear the corresponding
81 	 * bitmap bits, then set PG_checked=1.  This requires a spinlock.  To
82 	 * avoid having to take this spinlock in the common case of
83 	 * PG_checked=1, we start with an opportunistic lockless read.
84 	 */
85 	if (PageChecked(hpage)) {
86 		/*
87 		 * A read memory barrier is needed here to give ACQUIRE
88 		 * semantics to the above PageChecked() test.
89 		 */
90 		smp_rmb();
91 		return test_bit(hblock_idx, vi->hash_block_verified);
92 	}
93 	spin_lock(&vi->hash_page_init_lock);
94 	if (PageChecked(hpage)) {
95 		verified = test_bit(hblock_idx, vi->hash_block_verified);
96 	} else {
97 		blocks_per_page = vi->tree_params.blocks_per_page;
98 		hblock_idx = round_down(hblock_idx, blocks_per_page);
99 		for (i = 0; i < blocks_per_page; i++)
100 			clear_bit(hblock_idx + i, vi->hash_block_verified);
101 		/*
102 		 * A write memory barrier is needed here to give RELEASE
103 		 * semantics to the below SetPageChecked() operation.
104 		 */
105 		smp_wmb();
106 		SetPageChecked(hpage);
107 		verified = false;
108 	}
109 	spin_unlock(&vi->hash_page_init_lock);
110 	return verified;
111 }
112 
113 /*
114  * Verify a single data block against the file's Merkle tree.
115  *
116  * In principle, we need to verify the entire path to the root node.  However,
117  * for efficiency the filesystem may cache the hash blocks.  Therefore we need
118  * only ascend the tree until an already-verified hash block is seen, and then
119  * verify the path to that block.
120  *
121  * Return: %true if the data block is valid, else %false.
122  */
123 static bool
124 verify_data_block(struct inode *inode, struct fsverity_info *vi,
125 		  struct ahash_request *req, struct page *data_page,
126 		  u64 data_pos, unsigned int dblock_offset_in_page,
127 		  unsigned long max_ra_pages)
128 {
129 	const struct merkle_tree_params *params = &vi->tree_params;
130 	const unsigned int hsize = params->digest_size;
131 	int level;
132 	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
133 	const u8 *want_hash;
134 	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
135 	/* The hash blocks that are traversed, indexed by level */
136 	struct {
137 		/* Page containing the hash block */
138 		struct page *page;
139 		/* Index of the hash block in the tree overall */
140 		unsigned long index;
141 		/* Byte offset of the hash block within @page */
142 		unsigned int offset_in_page;
143 		/* Byte offset of the wanted hash within @page */
144 		unsigned int hoffset;
145 	} hblocks[FS_VERITY_MAX_LEVELS];
146 	/*
147 	 * The index of the previous level's block within that level; also the
148 	 * index of that block's hash within the current level.
149 	 */
150 	u64 hidx = data_pos >> params->log_blocksize;
151 	int err;
152 
153 	if (unlikely(data_pos >= inode->i_size)) {
154 		/*
155 		 * This can happen in the data page spanning EOF when the Merkle
156 		 * tree block size is less than the page size.  The Merkle tree
157 		 * doesn't cover data blocks fully past EOF.  But the entire
158 		 * page spanning EOF can be visible to userspace via a mmap, and
159 		 * any part past EOF should be all zeroes.  Therefore, we need
160 		 * to verify that any data blocks fully past EOF are all zeroes.
161 		 */
162 		return data_is_zeroed(inode, data_page, params->block_size,
163 				      dblock_offset_in_page);
164 	}
165 
166 	/*
167 	 * Starting at the leaf level, ascend the tree saving hash blocks along
168 	 * the way until we find a hash block that has already been verified, or
169 	 * until we reach the root.
170 	 */
171 	for (level = 0; level < params->num_levels; level++) {
172 		unsigned long next_hidx;
173 		unsigned long hblock_idx;
174 		pgoff_t hpage_idx;
175 		unsigned int hblock_offset_in_page;
176 		unsigned int hoffset;
177 		struct page *hpage;
178 
179 		/*
180 		 * The index of the block in the current level; also the index
181 		 * of that block's hash within the next level.
