xref: /openbmc/linux/fs/userfaultfd.c (revision f3a8b664)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31 
32 enum userfaultfd_state {
33 	UFFD_STATE_WAIT_API,
34 	UFFD_STATE_RUNNING,
35 };
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  */
41 struct userfaultfd_ctx {
42 	/* waitqueue head for the pending (i.e. not read) userfaults */
43 	wait_queue_head_t fault_pending_wqh;
44 	/* waitqueue head for the userfaults */
45 	wait_queue_head_t fault_wqh;
46 	/* waitqueue head for the pseudo fd to wakeup poll/read */
47 	wait_queue_head_t fd_wqh;
48 	/* a refile sequence protected by fault_pending_wqh lock */
49 	struct seqcount refile_seq;
50 	/* pseudo fd refcounting */
51 	atomic_t refcount;
52 	/* userfaultfd syscall flags */
53 	unsigned int flags;
54 	/* state machine */
55 	enum userfaultfd_state state;
56 	/* released */
57 	bool released;
58 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
59 	struct mm_struct *mm;
60 };
61 
62 struct userfaultfd_wait_queue {
63 	struct uffd_msg msg;
64 	wait_queue_t wq;
65 	struct userfaultfd_ctx *ctx;
66 };
67 
68 struct userfaultfd_wake_range {
69 	unsigned long start;
70 	unsigned long len;
71 };
72 
73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
74 				     int wake_flags, void *key)
75 {
76 	struct userfaultfd_wake_range *range = key;
77 	int ret;
78 	struct userfaultfd_wait_queue *uwq;
79 	unsigned long start, len;
80 
81 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
82 	ret = 0;
83 	/* len == 0 means wake all */
84 	start = range->start;
85 	len = range->len;
86 	if (len && (start > uwq->msg.arg.pagefault.address ||
87 		    start + len <= uwq->msg.arg.pagefault.address))
88 		goto out;
89 	ret = wake_up_state(wq->private, mode);
90 	if (ret)
91 		/*
92 		 * Wake only once, autoremove behavior.
93 		 *
94 		 * After the effect of list_del_init is visible to the
95 		 * other CPUs, the waitqueue may disappear from under
96 		 * us, see the !list_empty_careful() in
97 		 * handle_userfault(). try_to_wake_up() has an
98 		 * implicit smp_mb__before_spinlock, and the
99 		 * wq->private is read before calling the extern
100 		 * function "wake_up_state" (which in turns calls
101 		 * try_to_wake_up). While the spin_lock;spin_unlock;
102 		 * wouldn't be enough, the smp_mb__before_spinlock is
103 		 * enough to avoid an explicit smp_mb() here.
104 		 */
105 		list_del_init(&wq->task_list);
106 out:
107 	return ret;
108 }
109 
110 /**
111  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
112  * context.
113  * @ctx: [in] Pointer to the userfaultfd context.
114  *
115  * Returns: In case of success, returns not zero.
116  */
117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
118 {
119 	if (!atomic_inc_not_zero(&ctx->refcount))
120 		BUG();
121 }
122 
123 /**
124  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
125  * context.
126  * @ctx: [in] Pointer to userfaultfd context.
127  *
128  * The userfaultfd context reference must have been previously acquired either
129  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
130  */
131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
132 {
133 	if (atomic_dec_and_test(&ctx->refcount)) {
134 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
135 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
136 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
137 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
138 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
139 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
140 		mmdrop(ctx->mm);
141 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
142 	}
143 }
144 
145 static inline void msg_init(struct uffd_msg *msg)
146 {
147 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
148 	/*
149 	 * Must use memset to zero out the paddings or kernel data is
150 	 * leaked to userland.
151 	 */
152 	memset(msg, 0, sizeof(struct uffd_msg));
153 }
154 
155 static inline struct uffd_msg userfault_msg(unsigned long address,
156 					    unsigned int flags,
157 					    unsigned long reason)
158 {
159 	struct uffd_msg msg;
160 	msg_init(&msg);
161 	msg.event = UFFD_EVENT_PAGEFAULT;
162 	msg.arg.pagefault.address = address;
163 	if (flags & FAULT_FLAG_WRITE)
164 		/*
165 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
166 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
167 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
168 		 * was a read fault, otherwise if set it means it's
169 		 * a write fault.
170 		 */
171 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
172 	if (reason & VM_UFFD_WP)
173 		/*
174 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
175 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
176 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
177 		 * a missing fault, otherwise if set it means it's a
178 		 * write protect fault.
179 		 */
180 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
181 	return msg;
182 }
183 
184 /*
185  * Verify the pagetables are still not ok after having reigstered into
186  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
187  * userfault that has already been resolved, if userfaultfd_read and
188  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
189  * threads.
190  */
191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
192 					 unsigned long address,
193 					 unsigned long flags,
194 					 unsigned long reason)
195 {
196 	struct mm_struct *mm = ctx->mm;
197 	pgd_t *pgd;
198 	pud_t *pud;
199 	pmd_t *pmd, _pmd;
200 	pte_t *pte;
201 	bool ret = true;
202 
203 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
204 
205 	pgd = pgd_offset(mm, address);
206 	if (!pgd_present(*pgd))
207 		goto out;
208 	pud = pud_offset(pgd, address);
209 	if (!pud_present(*pud))
210 		goto out;
211 	pmd = pmd_offset(pud, address);
212 	/*
213 	 * READ_ONCE must function as a barrier with narrower scope
214 	 * and it must be equivalent to:
215 	 *	_pmd = *pmd; barrier();
216 	 *
217 	 * This is to deal with the instability (as in
218 	 * pmd_trans_unstable) of the pmd.
