xref: /openbmc/linux/fs/verity/verify.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data verification functions, i.e. hooks for ->readahead()
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 #include "fsverity_private.h"
9 
10 #include <crypto/hash.h>
11 #include <linux/bio.h>
12 #include <linux/ratelimit.h>
13 
14 static struct workqueue_struct *fsverity_read_workqueue;
15 
16 /**
17  * hash_at_level() - compute the location of the block's hash at the given level
18  *
19  * @params:	(in) the Merkle tree parameters
20  * @dindex:	(in) the index of the data block being verified
21  * @level:	(in) the level of hash we want (0 is leaf level)
22  * @hindex:	(out) the index of the hash block containing the wanted hash
23  * @hoffset:	(out) the byte offset to the wanted hash within the hash block
24  */
25 static void hash_at_level(const struct merkle_tree_params *params,
26 			  pgoff_t dindex, unsigned int level, pgoff_t *hindex,
27 			  unsigned int *hoffset)
28 {
29 	pgoff_t position;
30 
31 	/* Offset of the hash within the level's region, in hashes */
32 	position = dindex >> (level * params->log_arity);
33 
34 	/* Index of the hash block in the tree overall */
35 	*hindex = params->level_start[level] + (position >> params->log_arity);
36 
37 	/* Offset of the wanted hash (in bytes) within the hash block */
38 	*hoffset = (position & ((1 << params->log_arity) - 1)) <<
39 		   (params->log_blocksize - params->log_arity);
40 }
41 
42 static inline int cmp_hashes(const struct fsverity_info *vi,
43 			     const u8 *want_hash, const u8 *real_hash,
44 			     pgoff_t index, int level)
45 {
46 	const unsigned int hsize = vi->tree_params.digest_size;
47 
48 	if (memcmp(want_hash, real_hash, hsize) == 0)
49 		return 0;
50 
51 	fsverity_err(vi->inode,
52 		     "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
53 		     index, level,
54 		     vi->tree_params.hash_alg->name, hsize, want_hash,
55 		     vi->tree_params.hash_alg->name, hsize, real_hash);
56 	return -EBADMSG;
57 }
58 
59 /*
60  * Verify a single data page against the file's Merkle tree.
61  *
62  * In principle, we need to verify the entire path to the root node.  However,
63  * for efficiency the filesystem may cache the hash pages.  Therefore we need
64  * only ascend the tree until an already-verified page is seen, as indicated by
65  * the PageChecked bit being set; then verify the path to that page.
66  *
67  * This code currently only supports the case where the verity block size is
68  * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we
69  * wouldn't be able to use the PageChecked bit.
70  *
71  * Note that multiple processes may race to verify a hash page and mark it
72  * Checked, but it doesn't matter; the result will be the same either way.
73  *
74  * Return: true if the page is valid, else false.
75  */
76 static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
77 			struct ahash_request *req, struct page *data_page,
78 			unsigned long level0_ra_pages)
79 {
80 	const struct merkle_tree_params *params = &vi->tree_params;
81 	const unsigned int hsize = params->digest_size;
82 	const pgoff_t index = data_page->index;
83 	int level;
84 	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
85 	const u8 *want_hash;
86 	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
87 	struct page *hpages[FS_VERITY_MAX_LEVELS];
88 	unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
89 	int err;
90 
91 	if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
92 		return false;
93 
94 	pr_debug_ratelimited("Verifying data page %lu...\n", index);
95 
96 	/*
97 	 * Starting at the leaf level, ascend the tree saving hash pages along
98 	 * the way until we find a verified hash page, indicated by PageChecked;
99 	 * or until we reach the root.
100 	 */
101 	for (level = 0; level < params->num_levels; level++) {
102 		pgoff_t hindex;
103 		unsigned int hoffset;
104 		struct page *hpage;
105 
106 		hash_at_level(params, index, level, &hindex, &hoffset);
107 
108 		pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n",
109 				     level, hindex, hoffset);
110 
111 		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
112 				level == 0 ? level0_ra_pages : 0);
113 		if (IS_ERR(hpage)) {
114 			err = PTR_ERR(hpage);
115 			fsverity_err(inode,
116 				     "Error %d reading Merkle tree page %lu",
117 				     err, hindex);
118 			goto out;
119 		}
120 
121 		if (PageChecked(hpage)) {
122 			memcpy_from_page(_want_hash, hpage, hoffset, hsize);
123 			want_hash = _want_hash;
124 			put_page(hpage);
125 			pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n",
126 					     params->hash_alg->name,
127 					     hsize, want_hash);
128 			goto descend;
129 		}
130 		pr_debug_ratelimited("Hash page not yet checked\n");
131 		hpages[level] = hpage;
132 		hoffsets[level] = hoffset;
133 	}
134 
135 	want_hash = vi->root_hash;
136 	pr_debug("Want root hash: %s:%*phN\n",
137 		 params->hash_alg->name, hsize, want_hash);
138 descend:
139 	/* Descend the tree verifying hash pages */
140 	for (; level > 0; level--) {
141 		struct page *hpage = hpages[level - 1];
142 		unsigned int hoffset = hoffsets[level - 1];
143 
144 		err = fsverity_hash_page(params, inode, req, hpage, real_hash);
145 		if (err)
146 			goto out;
147 		err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
148 		if (err)
149 			goto out;
150 		SetPageChecked(hpage);
151 		memcpy_from_page(_want_hash, hpage, hoffset, hsize);
152 		want_hash = _want_hash;
153 		put_page(hpage);
154 		pr_debug("Verified hash page at level %d, now want %s:%*phN\n",
155 			 level - 1, params->hash_alg->name, hsize, want_hash);
156 	}
157 
158 	/* Finally, verify the data page */
159 	err = fsverity_hash_page(params, inode, req, data_page, real_hash);
160 	if (err)
161 		goto out;
162 	err = cmp_hashes(vi, want_hash, real_hash, index, -1);
163 out:
164 	for (; level > 0; level--)
165 		put_page(hpages[level - 1]);
166 
167 	return err == 0;
168 }
169 
170 /**
171  * fsverity_verify_page() - verify a data page
172  * @page: the page to verity
173  *
174  * Verify a page that has just been read from a verity file.  The page must be a
175  * pagecache page that is still locked and not yet uptodate.
