1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 refcount_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* memory mappings are changing because of non-cooperative event */ 66 bool mmap_changing; 67 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 68 struct mm_struct *mm; 69 }; 70 71 struct userfaultfd_fork_ctx { 72 struct userfaultfd_ctx *orig; 73 struct userfaultfd_ctx *new; 74 struct list_head list; 75 }; 76 77 struct userfaultfd_unmap_ctx { 78 struct userfaultfd_ctx *ctx; 79 unsigned long start; 80 unsigned long end; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_wait_queue { 85 struct uffd_msg msg; 86 wait_queue_entry_t wq; 87 struct userfaultfd_ctx *ctx; 88 bool waken; 89 }; 90 91 struct userfaultfd_wake_range { 92 unsigned long start; 93 unsigned long len; 94 }; 95 96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 97 int wake_flags, void *key) 98 { 99 struct userfaultfd_wake_range *range = key; 100 int ret; 101 struct userfaultfd_wait_queue *uwq; 102 unsigned long start, len; 103 104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 105 ret = 0; 106 /* len == 0 means wake all */ 107 start = range->start; 108 len = range->len; 109 if (len && (start > uwq->msg.arg.pagefault.address || 110 start + len <= uwq->msg.arg.pagefault.address)) 111 goto out; 112 WRITE_ONCE(uwq->waken, true); 113 /* 114 * The Program-Order guarantees provided by the scheduler 115 * ensure uwq->waken is visible before the task is woken. 116 */ 117 ret = wake_up_state(wq->private, mode); 118 if (ret) { 119 /* 120 * Wake only once, autoremove behavior. 121 * 122 * After the effect of list_del_init is visible to the other 123 * CPUs, the waitqueue may disappear from under us, see the 124 * !list_empty_careful() in handle_userfault(). 125 * 126 * try_to_wake_up() has an implicit smp_mb(), and the 127 * wq->private is read before calling the extern function 128 * "wake_up_state" (which in turns calls try_to_wake_up). 129 */ 130 list_del_init(&wq->entry); 131 } 132 out: 133 return ret; 134 } 135 136 /** 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 138 * context. 139 * @ctx: [in] Pointer to the userfaultfd context. 140 */ 141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 142 { 143 refcount_inc(&ctx->refcount); 144 } 145 146 /** 147 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to userfaultfd context. 150 * 151 * The userfaultfd context reference must have been previously acquired either 152 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 153 */ 154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 155 { 156 if (refcount_dec_and_test(&ctx->refcount)) { 157 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 158 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 159 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 160 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 161 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 165 mmdrop(ctx->mm); 166 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 167 } 168 } 169 170 static inline void msg_init(struct uffd_msg *msg) 171 { 172 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 173 /* 174 * Must use memset to zero out the paddings or kernel data is 175 * leaked to userland. 176 */ 177 memset(msg, 0, sizeof(struct uffd_msg)); 178 } 179 180 static inline struct uffd_msg userfault_msg(unsigned long address, 181 unsigned int flags, 182 unsigned long reason, 183 unsigned int features) 184 { 185 struct uffd_msg msg; 186 msg_init(&msg); 187 msg.event = UFFD_EVENT_PAGEFAULT; 188 msg.arg.pagefault.address = address; 189 if (flags & FAULT_FLAG_WRITE) 190 /* 191 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 192 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 193 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 194 * was a read fault, otherwise if set it means it's 195 * a write fault. 196 */ 197 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 198 if (reason & VM_UFFD_WP) 199 /* 200 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 201 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 202 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 203 * a missing fault, otherwise if set it means it's a 204 * write protect fault. 205 */ 206 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 207 if (features & UFFD_FEATURE_THREAD_ID) 208 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 209 return msg; 210 } 211 212 #ifdef CONFIG_HUGETLB_PAGE 213 /* 214 * Same functionality as userfaultfd_must_wait below with modifications for 215 * hugepmd ranges. 216 */ 217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 218 struct vm_area_struct *vma, 219 unsigned long address, 220 unsigned long flags, 221 unsigned long reason) 222 { 223 struct mm_struct *mm = ctx->mm; 224 pte_t *ptep, pte; 225 bool ret = true; 226 227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 228 229 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 230 231 if (!ptep) 232 goto out; 233 234 ret = false; 235 pte = huge_ptep_get(ptep); 236 237 /* 238 * Lockless access: we're in a wait_event so it's ok if it 239 * changes under us. 240 */ 241 if (huge_pte_none(pte)) 242 ret = true; 243 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 244 ret = true; 245 out: 246 return ret; 247 } 248 #else 249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 250 struct vm_area_struct *vma, 251 unsigned long address, 252 unsigned long flags, 253 unsigned long reason) 254 { 255 return false; /* should never get here */ 256 } 257 #endif /* CONFIG_HUGETLB_PAGE */ 258 259 /* 260 * Verify the pagetables are still not ok after having reigstered into 261 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 262 * userfault that has already been resolved, if userfaultfd_read and 263 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 264 * threads. 265 */ 266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 267 unsigned long address, 268 unsigned long flags, 269 unsigned long reason) 270 { 271 struct mm_struct *mm = ctx->mm; 272 pgd_t *pgd; 273 p4d_t *p4d; 274 pud_t *pud; 275 pmd_t *pmd, _pmd; 276 pte_t *pte; 277 bool ret = true; 278 279 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 280 281 pgd = pgd_offset(mm, address); 282 if (!pgd_present(*pgd)) 283 goto out; 284 p4d = p4d_offset(pgd, address); 285 if (!p4d_present(*p4d)) 286 goto out; 287 pud = pud_offset(p4d, address); 288 if (!pud_present(*pud)) 289 goto out; 290 pmd = pmd_offset(pud, address); 291 /* 292 * READ_ONCE must function as a barrier with narrower scope 293 * and it must be equivalent to: 294 * _pmd = *pmd; barrier(); 295 * 296 * This is to deal with the instability (as in 297 * pmd_trans_unstable) of the pmd. 298 */ 299 _pmd = READ_ONCE(*pmd); 300 if (pmd_none(_pmd)) 301 goto out; 302 303 ret = false; 304 if (!pmd_present(_pmd)) 305 goto out; 306 307 if (pmd_trans_huge(_pmd)) 308 goto out; 309 310 /* 311 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 312 * and use the standard pte_offset_map() instead of parsing _pmd. 313 */ 314 pte = pte_offset_map(pmd, address); 315 /* 316 * Lockless access: we're in a wait_event so it's ok if it 317 * changes under us. 318 */ 319 if (pte_none(*pte)) 320 ret = true; 321 pte_unmap(pte); 322 323 out: 324 return ret; 325 } 326 327 /* 328 * The locking rules involved in returning VM_FAULT_RETRY depending on 329 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 330 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 331 * recommendation in __lock_page_or_retry is not an understatement. 