219 	 */
220 	_pmd = READ_ONCE(*pmd);
221 	if (!pmd_present(_pmd))
222 		goto out;
223 
224 	ret = false;
225 	if (pmd_trans_huge(_pmd))
226 		goto out;
227 
228 	/*
229 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
230 	 * and use the standard pte_offset_map() instead of parsing _pmd.
231 	 */
232 	pte = pte_offset_map(pmd, address);
233 	/*
234 	 * Lockless access: we're in a wait_event so it's ok if it
235 	 * changes under us.
236 	 */
237 	if (pte_none(*pte))
238 		ret = true;
239 	pte_unmap(pte);
240 
241 out:
242 	return ret;
243 }
244 
245 /*
246  * The locking rules involved in returning VM_FAULT_RETRY depending on
247  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
248  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
249  * recommendation in __lock_page_or_retry is not an understatement.
250  *
251  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
252  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
253  * not set.
254  *
255  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
256  * set, VM_FAULT_RETRY can still be returned if and only if there are
257  * fatal_signal_pending()s, and the mmap_sem must be released before
258  * returning it.
259  */
260 int handle_userfault(struct fault_env *fe, unsigned long reason)
261 {
262 	struct mm_struct *mm = fe->vma->vm_mm;
263 	struct userfaultfd_ctx *ctx;
264 	struct userfaultfd_wait_queue uwq;
265 	int ret;
266 	bool must_wait, return_to_userland;
267 
268 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
269 
270 	ret = VM_FAULT_SIGBUS;
271 	ctx = fe->vma->vm_userfaultfd_ctx.ctx;
272 	if (!ctx)
273 		goto out;
274 
275 	BUG_ON(ctx->mm != mm);
276 
277 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
278 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
279 
280 	/*
281 	 * If it's already released don't get it. This avoids to loop
282 	 * in __get_user_pages if userfaultfd_release waits on the
283 	 * caller of handle_userfault to release the mmap_sem.
284 	 */
285 	if (unlikely(ACCESS_ONCE(ctx->released)))
286 		goto out;
287 
288 	/*
289 	 * We don't do userfault handling for the final child pid update.
290 	 */
291 	if (current->flags & PF_EXITING)
292 		goto out;
293 
294 	/*
295 	 * Check that we can return VM_FAULT_RETRY.
296 	 *
297 	 * NOTE: it should become possible to return VM_FAULT_RETRY
298 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
299 	 * -EBUSY failures, if the userfaultfd is to be extended for
300 	 * VM_UFFD_WP tracking and we intend to arm the userfault
301 	 * without first stopping userland access to the memory. For
302 	 * VM_UFFD_MISSING userfaults this is enough for now.
303 	 */
304 	if (unlikely(!(fe->flags & FAULT_FLAG_ALLOW_RETRY))) {
305 		/*
306 		 * Validate the invariant that nowait must allow retry
307 		 * to be sure not to return SIGBUS erroneously on
308 		 * nowait invocations.
309 		 */
310 		BUG_ON(fe->flags & FAULT_FLAG_RETRY_NOWAIT);
311 #ifdef CONFIG_DEBUG_VM
312 		if (printk_ratelimit()) {
313 			printk(KERN_WARNING
314 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n", fe->flags);
315 			dump_stack();
316 		}
317 #endif
318 		goto out;
319 	}
320 
321 	/*
322 	 * Handle nowait, not much to do other than tell it to retry
323 	 * and wait.
324 	 */
325 	ret = VM_FAULT_RETRY;
326 	if (fe->flags & FAULT_FLAG_RETRY_NOWAIT)
327 		goto out;
328 
329 	/* take the reference before dropping the mmap_sem */
330 	userfaultfd_ctx_get(ctx);
331 
332 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
333 	uwq.wq.private = current;
334 	uwq.msg = userfault_msg(fe->address, fe->flags, reason);
335 	uwq.ctx = ctx;
336 
337 	return_to_userland =
338 		(fe->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
339 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
340 
341 	spin_lock(&ctx->fault_pending_wqh.lock);
342 	/*
343 	 * After the __add_wait_queue the uwq is visible to userland
344 	 * through poll/read().
345 	 */
346 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
347 	/*
348 	 * The smp_mb() after __set_current_state prevents the reads
349 	 * following the spin_unlock to happen before the list_add in
350 	 * __add_wait_queue.
