1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The implicit smp_mb__before_spinlock in try_to_wake_up() 113 * renders uwq->waken visible to other CPUs before the task is 114 * waken. 115 */ 116 ret = wake_up_state(wq->private, mode); 117 if (ret) 118 /* 119 * Wake only once, autoremove behavior. 120 * 121 * After the effect of list_del_init is visible to the 122 * other CPUs, the waitqueue may disappear from under 123 * us, see the !list_empty_careful() in 124 * handle_userfault(). try_to_wake_up() has an 125 * implicit smp_mb__before_spinlock, and the 126 * wq->private is read before calling the extern 127 * function "wake_up_state" (which in turns calls 128 * try_to_wake_up). While the spin_lock;spin_unlock; 129 * wouldn't be enough, the smp_mb__before_spinlock is 130 * enough to avoid an explicit smp_mb() here. 131 */ 132 list_del_init(&wq->task_list); 133 out: 134 return ret; 135 } 136 137 /** 138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 139 * context. 140 * @ctx: [in] Pointer to the userfaultfd context. 141 */ 142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 143 { 144 if (!atomic_inc_not_zero(&ctx->refcount)) 145 BUG(); 146 } 147 148 /** 149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 150 * context. 151 * @ctx: [in] Pointer to userfaultfd context. 152 * 153 * The userfaultfd context reference must have been previously acquired either 154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 155 */ 156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 157 { 158 if (atomic_dec_and_test(&ctx->refcount)) { 159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 167 mmdrop(ctx->mm); 168 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 169 } 170 } 171 172 static inline void msg_init(struct uffd_msg *msg) 173 { 174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 175 /* 176 * Must use memset to zero out the paddings or kernel data is 177 * leaked to userland. 178 */ 179 memset(msg, 0, sizeof(struct uffd_msg)); 180 } 181 182 static inline struct uffd_msg userfault_msg(unsigned long address, 183 unsigned int flags, 184 unsigned long reason) 185 { 186 struct uffd_msg msg; 187 msg_init(&msg); 188 msg.event = UFFD_EVENT_PAGEFAULT; 189 msg.arg.pagefault.address = address; 190 if (flags & FAULT_FLAG_WRITE) 191 /* 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 195 * was a read fault, otherwise if set it means it's 196 * a write fault. 197 */ 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 199 if (reason & VM_UFFD_WP) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 204 * a missing fault, otherwise if set it means it's a 205 * write protect fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 unsigned long address, 218 unsigned long flags, 219 unsigned long reason) 220 { 221 struct mm_struct *mm = ctx->mm; 222 pte_t *pte; 223 bool ret = true; 224 225 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 226 227 pte = huge_pte_offset(mm, address); 228 if (!pte) 229 goto out; 230 231 ret = false; 232 233 /* 234 * Lockless access: we're in a wait_event so it's ok if it 235 * changes under us. 236 */ 237 if (huge_pte_none(*pte)) 238 ret = true; 239 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 240 ret = true; 241 out: 242 return ret; 243 } 244 #else 245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 246 unsigned long address, 247 unsigned long flags, 248 unsigned long reason) 249 { 250 return false; /* should never get here */ 251 } 252 #endif /* CONFIG_HUGETLB_PAGE */ 253 254 /* 255 * Verify the pagetables are still not ok after having reigstered into 256 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 257 * userfault that has already been resolved, if userfaultfd_read and 258 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 259 * threads. 260 */ 261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 262 unsigned long address, 263 unsigned long flags, 264 unsigned long reason) 265 { 266 struct mm_struct *mm = ctx->mm; 267 pgd_t *pgd; 268 p4d_t *p4d; 269 pud_t *pud; 270 pmd_t *pmd, _pmd; 271 pte_t *pte; 272 bool ret = true; 273 274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 275 276 pgd = pgd_offset(mm, address); 277 if (!pgd_present(*pgd)) 278 goto out; 279 p4d = p4d_offset(pgd, address); 280 if (!p4d_present(*p4d)) 281 goto out; 282 pud = pud_offset(p4d, address); 283 if (!pud_present(*pud)) 284 goto out; 285 pmd = pmd_offset(pud, address); 286 /* 287 * READ_ONCE must function as a barrier with narrower scope 288 * and it must be equivalent to: 289 * _pmd = *pmd; barrier(); 290 * 291 * This is to deal with the instability (as in 292 * pmd_trans_unstable) of the pmd. 293 */ 294 _pmd = READ_ONCE(*pmd); 295 if (!pmd_present(_pmd)) 296 goto out; 297 298 ret = false; 299 if (pmd_trans_huge(_pmd)) 300 goto out; 301 302 /* 303 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 304 * and use the standard pte_offset_map() instead of parsing _pmd. 305 */ 306 pte = pte_offset_map(pmd, address); 307 /* 308 * Lockless access: we're in a wait_event so it's ok if it 309 * changes under us. 310 */ 311 if (pte_none(*pte)) 312 ret = true; 313 pte_unmap(pte); 314 315 out: 316 return ret; 317 } 318 319 /* 320 * The locking rules involved in returning VM_FAULT_RETRY depending on 321 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 322 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 323 * recommendation in __lock_page_or_retry is not an understatement. 324 * 325 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 326 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 327 * not set. 328 * 329 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 330 * set, VM_FAULT_RETRY can still be returned if and only if there are 331 * fatal_signal_pending()s, and the mmap_sem must be released before 332 * returning it. 333 */ 334 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 335 { 336 struct mm_struct *mm = vmf->vma->vm_mm; 337 struct userfaultfd_ctx *ctx; 338 struct userfaultfd_wait_queue uwq; 339 int ret; 340 bool must_wait, return_to_userland; 341 long blocking_state; 342 343 ret = VM_FAULT_SIGBUS; 344 345 /* 346 * We don't do userfault handling for the final child pid update. 