1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 34 int sysctl_unprivileged_userfaultfd __read_mostly; 35 36 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 37 38 /* 39 * Start with fault_pending_wqh and fault_wqh so they're more likely 40 * to be in the same cacheline. 41 * 42 * Locking order: 43 * fd_wqh.lock 44 * fault_pending_wqh.lock 45 * fault_wqh.lock 46 * event_wqh.lock 47 * 48 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 49 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 50 * also taken in IRQ context. 51 */ 52 struct userfaultfd_ctx { 53 /* waitqueue head for the pending (i.e. not read) userfaults */ 54 wait_queue_head_t fault_pending_wqh; 55 /* waitqueue head for the userfaults */ 56 wait_queue_head_t fault_wqh; 57 /* waitqueue head for the pseudo fd to wakeup poll/read */ 58 wait_queue_head_t fd_wqh; 59 /* waitqueue head for events */ 60 wait_queue_head_t event_wqh; 61 /* a refile sequence protected by fault_pending_wqh lock */ 62 seqcount_spinlock_t refile_seq; 63 /* pseudo fd refcounting */ 64 refcount_t refcount; 65 /* userfaultfd syscall flags */ 66 unsigned int flags; 67 /* features requested from the userspace */ 68 unsigned int features; 69 /* released */ 70 bool released; 71 /* memory mappings are changing because of non-cooperative event */ 72 atomic_t mmap_changing; 73 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 74 struct mm_struct *mm; 75 }; 76 77 struct userfaultfd_fork_ctx { 78 struct userfaultfd_ctx *orig; 79 struct userfaultfd_ctx *new; 80 struct list_head list; 81 }; 82 83 struct userfaultfd_unmap_ctx { 84 struct userfaultfd_ctx *ctx; 85 unsigned long start; 86 unsigned long end; 87 struct list_head list; 88 }; 89 90 struct userfaultfd_wait_queue { 91 struct uffd_msg msg; 92 wait_queue_entry_t wq; 93 struct userfaultfd_ctx *ctx; 94 bool waken; 95 }; 96 97 struct userfaultfd_wake_range { 98 unsigned long start; 99 unsigned long len; 100 }; 101 102 /* internal indication that UFFD_API ioctl was successfully executed */ 103 #define UFFD_FEATURE_INITIALIZED (1u << 31) 104 105 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 106 { 107 return ctx->features & UFFD_FEATURE_INITIALIZED; 108 } 109 110 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 111 int wake_flags, void *key) 112 { 113 struct userfaultfd_wake_range *range = key; 114 int ret; 115 struct userfaultfd_wait_queue *uwq; 116 unsigned long start, len; 117 118 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 119 ret = 0; 120 /* len == 0 means wake all */ 121 start = range->start; 122 len = range->len; 123 if (len && (start > uwq->msg.arg.pagefault.address || 124 start + len <= uwq->msg.arg.pagefault.address)) 125 goto out; 126 WRITE_ONCE(uwq->waken, true); 127 /* 128 * The Program-Order guarantees provided by the scheduler 129 * ensure uwq->waken is visible before the task is woken. 130 */ 131 ret = wake_up_state(wq->private, mode); 132 if (ret) { 133 /* 134 * Wake only once, autoremove behavior. 135 * 136 * After the effect of list_del_init is visible to the other 137 * CPUs, the waitqueue may disappear from under us, see the 138 * !list_empty_careful() in handle_userfault(). 139 * 140 * try_to_wake_up() has an implicit smp_mb(), and the 141 * wq->private is read before calling the extern function 142 * "wake_up_state" (which in turns calls try_to_wake_up). 143 */ 144 list_del_init(&wq->entry); 145 } 146 out: 147 return ret; 148 } 149 150 /** 151 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 152 * context. 153 * @ctx: [in] Pointer to the userfaultfd context. 154 */ 155 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 156 { 157 refcount_inc(&ctx->refcount); 158 } 159 160 /** 161 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 162 * context. 163 * @ctx: [in] Pointer to userfaultfd context. 164 * 165 * The userfaultfd context reference must have been previously acquired either 166 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 167 */ 168 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 169 { 170 if (refcount_dec_and_test(&ctx->refcount)) { 171 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 175 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 176 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 177 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 178 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 179 mmdrop(ctx->mm); 180 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 181 } 182 } 183 184 static inline void msg_init(struct uffd_msg *msg) 185 { 186 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 187 /* 188 * Must use memset to zero out the paddings or kernel data is 189 * leaked to userland. 