351 	 */
352 	set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
353 			  TASK_KILLABLE);
354 	spin_unlock(&ctx->fault_pending_wqh.lock);
355 
356 	must_wait = userfaultfd_must_wait(ctx, fe->address, fe->flags, reason);
357 	up_read(&mm->mmap_sem);
358 
359 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
360 		   (return_to_userland ? !signal_pending(current) :
361 		    !fatal_signal_pending(current)))) {
362 		wake_up_poll(&ctx->fd_wqh, POLLIN);
363 		schedule();
364 		ret |= VM_FAULT_MAJOR;
365 	}
366 
367 	__set_current_state(TASK_RUNNING);
368 
369 	if (return_to_userland) {
370 		if (signal_pending(current) &&
371 		    !fatal_signal_pending(current)) {
372 			/*
373 			 * If we got a SIGSTOP or SIGCONT and this is
374 			 * a normal userland page fault, just let
375 			 * userland return so the signal will be
376 			 * handled and gdb debugging works.  The page
377 			 * fault code immediately after we return from
378 			 * this function is going to release the
379 			 * mmap_sem and it's not depending on it
380 			 * (unlike gup would if we were not to return
381 			 * VM_FAULT_RETRY).
382 			 *
383 			 * If a fatal signal is pending we still take
384 			 * the streamlined VM_FAULT_RETRY failure path
385 			 * and there's no need to retake the mmap_sem
386 			 * in such case.
387 			 */
388 			down_read(&mm->mmap_sem);
389 			ret = 0;
390 		}
391 	}
392 
393 	/*
394 	 * Here we race with the list_del; list_add in
395 	 * userfaultfd_ctx_read(), however because we don't ever run
396 	 * list_del_init() to refile across the two lists, the prev
397 	 * and next pointers will never point to self. list_add also
398 	 * would never let any of the two pointers to point to
399 	 * self. So list_empty_careful won't risk to see both pointers
400 	 * pointing to self at any time during the list refile. The
401 	 * only case where list_del_init() is called is the full
402 	 * removal in the wake function and there we don't re-list_add
403 	 * and it's fine not to block on the spinlock. The uwq on this
404 	 * kernel stack can be released after the list_del_init.
405 	 */
406 	if (!list_empty_careful(&uwq.wq.task_list)) {
407 		spin_lock(&ctx->fault_pending_wqh.lock);
408 		/*
409 		 * No need of list_del_init(), the uwq on the stack
410 		 * will be freed shortly anyway.
411 		 */
412 		list_del(&uwq.wq.task_list);
413 		spin_unlock(&ctx->fault_pending_wqh.lock);
414 	}
415 
416 	/*
417 	 * ctx may go away after this if the userfault pseudo fd is
418 	 * already released.
419 	 */
420 	userfaultfd_ctx_put(ctx);
421 
422 out:
423 	return ret;
424 }
425 
426 static int userfaultfd_release(struct inode *inode, struct file *file)
427 {
428 	struct userfaultfd_ctx *ctx = file->private_data;
429 	struct mm_struct *mm = ctx->mm;
430 	struct vm_area_struct *vma, *prev;
431 	/* len == 0 means wake all */
432 	struct userfaultfd_wake_range range = { .len = 0, };
433 	unsigned long new_flags;
434 
435 	ACCESS_ONCE(ctx->released) = true;
436 
437 	if (!mmget_not_zero(mm))
438 		goto wakeup;
439 
440 	/*
441 	 * Flush page faults out of all CPUs. NOTE: all page faults
442 	 * must be retried without returning VM_FAULT_SIGBUS if
443 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
444 	 * changes while handle_userfault released the mmap_sem. So
445 	 * it's critical that released is set to true (above), before
446 	 * taking the mmap_sem for writing.
447 	 */
448 	down_write(&mm->mmap_sem);
449 	prev = NULL;
450 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
451 		cond_resched();
452 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
453 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
454 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
455 			prev = vma;
456 			continue;
457 		}
458 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
459 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
460 				 new_flags, vma->anon_vma,
461 				 vma->vm_file, vma->vm_pgoff,
462 				 vma_policy(vma),
463 				 NULL_VM_UFFD_CTX);
464 		if (prev)
465 			vma = prev;
466 		else
467 			prev = vma;
468 		vma->vm_flags = new_flags;
469 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
470 	}
471 	up_write(&mm->mmap_sem);
472 	mmput(mm);
473 wakeup:
474 	/*
475 	 * After no new page faults can wait on this fault_*wqh, flush
476 	 * the last page faults that may have been already waiting on
477 	 * the fault_*wqh.
478 	 */
479 	spin_lock(&ctx->fault_pending_wqh.lock);
480 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
481 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
482 	spin_unlock(&ctx->fault_pending_wqh.lock);
483 
484 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
485 	userfaultfd_ctx_put(ctx);
486 	return 0;
487 }
488 
489 /* fault_pending_wqh.lock must be hold by the caller */
490 static inline struct userfaultfd_wait_queue *find_userfault(
491 	struct userfaultfd_ctx *ctx)
492 {
493 	wait_queue_t *wq;
494 	struct userfaultfd_wait_queue *uwq;
495 
496 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
497 
498 	uwq = NULL;
499 	if (!waitqueue_active(&ctx->fault_pending_wqh))
500 		goto out;
501 	/* walk in reverse to provide FIFO behavior to read userfaults */
502 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
503 			     typeof(*wq), task_list);
504 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
505 out:
506 	return uwq;
507 }
508 
509 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
510 {
511 	struct userfaultfd_ctx *ctx = file->private_data;
512 	unsigned int ret;
513 
514 	poll_wait(file, &ctx->fd_wqh, wait);
515 
516 	switch (ctx->state) {
517 	case UFFD_STATE_WAIT_API:
518 		return POLLERR;
519 	case UFFD_STATE_RUNNING:
520 		/*
521 		 * poll() never guarantees that read won't block.