347 * 348 * We also don't do userfault handling during 349 * coredumping. hugetlbfs has the special 350 * follow_hugetlb_page() to skip missing pages in the 351 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 352 * the no_page_table() helper in follow_page_mask(), but the 353 * shmem_vm_ops->fault method is invoked even during 354 * coredumping without mmap_sem and it ends up here. 355 */ 356 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 357 goto out; 358 359 /* 360 * Coredumping runs without mmap_sem so we can only check that 361 * the mmap_sem is held, if PF_DUMPCORE was not set. 362 */ 363 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 364 365 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 366 if (!ctx) 367 goto out; 368 369 BUG_ON(ctx->mm != mm); 370 371 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 372 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 373 374 /* 375 * If it's already released don't get it. This avoids to loop 376 * in __get_user_pages if userfaultfd_release waits on the 377 * caller of handle_userfault to release the mmap_sem. 378 */ 379 if (unlikely(ACCESS_ONCE(ctx->released))) 380 goto out; 381 382 /* 383 * Check that we can return VM_FAULT_RETRY. 384 * 385 * NOTE: it should become possible to return VM_FAULT_RETRY 386 * even if FAULT_FLAG_TRIED is set without leading to gup() 387 * -EBUSY failures, if the userfaultfd is to be extended for 388 * VM_UFFD_WP tracking and we intend to arm the userfault 389 * without first stopping userland access to the memory. For 390 * VM_UFFD_MISSING userfaults this is enough for now. 391 */ 392 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 393 /* 394 * Validate the invariant that nowait must allow retry 395 * to be sure not to return SIGBUS erroneously on 396 * nowait invocations. 397 */ 398 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 399 #ifdef CONFIG_DEBUG_VM 400 if (printk_ratelimit()) { 401 printk(KERN_WARNING 402 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 403 vmf->flags); 404 dump_stack(); 405 } 406 #endif 407 goto out; 408 } 409 410 /* 411 * Handle nowait, not much to do other than tell it to retry 412 * and wait. 413 */ 414 ret = VM_FAULT_RETRY; 415 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 416 goto out; 417 418 /* take the reference before dropping the mmap_sem */ 419 userfaultfd_ctx_get(ctx); 420 421 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 422 uwq.wq.private = current; 423 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 424 uwq.ctx = ctx; 425 uwq.waken = false; 426 427 return_to_userland = 428 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 429 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 430 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 431 TASK_KILLABLE; 432 433 spin_lock(&ctx->fault_pending_wqh.lock); 434 /* 435 * After the __add_wait_queue the uwq is visible to userland 436 * through poll/read(). 437 */ 438 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 439 /* 440 * The smp_mb() after __set_current_state prevents the reads 441 * following the spin_unlock to happen before the list_add in 442 * __add_wait_queue. 443 */ 444 set_current_state(blocking_state); 445 spin_unlock(&ctx->fault_pending_wqh.lock); 446 447 if (!is_vm_hugetlb_page(vmf->vma)) 448 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 449 reason); 450 else 451 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, 452 vmf->flags, reason); 453 up_read(&mm->mmap_sem); 454 455 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 456 (return_to_userland ? !signal_pending(current) : 457 !fatal_signal_pending(current)))) { 458 wake_up_poll(&ctx->fd_wqh, POLLIN); 459 schedule(); 460 ret |= VM_FAULT_MAJOR; 461 462 /* 463 * False wakeups can orginate even from rwsem before 464 * up_read() however userfaults will wait either for a 465 * targeted wakeup on the specific uwq waitqueue from 466 * wake_userfault() or for signals or for uffd 467 * release. 468 */ 469 while (!READ_ONCE(uwq.waken)) { 470 /* 471 * This needs the full smp_store_mb() 472 * guarantee as the state write must be 473 * visible to other CPUs before reading 474 * uwq.waken from other CPUs. 475 */ 476 set_current_state(blocking_state); 477 if (READ_ONCE(uwq.waken) || 478 READ_ONCE(ctx->released) || 479 (return_to_userland ? signal_pending(current) : 480 fatal_signal_pending(current))) 481 break; 482 schedule(); 483 } 484 } 485 486 __set_current_state(TASK_RUNNING); 487 488 if (return_to_userland) { 489 if (signal_pending(current) && 490 !fatal_signal_pending(current)) { 491 /* 492 * If we got a SIGSTOP or SIGCONT and this is 493 * a normal userland page fault, just let 494 * userland return so the signal will be 495 * handled and gdb debugging works. The page 496 * fault code immediately after we return from 497 * this function is going to release the 498 * mmap_sem and it's not depending on it 499 * (unlike gup would if we were not to return 500 * VM_FAULT_RETRY). 501 * 502 * If a fatal signal is pending we still take 503 * the streamlined VM_FAULT_RETRY failure path 504 * and there's no need to retake the mmap_sem 505 * in such case. 506 */ 507 down_read(&mm->mmap_sem); 508 ret = VM_FAULT_NOPAGE; 509 } 510 } 511 512 /* 513 * Here we race with the list_del; list_add in 514 * userfaultfd_ctx_read(), however because we don't ever run 515 * list_del_init() to refile across the two lists, the prev 516 * and next pointers will never point to self. list_add also 517 * would never let any of the two pointers to point to 518 * self. So list_empty_careful won't risk to see both pointers 519 * pointing to self at any time during the list refile. The 520 * only case where list_del_init() is called is the full 521 * removal in the wake function and there we don't re-list_add 522 * and it's fine not to block on the spinlock. The uwq on this 523 * kernel stack can be released after the list_del_init. 524 */ 525 if (!list_empty_careful(&uwq.wq.task_list)) { 526 spin_lock(&ctx->fault_pending_wqh.lock); 527 /* 528 * No need of list_del_init(), the uwq on the stack 529 * will be freed shortly anyway. 530 */ 531 list_del(&uwq.wq.task_list); 532 spin_unlock(&ctx->fault_pending_wqh.lock); 533 } 534 535 /* 536 * ctx may go away after this if the userfault pseudo fd is 537 * already released. 