332 * 333 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 334 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 335 * not set. 336 * 337 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 338 * set, VM_FAULT_RETRY can still be returned if and only if there are 339 * fatal_signal_pending()s, and the mmap_sem must be released before 340 * returning it. 341 */ 342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 343 { 344 struct mm_struct *mm = vmf->vma->vm_mm; 345 struct userfaultfd_ctx *ctx; 346 struct userfaultfd_wait_queue uwq; 347 vm_fault_t ret = VM_FAULT_SIGBUS; 348 bool must_wait, return_to_userland; 349 long blocking_state; 350 351 /* 352 * We don't do userfault handling for the final child pid update. 353 * 354 * We also don't do userfault handling during 355 * coredumping. hugetlbfs has the special 356 * follow_hugetlb_page() to skip missing pages in the 357 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 358 * the no_page_table() helper in follow_page_mask(), but the 359 * shmem_vm_ops->fault method is invoked even during 360 * coredumping without mmap_sem and it ends up here. 361 */ 362 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 363 goto out; 364 365 /* 366 * Coredumping runs without mmap_sem so we can only check that 367 * the mmap_sem is held, if PF_DUMPCORE was not set. 368 */ 369 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 370 371 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 372 if (!ctx) 373 goto out; 374 375 BUG_ON(ctx->mm != mm); 376 377 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 378 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 379 380 if (ctx->features & UFFD_FEATURE_SIGBUS) 381 goto out; 382 383 /* 384 * If it's already released don't get it. This avoids to loop 385 * in __get_user_pages if userfaultfd_release waits on the 386 * caller of handle_userfault to release the mmap_sem. 387 */ 388 if (unlikely(READ_ONCE(ctx->released))) { 389 /* 390 * Don't return VM_FAULT_SIGBUS in this case, so a non 391 * cooperative manager can close the uffd after the 392 * last UFFDIO_COPY, without risking to trigger an 393 * involuntary SIGBUS if the process was starting the 394 * userfaultfd while the userfaultfd was still armed 395 * (but after the last UFFDIO_COPY). If the uffd 396 * wasn't already closed when the userfault reached 397 * this point, that would normally be solved by 398 * userfaultfd_must_wait returning 'false'. 399 * 400 * If we were to return VM_FAULT_SIGBUS here, the non 401 * cooperative manager would be instead forced to 402 * always call UFFDIO_UNREGISTER before it can safely 403 * close the uffd. 404 */ 405 ret = VM_FAULT_NOPAGE; 406 goto out; 407 } 408 409 /* 410 * Check that we can return VM_FAULT_RETRY. 411 * 412 * NOTE: it should become possible to return VM_FAULT_RETRY 413 * even if FAULT_FLAG_TRIED is set without leading to gup() 414 * -EBUSY failures, if the userfaultfd is to be extended for 415 * VM_UFFD_WP tracking and we intend to arm the userfault 416 * without first stopping userland access to the memory. For 417 * VM_UFFD_MISSING userfaults this is enough for now. 418 */ 419 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 420 /* 421 * Validate the invariant that nowait must allow retry 422 * to be sure not to return SIGBUS erroneously on 423 * nowait invocations. 424 */ 425 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 426 #ifdef CONFIG_DEBUG_VM 427 if (printk_ratelimit()) { 428 printk(KERN_WARNING 429 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 430 vmf->flags); 431 dump_stack(); 432 } 433 #endif 434 goto out; 435 } 436 437 /* 438 * Handle nowait, not much to do other than tell it to retry 439 * and wait. 440 */ 441 ret = VM_FAULT_RETRY; 442 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 443 goto out; 444 445 /* take the reference before dropping the mmap_sem */ 446 userfaultfd_ctx_get(ctx); 447 448 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 449 uwq.wq.private = current; 450 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 451 ctx->features); 452 uwq.ctx = ctx; 453 uwq.waken = false; 454 455 return_to_userland = 456 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 457 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 458 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 459 TASK_KILLABLE; 460 461 spin_lock(&ctx->fault_pending_wqh.lock); 462 /* 463 * After the __add_wait_queue the uwq is visible to userland 464 * through poll/read(). 465 */ 466 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 467 /* 468 * The smp_mb() after __set_current_state prevents the reads 469 * following the spin_unlock to happen before the list_add in 470 * __add_wait_queue. 471 */ 472 set_current_state(blocking_state); 473 spin_unlock(&ctx->fault_pending_wqh.lock); 474 475 if (!is_vm_hugetlb_page(vmf->vma)) 476 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 477 reason); 478 else 479 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 480 vmf->address, 481 vmf->flags, reason); 482 up_read(&mm->mmap_sem); 483 484 if (likely(must_wait && !READ_ONCE(ctx->released) && 485 (return_to_userland ? !signal_pending(current) : 486 !fatal_signal_pending(current)))) { 487 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 488 schedule(); 489 ret |= VM_FAULT_MAJOR; 490 491 /* 492 * False wakeups can orginate even from rwsem before 493 * up_read() however userfaults will wait either for a 494 * targeted wakeup on the specific uwq waitqueue from 495 * wake_userfault() or for signals or for uffd 496 * release. 