1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 34 35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 36 37 enum userfaultfd_state { 38 UFFD_STATE_WAIT_API, 39 UFFD_STATE_RUNNING, 40 }; 41 42 /* 43 * Start with fault_pending_wqh and fault_wqh so they're more likely 44 * to be in the same cacheline. 45 */ 46 struct userfaultfd_ctx { 47 /* waitqueue head for the pending (i.e. not read) userfaults */ 48 wait_queue_head_t fault_pending_wqh; 49 /* waitqueue head for the userfaults */ 50 wait_queue_head_t fault_wqh; 51 /* waitqueue head for the pseudo fd to wakeup poll/read */ 52 wait_queue_head_t fd_wqh; 53 /* waitqueue head for events */ 54 wait_queue_head_t event_wqh; 55 /* a refile sequence protected by fault_pending_wqh lock */ 56 struct seqcount refile_seq; 57 /* pseudo fd refcounting */ 58 refcount_t refcount; 59 /* userfaultfd syscall flags */ 60 unsigned int flags; 61 /* features requested from the userspace */ 62 unsigned int features; 63 /* state machine */ 64 enum userfaultfd_state state; 65 /* released */ 66 bool released; 67 /* memory mappings are changing because of non-cooperative event */ 68 bool mmap_changing; 69 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 70 struct mm_struct *mm; 71 }; 72 73 struct userfaultfd_fork_ctx { 74 struct userfaultfd_ctx *orig; 75 struct userfaultfd_ctx *new; 76 struct list_head list; 77 }; 78 79 struct userfaultfd_unmap_ctx { 80 struct userfaultfd_ctx *ctx; 81 unsigned long start; 82 unsigned long end; 83 struct list_head list; 84 }; 85 86 struct userfaultfd_wait_queue { 87 struct uffd_msg msg; 88 wait_queue_entry_t wq; 89 struct userfaultfd_ctx *ctx; 90 bool waken; 91 }; 92 93 struct userfaultfd_wake_range { 94 unsigned long start; 95 unsigned long len; 96 }; 97 98 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 99 int wake_flags, void *key) 100 { 101 struct userfaultfd_wake_range *range = key; 102 int ret; 103 struct userfaultfd_wait_queue *uwq; 104 unsigned long start, len; 105 106 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 107 ret = 0; 108 /* len == 0 means wake all */ 109 start = range->start; 110 len = range->len; 111 if (len && (start > uwq->msg.arg.pagefault.address || 112 start + len <= uwq->msg.arg.pagefault.address)) 113 goto out; 114 WRITE_ONCE(uwq->waken, true); 115 /* 116 * The Program-Order guarantees provided by the scheduler 117 * ensure uwq->waken is visible before the task is woken. 118 */ 119 ret = wake_up_state(wq->private, mode); 120 if (ret) { 121 /* 122 * Wake only once, autoremove behavior. 123 * 124 * After the effect of list_del_init is visible to the other 125 * CPUs, the waitqueue may disappear from under us, see the 126 * !list_empty_careful() in handle_userfault(). 127 * 128 * try_to_wake_up() has an implicit smp_mb(), and the 129 * wq->private is read before calling the extern function 130 * "wake_up_state" (which in turns calls try_to_wake_up). 131 */ 132 list_del_init(&wq->entry); 133 } 134 out: 135 return ret; 136 } 137 138 /** 139 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 140 * context. 141 * @ctx: [in] Pointer to the userfaultfd context. 142 */ 143 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 144 { 145 refcount_inc(&ctx->refcount); 146 } 147 148 /** 149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 150 * context. 151 * @ctx: [in] Pointer to userfaultfd context. 152 * 153 * The userfaultfd context reference must have been previously acquired either 154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 155 */ 156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 157 { 158 if (refcount_dec_and_test(&ctx->refcount)) { 159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 167 mmdrop(ctx->mm); 168 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 169 } 170 } 171 172 static inline void msg_init(struct uffd_msg *msg) 173 { 174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 175 /* 176 * Must use memset to zero out the paddings or kernel data is 177 * leaked to userland. 178 */ 179 memset(msg, 0, sizeof(struct uffd_msg)); 180 } 181 182 static inline struct uffd_msg userfault_msg(unsigned long address, 183 unsigned int flags, 184 unsigned long reason, 185 unsigned int features) 186 { 187 struct uffd_msg msg; 188 msg_init(&msg); 189 msg.event = UFFD_EVENT_PAGEFAULT; 190 msg.arg.pagefault.address = address; 191 if (flags & FAULT_FLAG_WRITE) 192 /* 193 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 194 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 195 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 196 * was a read fault, otherwise if set it means it's 197 * a write fault. 198 */ 199 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 200 if (reason & VM_UFFD_WP) 201 /* 202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 204 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 205 * a missing fault, otherwise if set it means it's a 206 * write protect fault. 207 */ 208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 209 if (features & UFFD_FEATURE_THREAD_ID) 210 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 211 return msg; 212 } 213 214 #ifdef CONFIG_HUGETLB_PAGE 215 /* 216 * Same functionality as userfaultfd_must_wait below with modifications for 217 * hugepmd ranges. 218 */ 219 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 220 struct vm_area_struct *vma, 221 unsigned long address, 222 unsigned long flags, 223 unsigned long reason) 224 { 225 struct mm_struct *mm = ctx->mm; 226 pte_t *ptep, pte; 227 bool ret = true; 228 229 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 230 231 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 232 233 if (!ptep) 234 goto out; 235 236 ret = false; 237 pte = huge_ptep_get(ptep); 238 239 /* 240 * Lockless access: we're in a wait_event so it's ok if it 241 * changes under us. 242 */ 243 if (huge_pte_none(pte)) 244 ret = true; 245 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 246 ret = true; 247 out: 248 return ret; 249 } 250 #else 251 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 252 struct vm_area_struct *vma, 253 unsigned long address, 254 unsigned long flags, 255 unsigned long reason) 256 { 257 return false; /* should never get here */ 258 } 259 #endif /* CONFIG_HUGETLB_PAGE */ 260 261 /* 262 * Verify the pagetables are still not ok after having reigstered into 263 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 264 * userfault that has already been resolved, if userfaultfd_read and 265 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 266 * threads. 