xref: /openbmc/linux/fs/verity/verify.c (revision 579a12f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data verification functions, i.e. hooks for ->readahead()
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 #include "fsverity_private.h"
9 
10 #include <crypto/hash.h>
11 #include <linux/bio.h>
12 
13 static struct workqueue_struct *fsverity_read_workqueue;
14 
15 /**
16  * hash_at_level() - compute the location of the block's hash at the given level
17  *
18  * @params:	(in) the Merkle tree parameters
19  * @dindex:	(in) the index of the data block being verified
20  * @level:	(in) the level of hash we want (0 is leaf level)
21  * @hindex:	(out) the index of the hash block containing the wanted hash
22  * @hoffset:	(out) the byte offset to the wanted hash within the hash block
23  */
24 static void hash_at_level(const struct merkle_tree_params *params,
25 			  pgoff_t dindex, unsigned int level, pgoff_t *hindex,
26 			  unsigned int *hoffset)
27 {
28 	pgoff_t position;
29 
30 	/* Offset of the hash within the level's region, in hashes */
31 	position = dindex >> (level * params->log_arity);
32 
33 	/* Index of the hash block in the tree overall */
34 	*hindex = params->level_start[level] + (position >> params->log_arity);
35 
36 	/* Offset of the wanted hash (in bytes) within the hash block */
37 	*hoffset = (position & ((1 << params->log_arity) - 1)) <<
38 		   params->log_digestsize;
39 }
40 
41 static inline int cmp_hashes(const struct fsverity_info *vi,
42 			     const u8 *want_hash, const u8 *real_hash,
43 			     pgoff_t index, int level)
44 {
45 	const unsigned int hsize = vi->tree_params.digest_size;
46 
47 	if (memcmp(want_hash, real_hash, hsize) == 0)
48 		return 0;
49 
50 	fsverity_err(vi->inode,
51 		     "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
52 		     index, level,
53 		     vi->tree_params.hash_alg->name, hsize, want_hash,
54 		     vi->tree_params.hash_alg->name, hsize, real_hash);
55 	return -EBADMSG;
56 }
57 
58 /*
59  * Verify a single data page against the file's Merkle tree.
60  *
61  * In principle, we need to verify the entire path to the root node.  However,
62  * for efficiency the filesystem may cache the hash pages.  Therefore we need
63  * only ascend the tree until an already-verified page is seen, as indicated by
64  * the PageChecked bit being set; then verify the path to that page.
65  *
66  * This code currently only supports the case where the verity block size is
67  * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we
68  * wouldn't be able to use the PageChecked bit.
69  *
70  * Note that multiple processes may race to verify a hash page and mark it
71  * Checked, but it doesn't matter; the result will be the same either way.
72  *
73  * Return: true if the page is valid, else false.
74  */
75 static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
76 			struct ahash_request *req, struct page *data_page,
77 			unsigned long max_ra_pages)
78 {
79 	const struct merkle_tree_params *params = &vi->tree_params;
80 	const unsigned int hsize = params->digest_size;
81 	const pgoff_t index = data_page->index;
82 	int level;
83 	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
84 	const u8 *want_hash;
85 	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
86 	struct page *hpages[FS_VERITY_MAX_LEVELS];
87 	unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
88 	int err;
89 
90 	if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
91 		return false;
92 
93 	/*
94 	 * Starting at the leaf level, ascend the tree saving hash pages along
95 	 * the way until we find a verified hash page, indicated by PageChecked;
96 	 * or until we reach the root.
97 	 */
98 	for (level = 0; level < params->num_levels; level++) {
99 		pgoff_t hindex;
100 		unsigned int hoffset;
101 		struct page *hpage;
102 
103 		hash_at_level(params, index, level, &hindex, &hoffset);
104 
105 		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
106 				level == 0 ? min(max_ra_pages,
107 					params->tree_pages - hindex) : 0);
108 		if (IS_ERR(hpage)) {
109 			err = PTR_ERR(hpage);
110 			fsverity_err(inode,
111 				     "Error %d reading Merkle tree page %lu",
112 				     err, hindex);
113 			goto out;
114 		}
115 
116 		if (PageChecked(hpage)) {
117 			memcpy_from_page(_want_hash, hpage, hoffset, hsize);
118 			want_hash = _want_hash;
119 			put_page(hpage);
120 			goto descend;
121 		}
122 		hpages[level] = hpage;
123 		hoffsets[level] = hoffset;
124 	}
125 
126 	want_hash = vi->root_hash;
127 descend:
128 	/* Descend the tree verifying hash pages */
129 	for (; level > 0; level--) {
130 		struct page *hpage = hpages[level - 1];
131 		unsigned int hoffset = hoffsets[level - 1];
132 
133 		err = fsverity_hash_page(params, inode, req, hpage, real_hash);
134 		if (err)
135 			goto out;
136 		err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
137 		if (err)
138 			goto out;
139 		SetPageChecked(hpage);
140 		memcpy_from_page(_want_hash, hpage, hoffset, hsize);
141 		want_hash = _want_hash;
142 		put_page(hpage);
143 	}
144 
145 	/* Finally, verify the data page */
146 	err = fsverity_hash_page(params, inode, req, data_page, real_hash);
147 	if (err)
148 		goto out;
149 	err = cmp_hashes(vi, want_hash, real_hash, index, -1);
150 out:
151 	for (; level > 0; level--)
152 		put_page(hpages[level - 1]);
153 
154 	return err == 0;
155 }
156 
157 /**
158  * fsverity_verify_page() - verify a data page
159  * @page: the page to verity
160  *
161  * Verify a page that has just been read from a verity file.  The page must be a
162  * pagecache page that is still locked and not yet uptodate.