497 */ 498 while (!READ_ONCE(uwq.waken)) { 499 /* 500 * This needs the full smp_store_mb() 501 * guarantee as the state write must be 502 * visible to other CPUs before reading 503 * uwq.waken from other CPUs. 504 */ 505 set_current_state(blocking_state); 506 if (READ_ONCE(uwq.waken) || 507 READ_ONCE(ctx->released) || 508 (return_to_userland ? signal_pending(current) : 509 fatal_signal_pending(current))) 510 break; 511 schedule(); 512 } 513 } 514 515 __set_current_state(TASK_RUNNING); 516 517 if (return_to_userland) { 518 if (signal_pending(current) && 519 !fatal_signal_pending(current)) { 520 /* 521 * If we got a SIGSTOP or SIGCONT and this is 522 * a normal userland page fault, just let 523 * userland return so the signal will be 524 * handled and gdb debugging works. The page 525 * fault code immediately after we return from 526 * this function is going to release the 527 * mmap_sem and it's not depending on it 528 * (unlike gup would if we were not to return 529 * VM_FAULT_RETRY). 530 * 531 * If a fatal signal is pending we still take 532 * the streamlined VM_FAULT_RETRY failure path 533 * and there's no need to retake the mmap_sem 534 * in such case. 535 */ 536 down_read(&mm->mmap_sem); 537 ret = VM_FAULT_NOPAGE; 538 } 539 } 540 541 /* 542 * Here we race with the list_del; list_add in 543 * userfaultfd_ctx_read(), however because we don't ever run 544 * list_del_init() to refile across the two lists, the prev 545 * and next pointers will never point to self. list_add also 546 * would never let any of the two pointers to point to 547 * self. So list_empty_careful won't risk to see both pointers 548 * pointing to self at any time during the list refile. The 549 * only case where list_del_init() is called is the full 550 * removal in the wake function and there we don't re-list_add 551 * and it's fine not to block on the spinlock. The uwq on this 552 * kernel stack can be released after the list_del_init. 553 */ 554 if (!list_empty_careful(&uwq.wq.entry)) { 555 spin_lock(&ctx->fault_pending_wqh.lock); 556 /* 557 * No need of list_del_init(), the uwq on the stack 558 * will be freed shortly anyway. 559 */ 560 list_del(&uwq.wq.entry); 561 spin_unlock(&ctx->fault_pending_wqh.lock); 562 } 563 564 /* 565 * ctx may go away after this if the userfault pseudo fd is 566 * already released. 567 */ 568 userfaultfd_ctx_put(ctx); 569 570 out: 571 return ret; 572 } 573 574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 575 struct userfaultfd_wait_queue *ewq) 576 { 577 struct userfaultfd_ctx *release_new_ctx; 578 579 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 580 goto out; 581 582 ewq->ctx = ctx; 583 init_waitqueue_entry(&ewq->wq, current); 584 release_new_ctx = NULL; 585 586 spin_lock(&ctx->event_wqh.lock); 587 /* 588 * After the __add_wait_queue the uwq is visible to userland 589 * through poll/read(). 590 */ 591 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 592 for (;;) { 593 set_current_state(TASK_KILLABLE); 594 if (ewq->msg.event == 0) 595 break; 596 if (READ_ONCE(ctx->released) || 597 fatal_signal_pending(current)) { 598 /* 599 * &ewq->wq may be queued in fork_event, but 600 * __remove_wait_queue ignores the head 601 * parameter. It would be a problem if it 602 * didn't. 603 */ 604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 605 if (ewq->msg.event == UFFD_EVENT_FORK) { 606 struct userfaultfd_ctx *new; 607 608 new = (struct userfaultfd_ctx *) 609 (unsigned long) 610 ewq->msg.arg.reserved.reserved1; 611 release_new_ctx = new; 612 } 613 break; 614 } 615 616 spin_unlock(&ctx->event_wqh.lock); 617 618 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 619 schedule(); 620 621 spin_lock(&ctx->event_wqh.lock); 622 } 623 __set_current_state(TASK_RUNNING); 624 spin_unlock(&ctx->event_wqh.lock); 625 626 if (release_new_ctx) { 627 struct vm_area_struct *vma; 628 struct mm_struct *mm = release_new_ctx->mm; 629 630 /* the various vma->vm_userfaultfd_ctx still points to it */ 631 down_write(&mm->mmap_sem); 632 for (vma = mm->mmap; vma; vma = vma->vm_next) 633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 636 } 637 up_write(&mm->mmap_sem); 638 639 userfaultfd_ctx_put(release_new_ctx); 640 } 641 642 /* 643 * ctx may go away after this if the userfault pseudo fd is 644 * already released. 645 */ 646 out: 647 WRITE_ONCE(ctx->mmap_changing, false); 648 userfaultfd_ctx_put(ctx); 649 } 650 651 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 652 struct userfaultfd_wait_queue *ewq) 653 { 654 ewq->msg.event = 0; 655 wake_up_locked(&ctx->event_wqh); 656 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 657 } 658 659 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 660 { 661 struct userfaultfd_ctx *ctx = NULL, *octx; 662 struct userfaultfd_fork_ctx *fctx; 663 664 octx = vma->vm_userfaultfd_ctx.ctx; 665 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 666 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 667 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 668 return 0; 669 } 670 671 list_for_each_entry(fctx, fcs, list) 672 if (fctx->orig == octx) { 673 ctx = fctx->new; 674 break; 675 } 676 677 if (!ctx) { 678 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 679 if (!fctx) 680 return -ENOMEM; 681 682 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 683 if (!ctx) { 684 kfree(fctx); 685 return -ENOMEM; 686 } 687 688 refcount_set(&ctx->refcount, 1); 689 ctx->flags = octx->flags; 690 ctx->state = UFFD_STATE_RUNNING; 691 ctx->features = octx->features; 692 ctx->released = false; 693 ctx->mmap_changing = false; 694 ctx->mm = vma->vm_mm; 695 mmgrab(ctx->mm); 696 697 userfaultfd_ctx_get(octx); 698 WRITE_ONCE(octx->mmap_changing, true); 699 fctx->orig = octx; 700 fctx->new = ctx; 701 list_add_tail(&fctx->list, fcs); 702 } 703 704 vma->vm_userfaultfd_ctx.ctx = ctx; 705 return 0; 706 } 707 708 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 709 { 710 struct userfaultfd_ctx *ctx = fctx->orig; 711 struct userfaultfd_wait_queue ewq; 712 713 msg_init(&ewq.msg); 714 715 ewq.msg.event = UFFD_EVENT_FORK; 716 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 717 718 userfaultfd_event_wait_completion(ctx, &ewq); 719 } 720 721 void dup_userfaultfd_complete(struct list_head *fcs) 722 { 723 struct userfaultfd_fork_ctx *fctx, *n; 724 725 list_for_each_entry_safe(fctx, n, fcs, list) { 726 dup_fctx(fctx); 727 list_del(&fctx->list); 728 kfree(fctx); 729 } 730 } 731 732 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 733 struct vm_userfaultfd_ctx *vm_ctx) 734 { 735 struct userfaultfd_ctx *ctx; 736 737 ctx = vma->vm_userfaultfd_ctx.ctx; 738 739 if (!ctx) 740 return; 741 742 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 743 vm_ctx->ctx = ctx; 744 userfaultfd_ctx_get(ctx); 745 WRITE_ONCE(ctx->mmap_changing, true); 746 } else { 747 /* Drop uffd context if remap feature not enabled */ 748 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 749 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 750 } 751 } 752 753 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 754 unsigned long from, unsigned long to, 755 unsigned long len) 756 { 757 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 758 struct userfaultfd_wait_queue ewq; 759 760 if (!ctx) 761 return; 762 763 if (to & ~PAGE_MASK) { 764 userfaultfd_ctx_put(ctx); 765 return; 766 } 767 768 msg_init(&ewq.msg); 769 770 ewq.msg.event = UFFD_EVENT_REMAP; 771 ewq.msg.arg.remap.from = from; 772 ewq.msg.arg.remap.to = to; 773 ewq.msg.arg.remap.len = len; 774 775 userfaultfd_event_wait_completion(ctx, &ewq); 776 } 777 778 bool userfaultfd_remove(struct vm_area_struct *vma, 779 unsigned long start, unsigned long end) 780 { 781 struct mm_struct *mm = vma->vm_mm; 782 struct userfaultfd_ctx *ctx; 783 struct userfaultfd_wait_queue ewq; 784 785 ctx = vma->vm_userfaultfd_ctx.ctx; 786 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 787 return true; 788 789 userfaultfd_ctx_get(ctx); 790 WRITE_ONCE(ctx->mmap_changing, true); 791 up_read(&mm->mmap_sem); 792 793 msg_init(&ewq.msg); 794 795 ewq.msg.event = UFFD_EVENT_REMOVE; 796 ewq.msg.arg.remove.start = start; 797 ewq.msg.arg.remove.end = end; 798 799 userfaultfd_event_wait_completion(ctx, &ewq); 800 801 return false; 802 } 803 804 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 805 unsigned long start, unsigned long end) 806 { 807 struct userfaultfd_unmap_ctx *unmap_ctx; 808 809 list_for_each_entry(unmap_ctx, unmaps, list) 810 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 811 unmap_ctx->end == end) 812 return true; 813 814 return false; 815 } 816 817 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 818 unsigned long start, unsigned long end, 819 struct list_head *unmaps) 820 { 821 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 822 struct userfaultfd_unmap_ctx *unmap_ctx; 823 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 824 825 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 826 has_unmap_ctx(ctx, unmaps, start, end)) 827 continue; 828 829 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 830 if (!unmap_ctx) 831 return -ENOMEM; 832 833 userfaultfd_ctx_get(ctx); 834 WRITE_ONCE(ctx->mmap_changing, true); 835 unmap_ctx->ctx = ctx; 836 unmap_ctx->start = start; 837 unmap_ctx->end = end; 838 list_add_tail(&unmap_ctx->list, unmaps); 839 } 840 841 return 0; 842 } 843 844 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 845 { 846 struct userfaultfd_unmap_ctx *ctx, *n; 847 struct userfaultfd_wait_queue ewq; 848 849 list_for_each_entry_safe(ctx, n, uf, list) { 850 msg_init(&ewq.msg); 851 852 ewq.msg.event = UFFD_EVENT_UNMAP; 853 ewq.msg.arg.remove.start = ctx->start; 854 ewq.msg.arg.remove.end = ctx->end; 855 856 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 857 858 list_del(&ctx->list); 859 kfree(ctx); 860 } 861 } 862 863 static int userfaultfd_release(struct inode *inode, struct file *file) 864 { 865 struct userfaultfd_ctx *ctx = file->private_data; 866 struct mm_struct *mm = ctx->mm; 867 struct vm_area_struct *vma, *prev; 868 /* len == 0 means wake all */ 869 struct userfaultfd_wake_range range = { .len = 0, }; 870 unsigned long new_flags; 871 872 WRITE_ONCE(ctx->released, true); 873 874 if (!mmget_not_zero(mm)) 875 goto wakeup; 876 877 /* 878 * Flush page faults out of all CPUs. NOTE: all page faults 879 * must be retried without returning VM_FAULT_SIGBUS if 880 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 881 * changes while handle_userfault released the mmap_sem. So 882 * it's critical that released is set to true (above), before 883 * taking the mmap_sem for writing. 884 */ 885 down_write(&mm->mmap_sem); 886 prev = NULL; 887 for (vma = mm->mmap; vma; vma = vma->vm_next) { 888 cond_resched(); 889 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 890 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 891 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 892 prev = vma; 893 continue; 894 } 895 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 896 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 897 new_flags, vma->anon_vma, 898 vma->vm_file, vma->vm_pgoff, 899 vma_policy(vma), 900 NULL_VM_UFFD_CTX); 901 if (prev) 902 vma = prev; 903 else 904 prev = vma; 905 vma->vm_flags = new_flags; 906 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 907 } 908 up_write(&mm->mmap_sem); 909 mmput(mm); 910 wakeup: 911 /* 912 * After no new page faults can wait on this fault_*wqh, flush 913 * the last page faults that may have been already waiting on 914 * the fault_*wqh. 915 */ 916 spin_lock(&ctx->fault_pending_wqh.lock); 917 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 918 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 919 spin_unlock(&ctx->fault_pending_wqh.lock); 920 921 /* Flush pending events that may still wait on event_wqh */ 922 wake_up_all(&ctx->event_wqh); 923 924 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 925 userfaultfd_ctx_put(ctx); 926 return 0; 927 } 928 929 /* fault_pending_wqh.lock must be hold by the caller */ 930 static inline struct userfaultfd_wait_queue *find_userfault_in( 931 wait_queue_head_t *wqh) 932 { 933 wait_queue_entry_t *wq; 934 struct userfaultfd_wait_queue *uwq; 935 936 lockdep_assert_held(&wqh->lock); 937 938 uwq = NULL; 939 if (!waitqueue_active(wqh)) 940 goto out; 941 /* walk in reverse to provide FIFO behavior to read userfaults */ 942 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 943 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 944 out: 945 return uwq; 946 } 947 948 static inline struct userfaultfd_wait_queue *find_userfault( 949 struct userfaultfd_ctx *ctx) 950 { 951 return find_userfault_in(&ctx->fault_pending_wqh); 952 } 953 954 static inline struct userfaultfd_wait_queue *find_userfault_evt( 955 struct userfaultfd_ctx *ctx) 956 { 957 return find_userfault_in(&ctx->event_wqh); 958 } 959 960 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 961 { 962 struct userfaultfd_ctx *ctx = file->private_data; 963 __poll_t ret; 964 965 poll_wait(file, &ctx->fd_wqh, wait); 966 967 switch (ctx->state) { 968 case UFFD_STATE_WAIT_API: 969 return EPOLLERR; 970 case UFFD_STATE_RUNNING: 971 /* 972 * poll() never guarantees that read won't block. 973 * userfaults can be waken before they're read(). 974 */ 975 if (unlikely(!(file->f_flags & O_NONBLOCK))) 976 return EPOLLERR; 977 /* 978 * lockless access to see if there are pending faults 979 * __pollwait last action is the add_wait_queue but 980 * the spin_unlock would allow the waitqueue_active to 981 * pass above the actual list_add inside 982 * add_wait_queue critical section. So use a full 983 * memory barrier to serialize the list_add write of 984 * add_wait_queue() with the waitqueue_active read 985 * below. 