267 */ 268 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 269 unsigned long address, 270 unsigned long flags, 271 unsigned long reason) 272 { 273 struct mm_struct *mm = ctx->mm; 274 pgd_t *pgd; 275 p4d_t *p4d; 276 pud_t *pud; 277 pmd_t *pmd, _pmd; 278 pte_t *pte; 279 bool ret = true; 280 281 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 282 283 pgd = pgd_offset(mm, address); 284 if (!pgd_present(*pgd)) 285 goto out; 286 p4d = p4d_offset(pgd, address); 287 if (!p4d_present(*p4d)) 288 goto out; 289 pud = pud_offset(p4d, address); 290 if (!pud_present(*pud)) 291 goto out; 292 pmd = pmd_offset(pud, address); 293 /* 294 * READ_ONCE must function as a barrier with narrower scope 295 * and it must be equivalent to: 296 * _pmd = *pmd; barrier(); 297 * 298 * This is to deal with the instability (as in 299 * pmd_trans_unstable) of the pmd. 300 */ 301 _pmd = READ_ONCE(*pmd); 302 if (pmd_none(_pmd)) 303 goto out; 304 305 ret = false; 306 if (!pmd_present(_pmd)) 307 goto out; 308 309 if (pmd_trans_huge(_pmd)) 310 goto out; 311 312 /* 313 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 314 * and use the standard pte_offset_map() instead of parsing _pmd. 315 */ 316 pte = pte_offset_map(pmd, address); 317 /* 318 * Lockless access: we're in a wait_event so it's ok if it 319 * changes under us. 320 */ 321 if (pte_none(*pte)) 322 ret = true; 323 pte_unmap(pte); 324 325 out: 326 return ret; 327 } 328 329 /* 330 * The locking rules involved in returning VM_FAULT_RETRY depending on 331 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 332 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 333 * recommendation in __lock_page_or_retry is not an understatement. 334 * 335 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 336 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 337 * not set. 338 * 339 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 340 * set, VM_FAULT_RETRY can still be returned if and only if there are 341 * fatal_signal_pending()s, and the mmap_sem must be released before 342 * returning it. 343 */ 344 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 345 { 346 struct mm_struct *mm = vmf->vma->vm_mm; 347 struct userfaultfd_ctx *ctx; 348 struct userfaultfd_wait_queue uwq; 349 vm_fault_t ret = VM_FAULT_SIGBUS; 350 bool must_wait, return_to_userland; 351 long blocking_state; 352 353 /* 354 * We don't do userfault handling for the final child pid update. 355 * 356 * We also don't do userfault handling during 357 * coredumping. hugetlbfs has the special 358 * follow_hugetlb_page() to skip missing pages in the 359 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 360 * the no_page_table() helper in follow_page_mask(), but the 361 * shmem_vm_ops->fault method is invoked even during 362 * coredumping without mmap_sem and it ends up here. 363 */ 364 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 365 goto out; 366 367 /* 368 * Coredumping runs without mmap_sem so we can only check that 369 * the mmap_sem is held, if PF_DUMPCORE was not set. 370 */ 371 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 372 373 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 374 if (!ctx) 375 goto out; 376 377 BUG_ON(ctx->mm != mm); 378 379 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 380 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 381 382 if (ctx->features & UFFD_FEATURE_SIGBUS) 383 goto out; 384 385 /* 386 * If it's already released don't get it. This avoids to loop 387 * in __get_user_pages if userfaultfd_release waits on the 388 * caller of handle_userfault to release the mmap_sem. 389 */ 390 if (unlikely(READ_ONCE(ctx->released))) { 391 /* 392 * Don't return VM_FAULT_SIGBUS in this case, so a non 393 * cooperative manager can close the uffd after the 394 * last UFFDIO_COPY, without risking to trigger an 395 * involuntary SIGBUS if the process was starting the 396 * userfaultfd while the userfaultfd was still armed 397 * (but after the last UFFDIO_COPY). If the uffd 398 * wasn't already closed when the userfault reached 399 * this point, that would normally be solved by 400 * userfaultfd_must_wait returning 'false'. 401 * 402 * If we were to return VM_FAULT_SIGBUS here, the non 403 * cooperative manager would be instead forced to 404 * always call UFFDIO_UNREGISTER before it can safely 405 * close the uffd. 406 */ 407 ret = VM_FAULT_NOPAGE; 408 goto out; 409 } 410 411 /* 412 * Check that we can return VM_FAULT_RETRY. 413 * 414 * NOTE: it should become possible to return VM_FAULT_RETRY 415 * even if FAULT_FLAG_TRIED is set without leading to gup() 416 * -EBUSY failures, if the userfaultfd is to be extended for 417 * VM_UFFD_WP tracking and we intend to arm the userfault 418 * without first stopping userland access to the memory. For 419 * VM_UFFD_MISSING userfaults this is enough for now. 420 */ 421 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 422 /* 423 * Validate the invariant that nowait must allow retry 424 * to be sure not to return SIGBUS erroneously on 425 * nowait invocations. 426 */ 427 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 428 #ifdef CONFIG_DEBUG_VM 429 if (printk_ratelimit()) { 430 printk(KERN_WARNING 431 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 432 vmf->flags); 433 dump_stack(); 434 } 435 #endif 436 goto out; 437 } 438 439 /* 440 * Handle nowait, not much to do other than tell it to retry 441 * and wait. 442 */ 443 ret = VM_FAULT_RETRY; 444 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 445 goto out; 446 447 /* take the reference before dropping the mmap_sem */ 448 userfaultfd_ctx_get(ctx); 449 450 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 451 uwq.wq.private = current; 452 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 453 ctx->features); 454 uwq.ctx = ctx; 455 uwq.waken = false; 456 457 return_to_userland = 458 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 459 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 460 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 461 TASK_KILLABLE; 462 463 spin_lock(&ctx->fault_pending_wqh.lock); 464 /* 465 * After the __add_wait_queue the uwq is visible to userland 466 * through poll/read(). 467 */ 468 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 469 /* 470 * The smp_mb() after __set_current_state prevents the reads 471 * following the spin_unlock to happen before the list_add in 472 * __add_wait_queue. 473 */ 474 set_current_state(blocking_state); 475 spin_unlock(&ctx->fault_pending_wqh.lock); 476 477 if (!is_vm_hugetlb_page(vmf->vma)) 478 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 479 reason); 480 else 481 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 482 vmf->address, 483 vmf->flags, reason); 484 up_read(&mm->mmap_sem); 485 486 if (likely(must_wait && !READ_ONCE(ctx->released) && 487 (return_to_userland ? !signal_pending(current) : 488 !fatal_signal_pending(current)))) { 489 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 490 schedule(); 491 ret |= VM_FAULT_MAJOR; 492 493 /* 494 * False wakeups can orginate even from rwsem before 495 * up_read() however userfaults will wait either for a 496 * targeted wakeup on the specific uwq waitqueue from 497 * wake_userfault() or for signals or for uffd 498 * release. 