176  *
177  * Return: true if the page is valid, else false.
178  */
179 bool fsverity_verify_page(struct page *page)
180 {
181 	struct inode *inode = page->mapping->host;
182 	const struct fsverity_info *vi = inode->i_verity_info;
183 	struct ahash_request *req;
184 	bool valid;
185 
186 	/* This allocation never fails, since it's mempool-backed. */
187 	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
188 
189 	valid = verify_page(inode, vi, req, page, 0);
190 
191 	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
192 
193 	return valid;
194 }
195 EXPORT_SYMBOL_GPL(fsverity_verify_page);
196 
197 #ifdef CONFIG_BLOCK
198 /**
199  * fsverity_verify_bio() - verify a 'read' bio that has just completed
200  * @bio: the bio to verify
201  *
202  * Verify a set of pages that have just been read from a verity file.  The pages
203  * must be pagecache pages that are still locked and not yet uptodate.  Pages
204  * that fail verification are set to the Error state.  Verification is skipped
205  * for pages already in the Error state, e.g. due to fscrypt decryption failure.
206  *
207  * This is a helper function for use by the ->readahead() method of filesystems
208  * that issue bios to read data directly into the page cache.  Filesystems that
209  * populate the page cache without issuing bios (e.g. non block-based
210  * filesystems) must instead call fsverity_verify_page() directly on each page.
211  * All filesystems must also call fsverity_verify_page() on holes.
212  */
213 void fsverity_verify_bio(struct bio *bio)
214 {
215 	struct inode *inode = bio_first_page_all(bio)->mapping->host;
216 	const struct fsverity_info *vi = inode->i_verity_info;
217 	const struct merkle_tree_params *params = &vi->tree_params;
218 	struct ahash_request *req;
219 	struct bio_vec *bv;
220 	struct bvec_iter_all iter_all;
221 	unsigned long max_ra_pages = 0;
222 
223 	/* This allocation never fails, since it's mempool-backed. */
224 	req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS);
225 
226 	if (bio->bi_opf & REQ_RAHEAD) {
227 		/*
228 		 * If this bio is for data readahead, then we also do readahead
229 		 * of the first (largest) level of the Merkle tree.  Namely,
230 		 * when a Merkle tree page is read, we also try to piggy-back on
231 		 * some additional pages -- up to 1/4 the number of data pages.
232 		 *
233 		 * This improves sequential read performance, as it greatly
234 		 * reduces the number of I/O requests made to the Merkle tree.
235 		 */
236 		bio_for_each_segment_all(bv, bio, iter_all)
237 			max_ra_pages++;
238 		max_ra_pages /= 4;
239 	}
240 
241 	bio_for_each_segment_all(bv, bio, iter_all) {
242 		struct page *page = bv->bv_page;
243 		unsigned long level0_index = page->index >> params->log_arity;
244 		unsigned long level0_ra_pages =
245 			min(max_ra_pages, params->level0_blocks - level0_index);
246 
247 		if (!PageError(page) &&
248 		    !verify_page(inode, vi, req, page, level0_ra_pages))
249 			SetPageError(page);
250 	}
251 
252 	fsverity_free_hash_request(params->hash_alg, req);
253 }
254 EXPORT_SYMBOL_GPL(fsverity_verify_bio);
255 #endif /* CONFIG_BLOCK */
256 
257 /**
258  * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
259  * @work: the work to enqueue
260  *
261  * Enqueue verification work for asynchronous processing.
262  */
263 void fsverity_enqueue_verify_work(struct work_struct *work)
264 {
265 	queue_work(fsverity_read_workqueue, work);
266 }
267 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
268 
269 int __init fsverity_init_workqueue(void)
270 {
271 	/*
272 	 * Use an unbound workqueue to allow bios to be verified in parallel
273 	 * even when they happen to complete on the same CPU.  This sacrifices
274 	 * locality, but it's worthwhile since hashing is CPU-intensive.
275 	 *
276 	 * Also use a high-priority workqueue to prioritize verification work,
277 	 * which blocks reads from completing, over regular application tasks.
278 	 */
279 	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
280 						  WQ_UNBOUND | WQ_HIGHPRI,
281 						  num_online_cpus());
282 	if (!fsverity_read_workqueue)
283 		return -ENOMEM;
284 	return 0;
285 }
286 
287 void __init fsverity_exit_workqueue(void)
288 {
289 	destroy_workqueue(fsverity_read_workqueue);
290 	fsverity_read_workqueue = NULL;
291 }
292