538 */ 539 userfaultfd_ctx_put(ctx); 540 541 out: 542 return ret; 543 } 544 545 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 546 struct userfaultfd_wait_queue *ewq) 547 { 548 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 549 goto out; 550 551 ewq->ctx = ctx; 552 init_waitqueue_entry(&ewq->wq, current); 553 554 spin_lock(&ctx->event_wqh.lock); 555 /* 556 * After the __add_wait_queue the uwq is visible to userland 557 * through poll/read(). 558 */ 559 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 560 for (;;) { 561 set_current_state(TASK_KILLABLE); 562 if (ewq->msg.event == 0) 563 break; 564 if (ACCESS_ONCE(ctx->released) || 565 fatal_signal_pending(current)) { 566 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 567 if (ewq->msg.event == UFFD_EVENT_FORK) { 568 struct userfaultfd_ctx *new; 569 570 new = (struct userfaultfd_ctx *) 571 (unsigned long) 572 ewq->msg.arg.reserved.reserved1; 573 574 userfaultfd_ctx_put(new); 575 } 576 break; 577 } 578 579 spin_unlock(&ctx->event_wqh.lock); 580 581 wake_up_poll(&ctx->fd_wqh, POLLIN); 582 schedule(); 583 584 spin_lock(&ctx->event_wqh.lock); 585 } 586 __set_current_state(TASK_RUNNING); 587 spin_unlock(&ctx->event_wqh.lock); 588 589 /* 590 * ctx may go away after this if the userfault pseudo fd is 591 * already released. 592 */ 593 out: 594 userfaultfd_ctx_put(ctx); 595 } 596 597 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 598 struct userfaultfd_wait_queue *ewq) 599 { 600 ewq->msg.event = 0; 601 wake_up_locked(&ctx->event_wqh); 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 603 } 604 605 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 606 { 607 struct userfaultfd_ctx *ctx = NULL, *octx; 608 struct userfaultfd_fork_ctx *fctx; 609 610 octx = vma->vm_userfaultfd_ctx.ctx; 611 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 613 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 614 return 0; 615 } 616 617 list_for_each_entry(fctx, fcs, list) 618 if (fctx->orig == octx) { 619 ctx = fctx->new; 620 break; 621 } 622 623 if (!ctx) { 624 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 625 if (!fctx) 626 return -ENOMEM; 627 628 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 629 if (!ctx) { 630 kfree(fctx); 631 return -ENOMEM; 632 } 633 634 atomic_set(&ctx->refcount, 1); 635 ctx->flags = octx->flags; 636 ctx->state = UFFD_STATE_RUNNING; 637 ctx->features = octx->features; 638 ctx->released = false; 639 ctx->mm = vma->vm_mm; 640 atomic_inc(&ctx->mm->mm_count); 641 642 userfaultfd_ctx_get(octx); 643 fctx->orig = octx; 644 fctx->new = ctx; 645 list_add_tail(&fctx->list, fcs); 646 } 647 648 vma->vm_userfaultfd_ctx.ctx = ctx; 649 return 0; 650 } 651 652 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 653 { 654 struct userfaultfd_ctx *ctx = fctx->orig; 655 struct userfaultfd_wait_queue ewq; 656 657 msg_init(&ewq.msg); 658 659 ewq.msg.event = UFFD_EVENT_FORK; 660 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 661 662 userfaultfd_event_wait_completion(ctx, &ewq); 663 } 664 665 void dup_userfaultfd_complete(struct list_head *fcs) 666 { 667 struct userfaultfd_fork_ctx *fctx, *n; 668 669 list_for_each_entry_safe(fctx, n, fcs, list) { 670 dup_fctx(fctx); 671 list_del(&fctx->list); 672 kfree(fctx); 673 } 674 } 675 676 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 677 struct vm_userfaultfd_ctx *vm_ctx) 678 { 679 struct userfaultfd_ctx *ctx; 680 681 ctx = vma->vm_userfaultfd_ctx.ctx; 682 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 683 vm_ctx->ctx = ctx; 684 userfaultfd_ctx_get(ctx); 685 } 686 } 687 688 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 689 unsigned long from, unsigned long to, 690 unsigned long len) 691 { 692 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 693 struct userfaultfd_wait_queue ewq; 694 695 if (!ctx) 696 return; 697 698 if (to & ~PAGE_MASK) { 699 userfaultfd_ctx_put(ctx); 700 return; 701 } 702 703 msg_init(&ewq.msg); 704 705 ewq.msg.event = UFFD_EVENT_REMAP; 706 ewq.msg.arg.remap.from = from; 707 ewq.msg.arg.remap.to = to; 708 ewq.msg.arg.remap.len = len; 709 710 userfaultfd_event_wait_completion(ctx, &ewq); 711 } 712 713 bool userfaultfd_remove(struct vm_area_struct *vma, 714 unsigned long start, unsigned long end) 715 { 716 struct mm_struct *mm = vma->vm_mm; 717 struct userfaultfd_ctx *ctx; 718 struct userfaultfd_wait_queue ewq; 719 720 ctx = vma->vm_userfaultfd_ctx.ctx; 721 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 722 return true; 723 724 userfaultfd_ctx_get(ctx); 725 up_read(&mm->mmap_sem); 726 727 msg_init(&ewq.msg); 728 729 ewq.msg.event = UFFD_EVENT_REMOVE; 730 ewq.msg.arg.remove.start = start; 731 ewq.msg.arg.remove.end = end; 732 733 userfaultfd_event_wait_completion(ctx, &ewq); 734 735 return false; 736 } 737 738 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 739 unsigned long start, unsigned long end) 740 { 741 struct userfaultfd_unmap_ctx *unmap_ctx; 742 743 list_for_each_entry(unmap_ctx, unmaps, list) 744 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 745 unmap_ctx->end == end) 746 return true; 747 748 return false; 749 } 750 751 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 752 unsigned long start, unsigned long end, 753 struct list_head *unmaps) 754 { 755 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 756 struct userfaultfd_unmap_ctx *unmap_ctx; 757 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 758 759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 760 has_unmap_ctx(ctx, unmaps, start, end)) 761 continue; 762 763 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 764 if (!unmap_ctx) 765 return -ENOMEM; 766 767 userfaultfd_ctx_get(ctx); 768 unmap_ctx->ctx = ctx; 769 unmap_ctx->start = start; 770 unmap_ctx->end = end; 771 list_add_tail(&unmap_ctx->list, unmaps); 772 } 773 774 return 0; 775 } 776 777 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 778 { 779 struct userfaultfd_unmap_ctx *ctx, *n; 780 struct userfaultfd_wait_queue ewq; 781 782 list_for_each_entry_safe(ctx, n, uf, list) { 783 msg_init(&ewq.msg); 784 785 ewq.msg.event = UFFD_EVENT_UNMAP; 786 ewq.msg.arg.remove.start = ctx->start; 787 ewq.msg.arg.remove.end = ctx->end; 788 789 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 790 791 list_del(&ctx->list); 792 kfree(ctx); 793 } 794 } 795 796 static int userfaultfd_release(struct inode *inode, struct file *file) 797 { 798 struct userfaultfd_ctx *ctx = file->private_data; 799 struct mm_struct *mm = ctx->mm; 800 struct vm_area_struct *vma, *prev; 801 /* len == 0 means wake all */ 802 struct userfaultfd_wake_range range = { .len = 0, }; 803 unsigned long new_flags; 804 805 ACCESS_ONCE(ctx->released) = true; 806 807 if (!mmget_not_zero(mm)) 808 goto wakeup; 809 810 /* 811 * Flush page faults out of all CPUs. NOTE: all page faults 812 * must be retried without returning VM_FAULT_SIGBUS if 813 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 814 * changes while handle_userfault released the mmap_sem. So 815 * it's critical that released is set to true (above), before 816 * taking the mmap_sem for writing. 817 */ 818 down_write(&mm->mmap_sem); 819 prev = NULL; 820 for (vma = mm->mmap; vma; vma = vma->vm_next) { 821 cond_resched(); 822 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 823 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 824 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 825 prev = vma; 826 continue; 827 } 828 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 829 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 830 new_flags, vma->anon_vma, 831 vma->vm_file, vma->vm_pgoff, 832 vma_policy(vma), 833 NULL_VM_UFFD_CTX); 834 if (prev) 835 vma = prev; 836 else 837 prev = vma; 838 vma->vm_flags = new_flags; 839 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 840 } 841 up_write(&mm->mmap_sem); 842 mmput(mm); 843 wakeup: 844 /* 845 * After no new page faults can wait on this fault_*wqh, flush 846 * the last page faults that may have been already waiting on 847 * the fault_*wqh. 848 */ 849 spin_lock(&ctx->fault_pending_wqh.lock); 850 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 851 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 852 spin_unlock(&ctx->fault_pending_wqh.lock); 853 854 wake_up_poll(&ctx->fd_wqh, POLLHUP); 855 userfaultfd_ctx_put(ctx); 856 return 0; 857 } 858 859 /* fault_pending_wqh.lock must be hold by the caller */ 860 static inline struct userfaultfd_wait_queue *find_userfault_in( 861 wait_queue_head_t *wqh) 862 { 863 wait_queue_t *wq; 864 struct userfaultfd_wait_queue *uwq; 865 866 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 867 868 uwq = NULL; 869 if (!waitqueue_active(wqh)) 870 goto out; 871 /* walk in reverse to provide FIFO behavior to read userfaults */ 872 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 873 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 874 out: 875 return uwq; 876 } 877 878 static inline struct userfaultfd_wait_queue *find_userfault( 879 struct userfaultfd_ctx *ctx) 880 { 881 return find_userfault_in(&ctx->fault_pending_wqh); 882 } 883 884 static inline struct userfaultfd_wait_queue *find_userfault_evt( 885 struct userfaultfd_ctx *ctx) 886 { 887 return find_userfault_in(&ctx->event_wqh); 888 } 889 890 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 891 { 892 struct userfaultfd_ctx *ctx = file->private_data; 893 unsigned int ret; 894 895 poll_wait(file, &ctx->fd_wqh, wait); 896 897 switch (ctx->state) { 898 case UFFD_STATE_WAIT_API: 899 return POLLERR; 900 case UFFD_STATE_RUNNING: 901 /* 902 * poll() never guarantees that read won't block. 903 * userfaults can be waken before they're read(). 904 */ 905 if (unlikely(!(file->f_flags & O_NONBLOCK))) 906 return POLLERR; 907 /* 908 * lockless access to see if there are pending faults 909 * __pollwait last action is the add_wait_queue but 910 * the spin_unlock would allow the waitqueue_active to 911 * pass above the actual list_add inside 912 * add_wait_queue critical section. So use a full 913 * memory barrier to serialize the list_add write of 914 * add_wait_queue() with the waitqueue_active read 915 * below. 916 */ 917 ret = 0; 918 smp_mb(); 919 if (waitqueue_active(&ctx->fault_pending_wqh)) 920 ret = POLLIN; 921 else if (waitqueue_active(&ctx->event_wqh)) 922 ret = POLLIN; 923 924 return ret; 925 default: 926 WARN_ON_ONCE(1); 927 return POLLERR; 928 } 929 } 930 931 static const struct file_operations userfaultfd_fops; 932 933 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 934 struct userfaultfd_ctx *new, 935 struct uffd_msg *msg) 936 { 937 int fd; 938 struct file *file; 939 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 940 941 fd = get_unused_fd_flags(flags); 942 if (fd < 0) 943 return fd; 944 945 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 946 O_RDWR | flags); 947 if (IS_ERR(file)) { 948 put_unused_fd(fd); 949 return PTR_ERR(file); 950 } 951 952 fd_install(fd, file); 953 msg->arg.reserved.reserved1 = 0; 954 msg->arg.fork.ufd = fd; 955 956 return 0; 957 } 958 959 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 960 struct uffd_msg *msg) 961 { 962 ssize_t ret; 963 DECLARE_WAITQUEUE(wait, current); 964 struct userfaultfd_wait_queue *uwq; 965 /* 966 * Handling fork event requires sleeping operations, so 967 * we drop the event_wqh lock, then do these ops, then 968 * lock it back and wake up the waiter. While the lock is 969 * dropped the ewq may go away so we keep track of it 970 * carefully. 971 */ 972 LIST_HEAD(fork_event); 973 struct userfaultfd_ctx *fork_nctx = NULL; 974 975 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 976 spin_lock(&ctx->fd_wqh.lock); 977 __add_wait_queue(&ctx->fd_wqh, &wait); 978 for (;;) { 979 set_current_state(TASK_INTERRUPTIBLE); 980 spin_lock(&ctx->fault_pending_wqh.lock); 981 uwq = find_userfault(ctx); 982 if (uwq) { 983 /* 984 * Use a seqcount to repeat the lockless check 985 * in wake_userfault() to avoid missing 986 * wakeups because during the refile both 987 * waitqueue could become empty if this is the 988 * only userfault. 