499 */ 500 while (!READ_ONCE(uwq.waken)) { 501 /* 502 * This needs the full smp_store_mb() 503 * guarantee as the state write must be 504 * visible to other CPUs before reading 505 * uwq.waken from other CPUs. 506 */ 507 set_current_state(blocking_state); 508 if (READ_ONCE(uwq.waken) || 509 READ_ONCE(ctx->released) || 510 (return_to_userland ? signal_pending(current) : 511 fatal_signal_pending(current))) 512 break; 513 schedule(); 514 } 515 } 516 517 __set_current_state(TASK_RUNNING); 518 519 if (return_to_userland) { 520 if (signal_pending(current) && 521 !fatal_signal_pending(current)) { 522 /* 523 * If we got a SIGSTOP or SIGCONT and this is 524 * a normal userland page fault, just let 525 * userland return so the signal will be 526 * handled and gdb debugging works. The page 527 * fault code immediately after we return from 528 * this function is going to release the 529 * mmap_sem and it's not depending on it 530 * (unlike gup would if we were not to return 531 * VM_FAULT_RETRY). 532 * 533 * If a fatal signal is pending we still take 534 * the streamlined VM_FAULT_RETRY failure path 535 * and there's no need to retake the mmap_sem 536 * in such case. 537 */ 538 down_read(&mm->mmap_sem); 539 ret = VM_FAULT_NOPAGE; 540 } 541 } 542 543 /* 544 * Here we race with the list_del; list_add in 545 * userfaultfd_ctx_read(), however because we don't ever run 546 * list_del_init() to refile across the two lists, the prev 547 * and next pointers will never point to self. list_add also 548 * would never let any of the two pointers to point to 549 * self. So list_empty_careful won't risk to see both pointers 550 * pointing to self at any time during the list refile. The 551 * only case where list_del_init() is called is the full 552 * removal in the wake function and there we don't re-list_add 553 * and it's fine not to block on the spinlock. The uwq on this 554 * kernel stack can be released after the list_del_init. 555 */ 556 if (!list_empty_careful(&uwq.wq.entry)) { 557 spin_lock(&ctx->fault_pending_wqh.lock); 558 /* 559 * No need of list_del_init(), the uwq on the stack 560 * will be freed shortly anyway. 561 */ 562 list_del(&uwq.wq.entry); 563 spin_unlock(&ctx->fault_pending_wqh.lock); 564 } 565 566 /* 567 * ctx may go away after this if the userfault pseudo fd is 568 * already released. 569 */ 570 userfaultfd_ctx_put(ctx); 571 572 out: 573 return ret; 574 } 575 576 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 577 struct userfaultfd_wait_queue *ewq) 578 { 579 struct userfaultfd_ctx *release_new_ctx; 580 581 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 582 goto out; 583 584 ewq->ctx = ctx; 585 init_waitqueue_entry(&ewq->wq, current); 586 release_new_ctx = NULL; 587 588 spin_lock(&ctx->event_wqh.lock); 589 /* 590 * After the __add_wait_queue the uwq is visible to userland 591 * through poll/read(). 592 */ 593 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 594 for (;;) { 595 set_current_state(TASK_KILLABLE); 596 if (ewq->msg.event == 0) 597 break; 598 if (READ_ONCE(ctx->released) || 599 fatal_signal_pending(current)) { 600 /* 601 * &ewq->wq may be queued in fork_event, but 602 * __remove_wait_queue ignores the head 603 * parameter. It would be a problem if it 604 * didn't. 605 */ 606 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 607 if (ewq->msg.event == UFFD_EVENT_FORK) { 608 struct userfaultfd_ctx *new; 609 610 new = (struct userfaultfd_ctx *) 611 (unsigned long) 612 ewq->msg.arg.reserved.reserved1; 613 release_new_ctx = new; 614 } 615 break; 616 } 617 618 spin_unlock(&ctx->event_wqh.lock); 619 620 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 621 schedule(); 622 623 spin_lock(&ctx->event_wqh.lock); 624 } 625 __set_current_state(TASK_RUNNING); 626 spin_unlock(&ctx->event_wqh.lock); 627 628 if (release_new_ctx) { 629 struct vm_area_struct *vma; 630 struct mm_struct *mm = release_new_ctx->mm; 631 632 /* the various vma->vm_userfaultfd_ctx still points to it */ 633 down_write(&mm->mmap_sem); 634 /* no task can run (and in turn coredump) yet */ 635 VM_WARN_ON(!mmget_still_valid(mm)); 636 for (vma = mm->mmap; vma; vma = vma->vm_next) 637 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 639 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 640 } 641 up_write(&mm->mmap_sem); 642 643 userfaultfd_ctx_put(release_new_ctx); 644 } 645 646 /* 647 * ctx may go away after this if the userfault pseudo fd is 648 * already released. 649 */ 650 out: 651 WRITE_ONCE(ctx->mmap_changing, false); 652 userfaultfd_ctx_put(ctx); 653 } 654 655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 656 struct userfaultfd_wait_queue *ewq) 657 { 658 ewq->msg.event = 0; 659 wake_up_locked(&ctx->event_wqh); 660 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 661 } 662 663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 664 { 665 struct userfaultfd_ctx *ctx = NULL, *octx; 666 struct userfaultfd_fork_ctx *fctx; 667 668 octx = vma->vm_userfaultfd_ctx.ctx; 669 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 671 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 672 return 0; 673 } 674 675 list_for_each_entry(fctx, fcs, list) 676 if (fctx->orig == octx) { 677 ctx = fctx->new; 678 break; 679 } 680 681 if (!ctx) { 682 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 683 if (!fctx) 684 return -ENOMEM; 685 686 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 687 if (!ctx) { 688 kfree(fctx); 689 return -ENOMEM; 690 } 691 692 refcount_set(&ctx->refcount, 1); 693 ctx->flags = octx->flags; 694 ctx->state = UFFD_STATE_RUNNING; 695 ctx->features = octx->features; 696 ctx->released = false; 697 ctx->mmap_changing = false; 698 ctx->mm = vma->vm_mm; 699 mmgrab(ctx->mm); 700 701 userfaultfd_ctx_get(octx); 702 WRITE_ONCE(octx->mmap_changing, true); 703 fctx->orig = octx; 704 fctx->new = ctx; 705 list_add_tail(&fctx->list, fcs); 706 } 707 708 vma->vm_userfaultfd_ctx.ctx = ctx; 709 return 0; 710 } 711 712 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 713 { 714 struct userfaultfd_ctx *ctx = fctx->orig; 715 struct userfaultfd_wait_queue ewq; 716 717 msg_init(&ewq.msg); 718 719 ewq.msg.event = UFFD_EVENT_FORK; 720 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 721 722 userfaultfd_event_wait_completion(ctx, &ewq); 723 } 724 725 void dup_userfaultfd_complete(struct list_head *fcs) 726 { 727 struct userfaultfd_fork_ctx *fctx, *n; 728 729 list_for_each_entry_safe(fctx, n, fcs, list) { 730 dup_fctx(fctx); 731 list_del(&fctx->list); 732 kfree(fctx); 733 } 734 } 735 736 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 737 struct vm_userfaultfd_ctx *vm_ctx) 738 { 739 struct userfaultfd_ctx *ctx; 740 741 ctx = vma->vm_userfaultfd_ctx.ctx; 742 743 if (!ctx) 744 return; 745 746 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 747 vm_ctx->ctx = ctx; 748 userfaultfd_ctx_get(ctx); 749 WRITE_ONCE(ctx->mmap_changing, true); 750 } else { 751 /* Drop uffd context if remap feature not enabled */ 752 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 753 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 754 } 755 } 756 757 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 758 unsigned long from, unsigned long to, 759 unsigned long len) 760 { 761 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 762 struct userfaultfd_wait_queue ewq; 763 764 if (!ctx) 765 return; 766 767 if (to & ~PAGE_MASK) { 768 userfaultfd_ctx_put(ctx); 769 return; 770 } 771 772 msg_init(&ewq.msg); 773 774 ewq.msg.event = UFFD_EVENT_REMAP; 775 ewq.msg.arg.remap.from = from; 776 ewq.msg.arg.remap.to = to; 777 ewq.msg.arg.remap.len = len; 778 779 userfaultfd_event_wait_completion(ctx, &ewq); 780 } 781 782 bool userfaultfd_remove(struct vm_area_struct *vma, 783 unsigned long start, unsigned long end) 784 { 785 struct mm_struct *mm = vma->vm_mm; 786 struct userfaultfd_ctx *ctx; 787 struct userfaultfd_wait_queue ewq; 788 789 ctx = vma->vm_userfaultfd_ctx.ctx; 790 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 791 return true; 792 793 userfaultfd_ctx_get(ctx); 794 WRITE_ONCE(ctx->mmap_changing, true); 795 up_read(&mm->mmap_sem); 796 797 msg_init(&ewq.msg); 798 799 ewq.msg.event = UFFD_EVENT_REMOVE; 800 ewq.msg.arg.remove.start = start; 801 ewq.msg.arg.remove.end = end; 802 803 userfaultfd_event_wait_completion(ctx, &ewq); 804 805 return false; 806 } 807 808 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 809 unsigned long start, unsigned long end) 810 { 811 struct userfaultfd_unmap_ctx *unmap_ctx; 812 813 list_for_each_entry(unmap_ctx, unmaps, list) 814 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 815 unmap_ctx->end == end) 816 return true; 817 818 return false; 819 } 820 821 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 822 unsigned long start, unsigned long end, 823 struct list_head *unmaps) 824 { 825 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 826 struct userfaultfd_unmap_ctx *unmap_ctx; 827 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 828 829 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 830 has_unmap_ctx(ctx, unmaps, start, end)) 831 continue; 832 833 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 834 if (!unmap_ctx) 835 return -ENOMEM; 836 837 userfaultfd_ctx_get(ctx); 838 WRITE_ONCE(ctx->mmap_changing, true); 839 unmap_ctx->ctx = ctx; 840 unmap_ctx->start = start; 841 unmap_ctx->end = end; 842 list_add_tail(&unmap_ctx->list, unmaps); 843 } 844 845 return 0; 846 } 847 848 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 849 { 850 struct userfaultfd_unmap_ctx *ctx, *n; 851 struct userfaultfd_wait_queue ewq; 852 853 list_for_each_entry_safe(ctx, n, uf, list) { 854 msg_init(&ewq.msg); 855 856 ewq.msg.event = UFFD_EVENT_UNMAP; 857 ewq.msg.arg.remove.start = ctx->start; 858 ewq.msg.arg.remove.end = ctx->end; 859 860 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 861 862 list_del(&ctx->list); 863 kfree(ctx); 864 } 865 } 866 867 static int userfaultfd_release(struct inode *inode, struct file *file) 868 { 869 struct userfaultfd_ctx *ctx = file->private_data; 870 struct mm_struct *mm = ctx->mm; 871 struct vm_area_struct *vma, *prev; 872 /* len == 0 means wake all */ 873 struct userfaultfd_wake_range range = { .len = 0, }; 874 unsigned long new_flags; 875 876 WRITE_ONCE(ctx->released, true); 877 878 if (!mmget_not_zero(mm)) 879 goto wakeup; 880 881 /* 882 * Flush page faults out of all CPUs. NOTE: all page faults 883 * must be retried without returning VM_FAULT_SIGBUS if 884 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 885 * changes while handle_userfault released the mmap_sem. So 886 * it's critical that released is set to true (above), before 887 * taking the mmap_sem for writing. 888 */ 889 down_write(&mm->mmap_sem); 890 if (!mmget_still_valid(mm)) 891 goto skip_mm; 892 prev = NULL; 893 for (vma = mm->mmap; vma; vma = vma->vm_next) { 894 cond_resched(); 895 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 896 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 897 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 898 prev = vma; 899 continue; 900 } 901 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 902 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 903 new_flags, vma->anon_vma, 904 vma->vm_file, vma->vm_pgoff, 905 vma_policy(vma), 906 NULL_VM_UFFD_CTX); 907 if (prev) 908 vma = prev; 909 else 910 prev = vma; 911 vma->vm_flags = new_flags; 912 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 913 } 914 skip_mm: 915 up_write(&mm->mmap_sem); 916 mmput(mm); 917 wakeup: 918 /* 919 * After no new page faults can wait on this fault_*wqh, flush 920 * the last page faults that may have been already waiting on 921 * the fault_*wqh. 922 */ 923 spin_lock(&ctx->fault_pending_wqh.lock); 924 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 925 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 926 spin_unlock(&ctx->fault_pending_wqh.lock); 927 928 /* Flush pending events that may still wait on event_wqh */ 929 wake_up_all(&ctx->event_wqh); 930 931 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 932 userfaultfd_ctx_put(ctx); 933 return 0; 934 } 935 936 /* fault_pending_wqh.lock must be hold by the caller */ 937 static inline struct userfaultfd_wait_queue *find_userfault_in( 938 wait_queue_head_t *wqh) 939 { 940 wait_queue_entry_t *wq; 941 struct userfaultfd_wait_queue *uwq; 942 943 lockdep_assert_held(&wqh->lock); 944 945 uwq = NULL; 946 if (!waitqueue_active(wqh)) 947 goto out; 948 /* walk in reverse to provide FIFO behavior to read userfaults */ 949 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 950 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 951 out: 952 return uwq; 953 } 954 955 static inline struct userfaultfd_wait_queue *find_userfault( 956 struct userfaultfd_ctx *ctx) 957 { 958 return find_userfault_in(&ctx->fault_pending_wqh); 959 } 960 961 static inline struct userfaultfd_wait_queue *find_userfault_evt( 962 struct userfaultfd_ctx *ctx) 963 { 964 return find_userfault_in(&ctx->event_wqh); 965 } 966 967 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 968 { 969 struct userfaultfd_ctx *ctx = file->private_data; 970 __poll_t ret; 971 972 poll_wait(file, &ctx->fd_wqh, wait); 973 974 switch (ctx->state) { 975 case UFFD_STATE_WAIT_API: 976 return EPOLLERR; 977 case UFFD_STATE_RUNNING: 978 /* 979 * poll() never guarantees that read won't block. 980 * userfaults can be waken before they're read(). 981 */ 982 if (unlikely(!(file->f_flags & O_NONBLOCK))) 983 return EPOLLERR; 984 /* 985 * lockless access to see if there are pending faults 986 * __pollwait last action is the add_wait_queue but 987 * the spin_unlock would allow the waitqueue_active to 988 * pass above the actual list_add inside 989 * add_wait_queue critical section. So use a full 990 * memory barrier to serialize the list_add write of 991 * add_wait_queue() with the waitqueue_active read 992 * below. 