522 		 * userfaults can be waken before they're read().
523 		 */
524 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
525 			return POLLERR;
526 		/*
527 		 * lockless access to see if there are pending faults
528 		 * __pollwait last action is the add_wait_queue but
529 		 * the spin_unlock would allow the waitqueue_active to
530 		 * pass above the actual list_add inside
531 		 * add_wait_queue critical section. So use a full
532 		 * memory barrier to serialize the list_add write of
533 		 * add_wait_queue() with the waitqueue_active read
534 		 * below.
535 		 */
536 		ret = 0;
537 		smp_mb();
538 		if (waitqueue_active(&ctx->fault_pending_wqh))
539 			ret = POLLIN;
540 		return ret;
541 	default:
542 		BUG();
543 	}
544 }
545 
546 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
547 				    struct uffd_msg *msg)
548 {
549 	ssize_t ret;
550 	DECLARE_WAITQUEUE(wait, current);
551 	struct userfaultfd_wait_queue *uwq;
552 
553 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
554 	spin_lock(&ctx->fd_wqh.lock);
555 	__add_wait_queue(&ctx->fd_wqh, &wait);
556 	for (;;) {
557 		set_current_state(TASK_INTERRUPTIBLE);
558 		spin_lock(&ctx->fault_pending_wqh.lock);
559 		uwq = find_userfault(ctx);
560 		if (uwq) {
561 			/*
562 			 * Use a seqcount to repeat the lockless check
563 			 * in wake_userfault() to avoid missing
564 			 * wakeups because during the refile both
565 			 * waitqueue could become empty if this is the
566 			 * only userfault.
567 			 */
568 			write_seqcount_begin(&ctx->refile_seq);
569 
570 			/*
571 			 * The fault_pending_wqh.lock prevents the uwq
572 			 * to disappear from under us.
573 			 *
574 			 * Refile this userfault from
575 			 * fault_pending_wqh to fault_wqh, it's not
576 			 * pending anymore after we read it.
577 			 *
578 			 * Use list_del() by hand (as
579 			 * userfaultfd_wake_function also uses
580 			 * list_del_init() by hand) to be sure nobody
581 			 * changes __remove_wait_queue() to use
582 			 * list_del_init() in turn breaking the
583 			 * !list_empty_careful() check in
584 			 * handle_userfault(). The uwq->wq.task_list
585 			 * must never be empty at any time during the
586 			 * refile, or the waitqueue could disappear
587 			 * from under us. The "wait_queue_head_t"
588 			 * parameter of __remove_wait_queue() is unused
589 			 * anyway.
590 			 */
591 			list_del(&uwq->wq.task_list);
592 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
593 
594 			write_seqcount_end(&ctx->refile_seq);
595 
596 			/* careful to always initialize msg if ret == 0 */
597 			*msg = uwq->msg;
598 			spin_unlock(&ctx->fault_pending_wqh.lock);
599 			ret = 0;
600 			break;
601 		}
602 		spin_unlock(&ctx->fault_pending_wqh.lock);
603 		if (signal_pending(current)) {
604 			ret = -ERESTARTSYS;
605 			break;
606 		}
607 		if (no_wait) {
608 			ret = -EAGAIN;
609 			break;
610 		}
611 		spin_unlock(&ctx->fd_wqh.lock);
612 		schedule();
613 		spin_lock(&ctx->fd_wqh.lock);
614 	}
615 	__remove_wait_queue(&ctx->fd_wqh, &wait);
616 	__set_current_state(TASK_RUNNING);
617 	spin_unlock(&ctx->fd_wqh.lock);
618 
619 	return ret;
620 }
621 
622 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
623 				size_t count, loff_t *ppos)
624 {
625 	struct userfaultfd_ctx *ctx = file->private_data;
626 	ssize_t _ret, ret = 0;
627 	struct uffd_msg msg;
628 	int no_wait = file->f_flags & O_NONBLOCK;
629 
630 	if (ctx->state == UFFD_STATE_WAIT_API)
631 		return -EINVAL;
632 
633 	for (;;) {
634 		if (count < sizeof(msg))
635 			return ret ? ret : -EINVAL;
636 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
637 		if (_ret < 0)
638 			return ret ? ret : _ret;
639 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
640 			return ret ? ret : -EFAULT;
641 		ret += sizeof(msg);
642 		buf += sizeof(msg);
643 		count -= sizeof(msg);
644 		/*
645 		 * Allow to read more than one fault at time but only
646 		 * block if waiting for the very first one.