986 */ 987 ret = 0; 988 smp_mb(); 989 if (waitqueue_active(&ctx->fault_pending_wqh)) 990 ret = EPOLLIN; 991 else if (waitqueue_active(&ctx->event_wqh)) 992 ret = EPOLLIN; 993 994 return ret; 995 default: 996 WARN_ON_ONCE(1); 997 return EPOLLERR; 998 } 999 } 1000 1001 static const struct file_operations userfaultfd_fops; 1002 1003 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1004 struct userfaultfd_ctx *new, 1005 struct uffd_msg *msg) 1006 { 1007 int fd; 1008 1009 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1010 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1011 if (fd < 0) 1012 return fd; 1013 1014 msg->arg.reserved.reserved1 = 0; 1015 msg->arg.fork.ufd = fd; 1016 return 0; 1017 } 1018 1019 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1020 struct uffd_msg *msg) 1021 { 1022 ssize_t ret; 1023 DECLARE_WAITQUEUE(wait, current); 1024 struct userfaultfd_wait_queue *uwq; 1025 /* 1026 * Handling fork event requires sleeping operations, so 1027 * we drop the event_wqh lock, then do these ops, then 1028 * lock it back and wake up the waiter. While the lock is 1029 * dropped the ewq may go away so we keep track of it 1030 * carefully. 1031 */ 1032 LIST_HEAD(fork_event); 1033 struct userfaultfd_ctx *fork_nctx = NULL; 1034 1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1036 spin_lock_irq(&ctx->fd_wqh.lock); 1037 __add_wait_queue(&ctx->fd_wqh, &wait); 1038 for (;;) { 1039 set_current_state(TASK_INTERRUPTIBLE); 1040 spin_lock(&ctx->fault_pending_wqh.lock); 1041 uwq = find_userfault(ctx); 1042 if (uwq) { 1043 /* 1044 * Use a seqcount to repeat the lockless check 1045 * in wake_userfault() to avoid missing 1046 * wakeups because during the refile both 1047 * waitqueue could become empty if this is the 1048 * only userfault. 1049 */ 1050 write_seqcount_begin(&ctx->refile_seq); 1051 1052 /* 1053 * The fault_pending_wqh.lock prevents the uwq 1054 * to disappear from under us. 1055 * 1056 * Refile this userfault from 1057 * fault_pending_wqh to fault_wqh, it's not 1058 * pending anymore after we read it. 1059 * 1060 * Use list_del() by hand (as 1061 * userfaultfd_wake_function also uses 1062 * list_del_init() by hand) to be sure nobody 1063 * changes __remove_wait_queue() to use 1064 * list_del_init() in turn breaking the 1065 * !list_empty_careful() check in 1066 * handle_userfault(). The uwq->wq.head list 1067 * must never be empty at any time during the 1068 * refile, or the waitqueue could disappear 1069 * from under us. The "wait_queue_head_t" 1070 * parameter of __remove_wait_queue() is unused 1071 * anyway. 1072 */ 1073 list_del(&uwq->wq.entry); 1074 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1075 1076 write_seqcount_end(&ctx->refile_seq); 1077 1078 /* careful to always initialize msg if ret == 0 */ 1079 *msg = uwq->msg; 1080 spin_unlock(&ctx->fault_pending_wqh.lock); 1081 ret = 0; 1082 break; 1083 } 1084 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 1086 spin_lock(&ctx->event_wqh.lock); 1087 uwq = find_userfault_evt(ctx); 1088 if (uwq) { 1089 *msg = uwq->msg; 1090 1091 if (uwq->msg.event == UFFD_EVENT_FORK) { 1092 fork_nctx = (struct userfaultfd_ctx *) 1093 (unsigned long) 1094 uwq->msg.arg.reserved.reserved1; 1095 list_move(&uwq->wq.entry, &fork_event); 1096 /* 1097 * fork_nctx can be freed as soon as 1098 * we drop the lock, unless we take a 1099 * reference on it. 1100 */ 1101 userfaultfd_ctx_get(fork_nctx); 1102 spin_unlock(&ctx->event_wqh.lock); 1103 ret = 0; 1104 break; 1105 } 1106 1107 userfaultfd_event_complete(ctx, uwq); 1108 spin_unlock(&ctx->event_wqh.lock); 1109 ret = 0; 1110 break; 1111 } 1112 spin_unlock(&ctx->event_wqh.lock); 1113 1114 if (signal_pending(current)) { 1115 ret = -ERESTARTSYS; 1116 break; 1117 } 1118 if (no_wait) { 1119 ret = -EAGAIN; 1120 break; 1121 } 1122 spin_unlock_irq(&ctx->fd_wqh.lock); 1123 schedule(); 1124 spin_lock_irq(&ctx->fd_wqh.lock); 1125 } 1126 __remove_wait_queue(&ctx->fd_wqh, &wait); 1127 __set_current_state(TASK_RUNNING); 1128 spin_unlock_irq(&ctx->fd_wqh.lock); 1129 1130 if (!ret && msg->event == UFFD_EVENT_FORK) { 1131 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1132 spin_lock(&ctx->event_wqh.lock); 1133 if (!list_empty(&fork_event)) { 1134 /* 1135 * The fork thread didn't abort, so we can 1136 * drop the temporary refcount. 1137 */ 1138 userfaultfd_ctx_put(fork_nctx); 1139 1140 uwq = list_first_entry(&fork_event, 1141 typeof(*uwq), 1142 wq.entry); 1143 /* 1144 * If fork_event list wasn't empty and in turn 1145 * the event wasn't already released by fork 1146 * (the event is allocated on fork kernel 1147 * stack), put the event back to its place in 1148 * the event_wq. fork_event head will be freed 1149 * as soon as we return so the event cannot 1150 * stay queued there no matter the current 1151 * "ret" value. 1152 */ 1153 list_del(&uwq->wq.entry); 1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1155 1156 /* 1157 * Leave the event in the waitqueue and report 1158 * error to userland if we failed to resolve 1159 * the userfault fork. 1160 */ 1161 if (likely(!ret)) 1162 userfaultfd_event_complete(ctx, uwq); 1163 } else { 1164 /* 1165 * Here the fork thread aborted and the 1166 * refcount from the fork thread on fork_nctx 1167 * has already been released. We still hold 1168 * the reference we took before releasing the 1169 * lock above. If resolve_userfault_fork 1170 * failed we've to drop it because the 1171 * fork_nctx has to be freed in such case. If 1172 * it succeeded we'll hold it because the new 1173 * uffd references it. 1174 */ 1175 if (ret) 1176 userfaultfd_ctx_put(fork_nctx); 1177 } 1178 spin_unlock(&ctx->event_wqh.lock); 1179 } 1180 1181 return ret; 1182 } 1183 1184 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1185 size_t count, loff_t *ppos) 1186 { 1187 struct userfaultfd_ctx *ctx = file->private_data; 1188 ssize_t _ret, ret = 0; 1189 struct uffd_msg msg; 1190 int no_wait = file->f_flags & O_NONBLOCK; 1191 1192 if (ctx->state == UFFD_STATE_WAIT_API) 1193 return -EINVAL; 1194 1195 for (;;) { 1196 if (count < sizeof(msg)) 1197 return ret ? ret : -EINVAL; 1198 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1199 if (_ret < 0) 1200 return ret ? ret : _ret; 1201 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1202 return ret ? ret : -EFAULT; 1203 ret += sizeof(msg); 1204 buf += sizeof(msg); 1205 count -= sizeof(msg); 1206 /* 1207 * Allow to read more than one fault at time but only 1208 * block if waiting for the very first one. 1209 */ 1210 no_wait = O_NONBLOCK; 1211 } 1212 } 1213 1214 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1215 struct userfaultfd_wake_range *range) 1216 { 1217 spin_lock(&ctx->fault_pending_wqh.lock); 1218 /* wake all in the range and autoremove */ 1219 if (waitqueue_active(&ctx->fault_pending_wqh)) 1220 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1221 range); 1222 if (waitqueue_active(&ctx->fault_wqh)) 1223 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1224 spin_unlock(&ctx->fault_pending_wqh.lock); 1225 } 1226 1227 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1228 struct userfaultfd_wake_range *range) 1229 { 1230 unsigned seq; 1231 bool need_wakeup; 1232 1233 /* 1234 * To be sure waitqueue_active() is not reordered by the CPU 1235 * before the pagetable update, use an explicit SMP memory 1236 * barrier here. PT lock release or up_read(mmap_sem) still 1237 * have release semantics that can allow the 1238 * waitqueue_active() to be reordered before the pte update. 