190 */ 191 memset(msg, 0, sizeof(struct uffd_msg)); 192 } 193 194 static inline struct uffd_msg userfault_msg(unsigned long address, 195 unsigned long real_address, 196 unsigned int flags, 197 unsigned long reason, 198 unsigned int features) 199 { 200 struct uffd_msg msg; 201 202 msg_init(&msg); 203 msg.event = UFFD_EVENT_PAGEFAULT; 204 205 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 206 real_address : address; 207 208 /* 209 * These flags indicate why the userfault occurred: 210 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 211 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 212 * - Neither of these flags being set indicates a MISSING fault. 213 * 214 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 215 * fault. Otherwise, it was a read fault. 216 */ 217 if (flags & FAULT_FLAG_WRITE) 218 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 219 if (reason & VM_UFFD_WP) 220 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 221 if (reason & VM_UFFD_MINOR) 222 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 223 if (features & UFFD_FEATURE_THREAD_ID) 224 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 225 return msg; 226 } 227 228 #ifdef CONFIG_HUGETLB_PAGE 229 /* 230 * Same functionality as userfaultfd_must_wait below with modifications for 231 * hugepmd ranges. 232 */ 233 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 234 struct vm_area_struct *vma, 235 unsigned long address, 236 unsigned long flags, 237 unsigned long reason) 238 { 239 struct mm_struct *mm = ctx->mm; 240 pte_t *ptep, pte; 241 bool ret = true; 242 243 mmap_assert_locked(mm); 244 245 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 246 247 if (!ptep) 248 goto out; 249 250 ret = false; 251 pte = huge_ptep_get(ptep); 252 253 /* 254 * Lockless access: we're in a wait_event so it's ok if it 255 * changes under us. PTE markers should be handled the same as none 256 * ptes here. 257 */ 258 if (huge_pte_none_mostly(pte)) 259 ret = true; 260 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 261 ret = true; 262 out: 263 return ret; 264 } 265 #else 266 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 267 struct vm_area_struct *vma, 268 unsigned long address, 269 unsigned long flags, 270 unsigned long reason) 271 { 272 return false; /* should never get here */ 273 } 274 #endif /* CONFIG_HUGETLB_PAGE */ 275 276 /* 277 * Verify the pagetables are still not ok after having reigstered into 278 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 279 * userfault that has already been resolved, if userfaultfd_read and 280 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 281 * threads. 282 */ 283 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 284 unsigned long address, 285 unsigned long flags, 286 unsigned long reason) 287 { 288 struct mm_struct *mm = ctx->mm; 289 pgd_t *pgd; 290 p4d_t *p4d; 291 pud_t *pud; 292 pmd_t *pmd, _pmd; 293 pte_t *pte; 294 bool ret = true; 295 296 mmap_assert_locked(mm); 297 298 pgd = pgd_offset(mm, address); 299 if (!pgd_present(*pgd)) 300 goto out; 301 p4d = p4d_offset(pgd, address); 302 if (!p4d_present(*p4d)) 303 goto out; 304 pud = pud_offset(p4d, address); 305 if (!pud_present(*pud)) 306 goto out; 307 pmd = pmd_offset(pud, address); 308 /* 309 * READ_ONCE must function as a barrier with narrower scope 310 * and it must be equivalent to: 311 * _pmd = *pmd; barrier(); 312 * 313 * This is to deal with the instability (as in 314 * pmd_trans_unstable) of the pmd. 315 */ 316 _pmd = READ_ONCE(*pmd); 317 if (pmd_none(_pmd)) 318 goto out; 319 320 ret = false; 321 if (!pmd_present(_pmd)) 322 goto out; 323 324 if (pmd_trans_huge(_pmd)) { 325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 326 ret = true; 327 goto out; 328 } 329 330 /* 331 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 332 * and use the standard pte_offset_map() instead of parsing _pmd. 333 */ 334 pte = pte_offset_map(pmd, address); 335 /* 336 * Lockless access: we're in a wait_event so it's ok if it 337 * changes under us. PTE markers should be handled the same as none 338 * ptes here. 339 */ 340 if (pte_none_mostly(*pte)) 341 ret = true; 342 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 343 ret = true; 344 pte_unmap(pte); 345 346 out: 347 return ret; 348 } 349 350 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 351 { 352 if (flags & FAULT_FLAG_INTERRUPTIBLE) 353 return TASK_INTERRUPTIBLE; 354 355 if (flags & FAULT_FLAG_KILLABLE) 356 return TASK_KILLABLE; 357 358 return TASK_UNINTERRUPTIBLE; 359 } 360 361 /* 362 * The locking rules involved in returning VM_FAULT_RETRY depending on 363 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 364 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 365 * recommendation in __lock_page_or_retry is not an understatement. 