647 		 */
648 		no_wait = O_NONBLOCK;
649 	}
650 }
651 
652 static void __wake_userfault(struct userfaultfd_ctx *ctx,
653 			     struct userfaultfd_wake_range *range)
654 {
655 	unsigned long start, end;
656 
657 	start = range->start;
658 	end = range->start + range->len;
659 
660 	spin_lock(&ctx->fault_pending_wqh.lock);
661 	/* wake all in the range and autoremove */
662 	if (waitqueue_active(&ctx->fault_pending_wqh))
663 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
664 				     range);
665 	if (waitqueue_active(&ctx->fault_wqh))
666 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
667 	spin_unlock(&ctx->fault_pending_wqh.lock);
668 }
669 
670 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
671 					   struct userfaultfd_wake_range *range)
672 {
673 	unsigned seq;
674 	bool need_wakeup;
675 
676 	/*
677 	 * To be sure waitqueue_active() is not reordered by the CPU
678 	 * before the pagetable update, use an explicit SMP memory
679 	 * barrier here. PT lock release or up_read(mmap_sem) still
680 	 * have release semantics that can allow the
681 	 * waitqueue_active() to be reordered before the pte update.
682 	 */
683 	smp_mb();
684 
685 	/*
686 	 * Use waitqueue_active because it's very frequent to
687 	 * change the address space atomically even if there are no
688 	 * userfaults yet. So we take the spinlock only when we're
689 	 * sure we've userfaults to wake.
690 	 */
691 	do {
692 		seq = read_seqcount_begin(&ctx->refile_seq);
693 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
694 			waitqueue_active(&ctx->fault_wqh);
695 		cond_resched();
696 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
697 	if (need_wakeup)
698 		__wake_userfault(ctx, range);
699 }
700 
701 static __always_inline int validate_range(struct mm_struct *mm,
702 					  __u64 start, __u64 len)
703 {
704 	__u64 task_size = mm->task_size;
705 
706 	if (start & ~PAGE_MASK)
707 		return -EINVAL;
708 	if (len & ~PAGE_MASK)
709 		return -EINVAL;
710 	if (!len)
711 		return -EINVAL;
712 	if (start < mmap_min_addr)
713 		return -EINVAL;
714 	if (start >= task_size)
715 		return -EINVAL;
716 	if (len > task_size - start)
717 		return -EINVAL;
718 	return 0;
719 }
720 
721 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
722 				unsigned long arg)
723 {
724 	struct mm_struct *mm = ctx->mm;
725 	struct vm_area_struct *vma, *prev, *cur;
726 	int ret;
727 	struct uffdio_register uffdio_register;
728 	struct uffdio_register __user *user_uffdio_register;
729 	unsigned long vm_flags, new_flags;
730 	bool found;
731 	unsigned long start, end, vma_end;
732 
733 	user_uffdio_register = (struct uffdio_register __user *) arg;
734 
735 	ret = -EFAULT;
736 	if (copy_from_user(&uffdio_register, user_uffdio_register,
737 			   sizeof(uffdio_register)-sizeof(__u64)))
738 		goto out;
739 
740 	ret = -EINVAL;
741 	if (!uffdio_register.mode)
742 		goto out;
743 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
744 				     UFFDIO_REGISTER_MODE_WP))
745 		goto out;
746 	vm_flags = 0;
747 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
748 		vm_flags |= VM_UFFD_MISSING;
749 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
750 		vm_flags |= VM_UFFD_WP;
751 		/*
752 		 * FIXME: remove the below error constraint by
753 		 * implementing the wprotect tracking mode.
754 		 */
755 		ret = -EINVAL;
756 		goto out;
757 	}
758 
759 	ret = validate_range(mm, uffdio_register.range.start,
760 			     uffdio_register.range.len);
761 	if (ret)
762 		goto out;
763 
764 	start = uffdio_register.range.start;
765 	end = start + uffdio_register.range.len;
766 
767 	ret = -ENOMEM;
768 	if (!mmget_not_zero(mm))
769 		goto out;
770 
771 	down_write(&mm->mmap_sem);
772 	vma = find_vma_prev(mm, start, &prev);
773 	if (!vma)
774 		goto out_unlock;
775 
776 	/* check that there's at least one vma in the range */
777 	ret = -EINVAL;
778 	if (vma->vm_start >= end)
779 		goto out_unlock;
780 
781 	/*
782 	 * Search for not compatible vmas.
783 	 *
784 	 * FIXME: this shall be relaxed later so that it doesn't fail
785 	 * on tmpfs backed vmas (in addition to the current allowance
786 	 * on anonymous vmas).
787 	 */
788 	found = false;
789 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
790 		cond_resched();
791 
792 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
793 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
794 
795 		/* check not compatible vmas */
796 		ret = -EINVAL;
797 		if (cur->vm_ops)
798 			goto out_unlock;
799 
800 		/*
801 		 * Check that this vma isn't already owned by a
802 		 * different userfaultfd. We can't allow more than one
803 		 * userfaultfd to own a single vma simultaneously or we
804 		 * wouldn't know which one to deliver the userfaults to.
805 		 */
806 		ret = -EBUSY;
807 		if (cur->vm_userfaultfd_ctx.ctx &&
808 		    cur->vm_userfaultfd_ctx.ctx != ctx)
809 			goto out_unlock;
810 
811 		found = true;
812 	}
813 	BUG_ON(!found);
814 
815 	if (vma->vm_start < start)
816 		prev = vma;
817 
818 	ret = 0;
819 	do {
820 		cond_resched();
821 
822 		BUG_ON(vma->vm_ops);
823 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
824 		       vma->vm_userfaultfd_ctx.ctx != ctx);
825 
826 		/*
827 		 * Nothing to do: this vma is already registered into this
828 		 * userfaultfd and with the right tracking mode too.