1239 */ 1240 smp_mb(); 1241 1242 /* 1243 * Use waitqueue_active because it's very frequent to 1244 * change the address space atomically even if there are no 1245 * userfaults yet. So we take the spinlock only when we're 1246 * sure we've userfaults to wake. 1247 */ 1248 do { 1249 seq = read_seqcount_begin(&ctx->refile_seq); 1250 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1251 waitqueue_active(&ctx->fault_wqh); 1252 cond_resched(); 1253 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1254 if (need_wakeup) 1255 __wake_userfault(ctx, range); 1256 } 1257 1258 static __always_inline int validate_range(struct mm_struct *mm, 1259 __u64 start, __u64 len) 1260 { 1261 __u64 task_size = mm->task_size; 1262 1263 if (start & ~PAGE_MASK) 1264 return -EINVAL; 1265 if (len & ~PAGE_MASK) 1266 return -EINVAL; 1267 if (!len) 1268 return -EINVAL; 1269 if (start < mmap_min_addr) 1270 return -EINVAL; 1271 if (start >= task_size) 1272 return -EINVAL; 1273 if (len > task_size - start) 1274 return -EINVAL; 1275 return 0; 1276 } 1277 1278 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1279 { 1280 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1281 vma_is_shmem(vma); 1282 } 1283 1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1285 unsigned long arg) 1286 { 1287 struct mm_struct *mm = ctx->mm; 1288 struct vm_area_struct *vma, *prev, *cur; 1289 int ret; 1290 struct uffdio_register uffdio_register; 1291 struct uffdio_register __user *user_uffdio_register; 1292 unsigned long vm_flags, new_flags; 1293 bool found; 1294 bool basic_ioctls; 1295 unsigned long start, end, vma_end; 1296 1297 user_uffdio_register = (struct uffdio_register __user *) arg; 1298 1299 ret = -EFAULT; 1300 if (copy_from_user(&uffdio_register, user_uffdio_register, 1301 sizeof(uffdio_register)-sizeof(__u64))) 1302 goto out; 1303 1304 ret = -EINVAL; 1305 if (!uffdio_register.mode) 1306 goto out; 1307 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1308 UFFDIO_REGISTER_MODE_WP)) 1309 goto out; 1310 vm_flags = 0; 1311 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1312 vm_flags |= VM_UFFD_MISSING; 1313 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1314 vm_flags |= VM_UFFD_WP; 1315 /* 1316 * FIXME: remove the below error constraint by 1317 * implementing the wprotect tracking mode. 1318 */ 1319 ret = -EINVAL; 1320 goto out; 1321 } 1322 1323 ret = validate_range(mm, uffdio_register.range.start, 1324 uffdio_register.range.len); 1325 if (ret) 1326 goto out; 1327 1328 start = uffdio_register.range.start; 1329 end = start + uffdio_register.range.len; 1330 1331 ret = -ENOMEM; 1332 if (!mmget_not_zero(mm)) 1333 goto out; 1334 1335 down_write(&mm->mmap_sem); 1336 vma = find_vma_prev(mm, start, &prev); 1337 if (!vma) 1338 goto out_unlock; 1339 1340 /* check that there's at least one vma in the range */ 1341 ret = -EINVAL; 1342 if (vma->vm_start >= end) 1343 goto out_unlock; 1344 1345 /* 1346 * If the first vma contains huge pages, make sure start address 1347 * is aligned to huge page size. 1348 */ 1349 if (is_vm_hugetlb_page(vma)) { 1350 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1351 1352 if (start & (vma_hpagesize - 1)) 1353 goto out_unlock; 1354 } 1355 1356 /* 1357 * Search for not compatible vmas. 1358 */ 1359 found = false; 1360 basic_ioctls = false; 1361 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1362 cond_resched(); 1363 1364 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1365 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1366 1367 /* check not compatible vmas */ 1368 ret = -EINVAL; 1369 if (!vma_can_userfault(cur)) 1370 goto out_unlock; 1371 1372 /* 1373 * UFFDIO_COPY will fill file holes even without 1374 * PROT_WRITE. This check enforces that if this is a 1375 * MAP_SHARED, the process has write permission to the backing 1376 * file. If VM_MAYWRITE is set it also enforces that on a 1377 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1378 * F_WRITE_SEAL can be taken until the vma is destroyed. 1379 */ 1380 ret = -EPERM; 1381 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1382 goto out_unlock; 1383 1384 /* 1385 * If this vma contains ending address, and huge pages 1386 * check alignment. 1387 */ 1388 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1389 end > cur->vm_start) { 1390 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1391 1392 ret = -EINVAL; 1393 1394 if (end & (vma_hpagesize - 1)) 1395 goto out_unlock; 1396 } 1397 1398 /* 1399 * Check that this vma isn't already owned by a 1400 * different userfaultfd. We can't allow more than one 1401 * userfaultfd to own a single vma simultaneously or we 1402 * wouldn't know which one to deliver the userfaults to. 1403 */ 1404 ret = -EBUSY; 1405 if (cur->vm_userfaultfd_ctx.ctx && 1406 cur->vm_userfaultfd_ctx.ctx != ctx) 1407 goto out_unlock; 1408 1409 /* 1410 * Note vmas containing huge pages 1411 */ 1412 if (is_vm_hugetlb_page(cur)) 1413 basic_ioctls = true; 1414 1415 found = true; 1416 } 1417 BUG_ON(!found); 1418 1419 if (vma->vm_start < start) 1420 prev = vma; 1421 1422 ret = 0; 1423 do { 1424 cond_resched(); 1425 1426 BUG_ON(!vma_can_userfault(vma)); 1427 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1428 vma->vm_userfaultfd_ctx.ctx != ctx); 1429 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1430 1431 /* 1432 * Nothing to do: this vma is already registered into this 1433 * userfaultfd and with the right tracking mode too. 1434 */ 1435 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1436 (vma->vm_flags & vm_flags) == vm_flags) 1437 goto skip; 1438 1439 if (vma->vm_start > start) 1440 start = vma->vm_start; 1441 vma_end = min(end, vma->vm_end); 1442 1443 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1444 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1445 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1446 vma_policy(vma), 1447 ((struct vm_userfaultfd_ctx){ ctx })); 1448 if (prev) { 1449 vma = prev; 1450 goto next; 1451 } 1452 if (vma->vm_start < start) { 1453 ret = split_vma(mm, vma, start, 1); 1454 if (ret) 1455 break; 1456 } 1457 if (vma->vm_end > end) { 1458 ret = split_vma(mm, vma, end, 0); 1459 if (ret) 1460 break; 1461 } 1462 next: 1463 /* 1464 * In the vma_merge() successful mprotect-like case 8: 1465 * the next vma was merged into the current one and 1466 * the current one has not been updated yet. 1467 */ 1468 vma->vm_flags = new_flags; 1469 vma->vm_userfaultfd_ctx.ctx = ctx; 1470 1471 skip: 1472 prev = vma; 1473 start = vma->vm_end; 1474 vma = vma->vm_next; 1475 } while (vma && vma->vm_start < end); 1476 out_unlock: 1477 up_write(&mm->mmap_sem); 1478 mmput(mm); 1479 if (!ret) { 1480 /* 1481 * Now that we scanned all vmas we can already tell 1482 * userland which ioctls methods are guaranteed to 1483 * succeed on this range. 