989 */ 990 write_seqcount_begin(&ctx->refile_seq); 991 992 /* 993 * The fault_pending_wqh.lock prevents the uwq 994 * to disappear from under us. 995 * 996 * Refile this userfault from 997 * fault_pending_wqh to fault_wqh, it's not 998 * pending anymore after we read it. 999 * 1000 * Use list_del() by hand (as 1001 * userfaultfd_wake_function also uses 1002 * list_del_init() by hand) to be sure nobody 1003 * changes __remove_wait_queue() to use 1004 * list_del_init() in turn breaking the 1005 * !list_empty_careful() check in 1006 * handle_userfault(). The uwq->wq.task_list 1007 * must never be empty at any time during the 1008 * refile, or the waitqueue could disappear 1009 * from under us. The "wait_queue_head_t" 1010 * parameter of __remove_wait_queue() is unused 1011 * anyway. 1012 */ 1013 list_del(&uwq->wq.task_list); 1014 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1015 1016 write_seqcount_end(&ctx->refile_seq); 1017 1018 /* careful to always initialize msg if ret == 0 */ 1019 *msg = uwq->msg; 1020 spin_unlock(&ctx->fault_pending_wqh.lock); 1021 ret = 0; 1022 break; 1023 } 1024 spin_unlock(&ctx->fault_pending_wqh.lock); 1025 1026 spin_lock(&ctx->event_wqh.lock); 1027 uwq = find_userfault_evt(ctx); 1028 if (uwq) { 1029 *msg = uwq->msg; 1030 1031 if (uwq->msg.event == UFFD_EVENT_FORK) { 1032 fork_nctx = (struct userfaultfd_ctx *) 1033 (unsigned long) 1034 uwq->msg.arg.reserved.reserved1; 1035 list_move(&uwq->wq.task_list, &fork_event); 1036 spin_unlock(&ctx->event_wqh.lock); 1037 ret = 0; 1038 break; 1039 } 1040 1041 userfaultfd_event_complete(ctx, uwq); 1042 spin_unlock(&ctx->event_wqh.lock); 1043 ret = 0; 1044 break; 1045 } 1046 spin_unlock(&ctx->event_wqh.lock); 1047 1048 if (signal_pending(current)) { 1049 ret = -ERESTARTSYS; 1050 break; 1051 } 1052 if (no_wait) { 1053 ret = -EAGAIN; 1054 break; 1055 } 1056 spin_unlock(&ctx->fd_wqh.lock); 1057 schedule(); 1058 spin_lock(&ctx->fd_wqh.lock); 1059 } 1060 __remove_wait_queue(&ctx->fd_wqh, &wait); 1061 __set_current_state(TASK_RUNNING); 1062 spin_unlock(&ctx->fd_wqh.lock); 1063 1064 if (!ret && msg->event == UFFD_EVENT_FORK) { 1065 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1066 1067 if (!ret) { 1068 spin_lock(&ctx->event_wqh.lock); 1069 if (!list_empty(&fork_event)) { 1070 uwq = list_first_entry(&fork_event, 1071 typeof(*uwq), 1072 wq.task_list); 1073 list_del(&uwq->wq.task_list); 1074 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1075 userfaultfd_event_complete(ctx, uwq); 1076 } 1077 spin_unlock(&ctx->event_wqh.lock); 1078 } 1079 } 1080 1081 return ret; 1082 } 1083 1084 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1085 size_t count, loff_t *ppos) 1086 { 1087 struct userfaultfd_ctx *ctx = file->private_data; 1088 ssize_t _ret, ret = 0; 1089 struct uffd_msg msg; 1090 int no_wait = file->f_flags & O_NONBLOCK; 1091 1092 if (ctx->state == UFFD_STATE_WAIT_API) 1093 return -EINVAL; 1094 1095 for (;;) { 1096 if (count < sizeof(msg)) 1097 return ret ? ret : -EINVAL; 1098 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1099 if (_ret < 0) 1100 return ret ? ret : _ret; 1101 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1102 return ret ? ret : -EFAULT; 1103 ret += sizeof(msg); 1104 buf += sizeof(msg); 1105 count -= sizeof(msg); 1106 /* 1107 * Allow to read more than one fault at time but only 1108 * block if waiting for the very first one. 1109 */ 1110 no_wait = O_NONBLOCK; 1111 } 1112 } 1113 1114 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1115 struct userfaultfd_wake_range *range) 1116 { 1117 unsigned long start, end; 1118 1119 start = range->start; 1120 end = range->start + range->len; 1121 1122 spin_lock(&ctx->fault_pending_wqh.lock); 1123 /* wake all in the range and autoremove */ 1124 if (waitqueue_active(&ctx->fault_pending_wqh)) 1125 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1126 range); 1127 if (waitqueue_active(&ctx->fault_wqh)) 1128 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1129 spin_unlock(&ctx->fault_pending_wqh.lock); 1130 } 1131 1132 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1133 struct userfaultfd_wake_range *range) 1134 { 1135 unsigned seq; 1136 bool need_wakeup; 1137 1138 /* 1139 * To be sure waitqueue_active() is not reordered by the CPU 1140 * before the pagetable update, use an explicit SMP memory 1141 * barrier here. PT lock release or up_read(mmap_sem) still 1142 * have release semantics that can allow the 1143 * waitqueue_active() to be reordered before the pte update. 1144 */ 1145 smp_mb(); 1146 1147 /* 1148 * Use waitqueue_active because it's very frequent to 1149 * change the address space atomically even if there are no 1150 * userfaults yet. So we take the spinlock only when we're 1151 * sure we've userfaults to wake. 1152 */ 1153 do { 1154 seq = read_seqcount_begin(&ctx->refile_seq); 1155 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1156 waitqueue_active(&ctx->fault_wqh); 1157 cond_resched(); 1158 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1159 if (need_wakeup) 1160 __wake_userfault(ctx, range); 1161 } 1162 1163 static __always_inline int validate_range(struct mm_struct *mm, 1164 __u64 start, __u64 len) 1165 { 1166 __u64 task_size = mm->task_size; 1167 1168 if (start & ~PAGE_MASK) 1169 return -EINVAL; 1170 if (len & ~PAGE_MASK) 1171 return -EINVAL; 1172 if (!len) 1173 return -EINVAL; 1174 if (start < mmap_min_addr) 1175 return -EINVAL; 1176 if (start >= task_size) 1177 return -EINVAL; 1178 if (len > task_size - start) 1179 return -EINVAL; 1180 return 0; 1181 } 1182 1183 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1184 { 1185 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1186 vma_is_shmem(vma); 1187 } 1188 1189 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1190 unsigned long arg) 1191 { 1192 struct mm_struct *mm = ctx->mm; 1193 struct vm_area_struct *vma, *prev, *cur; 1194 int ret; 1195 struct uffdio_register uffdio_register; 1196 struct uffdio_register __user *user_uffdio_register; 1197 unsigned long vm_flags, new_flags; 1198 bool found; 1199 bool non_anon_pages; 1200 unsigned long start, end, vma_end; 1201 1202 user_uffdio_register = (struct uffdio_register __user *) arg; 1203 1204 ret = -EFAULT; 1205 if (copy_from_user(&uffdio_register, user_uffdio_register, 1206 sizeof(uffdio_register)-sizeof(__u64))) 1207 goto out; 1208 1209 ret = -EINVAL; 1210 if (!uffdio_register.mode) 1211 goto out; 1212 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1213 