366 * 367 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 368 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 369 * not set. 370 * 371 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 372 * set, VM_FAULT_RETRY can still be returned if and only if there are 373 * fatal_signal_pending()s, and the mmap_lock must be released before 374 * returning it. 375 */ 376 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 377 { 378 struct mm_struct *mm = vmf->vma->vm_mm; 379 struct userfaultfd_ctx *ctx; 380 struct userfaultfd_wait_queue uwq; 381 vm_fault_t ret = VM_FAULT_SIGBUS; 382 bool must_wait; 383 unsigned int blocking_state; 384 385 /* 386 * We don't do userfault handling for the final child pid update. 387 * 388 * We also don't do userfault handling during 389 * coredumping. hugetlbfs has the special 390 * follow_hugetlb_page() to skip missing pages in the 391 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 392 * the no_page_table() helper in follow_page_mask(), but the 393 * shmem_vm_ops->fault method is invoked even during 394 * coredumping without mmap_lock and it ends up here. 395 */ 396 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 397 goto out; 398 399 /* 400 * Coredumping runs without mmap_lock so we can only check that 401 * the mmap_lock is held, if PF_DUMPCORE was not set. 402 */ 403 mmap_assert_locked(mm); 404 405 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 406 if (!ctx) 407 goto out; 408 409 BUG_ON(ctx->mm != mm); 410 411 /* Any unrecognized flag is a bug. */ 412 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 413 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 414 VM_BUG_ON(!reason || (reason & (reason - 1))); 415 416 if (ctx->features & UFFD_FEATURE_SIGBUS) 417 goto out; 418 if ((vmf->flags & FAULT_FLAG_USER) == 0 && 419 ctx->flags & UFFD_USER_MODE_ONLY) { 420 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 421 "sysctl knob to 1 if kernel faults must be handled " 422 "without obtaining CAP_SYS_PTRACE capability\n"); 423 goto out; 424 } 425 426 /* 427 * If it's already released don't get it. This avoids to loop 428 * in __get_user_pages if userfaultfd_release waits on the 429 * caller of handle_userfault to release the mmap_lock. 430 */ 431 if (unlikely(READ_ONCE(ctx->released))) { 432 /* 433 * Don't return VM_FAULT_SIGBUS in this case, so a non 434 * cooperative manager can close the uffd after the 435 * last UFFDIO_COPY, without risking to trigger an 436 * involuntary SIGBUS if the process was starting the 437 * userfaultfd while the userfaultfd was still armed 438 * (but after the last UFFDIO_COPY). If the uffd 439 * wasn't already closed when the userfault reached 440 * this point, that would normally be solved by 441 * userfaultfd_must_wait returning 'false'. 442 * 443 * If we were to return VM_FAULT_SIGBUS here, the non 444 * cooperative manager would be instead forced to 445 * always call UFFDIO_UNREGISTER before it can safely 446 * close the uffd. 447 */ 448 ret = VM_FAULT_NOPAGE; 449 goto out; 450 } 451 452 /* 453 * Check that we can return VM_FAULT_RETRY. 454 * 455 * NOTE: it should become possible to return VM_FAULT_RETRY 456 * even if FAULT_FLAG_TRIED is set without leading to gup() 457 * -EBUSY failures, if the userfaultfd is to be extended for 458 * VM_UFFD_WP tracking and we intend to arm the userfault 459 * without first stopping userland access to the memory. For 460 * VM_UFFD_MISSING userfaults this is enough for now. 461 */ 462 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 463 /* 464 * Validate the invariant that nowait must allow retry 465 * to be sure not to return SIGBUS erroneously on 466 * nowait invocations. 