1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data verification functions, i.e. hooks for ->readahead() 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 #include "fsverity_private.h" 9 10 #include <crypto/hash.h> 11 #include <linux/bio.h> 12 13 static struct workqueue_struct *fsverity_read_workqueue; 14 15 static inline int cmp_hashes(const struct fsverity_info *vi, 16 const u8 *want_hash, const u8 *real_hash, 17 u64 data_pos, int level) 18 { 19 const unsigned int hsize = vi->tree_params.digest_size; 20 21 if (memcmp(want_hash, real_hash, hsize) == 0) 22 return 0; 23 24 fsverity_err(vi->inode, 25 "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN", 26 data_pos, level, 27 vi->tree_params.hash_alg->name, hsize, want_hash, 28 vi->tree_params.hash_alg->name, hsize, real_hash); 29 return -EBADMSG; 30 } 31 32 static bool data_is_zeroed(struct inode *inode, struct page *page, 33 unsigned int len, unsigned int offset) 34 { 35 void *virt = kmap_local_page(page); 36 37 if (memchr_inv(virt + offset, 0, len)) { 38 kunmap_local(virt); 39 fsverity_err(inode, 40 "FILE CORRUPTED! Data past EOF is not zeroed"); 41 return false; 42 } 43 kunmap_local(virt); 44 return true; 45 } 46 47 /* 48 * Returns true if the hash block with index @hblock_idx in the tree, located in 49 * @hpage, has already been verified. 50 */ 51 static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage, 52 unsigned long hblock_idx) 53 { 54 bool verified; 55 unsigned int blocks_per_page; 56 unsigned int i; 57 58 /* 59 * When the Merkle tree block size and page size are the same, then the 60 * ->hash_block_verified bitmap isn't allocated, and we use PG_checked 61 * to directly indicate whether the page's block has been verified. 62 * 63 * Using PG_checked also guarantees that we re-verify hash pages that 64 * get evicted and re-instantiated from the backing storage, as new 65 * pages always start out with PG_checked cleared. 66 */ 67 if (!vi->hash_block_verified) 68 return PageChecked(hpage); 69 70 /* 71 * When the Merkle tree block size and page size differ, we use a bitmap 72 * to indicate whether each hash block has been verified. 73 * 74 * However, we still need to ensure that hash pages that get evicted and 75 * re-instantiated from the backing storage are re-verified. To do 76 * this, we use PG_checked again, but now it doesn't really mean 77 * "checked". Instead, now it just serves as an indicator for whether 78 * the hash page is newly instantiated or not. 79 * 80 * The first thread that sees PG_checked=0 must clear the corresponding 81 * bitmap bits, then set PG_checked=1. This requires a spinlock. To 82 * avoid having to take this spinlock in the common case of 83 * PG_checked=1, we start with an opportunistic lockless read. 84 */ 85 if (PageChecked(hpage)) { 86 /* 87 * A read memory barrier is needed here to give ACQUIRE 88 * semantics to the above PageChecked() test. 89 */ 90 smp_rmb(); 91 return test_bit(hblock_idx, vi->hash_block_verified); 92 } 93 spin_lock(&vi->hash_page_init_lock); 94 if (PageChecked(hpage)) { 95 verified = test_bit(hblock_idx, vi->hash_block_verified); 96 } else { 97 blocks_per_page = vi->tree_params.blocks_per_page; 98 hblock_idx = round_down(hblock_idx, blocks_per_page); 99 for (i = 0; i < blocks_per_page; i++) 100 clear_bit(hblock_idx + i, vi->hash_block_verified); 101 /* 102 * A write memory barrier is needed here to give RELEASE 103 * semantics to the below SetPageChecked() operation. 104 */ 105 smp_wmb(); 106 SetPageChecked(hpage); 107 verified = false; 108 } 109 spin_unlock(&vi->hash_page_init_lock); 110 return verified; 111 } 112 113 /* 114 * Verify a single data block against the file's Merkle tree. 115 * 116 * In principle, we need to verify the entire path to the root node. However, 117 * for efficiency the filesystem may cache the hash blocks. Therefore we need 118 * only ascend the tree until an already-verified hash block is seen, and then 119 * verify the path to that block. 120 * 121 * Return: %true if the data block is valid, else %false. 122 */ 123 static bool 124 verify_data_block(struct inode *inode, struct fsverity_info *vi, 125 struct ahash_request *req, struct page *data_page, 126 u64 data_pos, unsigned int dblock_offset_in_page, 127 unsigned long max_ra_pages) 128 { 129 const struct merkle_tree_params *params = &vi->tree_params; 130 const unsigned int hsize = params->digest_size; 131 int level; 132 u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE]; 133 const u8 *want_hash; 134 u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE]; 135 /* The hash blocks that are traversed, indexed by level */ 136 struct { 137 /* Page containing the hash block */ 138 struct page *page; 139 /* Index of the hash block in the tree overall */ 140 unsigned long index; 141 /* Byte offset of the hash block within @page */ 142 unsigned int offset_in_page; 143 /* Byte offset of the wanted hash within @page */ 144 unsigned int hoffset; 145 } hblocks[FS_VERITY_MAX_LEVELS]; 146 /* 147 * The index of the previous level's block within that level; also the 148 * index of that block's hash within the current level. 