UFFDIO_REGISTER_MODE_WP)) 1214 goto out; 1215 vm_flags = 0; 1216 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1217 vm_flags |= VM_UFFD_MISSING; 1218 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1219 vm_flags |= VM_UFFD_WP; 1220 /* 1221 * FIXME: remove the below error constraint by 1222 * implementing the wprotect tracking mode. 1223 */ 1224 ret = -EINVAL; 1225 goto out; 1226 } 1227 1228 ret = validate_range(mm, uffdio_register.range.start, 1229 uffdio_register.range.len); 1230 if (ret) 1231 goto out; 1232 1233 start = uffdio_register.range.start; 1234 end = start + uffdio_register.range.len; 1235 1236 ret = -ENOMEM; 1237 if (!mmget_not_zero(mm)) 1238 goto out; 1239 1240 down_write(&mm->mmap_sem); 1241 vma = find_vma_prev(mm, start, &prev); 1242 if (!vma) 1243 goto out_unlock; 1244 1245 /* check that there's at least one vma in the range */ 1246 ret = -EINVAL; 1247 if (vma->vm_start >= end) 1248 goto out_unlock; 1249 1250 /* 1251 * If the first vma contains huge pages, make sure start address 1252 * is aligned to huge page size. 1253 */ 1254 if (is_vm_hugetlb_page(vma)) { 1255 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1256 1257 if (start & (vma_hpagesize - 1)) 1258 goto out_unlock; 1259 } 1260 1261 /* 1262 * Search for not compatible vmas. 1263 */ 1264 found = false; 1265 non_anon_pages = false; 1266 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1267 cond_resched(); 1268 1269 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1270 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1271 1272 /* check not compatible vmas */ 1273 ret = -EINVAL; 1274 if (!vma_can_userfault(cur)) 1275 goto out_unlock; 1276 /* 1277 * If this vma contains ending address, and huge pages 1278 * check alignment. 1279 */ 1280 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1281 end > cur->vm_start) { 1282 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1283 1284 ret = -EINVAL; 1285 1286 if (end & (vma_hpagesize - 1)) 1287 goto out_unlock; 1288 } 1289 1290 /* 1291 * Check that this vma isn't already owned by a 1292 * different userfaultfd. We can't allow more than one 1293 * userfaultfd to own a single vma simultaneously or we 1294 * wouldn't know which one to deliver the userfaults to. 1295 */ 1296 ret = -EBUSY; 1297 if (cur->vm_userfaultfd_ctx.ctx && 1298 cur->vm_userfaultfd_ctx.ctx != ctx) 1299 goto out_unlock; 1300 1301 /* 1302 * Note vmas containing huge pages 1303 */ 1304 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1305 non_anon_pages = true; 1306 1307 found = true; 1308 } 1309 BUG_ON(!found); 1310 1311 if (vma->vm_start < start) 1312 prev = vma; 1313 1314 ret = 0; 1315 do { 1316 cond_resched(); 1317 1318 BUG_ON(!vma_can_userfault(vma)); 1319 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1320 vma->vm_userfaultfd_ctx.ctx != ctx); 1321 1322 /* 1323 * Nothing to do: this vma is already registered into this 1324 * userfaultfd and with the right tracking mode too. 1325 */ 1326 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1327 (vma->vm_flags & vm_flags) == vm_flags) 1328 goto skip; 1329 1330 if (vma->vm_start > start) 1331 start = vma->vm_start; 1332 vma_end = min(end, vma->vm_end); 1333 1334 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1335 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1336 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1337 vma_policy(vma), 1338 ((struct vm_userfaultfd_ctx){ ctx })); 1339 if (prev) { 1340 vma = prev; 1341 goto next; 1342 } 1343 if (vma->vm_start < start) { 1344 ret = split_vma(mm, vma, start, 1); 1345 if (ret) 1346 break; 1347 } 1348 if (vma->vm_end > end) { 1349 ret = split_vma(mm, vma, end, 0); 1350 if (ret) 1351 break; 1352 } 1353 next: 1354 /* 1355 * In the vma_merge() successful mprotect-like case 8: 1356 * the next vma was merged into the current one and 1357 * the current one has not been updated yet. 1358 */ 1359 vma->vm_flags = new_flags; 1360 vma->vm_userfaultfd_ctx.ctx = ctx; 1361 1362 skip: 1363 prev = vma; 1364 start = vma->vm_end; 1365 vma = vma->vm_next; 1366 } while (vma && vma->vm_start < end); 1367 out_unlock: 1368 up_write(&mm->mmap_sem); 1369 mmput(mm); 1370 if (!ret) { 1371 /* 1372 * Now that we scanned all vmas we can already tell 1373 * userland which ioctls methods are guaranteed to 1374 * succeed on this range. 1375 */ 1376 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : 1377 UFFD_API_RANGE_IOCTLS, 1378 &user_uffdio_register->ioctls)) 1379 ret = -EFAULT; 1380 } 1381 out: 1382 return ret; 1383 } 1384 1385 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1386 unsigned long arg) 1387 { 1388 struct mm_struct *mm = ctx->mm; 1389 struct vm_area_struct *vma, *prev, *cur; 1390 int ret; 1391 struct uffdio_range uffdio_unregister; 1392 unsigned long new_flags; 1393 bool found; 1394 unsigned long start, end, vma_end; 1395 const void __user *buf = (void __user *)arg; 1396 1397 ret = -EFAULT; 1398 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1399 goto out; 1400 1401 ret = validate_range(mm, uffdio_unregister.start, 1402 uffdio_unregister.len); 1403 if (ret) 1404 goto out; 1405 1406 start = uffdio_unregister.start; 1407 end = start + uffdio_unregister.len; 1408 1409 ret = -ENOMEM; 1410 if (!mmget_not_zero(mm)) 1411 goto out; 1412 1413 down_write(&mm->mmap_sem); 1414 vma = find_vma_prev(mm, start, &prev); 1415 if (!vma) 1416 goto out_unlock; 1417 1418 /* check that there's at least one vma in the range */ 1419 ret = -EINVAL; 1420 if (vma->vm_start >= end) 1421 goto out_unlock; 1422 1423 /* 1424 * If the first vma contains huge pages, make sure start address 1425 * is aligned to huge page size. 1426 */ 1427 if (is_vm_hugetlb_page(vma)) { 1428 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1429 1430 if (start & (vma_hpagesize - 1)) 1431 goto out_unlock; 1432 } 1433 1434 /* 1435 * Search for not compatible vmas. 1436 */ 1437 found = false; 1438 ret = -EINVAL; 1439 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1440 cond_resched(); 1441 1442 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1443 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1444 1445 /* 1446 * Check not compatible vmas, not strictly required 1447 * here as not compatible vmas cannot have an 1448 * userfaultfd_ctx registered on them, but this 1449 * provides for more strict behavior to notice 1450 * unregistration errors. 