1484 */ 1485 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1486 UFFD_API_RANGE_IOCTLS, 1487 &user_uffdio_register->ioctls)) 1488 ret = -EFAULT; 1489 } 1490 out: 1491 return ret; 1492 } 1493 1494 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1495 unsigned long arg) 1496 { 1497 struct mm_struct *mm = ctx->mm; 1498 struct vm_area_struct *vma, *prev, *cur; 1499 int ret; 1500 struct uffdio_range uffdio_unregister; 1501 unsigned long new_flags; 1502 bool found; 1503 unsigned long start, end, vma_end; 1504 const void __user *buf = (void __user *)arg; 1505 1506 ret = -EFAULT; 1507 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1508 goto out; 1509 1510 ret = validate_range(mm, uffdio_unregister.start, 1511 uffdio_unregister.len); 1512 if (ret) 1513 goto out; 1514 1515 start = uffdio_unregister.start; 1516 end = start + uffdio_unregister.len; 1517 1518 ret = -ENOMEM; 1519 if (!mmget_not_zero(mm)) 1520 goto out; 1521 1522 down_write(&mm->mmap_sem); 1523 vma = find_vma_prev(mm, start, &prev); 1524 if (!vma) 1525 goto out_unlock; 1526 1527 /* check that there's at least one vma in the range */ 1528 ret = -EINVAL; 1529 if (vma->vm_start >= end) 1530 goto out_unlock; 1531 1532 /* 1533 * If the first vma contains huge pages, make sure start address 1534 * is aligned to huge page size. 1535 */ 1536 if (is_vm_hugetlb_page(vma)) { 1537 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1538 1539 if (start & (vma_hpagesize - 1)) 1540 goto out_unlock; 1541 } 1542 1543 /* 1544 * Search for not compatible vmas. 1545 */ 1546 found = false; 1547 ret = -EINVAL; 1548 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1549 cond_resched(); 1550 1551 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1552 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1553 1554 /* 1555 * Check not compatible vmas, not strictly required 1556 * here as not compatible vmas cannot have an 1557 * userfaultfd_ctx registered on them, but this 1558 * provides for more strict behavior to notice 1559 * unregistration errors. 1560 */ 1561 if (!vma_can_userfault(cur)) 1562 goto out_unlock; 1563 1564 found = true; 1565 } 1566 BUG_ON(!found); 1567 1568 if (vma->vm_start < start) 1569 prev = vma; 1570 1571 ret = 0; 1572 do { 1573 cond_resched(); 1574 1575 BUG_ON(!vma_can_userfault(vma)); 1576 1577 /* 1578 * Nothing to do: this vma is already registered into this 1579 * userfaultfd and with the right tracking mode too. 1580 */ 1581 if (!vma->vm_userfaultfd_ctx.ctx) 1582 goto skip; 1583 1584 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1585 1586 if (vma->vm_start > start) 1587 start = vma->vm_start; 1588 vma_end = min(end, vma->vm_end); 1589 1590 if (userfaultfd_missing(vma)) { 1591 /* 1592 * Wake any concurrent pending userfault while 1593 * we unregister, so they will not hang 1594 * permanently and it avoids userland to call 1595 * UFFDIO_WAKE explicitly. 1596 */ 1597 struct userfaultfd_wake_range range; 1598 range.start = start; 1599 range.len = vma_end - start; 1600 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1601 } 1602 1603 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1604 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1605 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1606 vma_policy(vma), 1607 NULL_VM_UFFD_CTX); 1608 if (prev) { 1609 vma = prev; 1610 goto next; 1611 } 1612 if (vma->vm_start < start) { 1613 ret = split_vma(mm, vma, start, 1); 1614 if (ret) 1615 break; 1616 } 1617 if (vma->vm_end > end) { 1618 ret = split_vma(mm, vma, end, 0); 1619 if (ret) 1620 break; 1621 } 1622 next: 1623 /* 1624 * In the vma_merge() successful mprotect-like case 8: 1625 * the next vma was merged into the current one and 1626 * the current one has not been updated yet. 1627 */ 1628 vma->vm_flags = new_flags; 1629 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1630 1631 skip: 1632 prev = vma; 1633 start = vma->vm_end; 1634 vma = vma->vm_next; 1635 } while (vma && vma->vm_start < end); 1636 out_unlock: 1637 up_write(&mm->mmap_sem); 1638 mmput(mm); 1639 out: 1640 return ret; 1641 } 1642 1643 /* 1644 * userfaultfd_wake may be used in combination with the 1645 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1646 */ 1647 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1648 unsigned long arg) 1649 { 1650 int ret; 1651 struct uffdio_range uffdio_wake; 1652 struct userfaultfd_wake_range range; 1653 const void __user *buf = (void __user *)arg; 1654 1655 ret = -EFAULT; 1656 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1657 goto out; 1658 1659 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1660 if (ret) 1661 goto out; 1662 1663 range.start = uffdio_wake.start; 1664 range.len = uffdio_wake.len; 1665 1666 /* 1667 * len == 0 means wake all and we don't want to wake all here, 1668 * so check it again to be sure. 1669 */ 1670 VM_BUG_ON(!range.len); 1671 1672 wake_userfault(ctx, &range); 1673 ret = 0; 1674 1675 out: 1676 return ret; 1677 } 1678 1679 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1680 unsigned long arg) 1681 { 1682 __s64 ret; 1683 struct uffdio_copy uffdio_copy; 1684 struct uffdio_copy __user *user_uffdio_copy; 1685 struct userfaultfd_wake_range range; 1686 1687 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1688 1689 ret = -EAGAIN; 1690 if (READ_ONCE(ctx->mmap_changing)) 1691 goto out; 1692 1693 ret = -EFAULT; 1694 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1695 /* don't copy "copy" last field */ 1696 sizeof(uffdio_copy)-sizeof(__s64))) 1697 goto out; 1698 1699 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1700 if (ret) 1701 goto out; 1702 /* 1703 * double check for wraparound just in case. copy_from_user() 1704 * will later check uffdio_copy.src + uffdio_copy.len to fit 1705 * in the userland range. 