182 		 */
183 		next_hidx = hidx >> params->log_arity;
184 
185 		/* Index of the hash block in the tree overall */
186 		hblock_idx = params->level_start[level] + next_hidx;
187 
188 		/* Index of the hash page in the tree overall */
189 		hpage_idx = hblock_idx >> params->log_blocks_per_page;
190 
191 		/* Byte offset of the hash block within the page */
192 		hblock_offset_in_page =
193 			(hblock_idx << params->log_blocksize) & ~PAGE_MASK;
194 
195 		/* Byte offset of the hash within the page */
196 		hoffset = hblock_offset_in_page +
197 			  ((hidx << params->log_digestsize) &
198 			   (params->block_size - 1));
199 
200 		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode,
201 				hpage_idx, level == 0 ? min(max_ra_pages,
202 					params->tree_pages - hpage_idx) : 0);
203 		if (IS_ERR(hpage)) {
204 			err = PTR_ERR(hpage);
205 			fsverity_err(inode,
206 				     "Error %d reading Merkle tree page %lu",
207 				     err, hpage_idx);
208 			goto out;
209 		}
210 		if (is_hash_block_verified(vi, hpage, hblock_idx)) {
211 			memcpy_from_page(_want_hash, hpage, hoffset, hsize);
212 			want_hash = _want_hash;
213 			put_page(hpage);
214 			goto descend;
215 		}
216 		hblocks[level].page = hpage;
217 		hblocks[level].index = hblock_idx;
218 		hblocks[level].offset_in_page = hblock_offset_in_page;
219 		hblocks[level].hoffset = hoffset;
220 		hidx = next_hidx;
221 	}
222 
223 	want_hash = vi->root_hash;
224 descend:
225 	/* Descend the tree verifying hash blocks. */
226 	for (; level > 0; level--) {
227 		struct page *hpage = hblocks[level - 1].page;
228 		unsigned long hblock_idx = hblocks[level - 1].index;
229 		unsigned int hblock_offset_in_page =
230 			hblocks[level - 1].offset_in_page;
231 		unsigned int hoffset = hblocks[level - 1].hoffset;
232 
233 		err = fsverity_hash_block(params, inode, req, hpage,
234 					  hblock_offset_in_page, real_hash);
235 		if (err)
236 			goto out;
237 		err = cmp_hashes(vi, want_hash, real_hash, data_pos, level - 1);
238 		if (err)
239 			goto out;
240 		/*
241 		 * Mark the hash block as verified.  This must be atomic and
242 		 * idempotent, as the same hash block might be verified by
243 		 * multiple threads concurrently.
244 		 */
245 		if (vi->hash_block_verified)
246 			set_bit(hblock_idx, vi->hash_block_verified);
247 		else
248 			SetPageChecked(hpage);
249 		memcpy_from_page(_want_hash, hpage, hoffset, hsize);
250 		want_hash = _want_hash;
251 		put_page(hpage);
252 	}
253 
254 	/* Finally, verify the data block. */
255 	err = fsverity_hash_block(params, inode, req, data_page,
256 				  dblock_offset_in_page, real_hash);
257 	if (err)
258 		goto out;
259 	err = cmp_hashes(vi, want_hash, real_hash, data_pos, -1);
260 out:
261 	for (; level > 0; level--)
262 		put_page(hblocks[level - 1].page);
263 
264 	return err == 0;
265 }
266 
267 static bool
268 verify_data_blocks(struct inode *inode, struct fsverity_info *vi,
269 		   struct ahash_request *req, struct folio *data_folio,
270 		   size_t len, size_t offset, unsigned long max_ra_pages)
271 {
272 	const unsigned int block_size = vi->tree_params.block_size;
273 	u64 pos = (u64)data_folio->index << PAGE_SHIFT;
274 
275 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
276 		return false;
277 	if (WARN_ON_ONCE(!folio_test_locked(data_folio) ||
278 			 folio_test_uptodate(data_folio)))
279 		return false;
280 	do {
281 		struct page *data_page =
282 			folio_page(data_folio, offset >> PAGE_SHIFT);
283 
284 		if (!verify_data_block(inode, vi, req, data_page, pos + offset,
285 				       offset & ~PAGE_MASK, max_ra_pages))
286 			return false;
287 		offset += block_size;
288 		len -= block_size;
289 	} while (len);
290 	return true;
291 }
292 
293 /**
294  * fsverity_verify_blocks() - verify data in a folio
295  * @folio: the folio containing the data to verify
296  * @len: the length of the data to verify in the folio
297  * @offset: the offset of the data to verify in the folio
298  *
299  * Verify data that has just been read from a verity file.  The data must be
300  * located in a pagecache folio that is still locked and not yet uptodate.  The
301  * length and offset of the data must be Merkle tree block size aligned.