1451 */ 1452 if (!vma_can_userfault(cur)) 1453 goto out_unlock; 1454 1455 found = true; 1456 } 1457 BUG_ON(!found); 1458 1459 if (vma->vm_start < start) 1460 prev = vma; 1461 1462 ret = 0; 1463 do { 1464 cond_resched(); 1465 1466 BUG_ON(!vma_can_userfault(vma)); 1467 1468 /* 1469 * Nothing to do: this vma is already registered into this 1470 * userfaultfd and with the right tracking mode too. 1471 */ 1472 if (!vma->vm_userfaultfd_ctx.ctx) 1473 goto skip; 1474 1475 if (vma->vm_start > start) 1476 start = vma->vm_start; 1477 vma_end = min(end, vma->vm_end); 1478 1479 if (userfaultfd_missing(vma)) { 1480 /* 1481 * Wake any concurrent pending userfault while 1482 * we unregister, so they will not hang 1483 * permanently and it avoids userland to call 1484 * UFFDIO_WAKE explicitly. 1485 */ 1486 struct userfaultfd_wake_range range; 1487 range.start = start; 1488 range.len = vma_end - start; 1489 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1490 } 1491 1492 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1493 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1494 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1495 vma_policy(vma), 1496 NULL_VM_UFFD_CTX); 1497 if (prev) { 1498 vma = prev; 1499 goto next; 1500 } 1501 if (vma->vm_start < start) { 1502 ret = split_vma(mm, vma, start, 1); 1503 if (ret) 1504 break; 1505 } 1506 if (vma->vm_end > end) { 1507 ret = split_vma(mm, vma, end, 0); 1508 if (ret) 1509 break; 1510 } 1511 next: 1512 /* 1513 * In the vma_merge() successful mprotect-like case 8: 1514 * the next vma was merged into the current one and 1515 * the current one has not been updated yet. 1516 */ 1517 vma->vm_flags = new_flags; 1518 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1519 1520 skip: 1521 prev = vma; 1522 start = vma->vm_end; 1523 vma = vma->vm_next; 1524 } while (vma && vma->vm_start < end); 1525 out_unlock: 1526 up_write(&mm->mmap_sem); 1527 mmput(mm); 1528 out: 1529 return ret; 1530 } 1531 1532 /* 1533 * userfaultfd_wake may be used in combination with the 1534 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1535 */ 1536 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1537 unsigned long arg) 1538 { 1539 int ret; 1540 struct uffdio_range uffdio_wake; 1541 struct userfaultfd_wake_range range; 1542 const void __user *buf = (void __user *)arg; 1543 1544 ret = -EFAULT; 1545 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1546 goto out; 1547 1548 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1549 if (ret) 1550 goto out; 1551 1552 range.start = uffdio_wake.start; 1553 range.len = uffdio_wake.len; 1554 1555 /* 1556 * len == 0 means wake all and we don't want to wake all here, 1557 * so check it again to be sure. 1558 */ 1559 VM_BUG_ON(!range.len); 1560 1561 wake_userfault(ctx, &range); 1562 ret = 0; 1563 1564 out: 1565 return ret; 1566 } 1567 1568 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1569 unsigned long arg) 1570 { 1571 __s64 ret; 1572 struct uffdio_copy uffdio_copy; 1573 struct uffdio_copy __user *user_uffdio_copy; 1574 struct userfaultfd_wake_range range; 1575 1576 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1577 1578 ret = -EFAULT; 1579 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1580 /* don't copy "copy" last field */ 1581 sizeof(uffdio_copy)-sizeof(__s64))) 1582 goto out; 1583 1584 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1585 if (ret) 1586 goto out; 1587 /* 1588 * double check for wraparound just in case. copy_from_user() 1589 * will later check uffdio_copy.src + uffdio_copy.len to fit 1590 * in the userland range. 1591 */ 1592 ret = -EINVAL; 1593 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1594 goto out; 1595 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1596 goto out; 1597 if (mmget_not_zero(ctx->mm)) { 1598 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1599 uffdio_copy.len); 1600 mmput(ctx->mm); 1601 } else { 1602 return -ENOSPC; 1603 } 1604 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1605 return -EFAULT; 1606 if (ret < 0) 1607 goto out; 1608 BUG_ON(!ret); 1609 /* len == 0 would wake all */ 1610 range.len = ret; 1611 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1612 range.start = uffdio_copy.dst; 1613 wake_userfault(ctx, &range); 1614 } 1615 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1616 out: 1617 return ret; 1618 } 1619 1620 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1621 unsigned long arg) 1622 { 1623 __s64 ret; 1624 struct uffdio_zeropage uffdio_zeropage; 1625 struct uffdio_zeropage __user *user_uffdio_zeropage; 1626 struct userfaultfd_wake_range range; 1627 1628 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1629 1630 ret = -EFAULT; 1631 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1632 /* don't copy "zeropage" last field */ 1633 sizeof(uffdio_zeropage)-sizeof(__s64))) 1634 goto out; 1635 1636 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1637 uffdio_zeropage.range.len); 1638 if (ret) 1639 goto out; 1640 ret = -EINVAL; 1641 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1642 goto out; 1643 1644 if (mmget_not_zero(ctx->mm)) { 1645 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1646 uffdio_zeropage.range.len); 1647 mmput(ctx->mm); 1648 } 1649 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1650 return -EFAULT; 1651 if (ret < 0) 1652 goto out; 1653 /* len == 0 would wake all */ 1654 BUG_ON(!ret); 1655 range.len = ret; 1656 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1657 range.start = uffdio_zeropage.range.start; 1658 wake_userfault(ctx, &range); 1659 } 1660 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1661 out: 1662 return ret; 1663 } 1664 1665 static inline unsigned int uffd_ctx_features(__u64 user_features) 1666 { 1667 /* 1668 * For the current set of features the bits just coincide 1669 */ 1670 return (unsigned int)user_features; 1671 } 1672 1673 /* 1674 * userland asks for a certain API version and we return which bits 1675 * and ioctl commands are implemented in this kernel for such API 1676 * version or -EINVAL if unknown. 