829 		 */
830 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
831 		    (vma->vm_flags & vm_flags) == vm_flags)
832 			goto skip;
833 
834 		if (vma->vm_start > start)
835 			start = vma->vm_start;
836 		vma_end = min(end, vma->vm_end);
837 
838 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
839 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
840 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
841 				 vma_policy(vma),
842 				 ((struct vm_userfaultfd_ctx){ ctx }));
843 		if (prev) {
844 			vma = prev;
845 			goto next;
846 		}
847 		if (vma->vm_start < start) {
848 			ret = split_vma(mm, vma, start, 1);
849 			if (ret)
850 				break;
851 		}
852 		if (vma->vm_end > end) {
853 			ret = split_vma(mm, vma, end, 0);
854 			if (ret)
855 				break;
856 		}
857 	next:
858 		/*
859 		 * In the vma_merge() successful mprotect-like case 8:
860 		 * the next vma was merged into the current one and
861 		 * the current one has not been updated yet.
862 		 */
863 		vma->vm_flags = new_flags;
864 		vma->vm_userfaultfd_ctx.ctx = ctx;
865 
866 	skip:
867 		prev = vma;
868 		start = vma->vm_end;
869 		vma = vma->vm_next;
870 	} while (vma && vma->vm_start < end);
871 out_unlock:
872 	up_write(&mm->mmap_sem);
873 	mmput(mm);
874 	if (!ret) {
875 		/*
876 		 * Now that we scanned all vmas we can already tell
877 		 * userland which ioctls methods are guaranteed to
878 		 * succeed on this range.
879 		 */
880 		if (put_user(UFFD_API_RANGE_IOCTLS,
881 			     &user_uffdio_register->ioctls))
882 			ret = -EFAULT;
883 	}
884 out:
885 	return ret;
886 }
887 
888 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
889 				  unsigned long arg)
890 {
891 	struct mm_struct *mm = ctx->mm;
892 	struct vm_area_struct *vma, *prev, *cur;
893 	int ret;
894 	struct uffdio_range uffdio_unregister;
895 	unsigned long new_flags;
896 	bool found;
897 	unsigned long start, end, vma_end;
898 	const void __user *buf = (void __user *)arg;
899 
900 	ret = -EFAULT;
901 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
902 		goto out;
903 
904 	ret = validate_range(mm, uffdio_unregister.start,
905 			     uffdio_unregister.len);
906 	if (ret)
907 		goto out;
908 
909 	start = uffdio_unregister.start;
910 	end = start + uffdio_unregister.len;
911 
912 	ret = -ENOMEM;
913 	if (!mmget_not_zero(mm))
914 		goto out;
915 
916 	down_write(&mm->mmap_sem);
917 	vma = find_vma_prev(mm, start, &prev);
918 	if (!vma)
919 		goto out_unlock;
920 
921 	/* check that there's at least one vma in the range */
922 	ret = -EINVAL;
923 	if (vma->vm_start >= end)
924 		goto out_unlock;
925 
926 	/*
927 	 * Search for not compatible vmas.
928 	 *
929 	 * FIXME: this shall be relaxed later so that it doesn't fail
930 	 * on tmpfs backed vmas (in addition to the current allowance
931 	 * on anonymous vmas).
932 	 */
933 	found = false;
934 	ret = -EINVAL;
935 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
936 		cond_resched();
937 
938 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
939 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
940 
941 		/*
942 		 * Check not compatible vmas, not strictly required
943 		 * here as not compatible vmas cannot have an
944 		 * userfaultfd_ctx registered on them, but this
945 		 * provides for more strict behavior to notice
946 		 * unregistration errors.
947 		 */
948 		if (cur->vm_ops)
949 			goto out_unlock;
950 
951 		found = true;
952 	}
953 	BUG_ON(!found);
954 
955 	if (vma->vm_start < start)
956 		prev = vma;
957 
958 	ret = 0;
959 	do {
960 		cond_resched();
961 
962 		BUG_ON(vma->vm_ops);
963 
964 		/*
965 		 * Nothing to do: this vma is already registered into this
966 		 * userfaultfd and with the right tracking mode too.
967 		 */
968 		if (!vma->vm_userfaultfd_ctx.ctx)
969 			goto skip;
970 
971 		if (vma->vm_start > start)
972 			start = vma->vm_start;
973 		vma_end = min(end, vma->vm_end);
974 
975 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
976 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
977 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
978 				 vma_policy(vma),
979 				 NULL_VM_UFFD_CTX);
980 		if (prev) {
981 			vma = prev;
982 			goto next;
983 		}
984 		if (vma->vm_start < start) {
985 			ret = split_vma(mm, vma, start, 1);
986 			if (ret)
987 				break;
988 		}
989 		if (vma->vm_end > end) {
990 			ret = split_vma(mm, vma, end, 0);
991 			if (ret)
992 				break;
993 		}
994 	next:
995 		/*
996 		 * In the vma_merge() successful mprotect-like case 8:
997 		 * the next vma was merged into the current one and
998 		 * the current one has not been updated yet.