302  *
303  * Return: %true if the data is valid, else %false.
304  */
305 bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset)
306 {
307 	struct inode *inode = folio->mapping->host;
308 	struct fsverity_info *vi = inode->i_verity_info;
309 	struct ahash_request *req;
310 	bool valid;
311 
312 	/* This allocation never fails, since it's mempool-backed. */
313 	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
314 
315 	valid = verify_data_blocks(inode, vi, req, folio, len, offset, 0);
316 
317 	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
318 
319 	return valid;
320 }
321 EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
322 
323 #ifdef CONFIG_BLOCK
324 /**
325  * fsverity_verify_bio() - verify a 'read' bio that has just completed
326  * @bio: the bio to verify
327  *
328  * Verify the bio's data against the file's Merkle tree.  All bio data segments
329  * must be aligned to the file's Merkle tree block size.  If any data fails
330  * verification, then bio->bi_status is set to an error status.
331  *
332  * This is a helper function for use by the ->readahead() method of filesystems
333  * that issue bios to read data directly into the page cache.  Filesystems that
334  * populate the page cache without issuing bios (e.g. non block-based
335  * filesystems) must instead call fsverity_verify_page() directly on each page.
336  * All filesystems must also call fsverity_verify_page() on holes.
337  */
338 void fsverity_verify_bio(struct bio *bio)
339 {
340 	struct inode *inode = bio_first_page_all(bio)->mapping->host;
341 	struct fsverity_info *vi = inode->i_verity_info;
342 	struct ahash_request *req;
343 	struct folio_iter fi;
344 	unsigned long max_ra_pages = 0;
345 
346 	/* This allocation never fails, since it's mempool-backed. */
347 	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
348 
349 	if (bio->bi_opf & REQ_RAHEAD) {
350 		/*
351 		 * If this bio is for data readahead, then we also do readahead
352 		 * of the first (largest) level of the Merkle tree.  Namely,
353 		 * when a Merkle tree page is read, we also try to piggy-back on
354 		 * some additional pages -- up to 1/4 the number of data pages.
355 		 *
356 		 * This improves sequential read performance, as it greatly
357 		 * reduces the number of I/O requests made to the Merkle tree.
358 		 */
359 		max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
360 	}
361 
362 	bio_for_each_folio_all(fi, bio) {
363 		if (!verify_data_blocks(inode, vi, req, fi.folio, fi.length,
364 					fi.offset, max_ra_pages)) {
365 			bio->bi_status = BLK_STS_IOERR;
366 			break;
367 		}
368 	}
369 
370 	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
371 }
372 EXPORT_SYMBOL_GPL(fsverity_verify_bio);
373 #endif /* CONFIG_BLOCK */
374 
375 /**
376  * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
377  * @work: the work to enqueue
378  *
379  * Enqueue verification work for asynchronous processing.
380  */
381 void fsverity_enqueue_verify_work(struct work_struct *work)
382 {
383 	queue_work(fsverity_read_workqueue, work);
384 }
385 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
386 
387 int __init fsverity_init_workqueue(void)
388 {
389 	/*
390 	 * Use a high-priority workqueue to prioritize verification work, which
391 	 * blocks reads from completing, over regular application tasks.
392 	 *
393 	 * For performance reasons, don't use an unbound workqueue.  Using an
394 	 * unbound workqueue for crypto operations causes excessive scheduler
395 	 * latency on ARM64.
396 	 */
397 	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
398 						  WQ_HIGHPRI,
399 						  num_online_cpus());
400 	if (!fsverity_read_workqueue)
401 		return -ENOMEM;
402 	return 0;
403 }
404 
405 void __init fsverity_exit_workqueue(void)
406 {
407 	destroy_workqueue(fsverity_read_workqueue);
408 	fsverity_read_workqueue = NULL;
409 }
410