1706 */ 1707 ret = -EINVAL; 1708 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1709 goto out; 1710 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1711 goto out; 1712 if (mmget_not_zero(ctx->mm)) { 1713 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1714 uffdio_copy.len, &ctx->mmap_changing); 1715 mmput(ctx->mm); 1716 } else { 1717 return -ESRCH; 1718 } 1719 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1720 return -EFAULT; 1721 if (ret < 0) 1722 goto out; 1723 BUG_ON(!ret); 1724 /* len == 0 would wake all */ 1725 range.len = ret; 1726 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1727 range.start = uffdio_copy.dst; 1728 wake_userfault(ctx, &range); 1729 } 1730 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1731 out: 1732 return ret; 1733 } 1734 1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1736 unsigned long arg) 1737 { 1738 __s64 ret; 1739 struct uffdio_zeropage uffdio_zeropage; 1740 struct uffdio_zeropage __user *user_uffdio_zeropage; 1741 struct userfaultfd_wake_range range; 1742 1743 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1744 1745 ret = -EAGAIN; 1746 if (READ_ONCE(ctx->mmap_changing)) 1747 goto out; 1748 1749 ret = -EFAULT; 1750 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1751 /* don't copy "zeropage" last field */ 1752 sizeof(uffdio_zeropage)-sizeof(__s64))) 1753 goto out; 1754 1755 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1756 uffdio_zeropage.range.len); 1757 if (ret) 1758 goto out; 1759 ret = -EINVAL; 1760 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1761 goto out; 1762 1763 if (mmget_not_zero(ctx->mm)) { 1764 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1765 uffdio_zeropage.range.len, 1766 &ctx->mmap_changing); 1767 mmput(ctx->mm); 1768 } else { 1769 return -ESRCH; 1770 } 1771 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1772 return -EFAULT; 1773 if (ret < 0) 1774 goto out; 1775 /* len == 0 would wake all */ 1776 BUG_ON(!ret); 1777 range.len = ret; 1778 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1779 range.start = uffdio_zeropage.range.start; 1780 wake_userfault(ctx, &range); 1781 } 1782 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1783 out: 1784 return ret; 1785 } 1786 1787 static inline unsigned int uffd_ctx_features(__u64 user_features) 1788 { 1789 /* 1790 * For the current set of features the bits just coincide 1791 */ 1792 return (unsigned int)user_features; 1793 } 1794 1795 /* 1796 * userland asks for a certain API version and we return which bits 1797 * and ioctl commands are implemented in this kernel for such API 1798 * version or -EINVAL if unknown. 1799 */ 1800 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1801 unsigned long arg) 1802 { 1803 struct uffdio_api uffdio_api; 1804 void __user *buf = (void __user *)arg; 1805 int ret; 1806 __u64 features; 1807 1808 ret = -EINVAL; 1809 if (ctx->state != UFFD_STATE_WAIT_API) 1810 goto out; 1811 ret = -EFAULT; 1812 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1813 goto out; 1814 features = uffdio_api.features; 1815 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1816 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1817 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1818 goto out; 1819 ret = -EINVAL; 1820 goto out; 1821 } 1822 /* report all available features and ioctls to userland */ 1823 uffdio_api.features = UFFD_API_FEATURES; 1824 uffdio_api.ioctls = UFFD_API_IOCTLS; 1825 ret = -EFAULT; 1826 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1827 goto out; 1828 ctx->state = UFFD_STATE_RUNNING; 1829 /* only enable the requested features for this uffd context */ 1830 ctx->features = uffd_ctx_features(features); 1831 ret = 0; 1832 out: 1833 return ret; 1834 } 1835 1836 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1837 unsigned long arg) 1838 { 1839 int ret = -EINVAL; 1840 struct userfaultfd_ctx *ctx = file->private_data; 1841 1842 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1843 return -EINVAL; 1844 1845 switch(cmd) { 1846 case UFFDIO_API: 1847 ret = userfaultfd_api(ctx, arg); 1848 break; 1849 case UFFDIO_REGISTER: 1850 ret = userfaultfd_register(ctx, arg); 1851 break; 1852 case UFFDIO_UNREGISTER: 1853 ret = userfaultfd_unregister(ctx, arg); 1854 break; 1855 case UFFDIO_WAKE: 1856 ret = userfaultfd_wake(ctx, arg); 1857 break; 1858 case UFFDIO_COPY: 1859 ret = userfaultfd_copy(ctx, arg); 1860 break; 1861 case UFFDIO_ZEROPAGE: 1862 ret = userfaultfd_zeropage(ctx, arg); 1863 break; 1864 } 1865 return ret; 1866 } 1867 1868 #ifdef CONFIG_PROC_FS 1869 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1870 { 1871 struct userfaultfd_ctx *ctx = f->private_data; 1872 wait_queue_entry_t *wq; 1873 unsigned long pending = 0, total = 0; 1874 1875 spin_lock(&ctx->fault_pending_wqh.lock); 1876 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1877 pending++; 1878 total++; 1879 } 1880 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1881 total++; 1882 } 1883 spin_unlock(&ctx->fault_pending_wqh.lock); 1884 1885 /* 1886 * If more protocols will be added, there will be all shown 1887 * separated by a space. Like this: 1888 * protocols: aa:... bb:... 1889 */ 1890 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1891 pending, total, UFFD_API, ctx->features, 1892 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1893 } 1894 #endif 1895 1896 static const struct file_operations userfaultfd_fops = { 1897 #ifdef CONFIG_PROC_FS 1898 .show_fdinfo = userfaultfd_show_fdinfo, 1899 #endif 1900 .release = userfaultfd_release, 1901 .poll = userfaultfd_poll, 1902 .read = userfaultfd_read, 1903 .unlocked_ioctl = userfaultfd_ioctl, 1904 .compat_ioctl = userfaultfd_ioctl, 1905 .llseek = noop_llseek, 1906 }; 1907 1908 static void init_once_userfaultfd_ctx(void *mem) 1909 { 1910 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1911 1912 init_waitqueue_head(&ctx->fault_pending_wqh); 1913 init_waitqueue_head(&ctx->fault_wqh); 1914 init_waitqueue_head(&ctx->event_wqh); 1915 init_waitqueue_head(&ctx->fd_wqh); 1916 seqcount_init(&ctx->refile_seq); 1917 } 1918 1919 SYSCALL_DEFINE1(userfaultfd, int, flags) 1920 { 1921 struct userfaultfd_ctx *ctx; 1922 int fd; 1923 1924 BUG_ON(!current->mm); 1925 1926 /* Check the UFFD_* constants for consistency. */ 1927 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1928 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1929 1930 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1931 return -EINVAL; 1932 1933 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1934 if (!ctx) 1935 return -ENOMEM; 1936 1937 refcount_set(&ctx->refcount, 1); 1938 ctx->flags = flags; 1939 ctx->features = 0; 1940 ctx->state = UFFD_STATE_WAIT_API; 1941 ctx->released = false; 1942 ctx->mmap_changing = false; 1943 ctx->mm = current->mm; 1944 /* prevent the mm struct to be freed */ 1945 mmgrab(ctx->mm); 1946 1947 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1948 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1949 if (fd < 0) { 1950 mmdrop(ctx->mm); 1951 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1952 } 1953 return fd; 1954 } 1955 1956 static int __init userfaultfd_init(void) 1957 { 1958 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1959 sizeof(struct userfaultfd_ctx), 1960 0, 1961 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1962 init_once_userfaultfd_ctx); 1963 return 0; 1964 } 1965 __initcall(userfaultfd_init); 1966