993 */ 994 ret = 0; 995 smp_mb(); 996 if (waitqueue_active(&ctx->fault_pending_wqh)) 997 ret = EPOLLIN; 998 else if (waitqueue_active(&ctx->event_wqh)) 999 ret = EPOLLIN; 1000 1001 return ret; 1002 default: 1003 WARN_ON_ONCE(1); 1004 return EPOLLERR; 1005 } 1006 } 1007 1008 static const struct file_operations userfaultfd_fops; 1009 1010 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1011 struct userfaultfd_ctx *new, 1012 struct uffd_msg *msg) 1013 { 1014 int fd; 1015 1016 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1017 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1018 if (fd < 0) 1019 return fd; 1020 1021 msg->arg.reserved.reserved1 = 0; 1022 msg->arg.fork.ufd = fd; 1023 return 0; 1024 } 1025 1026 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1027 struct uffd_msg *msg) 1028 { 1029 ssize_t ret; 1030 DECLARE_WAITQUEUE(wait, current); 1031 struct userfaultfd_wait_queue *uwq; 1032 /* 1033 * Handling fork event requires sleeping operations, so 1034 * we drop the event_wqh lock, then do these ops, then 1035 * lock it back and wake up the waiter. While the lock is 1036 * dropped the ewq may go away so we keep track of it 1037 * carefully. 1038 */ 1039 LIST_HEAD(fork_event); 1040 struct userfaultfd_ctx *fork_nctx = NULL; 1041 1042 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1043 spin_lock_irq(&ctx->fd_wqh.lock); 1044 __add_wait_queue(&ctx->fd_wqh, &wait); 1045 for (;;) { 1046 set_current_state(TASK_INTERRUPTIBLE); 1047 spin_lock(&ctx->fault_pending_wqh.lock); 1048 uwq = find_userfault(ctx); 1049 if (uwq) { 1050 /* 1051 * Use a seqcount to repeat the lockless check 1052 * in wake_userfault() to avoid missing 1053 * wakeups because during the refile both 1054 * waitqueue could become empty if this is the 1055 * only userfault. 1056 */ 1057 write_seqcount_begin(&ctx->refile_seq); 1058 1059 /* 1060 * The fault_pending_wqh.lock prevents the uwq 1061 * to disappear from under us. 1062 * 1063 * Refile this userfault from 1064 * fault_pending_wqh to fault_wqh, it's not 1065 * pending anymore after we read it. 1066 * 1067 * Use list_del() by hand (as 1068 * userfaultfd_wake_function also uses 1069 * list_del_init() by hand) to be sure nobody 1070 * changes __remove_wait_queue() to use 1071 * list_del_init() in turn breaking the 1072 * !list_empty_careful() check in 1073 * handle_userfault(). The uwq->wq.head list 1074 * must never be empty at any time during the 1075 * refile, or the waitqueue could disappear 1076 * from under us. The "wait_queue_head_t" 1077 * parameter of __remove_wait_queue() is unused 1078 * anyway. 1079 */ 1080 list_del(&uwq->wq.entry); 1081 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1082 1083 write_seqcount_end(&ctx->refile_seq); 1084 1085 /* careful to always initialize msg if ret == 0 */ 1086 *msg = uwq->msg; 1087 spin_unlock(&ctx->fault_pending_wqh.lock); 1088 ret = 0; 1089 break; 1090 } 1091 spin_unlock(&ctx->fault_pending_wqh.lock); 1092 1093 spin_lock(&ctx->event_wqh.lock); 1094 uwq = find_userfault_evt(ctx); 1095 if (uwq) { 1096 *msg = uwq->msg; 1097 1098 if (uwq->msg.event == UFFD_EVENT_FORK) { 1099 fork_nctx = (struct userfaultfd_ctx *) 1100 (unsigned long) 1101 uwq->msg.arg.reserved.reserved1; 1102 list_move(&uwq->wq.entry, &fork_event); 1103 /* 1104 * fork_nctx can be freed as soon as 1105 * we drop the lock, unless we take a 1106 * reference on it. 1107 */ 1108 userfaultfd_ctx_get(fork_nctx); 1109 spin_unlock(&ctx->event_wqh.lock); 1110 ret = 0; 1111 break; 1112 } 1113 1114 userfaultfd_event_complete(ctx, uwq); 1115 spin_unlock(&ctx->event_wqh.lock); 1116 ret = 0; 1117 break; 1118 } 1119 spin_unlock(&ctx->event_wqh.lock); 1120 1121 if (signal_pending(current)) { 1122 ret = -ERESTARTSYS; 1123 break; 1124 } 1125 if (no_wait) { 1126 ret = -EAGAIN; 1127 break; 1128 } 1129 spin_unlock_irq(&ctx->fd_wqh.lock); 1130 schedule(); 1131 spin_lock_irq(&ctx->fd_wqh.lock); 1132 } 1133 __remove_wait_queue(&ctx->fd_wqh, &wait); 1134 __set_current_state(TASK_RUNNING); 1135 spin_unlock_irq(&ctx->fd_wqh.lock); 1136 1137 if (!ret && msg->event == UFFD_EVENT_FORK) { 1138 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1139 spin_lock(&ctx->event_wqh.lock); 1140 if (!list_empty(&fork_event)) { 1141 /* 1142 * The fork thread didn't abort, so we can 1143 * drop the temporary refcount. 1144 */ 1145 userfaultfd_ctx_put(fork_nctx); 1146 1147 uwq = list_first_entry(&fork_event, 1148 typeof(*uwq), 1149 wq.entry); 1150 /* 1151 * If fork_event list wasn't empty and in turn 1152 * the event wasn't already released by fork 1153 * (the event is allocated on fork kernel 1154 * stack), put the event back to its place in 1155 * the event_wq. fork_event head will be freed 1156 * as soon as we return so the event cannot 1157 * stay queued there no matter the current 1158 * "ret" value. 1159 */ 1160 list_del(&uwq->wq.entry); 1161 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1162 1163 /* 1164 * Leave the event in the waitqueue and report 1165 * error to userland if we failed to resolve 1166 * the userfault fork. 1167 */ 1168 if (likely(!ret)) 1169 userfaultfd_event_complete(ctx, uwq); 1170 } else { 1171 /* 1172 * Here the fork thread aborted and the 1173 * refcount from the fork thread on fork_nctx 1174 * has already been released. We still hold 1175 * the reference we took before releasing the 1176 * lock above. If resolve_userfault_fork 1177 * failed we've to drop it because the 1178 * fork_nctx has to be freed in such case. If 1179 * it succeeded we'll hold it because the new 1180 * uffd references it. 1181 */ 1182 if (ret) 1183 userfaultfd_ctx_put(fork_nctx); 1184 } 1185 spin_unlock(&ctx->event_wqh.lock); 1186 } 1187 1188 return ret; 1189 } 1190 1191 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1192 size_t count, loff_t *ppos) 1193 { 1194 struct userfaultfd_ctx *ctx = file->private_data; 1195 ssize_t _ret, ret = 0; 1196 struct uffd_msg msg; 1197 int no_wait = file->f_flags & O_NONBLOCK; 1198 1199 if (ctx->state == UFFD_STATE_WAIT_API) 1200 return -EINVAL; 1201 1202 for (;;) { 1203 if (count < sizeof(msg)) 1204 return ret ? ret : -EINVAL; 1205 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1206 if (_ret < 0) 1207 return ret ? ret : _ret; 1208 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1209 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 1211 buf += sizeof(msg); 1212 count -= sizeof(msg); 1213 /* 1214 * Allow to read more than one fault at time but only 1215 * block if waiting for the very first one. 1216 */ 1217 no_wait = O_NONBLOCK; 1218 } 1219 } 1220 1221 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1222 struct userfaultfd_wake_range *range) 1223 { 1224 spin_lock(&ctx->fault_pending_wqh.lock); 1225 /* wake all in the range and autoremove */ 1226 if (waitqueue_active(&ctx->fault_pending_wqh)) 1227 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1228 range); 1229 if (waitqueue_active(&ctx->fault_wqh)) 1230 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1231 spin_unlock(&ctx->fault_pending_wqh.lock); 1232 } 1233 1234 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1235 struct userfaultfd_wake_range *range) 1236 { 1237 unsigned seq; 1238 bool need_wakeup; 1239 1240 /* 1241 * To be sure waitqueue_active() is not reordered by the CPU 1242 * before the pagetable update, use an explicit SMP memory 1243 * barrier here. PT lock release or up_read(mmap_sem) still 1244 * have release semantics that can allow the 1245 * waitqueue_active() to be reordered before the pte update. 