999 		 */
1000 		vma->vm_flags = new_flags;
1001 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1002 
1003 	skip:
1004 		prev = vma;
1005 		start = vma->vm_end;
1006 		vma = vma->vm_next;
1007 	} while (vma && vma->vm_start < end);
1008 out_unlock:
1009 	up_write(&mm->mmap_sem);
1010 	mmput(mm);
1011 out:
1012 	return ret;
1013 }
1014 
1015 /*
1016  * userfaultfd_wake may be used in combination with the
1017  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1018  */
1019 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1020 			    unsigned long arg)
1021 {
1022 	int ret;
1023 	struct uffdio_range uffdio_wake;
1024 	struct userfaultfd_wake_range range;
1025 	const void __user *buf = (void __user *)arg;
1026 
1027 	ret = -EFAULT;
1028 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1029 		goto out;
1030 
1031 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1032 	if (ret)
1033 		goto out;
1034 
1035 	range.start = uffdio_wake.start;
1036 	range.len = uffdio_wake.len;
1037 
1038 	/*
1039 	 * len == 0 means wake all and we don't want to wake all here,
1040 	 * so check it again to be sure.
1041 	 */
1042 	VM_BUG_ON(!range.len);
1043 
1044 	wake_userfault(ctx, &range);
1045 	ret = 0;
1046 
1047 out:
1048 	return ret;
1049 }
1050 
1051 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1052 			    unsigned long arg)
1053 {
1054 	__s64 ret;
1055 	struct uffdio_copy uffdio_copy;
1056 	struct uffdio_copy __user *user_uffdio_copy;
1057 	struct userfaultfd_wake_range range;
1058 
1059 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1060 
1061 	ret = -EFAULT;
1062 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1063 			   /* don't copy "copy" last field */
1064 			   sizeof(uffdio_copy)-sizeof(__s64)))
1065 		goto out;
1066 
1067 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1068 	if (ret)
1069 		goto out;
1070 	/*
1071 	 * double check for wraparound just in case. copy_from_user()
1072 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1073 	 * in the userland range.
1074 	 */
1075 	ret = -EINVAL;
1076 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1077 		goto out;
1078 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1079 		goto out;
1080 	if (mmget_not_zero(ctx->mm)) {
1081 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1082 				   uffdio_copy.len);
1083 		mmput(ctx->mm);
1084 	}
1085 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1086 		return -EFAULT;
1087 	if (ret < 0)
1088 		goto out;
1089 	BUG_ON(!ret);
1090 	/* len == 0 would wake all */
1091 	range.len = ret;
1092 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1093 		range.start = uffdio_copy.dst;
1094 		wake_userfault(ctx, &range);
1095 	}
1096 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1097 out:
1098 	return ret;
1099 }
1100 
1101 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1102 				unsigned long arg)
1103 {
1104 	__s64 ret;
1105 	struct uffdio_zeropage uffdio_zeropage;
1106 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1107 	struct userfaultfd_wake_range range;
1108 
1109 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1110 
1111 	ret = -EFAULT;
1112 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1113 			   /* don't copy "zeropage" last field */
1114 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1115 		goto out;
1116 
1117 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1118 			     uffdio_zeropage.range.len);
1119 	if (ret)
1120 		goto out;
1121 	ret = -EINVAL;
1122 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1123 		goto out;
1124 
1125 	if (mmget_not_zero(ctx->mm)) {
1126 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1127 				     uffdio_zeropage.range.len);
1128 		mmput(ctx->mm);
1129 	}
1130 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1131 		return -EFAULT;
1132 	if (ret < 0)
1133 		goto out;
1134 	/* len == 0 would wake all */
1135 	BUG_ON(!ret);
1136 	range.len = ret;
1137 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1138 		range.start = uffdio_zeropage.range.start;
1139 		wake_userfault(ctx, &range);
1140 	}
1141 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1142 out:
1143 	return ret;
1144 }
1145 
1146 /*
1147  * userland asks for a certain API version and we return which bits
1148  * and ioctl commands are implemented in this kernel for such API
1149  * version or -EINVAL if unknown.