1677 */ 1678 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1679 unsigned long arg) 1680 { 1681 struct uffdio_api uffdio_api; 1682 void __user *buf = (void __user *)arg; 1683 int ret; 1684 __u64 features; 1685 1686 ret = -EINVAL; 1687 if (ctx->state != UFFD_STATE_WAIT_API) 1688 goto out; 1689 ret = -EFAULT; 1690 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1691 goto out; 1692 features = uffdio_api.features; 1693 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1694 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1695 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1696 goto out; 1697 ret = -EINVAL; 1698 goto out; 1699 } 1700 /* report all available features and ioctls to userland */ 1701 uffdio_api.features = UFFD_API_FEATURES; 1702 uffdio_api.ioctls = UFFD_API_IOCTLS; 1703 ret = -EFAULT; 1704 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1705 goto out; 1706 ctx->state = UFFD_STATE_RUNNING; 1707 /* only enable the requested features for this uffd context */ 1708 ctx->features = uffd_ctx_features(features); 1709 ret = 0; 1710 out: 1711 return ret; 1712 } 1713 1714 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1715 unsigned long arg) 1716 { 1717 int ret = -EINVAL; 1718 struct userfaultfd_ctx *ctx = file->private_data; 1719 1720 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1721 return -EINVAL; 1722 1723 switch(cmd) { 1724 case UFFDIO_API: 1725 ret = userfaultfd_api(ctx, arg); 1726 break; 1727 case UFFDIO_REGISTER: 1728 ret = userfaultfd_register(ctx, arg); 1729 break; 1730 case UFFDIO_UNREGISTER: 1731 ret = userfaultfd_unregister(ctx, arg); 1732 break; 1733 case UFFDIO_WAKE: 1734 ret = userfaultfd_wake(ctx, arg); 1735 break; 1736 case UFFDIO_COPY: 1737 ret = userfaultfd_copy(ctx, arg); 1738 break; 1739 case UFFDIO_ZEROPAGE: 1740 ret = userfaultfd_zeropage(ctx, arg); 1741 break; 1742 } 1743 return ret; 1744 } 1745 1746 #ifdef CONFIG_PROC_FS 1747 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1748 { 1749 struct userfaultfd_ctx *ctx = f->private_data; 1750 wait_queue_t *wq; 1751 struct userfaultfd_wait_queue *uwq; 1752 unsigned long pending = 0, total = 0; 1753 1754 spin_lock(&ctx->fault_pending_wqh.lock); 1755 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1756 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1757 pending++; 1758 total++; 1759 } 1760 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1761 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1762 total++; 1763 } 1764 spin_unlock(&ctx->fault_pending_wqh.lock); 1765 1766 /* 1767 * If more protocols will be added, there will be all shown 1768 * separated by a space. Like this: 1769 * protocols: aa:... bb:... 1770 */ 1771 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1772 pending, total, UFFD_API, ctx->features, 1773 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1774 } 1775 #endif 1776 1777 static const struct file_operations userfaultfd_fops = { 1778 #ifdef CONFIG_PROC_FS 1779 .show_fdinfo = userfaultfd_show_fdinfo, 1780 #endif 1781 .release = userfaultfd_release, 1782 .poll = userfaultfd_poll, 1783 .read = userfaultfd_read, 1784 .unlocked_ioctl = userfaultfd_ioctl, 1785 .compat_ioctl = userfaultfd_ioctl, 1786 .llseek = noop_llseek, 1787 }; 1788 1789 static void init_once_userfaultfd_ctx(void *mem) 1790 { 1791 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1792 1793 init_waitqueue_head(&ctx->fault_pending_wqh); 1794 init_waitqueue_head(&ctx->fault_wqh); 1795 init_waitqueue_head(&ctx->event_wqh); 1796 init_waitqueue_head(&ctx->fd_wqh); 1797 seqcount_init(&ctx->refile_seq); 1798 } 1799 1800 /** 1801 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1802 * @flags: Flags for the userfaultfd file. 1803 * 1804 * This function creates a userfaultfd file pointer, w/out installing 1805 * it into the fd table. This is useful when the userfaultfd file is 1806 * used during the initialization of data structures that require 1807 * extra setup after the userfaultfd creation. So the userfaultfd 1808 * creation is split into the file pointer creation phase, and the 1809 * file descriptor installation phase. In this way races with 1810 * userspace closing the newly installed file descriptor can be 1811 * avoided. Returns a userfaultfd file pointer, or a proper error 1812 * pointer. 1813 */ 1814 static struct file *userfaultfd_file_create(int flags) 1815 { 1816 struct file *file; 1817 struct userfaultfd_ctx *ctx; 1818 1819 BUG_ON(!current->mm); 1820 1821 /* Check the UFFD_* constants for consistency. */ 1822 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1823 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1824 1825 file = ERR_PTR(-EINVAL); 1826 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1827 goto out; 1828 1829 file = ERR_PTR(-ENOMEM); 1830 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1831 if (!ctx) 1832 goto out; 1833 1834 atomic_set(&ctx->refcount, 1); 1835 ctx->flags = flags; 1836 ctx->features = 0; 1837 ctx->state = UFFD_STATE_WAIT_API; 1838 ctx->released = false; 1839 ctx->mm = current->mm; 1840 /* prevent the mm struct to be freed */ 1841 mmgrab(ctx->mm); 1842 1843 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1844 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1845 if (IS_ERR(file)) { 1846 mmdrop(ctx->mm); 1847 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1848 } 1849 out: 1850 return file; 1851 } 1852 1853 SYSCALL_DEFINE1(userfaultfd, int, flags) 1854 { 1855 int fd, error; 1856 struct file *file; 1857 1858 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1859 if (error < 0) 1860 return error; 1861 fd = error; 1862 1863 file = userfaultfd_file_create(flags); 1864 if (IS_ERR(file)) { 1865 error = PTR_ERR(file); 1866 goto err_put_unused_fd; 1867 } 1868 fd_install(fd, file); 1869 1870 return fd; 1871 1872 err_put_unused_fd: 1873 put_unused_fd(fd); 1874 1875 return error; 1876 } 1877 1878 static int __init userfaultfd_init(void) 1879 { 1880 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1881 sizeof(struct userfaultfd_ctx), 1882 0, 1883 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1884 init_once_userfaultfd_ctx); 1885 return 0; 1886 } 1887 __initcall(userfaultfd_init); 1888