1246 */ 1247 smp_mb(); 1248 1249 /* 1250 * Use waitqueue_active because it's very frequent to 1251 * change the address space atomically even if there are no 1252 * userfaults yet. So we take the spinlock only when we're 1253 * sure we've userfaults to wake. 1254 */ 1255 do { 1256 seq = read_seqcount_begin(&ctx->refile_seq); 1257 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1258 waitqueue_active(&ctx->fault_wqh); 1259 cond_resched(); 1260 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1261 if (need_wakeup) 1262 __wake_userfault(ctx, range); 1263 } 1264 1265 static __always_inline int validate_range(struct mm_struct *mm, 1266 __u64 start, __u64 len) 1267 { 1268 __u64 task_size = mm->task_size; 1269 1270 if (start & ~PAGE_MASK) 1271 return -EINVAL; 1272 if (len & ~PAGE_MASK) 1273 return -EINVAL; 1274 if (!len) 1275 return -EINVAL; 1276 if (start < mmap_min_addr) 1277 return -EINVAL; 1278 if (start >= task_size) 1279 return -EINVAL; 1280 if (len > task_size - start) 1281 return -EINVAL; 1282 return 0; 1283 } 1284 1285 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1286 { 1287 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1288 vma_is_shmem(vma); 1289 } 1290 1291 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1292 unsigned long arg) 1293 { 1294 struct mm_struct *mm = ctx->mm; 1295 struct vm_area_struct *vma, *prev, *cur; 1296 int ret; 1297 struct uffdio_register uffdio_register; 1298 struct uffdio_register __user *user_uffdio_register; 1299 unsigned long vm_flags, new_flags; 1300 bool found; 1301 bool basic_ioctls; 1302 unsigned long start, end, vma_end; 1303 1304 user_uffdio_register = (struct uffdio_register __user *) arg; 1305 1306 ret = -EFAULT; 1307 if (copy_from_user(&uffdio_register, user_uffdio_register, 1308 sizeof(uffdio_register)-sizeof(__u64))) 1309 goto out; 1310 1311 ret = -EINVAL; 1312 if (!uffdio_register.mode) 1313 goto out; 1314 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1315 UFFDIO_REGISTER_MODE_WP)) 1316 goto out; 1317 vm_flags = 0; 1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1319 vm_flags |= VM_UFFD_MISSING; 1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1321 vm_flags |= VM_UFFD_WP; 1322 /* 1323 * FIXME: remove the below error constraint by 1324 * implementing the wprotect tracking mode. 1325 */ 1326 ret = -EINVAL; 1327 goto out; 1328 } 1329 1330 ret = validate_range(mm, uffdio_register.range.start, 1331 uffdio_register.range.len); 1332 if (ret) 1333 goto out; 1334 1335 start = uffdio_register.range.start; 1336 end = start + uffdio_register.range.len; 1337 1338 ret = -ENOMEM; 1339 if (!mmget_not_zero(mm)) 1340 goto out; 1341 1342 down_write(&mm->mmap_sem); 1343 if (!mmget_still_valid(mm)) 1344 goto out_unlock; 1345 vma = find_vma_prev(mm, start, &prev); 1346 if (!vma) 1347 goto out_unlock; 1348 1349 /* check that there's at least one vma in the range */ 1350 ret = -EINVAL; 1351 if (vma->vm_start >= end) 1352 goto out_unlock; 1353 1354 /* 1355 * If the first vma contains huge pages, make sure start address 1356 * is aligned to huge page size. 1357 */ 1358 if (is_vm_hugetlb_page(vma)) { 1359 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1360 1361 if (start & (vma_hpagesize - 1)) 1362 goto out_unlock; 1363 } 1364 1365 /* 1366 * Search for not compatible vmas. 1367 */ 1368 found = false; 1369 basic_ioctls = false; 1370 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1371 cond_resched(); 1372 1373 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1374 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1375 1376 /* check not compatible vmas */ 1377 ret = -EINVAL; 1378 if (!vma_can_userfault(cur)) 1379 goto out_unlock; 1380 1381 /* 1382 * UFFDIO_COPY will fill file holes even without 1383 * PROT_WRITE. This check enforces that if this is a 1384 * MAP_SHARED, the process has write permission to the backing 1385 * file. If VM_MAYWRITE is set it also enforces that on a 1386 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1387 * F_WRITE_SEAL can be taken until the vma is destroyed. 1388 */ 1389 ret = -EPERM; 1390 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1391 goto out_unlock; 1392 1393 /* 1394 * If this vma contains ending address, and huge pages 1395 * check alignment. 1396 */ 1397 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1398 end > cur->vm_start) { 1399 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1400 1401 ret = -EINVAL; 1402 1403 if (end & (vma_hpagesize - 1)) 1404 goto out_unlock; 1405 } 1406 1407 /* 1408 * Check that this vma isn't already owned by a 1409 * different userfaultfd. We can't allow more than one 1410 * userfaultfd to own a single vma simultaneously or we 1411 * wouldn't know which one to deliver the userfaults to. 1412 */ 1413 ret = -EBUSY; 1414 if (cur->vm_userfaultfd_ctx.ctx && 1415 cur->vm_userfaultfd_ctx.ctx != ctx) 1416 goto out_unlock; 1417 1418 /* 1419 * Note vmas containing huge pages 1420 */ 1421 if (is_vm_hugetlb_page(cur)) 1422 basic_ioctls = true; 1423 1424 found = true; 1425 } 1426 BUG_ON(!found); 1427 1428 if (vma->vm_start < start) 1429 prev = vma; 1430 1431 ret = 0; 1432 do { 1433 cond_resched(); 1434 1435 BUG_ON(!vma_can_userfault(vma)); 1436 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1437 vma->vm_userfaultfd_ctx.ctx != ctx); 1438 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1439 1440 /* 1441 * Nothing to do: this vma is already registered into this 1442 * userfaultfd and with the right tracking mode too. 1443 */ 1444 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1445 (vma->vm_flags & vm_flags) == vm_flags) 1446 goto skip; 1447 1448 if (vma->vm_start > start) 1449 start = vma->vm_start; 1450 vma_end = min(end, vma->vm_end); 1451 1452 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1453 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1454 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1455 vma_policy(vma), 1456 ((struct vm_userfaultfd_ctx){ ctx })); 1457 if (prev) { 1458 vma = prev; 1459 goto next; 1460 } 1461 if (vma->vm_start < start) { 1462 ret = split_vma(mm, vma, start, 1); 1463 if (ret) 1464 break; 1465 } 1466 if (vma->vm_end > end) { 1467 ret = split_vma(mm, vma, end, 0); 1468 if (ret) 1469 break; 1470 } 1471 next: 1472 /* 1473 * In the vma_merge() successful mprotect-like case 8: 1474 * the next vma was merged into the current one and 1475 * the current one has not been updated yet. 1476 */ 1477 vma->vm_flags = new_flags; 1478 vma->vm_userfaultfd_ctx.ctx = ctx; 1479 1480 skip: 1481 prev = vma; 1482 start = vma->vm_end; 1483 vma = vma->vm_next; 1484 } while (vma && vma->vm_start < end); 1485 out_unlock: 1486 up_write(&mm->mmap_sem); 1487 mmput(mm); 1488 if (!ret) { 1489 /* 1490 * Now that we scanned all vmas we can already tell 1491 * userland which ioctls methods are guaranteed to 1492 * succeed on this range. 