149 */ 150 u64 hidx = data_pos >> params->log_blocksize; 151 int err; 152 153 if (unlikely(data_pos >= inode->i_size)) { 154 /* 155 * This can happen in the data page spanning EOF when the Merkle 156 * tree block size is less than the page size. The Merkle tree 157 * doesn't cover data blocks fully past EOF. But the entire 158 * page spanning EOF can be visible to userspace via a mmap, and 159 * any part past EOF should be all zeroes. Therefore, we need 160 * to verify that any data blocks fully past EOF are all zeroes. 161 */ 162 return data_is_zeroed(inode, data_page, params->block_size, 163 dblock_offset_in_page); 164 } 165 166 /* 167 * Starting at the leaf level, ascend the tree saving hash blocks along 168 * the way until we find a hash block that has already been verified, or 169 * until we reach the root. 170 */ 171 for (level = 0; level < params->num_levels; level++) { 172 unsigned long next_hidx; 173 unsigned long hblock_idx; 174 pgoff_t hpage_idx; 175 unsigned int hblock_offset_in_page; 176 unsigned int hoffset; 177 struct page *hpage; 178 179 /* 180 * The index of the block in the current level; also the index 181 * of that block's hash within the next level. 182 */ 183 next_hidx = hidx >> params->log_arity; 184 185 /* Index of the hash block in the tree overall */ 186 hblock_idx = params->level_start[level] + next_hidx; 187 188 /* Index of the hash page in the tree overall */ 189 hpage_idx = hblock_idx >> params->log_blocks_per_page; 190 191 /* Byte offset of the hash block within the page */ 192 hblock_offset_in_page = 193 (hblock_idx << params->log_blocksize) & ~PAGE_MASK; 194 195 /* Byte offset of the hash within the page */ 196 hoffset = hblock_offset_in_page + 197 ((hidx << params->log_digestsize) & 198 (params->block_size - 1)); 199 200 hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, 201 hpage_idx, level == 0 ? min(max_ra_pages, 202 params->tree_pages - hpage_idx) : 0); 203 if (IS_ERR(hpage)) { 204 err = PTR_ERR(hpage); 205 fsverity_err(inode, 206 "Error %d reading Merkle tree page %lu", 207 err, hpage_idx); 208 goto out; 209 } 210 if (is_hash_block_verified(vi, hpage, hblock_idx)) { 211 memcpy_from_page(_want_hash, hpage, hoffset, hsize); 212 want_hash = _want_hash; 213 put_page(hpage); 214 goto descend; 215 } 216 hblocks[level].page = hpage; 217 hblocks[level].index = hblock_idx; 218 hblocks[level].offset_in_page = hblock_offset_in_page; 219 hblocks[level].hoffset = hoffset; 220 hidx = next_hidx; 221 } 222 223 want_hash = vi->root_hash; 224 descend: 225 /* Descend the tree verifying hash blocks. */ 226 for (; level > 0; level--) { 227 struct page *hpage = hblocks[level - 1].page; 228 unsigned long hblock_idx = hblocks[level - 1].index; 229 unsigned int hblock_offset_in_page = 230 hblocks[level - 1].offset_in_page; 231 unsigned int hoffset = hblocks[level - 1].hoffset; 232 233 err = fsverity_hash_block(params, inode, req, hpage, 234 hblock_offset_in_page, real_hash); 235 if (err) 236 goto out; 237 err = cmp_hashes(vi, want_hash, real_hash, data_pos, level - 1); 238 if (err) 239 goto out; 240 /* 241 * Mark the hash block as verified. This must be atomic and 242 * idempotent, as the same hash block might be verified by 243 * multiple threads concurrently. 244 */ 245 if (vi->hash_block_verified) 246 set_bit(hblock_idx, vi->hash_block_verified); 247 else 248 SetPageChecked(hpage); 249 memcpy_from_page(_want_hash, hpage, hoffset, hsize); 250 want_hash = _want_hash; 251 put_page(hpage); 252 } 253 254 /* Finally, verify the data block. */ 255 err = fsverity_hash_block(params, inode, req, data_page, 256 dblock_offset_in_page, real_hash); 257 if (err) 258 goto out; 259 err = cmp_hashes(vi, want_hash, real_hash, data_pos, -1); 260 out: 261 for (; level > 0; level--) 262 put_page(hblocks[level - 1].page); 263 264 return err == 0; 265 } 266 267 static bool 268 verify_data_blocks(struct inode *inode, struct fsverity_info *vi, 269 struct ahash_request *req, struct folio *data_folio, 270 size_t len, size_t offset, unsigned long max_ra_pages) 271 { 272 const unsigned int block_size = vi->tree_params.block_size; 273 u64 pos = (u64)data_folio->index << PAGE_SHIFT; 274 275 if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size))) 276 return false; 277 if (WARN_ON_ONCE(!folio_test_locked(data_folio) || 278 folio_test_uptodate(data_folio))) 279 return false; 280 do { 281 struct page *data_page = 282 folio_page(data_folio, offset >> PAGE_SHIFT); 283 284 if (!verify_data_block(inode, vi, req, data_page, pos + offset, 285 offset & ~PAGE_MASK, max_ra_pages)) 286 return false; 287 offset += block_size; 288 len -= block_size; 289 } while (len); 290 return true; 291 } 292 293 /** 294 * fsverity_verify_blocks() - verify data in a folio 295 * @folio: the folio containing the data to verify 296 * @len: the length of the data to verify in the folio 297 * @offset: the offset of the data to verify in the folio 298 * 299 * Verify data that has just been read from a verity file. The data must be 300 * located in a pagecache folio that is still locked and not yet uptodate. The 301 * length and offset of the data must be Merkle tree block size aligned. 302 * 303 * Return: %true if the data is valid, else %false. 304 */ 305 bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset) 306 { 307 struct inode *inode = folio->mapping->host; 308 struct fsverity_info *vi = inode->i_verity_info; 309 struct ahash_request *req; 310 bool valid; 311 312 /* This allocation never fails, since it's mempool-backed. */ 313 req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS); 314 315 valid = verify_data_blocks(inode, vi, req, folio, len, offset, 0); 316 317 fsverity_free_hash_request(vi->tree_params.hash_alg, req); 318 319 return valid; 320 } 321 EXPORT_SYMBOL_GPL(fsverity_verify_blocks); 322 323 #ifdef CONFIG_BLOCK 324 /** 325 * fsverity_verify_bio() - verify a 'read' bio that has just completed 326 * @bio: the bio to verify 327 * 328 * Verify the bio's data against the file's Merkle tree. All bio data segments 329 * must be aligned to the file's Merkle tree block size. If any data fails 330 * verification, then bio->bi_status is set to an error status. 331 * 332 * This is a helper function for use by the ->readahead() method of filesystems 333 * that issue bios to read data directly into the page cache. Filesystems that 334 * populate the page cache without issuing bios (e.g. non block-based 335 * filesystems) must instead call fsverity_verify_page() directly on each page. 336 * All filesystems must also call fsverity_verify_page() on holes. 337 */ 338 void fsverity_verify_bio(struct bio *bio) 339 { 340 struct inode *inode = bio_first_page_all(bio)->mapping->host; 341 struct fsverity_info *vi = inode->i_verity_info; 342 struct ahash_request *req; 343 struct folio_iter fi; 344 unsigned long max_ra_pages = 0; 345 346 /* This allocation never fails, since it's mempool-backed. */ 347 req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS); 348 349 if (bio->bi_opf & REQ_RAHEAD) { 350 /* 351 * If this bio is for data readahead, then we also do readahead 352 * of the first (largest) level of the Merkle tree. Namely, 353 * when a Merkle tree page is read, we also try to piggy-back on 354 * some additional pages -- up to 1/4 the number of data pages. 355 * 356 * This improves sequential read performance, as it greatly 357 * reduces the number of I/O requests made to the Merkle tree. 358 */ 359 max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2); 360 } 361 362 bio_for_each_folio_all(fi, bio) { 363 if (!verify_data_blocks(inode, vi, req, fi.folio, fi.length, 364 fi.offset, max_ra_pages)) { 365 bio->bi_status = BLK_STS_IOERR; 366 break; 367 } 368 } 369 370 fsverity_free_hash_request(vi->tree_params.hash_alg, req); 371 } 372 EXPORT_SYMBOL_GPL(fsverity_verify_bio); 373 #endif /* CONFIG_BLOCK */ 374 375 /** 376 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue 377 * @work: the work to enqueue 378 * 379 * Enqueue verification work for asynchronous processing. 380 */ 381 void fsverity_enqueue_verify_work(struct work_struct *work) 382 { 383 queue_work(fsverity_read_workqueue, work); 384 } 385 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work); 386 387 int __init fsverity_init_workqueue(void) 388 { 389 /* 390 * Use an unbound workqueue to allow bios to be verified in parallel 391 * even when they happen to complete on the same CPU. This sacrifices 392 * locality, but it's worthwhile since hashing is CPU-intensive. 393 * 394 * Also use a high-priority workqueue to prioritize verification work, 395 * which blocks reads from completing, over regular application tasks. 396 */ 397 fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue", 398 WQ_UNBOUND | WQ_HIGHPRI, 399 num_online_cpus()); 400 if (!fsverity_read_workqueue) 401 return -ENOMEM; 402 return 0; 403 } 404 405 void __init fsverity_exit_workqueue(void) 406 { 407 destroy_workqueue(fsverity_read_workqueue); 408 fsverity_read_workqueue = NULL; 409 } 410