1150  */
1151 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1152 			   unsigned long arg)
1153 {
1154 	struct uffdio_api uffdio_api;
1155 	void __user *buf = (void __user *)arg;
1156 	int ret;
1157 
1158 	ret = -EINVAL;
1159 	if (ctx->state != UFFD_STATE_WAIT_API)
1160 		goto out;
1161 	ret = -EFAULT;
1162 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1163 		goto out;
1164 	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1165 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1166 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1167 			goto out;
1168 		ret = -EINVAL;
1169 		goto out;
1170 	}
1171 	uffdio_api.features = UFFD_API_FEATURES;
1172 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1173 	ret = -EFAULT;
1174 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1175 		goto out;
1176 	ctx->state = UFFD_STATE_RUNNING;
1177 	ret = 0;
1178 out:
1179 	return ret;
1180 }
1181 
1182 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1183 			      unsigned long arg)
1184 {
1185 	int ret = -EINVAL;
1186 	struct userfaultfd_ctx *ctx = file->private_data;
1187 
1188 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1189 		return -EINVAL;
1190 
1191 	switch(cmd) {
1192 	case UFFDIO_API:
1193 		ret = userfaultfd_api(ctx, arg);
1194 		break;
1195 	case UFFDIO_REGISTER:
1196 		ret = userfaultfd_register(ctx, arg);
1197 		break;
1198 	case UFFDIO_UNREGISTER:
1199 		ret = userfaultfd_unregister(ctx, arg);
1200 		break;
1201 	case UFFDIO_WAKE:
1202 		ret = userfaultfd_wake(ctx, arg);
1203 		break;
1204 	case UFFDIO_COPY:
1205 		ret = userfaultfd_copy(ctx, arg);
1206 		break;
1207 	case UFFDIO_ZEROPAGE:
1208 		ret = userfaultfd_zeropage(ctx, arg);
1209 		break;
1210 	}
1211 	return ret;
1212 }
1213 
1214 #ifdef CONFIG_PROC_FS
1215 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1216 {
1217 	struct userfaultfd_ctx *ctx = f->private_data;
1218 	wait_queue_t *wq;
1219 	struct userfaultfd_wait_queue *uwq;
1220 	unsigned long pending = 0, total = 0;
1221 
1222 	spin_lock(&ctx->fault_pending_wqh.lock);
1223 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1224 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1225 		pending++;
1226 		total++;
1227 	}
1228 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1229 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1230 		total++;
1231 	}
1232 	spin_unlock(&ctx->fault_pending_wqh.lock);
1233 
1234 	/*
1235 	 * If more protocols will be added, there will be all shown
1236 	 * separated by a space. Like this:
1237 	 *	protocols: aa:... bb:...
1238 	 */
1239 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1240 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1241 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1242 }
1243 #endif
1244 
1245 static const struct file_operations userfaultfd_fops = {
1246 #ifdef CONFIG_PROC_FS
1247 	.show_fdinfo	= userfaultfd_show_fdinfo,
1248 #endif
1249 	.release	= userfaultfd_release,
1250 	.poll		= userfaultfd_poll,
1251 	.read		= userfaultfd_read,
1252 	.unlocked_ioctl = userfaultfd_ioctl,
1253 	.compat_ioctl	= userfaultfd_ioctl,
1254 	.llseek		= noop_llseek,
1255 };
1256 
1257 static void init_once_userfaultfd_ctx(void *mem)
1258 {
1259 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1260 
1261 	init_waitqueue_head(&ctx->fault_pending_wqh);
1262 	init_waitqueue_head(&ctx->fault_wqh);
1263 	init_waitqueue_head(&ctx->fd_wqh);
1264 	seqcount_init(&ctx->refile_seq);
1265 }
1266 
1267 /**
1268  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1269  * @flags: Flags for the userfaultfd file.
1270  *
1271  * This function creates an userfaultfd file pointer, w/out installing
1272  * it into the fd table. This is useful when the userfaultfd file is
1273  * used during the initialization of data structures that require
1274  * extra setup after the userfaultfd creation. So the userfaultfd
1275  * creation is split into the file pointer creation phase, and the
1276  * file descriptor installation phase.  In this way races with
1277  * userspace closing the newly installed file descriptor can be
1278  * avoided.  Returns an userfaultfd file pointer, or a proper error
1279  * pointer.
1280  */
1281 static struct file *userfaultfd_file_create(int flags)
1282 {
1283 	struct file *file;
1284 	struct userfaultfd_ctx *ctx;
1285 
1286 	BUG_ON(!current->mm);
1287 
1288 	/* Check the UFFD_* constants for consistency.  */
1289 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1290 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1291 
1292 	file = ERR_PTR(-EINVAL);
1293 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1294 		goto out;
1295 
1296 	file = ERR_PTR(-ENOMEM);
1297 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1298 	if (!ctx)
1299 		goto out;
1300 
1301 	atomic_set(&ctx->refcount, 1);
1302 	ctx->flags = flags;
1303 	ctx->state = UFFD_STATE_WAIT_API;
1304 	ctx->released = false;
1305 	ctx->mm = current->mm;
1306 	/* prevent the mm struct to be freed */
1307 	atomic_inc(&ctx->mm->mm_count);
1308 
1309 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1310 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1311 	if (IS_ERR(file)) {
1312 		mmdrop(ctx->mm);
1313 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1314 	}
1315 out:
1316 	return file;
1317 }
1318 
1319 SYSCALL_DEFINE1(userfaultfd, int, flags)
1320 {
1321 	int fd, error;
1322 	struct file *file;
1323 
1324 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1325 	if (error < 0)
1326 		return error;
1327 	fd = error;
1328 
1329 	file = userfaultfd_file_create(flags);
1330 	if (IS_ERR(file)) {
1331 		error = PTR_ERR(file);
1332 		goto err_put_unused_fd;
1333 	}
1334 	fd_install(fd, file);
1335 
1336 	return fd;
1337 
1338 err_put_unused_fd:
1339 	put_unused_fd(fd);
1340 
1341 	return error;
1342 }
1343 
1344 static int __init userfaultfd_init(void)
1345 {
1346 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1347 						sizeof(struct userfaultfd_ctx),
1348 						0,
1349 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1350 						init_once_userfaultfd_ctx);
1351 	return 0;
1352 }
1353 __initcall(userfaultfd_init);
1354