1493 */ 1494 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1495 UFFD_API_RANGE_IOCTLS, 1496 &user_uffdio_register->ioctls)) 1497 ret = -EFAULT; 1498 } 1499 out: 1500 return ret; 1501 } 1502 1503 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1504 unsigned long arg) 1505 { 1506 struct mm_struct *mm = ctx->mm; 1507 struct vm_area_struct *vma, *prev, *cur; 1508 int ret; 1509 struct uffdio_range uffdio_unregister; 1510 unsigned long new_flags; 1511 bool found; 1512 unsigned long start, end, vma_end; 1513 const void __user *buf = (void __user *)arg; 1514 1515 ret = -EFAULT; 1516 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1517 goto out; 1518 1519 ret = validate_range(mm, uffdio_unregister.start, 1520 uffdio_unregister.len); 1521 if (ret) 1522 goto out; 1523 1524 start = uffdio_unregister.start; 1525 end = start + uffdio_unregister.len; 1526 1527 ret = -ENOMEM; 1528 if (!mmget_not_zero(mm)) 1529 goto out; 1530 1531 down_write(&mm->mmap_sem); 1532 if (!mmget_still_valid(mm)) 1533 goto out_unlock; 1534 vma = find_vma_prev(mm, start, &prev); 1535 if (!vma) 1536 goto out_unlock; 1537 1538 /* check that there's at least one vma in the range */ 1539 ret = -EINVAL; 1540 if (vma->vm_start >= end) 1541 goto out_unlock; 1542 1543 /* 1544 * If the first vma contains huge pages, make sure start address 1545 * is aligned to huge page size. 1546 */ 1547 if (is_vm_hugetlb_page(vma)) { 1548 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1549 1550 if (start & (vma_hpagesize - 1)) 1551 goto out_unlock; 1552 } 1553 1554 /* 1555 * Search for not compatible vmas. 1556 */ 1557 found = false; 1558 ret = -EINVAL; 1559 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1560 cond_resched(); 1561 1562 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1563 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1564 1565 /* 1566 * Check not compatible vmas, not strictly required 1567 * here as not compatible vmas cannot have an 1568 * userfaultfd_ctx registered on them, but this 1569 * provides for more strict behavior to notice 1570 * unregistration errors. 1571 */ 1572 if (!vma_can_userfault(cur)) 1573 goto out_unlock; 1574 1575 found = true; 1576 } 1577 BUG_ON(!found); 1578 1579 if (vma->vm_start < start) 1580 prev = vma; 1581 1582 ret = 0; 1583 do { 1584 cond_resched(); 1585 1586 BUG_ON(!vma_can_userfault(vma)); 1587 1588 /* 1589 * Nothing to do: this vma is already registered into this 1590 * userfaultfd and with the right tracking mode too. 1591 */ 1592 if (!vma->vm_userfaultfd_ctx.ctx) 1593 goto skip; 1594 1595 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1596 1597 if (vma->vm_start > start) 1598 start = vma->vm_start; 1599 vma_end = min(end, vma->vm_end); 1600 1601 if (userfaultfd_missing(vma)) { 1602 /* 1603 * Wake any concurrent pending userfault while 1604 * we unregister, so they will not hang 1605 * permanently and it avoids userland to call 1606 * UFFDIO_WAKE explicitly. 1607 */ 1608 struct userfaultfd_wake_range range; 1609 range.start = start; 1610 range.len = vma_end - start; 1611 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1612 } 1613 1614 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1615 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1616 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1617 vma_policy(vma), 1618 NULL_VM_UFFD_CTX); 1619 if (prev) { 1620 vma = prev; 1621 goto next; 1622 } 1623 if (vma->vm_start < start) { 1624 ret = split_vma(mm, vma, start, 1); 1625 if (ret) 1626 break; 1627 } 1628 if (vma->vm_end > end) { 1629 ret = split_vma(mm, vma, end, 0); 1630 if (ret) 1631 break; 1632 } 1633 next: 1634 /* 1635 * In the vma_merge() successful mprotect-like case 8: 1636 * the next vma was merged into the current one and 1637 * the current one has not been updated yet. 1638 */ 1639 vma->vm_flags = new_flags; 1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1641 1642 skip: 1643 prev = vma; 1644 start = vma->vm_end; 1645 vma = vma->vm_next; 1646 } while (vma && vma->vm_start < end); 1647 out_unlock: 1648 up_write(&mm->mmap_sem); 1649 mmput(mm); 1650 out: 1651 return ret; 1652 } 1653 1654 /* 1655 * userfaultfd_wake may be used in combination with the 1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1657 */ 1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1659 unsigned long arg) 1660 { 1661 int ret; 1662 struct uffdio_range uffdio_wake; 1663 struct userfaultfd_wake_range range; 1664 const void __user *buf = (void __user *)arg; 1665 1666 ret = -EFAULT; 1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1668 goto out; 1669 1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1671 if (ret) 1672 goto out; 1673 1674 range.start = uffdio_wake.start; 1675 range.len = uffdio_wake.len; 1676 1677 /* 1678 * len == 0 means wake all and we don't want to wake all here, 1679 * so check it again to be sure. 1680 */ 1681 VM_BUG_ON(!range.len); 1682 1683 wake_userfault(ctx, &range); 1684 ret = 0; 1685 1686 out: 1687 return ret; 1688 } 1689 1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1691 unsigned long arg) 1692 { 1693 __s64 ret; 1694 struct uffdio_copy uffdio_copy; 1695 struct uffdio_copy __user *user_uffdio_copy; 1696 struct userfaultfd_wake_range range; 1697 1698 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1699 1700 ret = -EAGAIN; 1701 if (READ_ONCE(ctx->mmap_changing)) 1702 goto out; 1703 1704 ret = -EFAULT; 1705 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1706 /* don't copy "copy" last field */ 1707 sizeof(uffdio_copy)-sizeof(__s64))) 1708 goto out; 1709 1710 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1711 if (ret) 1712 goto out; 1713 /* 1714 * double check for wraparound just in case. copy_from_user() 1715 * will later check uffdio_copy.src + uffdio_copy.len to fit 1716 * in the userland range. 