163  *
164  * Return: true if the page is valid, else false.
165  */
166 bool fsverity_verify_page(struct page *page)
167 {
168 	struct inode *inode = page->mapping->host;
169 	const struct fsverity_info *vi = inode->i_verity_info;
170 	struct ahash_request *req;
171 	bool valid;
172 
173 	/* This allocation never fails, since it's mempool-backed. */
174 	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
175 
176 	valid = verify_page(inode, vi, req, page, 0);
177 
178 	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
179 
180 	return valid;
181 }
182 EXPORT_SYMBOL_GPL(fsverity_verify_page);
183 
184 #ifdef CONFIG_BLOCK
185 /**
186  * fsverity_verify_bio() - verify a 'read' bio that has just completed
187  * @bio: the bio to verify
188  *
189  * Verify a set of pages that have just been read from a verity file.  The pages
190  * must be pagecache pages that are still locked and not yet uptodate.  If a
191  * page fails verification, then bio->bi_status is set to an error status.
192  *
193  * This is a helper function for use by the ->readahead() method of filesystems
194  * that issue bios to read data directly into the page cache.  Filesystems that
195  * populate the page cache without issuing bios (e.g. non block-based
196  * filesystems) must instead call fsverity_verify_page() directly on each page.
197  * All filesystems must also call fsverity_verify_page() on holes.
198  */
199 void fsverity_verify_bio(struct bio *bio)
200 {
201 	struct inode *inode = bio_first_page_all(bio)->mapping->host;
202 	const struct fsverity_info *vi = inode->i_verity_info;
203 	struct ahash_request *req;
204 	struct bio_vec *bv;
205 	struct bvec_iter_all iter_all;
206 	unsigned long max_ra_pages = 0;
207 
208 	/* This allocation never fails, since it's mempool-backed. */
209 	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
210 
211 	if (bio->bi_opf & REQ_RAHEAD) {
212 		/*
213 		 * If this bio is for data readahead, then we also do readahead
214 		 * of the first (largest) level of the Merkle tree.  Namely,
215 		 * when a Merkle tree page is read, we also try to piggy-back on
216 		 * some additional pages -- up to 1/4 the number of data pages.
217 		 *
218 		 * This improves sequential read performance, as it greatly
219 		 * reduces the number of I/O requests made to the Merkle tree.
220 		 */
221 		max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
222 	}
223 
224 	bio_for_each_segment_all(bv, bio, iter_all) {
225 		if (!verify_page(inode, vi, req, bv->bv_page, max_ra_pages)) {
226 			bio->bi_status = BLK_STS_IOERR;
227 			break;
228 		}
229 	}
230 
231 	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
232 }
233 EXPORT_SYMBOL_GPL(fsverity_verify_bio);
234 #endif /* CONFIG_BLOCK */
235 
236 /**
237  * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
238  * @work: the work to enqueue
239  *
240  * Enqueue verification work for asynchronous processing.
241  */
242 void fsverity_enqueue_verify_work(struct work_struct *work)
243 {
244 	queue_work(fsverity_read_workqueue, work);
245 }
246 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
247 
248 int __init fsverity_init_workqueue(void)
249 {
250 	/*
251 	 * Use an unbound workqueue to allow bios to be verified in parallel
252 	 * even when they happen to complete on the same CPU.  This sacrifices
253 	 * locality, but it's worthwhile since hashing is CPU-intensive.
254 	 *
255 	 * Also use a high-priority workqueue to prioritize verification work,
256 	 * which blocks reads from completing, over regular application tasks.
257 	 */
258 	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
259 						  WQ_UNBOUND | WQ_HIGHPRI,
260 						  num_online_cpus());
261 	if (!fsverity_read_workqueue)
262 		return -ENOMEM;
263 	return 0;
264 }
265 
266 void __init fsverity_exit_workqueue(void)
267 {
268 	destroy_workqueue(fsverity_read_workqueue);
269 	fsverity_read_workqueue = NULL;
270 }
271