1717 */ 1718 ret = -EINVAL; 1719 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1720 goto out; 1721 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1722 goto out; 1723 if (mmget_not_zero(ctx->mm)) { 1724 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1725 uffdio_copy.len, &ctx->mmap_changing); 1726 mmput(ctx->mm); 1727 } else { 1728 return -ESRCH; 1729 } 1730 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1731 return -EFAULT; 1732 if (ret < 0) 1733 goto out; 1734 BUG_ON(!ret); 1735 /* len == 0 would wake all */ 1736 range.len = ret; 1737 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1738 range.start = uffdio_copy.dst; 1739 wake_userfault(ctx, &range); 1740 } 1741 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1742 out: 1743 return ret; 1744 } 1745 1746 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1747 unsigned long arg) 1748 { 1749 __s64 ret; 1750 struct uffdio_zeropage uffdio_zeropage; 1751 struct uffdio_zeropage __user *user_uffdio_zeropage; 1752 struct userfaultfd_wake_range range; 1753 1754 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1755 1756 ret = -EAGAIN; 1757 if (READ_ONCE(ctx->mmap_changing)) 1758 goto out; 1759 1760 ret = -EFAULT; 1761 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1762 /* don't copy "zeropage" last field */ 1763 sizeof(uffdio_zeropage)-sizeof(__s64))) 1764 goto out; 1765 1766 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1767 uffdio_zeropage.range.len); 1768 if (ret) 1769 goto out; 1770 ret = -EINVAL; 1771 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1772 goto out; 1773 1774 if (mmget_not_zero(ctx->mm)) { 1775 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1776 uffdio_zeropage.range.len, 1777 &ctx->mmap_changing); 1778 mmput(ctx->mm); 1779 } else { 1780 return -ESRCH; 1781 } 1782 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1783 return -EFAULT; 1784 if (ret < 0) 1785 goto out; 1786 /* len == 0 would wake all */ 1787 BUG_ON(!ret); 1788 range.len = ret; 1789 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1790 range.start = uffdio_zeropage.range.start; 1791 wake_userfault(ctx, &range); 1792 } 1793 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1794 out: 1795 return ret; 1796 } 1797 1798 static inline unsigned int uffd_ctx_features(__u64 user_features) 1799 { 1800 /* 1801 * For the current set of features the bits just coincide 1802 */ 1803 return (unsigned int)user_features; 1804 } 1805 1806 /* 1807 * userland asks for a certain API version and we return which bits 1808 * and ioctl commands are implemented in this kernel for such API 1809 * version or -EINVAL if unknown. 1810 */ 1811 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1812 unsigned long arg) 1813 { 1814 struct uffdio_api uffdio_api; 1815 void __user *buf = (void __user *)arg; 1816 int ret; 1817 __u64 features; 1818 1819 ret = -EINVAL; 1820 if (ctx->state != UFFD_STATE_WAIT_API) 1821 goto out; 1822 ret = -EFAULT; 1823 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1824 goto out; 1825 features = uffdio_api.features; 1826 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1827 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1828 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1829 goto out; 1830 ret = -EINVAL; 1831 goto out; 1832 } 1833 /* report all available features and ioctls to userland */ 1834 uffdio_api.features = UFFD_API_FEATURES; 1835 uffdio_api.ioctls = UFFD_API_IOCTLS; 1836 ret = -EFAULT; 1837 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1838 goto out; 1839 ctx->state = UFFD_STATE_RUNNING; 1840 /* only enable the requested features for this uffd context */ 1841 ctx->features = uffd_ctx_features(features); 1842 ret = 0; 1843 out: 1844 return ret; 1845 } 1846 1847 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1848 unsigned long arg) 1849 { 1850 int ret = -EINVAL; 1851 struct userfaultfd_ctx *ctx = file->private_data; 1852 1853 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1854 return -EINVAL; 1855 1856 switch(cmd) { 1857 case UFFDIO_API: 1858 ret = userfaultfd_api(ctx, arg); 1859 break; 1860 case UFFDIO_REGISTER: 1861 ret = userfaultfd_register(ctx, arg); 1862 break; 1863 case UFFDIO_UNREGISTER: 1864 ret = userfaultfd_unregister(ctx, arg); 1865 break; 1866 case UFFDIO_WAKE: 1867 ret = userfaultfd_wake(ctx, arg); 1868 break; 1869 case UFFDIO_COPY: 1870 ret = userfaultfd_copy(ctx, arg); 1871 break; 1872 case UFFDIO_ZEROPAGE: 1873 ret = userfaultfd_zeropage(ctx, arg); 1874 break; 1875 } 1876 return ret; 1877 } 1878 1879 #ifdef CONFIG_PROC_FS 1880 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1881 { 1882 struct userfaultfd_ctx *ctx = f->private_data; 1883 wait_queue_entry_t *wq; 1884 unsigned long pending = 0, total = 0; 1885 1886 spin_lock(&ctx->fault_pending_wqh.lock); 1887 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1888 pending++; 1889 total++; 1890 } 1891 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1892 total++; 1893 } 1894 spin_unlock(&ctx->fault_pending_wqh.lock); 1895 1896 /* 1897 * If more protocols will be added, there will be all shown 1898 * separated by a space. Like this: 1899 * protocols: aa:... bb:... 1900 */ 1901 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1902 pending, total, UFFD_API, ctx->features, 1903 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1904 } 1905 #endif 1906 1907 static const struct file_operations userfaultfd_fops = { 1908 #ifdef CONFIG_PROC_FS 1909 .show_fdinfo = userfaultfd_show_fdinfo, 1910 #endif 1911 .release = userfaultfd_release, 1912 .poll = userfaultfd_poll, 1913 .read = userfaultfd_read, 1914 .unlocked_ioctl = userfaultfd_ioctl, 1915 .compat_ioctl = userfaultfd_ioctl, 1916 .llseek = noop_llseek, 1917 }; 1918 1919 static void init_once_userfaultfd_ctx(void *mem) 1920 { 1921 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1922 1923 init_waitqueue_head(&ctx->fault_pending_wqh); 1924 init_waitqueue_head(&ctx->fault_wqh); 1925 init_waitqueue_head(&ctx->event_wqh); 1926 init_waitqueue_head(&ctx->fd_wqh); 1927 seqcount_init(&ctx->refile_seq); 1928 } 1929 1930 SYSCALL_DEFINE1(userfaultfd, int, flags) 1931 { 1932 struct userfaultfd_ctx *ctx; 1933 int fd; 1934 1935 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 1936 return -EPERM; 1937 1938 BUG_ON(!current->mm); 1939 1940 /* Check the UFFD_* constants for consistency. */ 1941 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1942 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1943 1944 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1945 return -EINVAL; 1946 1947 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1948 if (!ctx) 1949 return -ENOMEM; 1950 1951 refcount_set(&ctx->refcount, 1); 1952 ctx->flags = flags; 1953 ctx->features = 0; 1954 ctx->state = UFFD_STATE_WAIT_API; 1955 ctx->released = false; 1956 ctx->mmap_changing = false; 1957 ctx->mm = current->mm; 1958 /* prevent the mm struct to be freed */ 1959 mmgrab(ctx->mm); 1960 1961 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1962 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1963 if (fd < 0) { 1964 mmdrop(ctx->mm); 1965 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1966 } 1967 return fd; 1968 } 1969 1970 static int __init userfaultfd_init(void) 1971 { 1972 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1973 sizeof(struct userfaultfd_ctx), 1974 0, 1975 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1976 init_once_userfaultfd_ctx); 1977 return 0; 1978 } 1979 __initcall(userfaultfd_init); 1980