467 */ 468 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 469 #ifdef CONFIG_DEBUG_VM 470 if (printk_ratelimit()) { 471 printk(KERN_WARNING 472 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 473 vmf->flags); 474 dump_stack(); 475 } 476 #endif 477 goto out; 478 } 479 480 /* 481 * Handle nowait, not much to do other than tell it to retry 482 * and wait. 483 */ 484 ret = VM_FAULT_RETRY; 485 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 486 goto out; 487 488 /* take the reference before dropping the mmap_lock */ 489 userfaultfd_ctx_get(ctx); 490 491 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 492 uwq.wq.private = current; 493 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 494 reason, ctx->features); 495 uwq.ctx = ctx; 496 uwq.waken = false; 497 498 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 499 500 spin_lock_irq(&ctx->fault_pending_wqh.lock); 501 /* 502 * After the __add_wait_queue the uwq is visible to userland 503 * through poll/read(). 504 */ 505 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 506 /* 507 * The smp_mb() after __set_current_state prevents the reads 508 * following the spin_unlock to happen before the list_add in 509 * __add_wait_queue. 510 */ 511 set_current_state(blocking_state); 512 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 513 514 if (!is_vm_hugetlb_page(vmf->vma)) 515 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 516 reason); 517 else 518 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 519 vmf->address, 520 vmf->flags, reason); 521 mmap_read_unlock(mm); 522 523 if (likely(must_wait && !READ_ONCE(ctx->released))) { 524 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 525 schedule(); 526 } 527 528 __set_current_state(TASK_RUNNING); 529 530 /* 531 * Here we race with the list_del; list_add in 532 * userfaultfd_ctx_read(), however because we don't ever run 533 * list_del_init() to refile across the two lists, the prev 534 * and next pointers will never point to self. list_add also 535 * would never let any of the two pointers to point to 536 * self. So list_empty_careful won't risk to see both pointers 537 * pointing to self at any time during the list refile. The 538 * only case where list_del_init() is called is the full 539 * removal in the wake function and there we don't re-list_add 540 * and it's fine not to block on the spinlock. The uwq on this 541 * kernel stack can be released after the list_del_init. 542 */ 543 if (!list_empty_careful(&uwq.wq.entry)) { 544 spin_lock_irq(&ctx->fault_pending_wqh.lock); 545 /* 546 * No need of list_del_init(), the uwq on the stack 547 * will be freed shortly anyway. 548 */ 549 list_del(&uwq.wq.entry); 550 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 551 } 552 553 /* 554 * ctx may go away after this if the userfault pseudo fd is 555 * already released. 556 */ 557 userfaultfd_ctx_put(ctx); 558 559 out: 560 return ret; 561 } 562 563 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 564 struct userfaultfd_wait_queue *ewq) 565 { 566 struct userfaultfd_ctx *release_new_ctx; 567 568 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 569 goto out; 570 571 ewq->ctx = ctx; 572 init_waitqueue_entry(&ewq->wq, current); 573 release_new_ctx = NULL; 574 575 spin_lock_irq(&ctx->event_wqh.lock); 576 /* 577 * After the __add_wait_queue the uwq is visible to userland 578 * through poll/read(). 579 */ 580 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 581 for (;;) { 582 set_current_state(TASK_KILLABLE); 583 if (ewq->msg.event == 0) 584 break; 585 if (READ_ONCE(ctx->released) || 586 fatal_signal_pending(current)) { 587 /* 588 * &ewq->wq may be queued in fork_event, but 589 * __remove_wait_queue ignores the head 590 * parameter. It would be a problem if it 591 * didn't. 592 */ 593 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 594 if (ewq->msg.event == UFFD_EVENT_FORK) { 595 struct userfaultfd_ctx *new; 596 597 new = (struct userfaultfd_ctx *) 598 (unsigned long) 599 ewq->msg.arg.reserved.reserved1; 600 release_new_ctx = new; 601 } 602 break; 603 } 604 605 spin_unlock_irq(&ctx->event_wqh.lock); 606 607 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 608 schedule(); 609 610 spin_lock_irq(&ctx->event_wqh.lock); 611 } 612 __set_current_state(TASK_RUNNING); 613 spin_unlock_irq(&ctx->event_wqh.lock); 614 615 if (release_new_ctx) { 616 struct vm_area_struct *vma; 617 struct mm_struct *mm = release_new_ctx->mm; 618 619 /* the various vma->vm_userfaultfd_ctx still points to it */ 620 mmap_write_lock(mm); 621 for (vma = mm->mmap; vma; vma = vma->vm_next) 622 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 623 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 624 vma->vm_flags &= ~__VM_UFFD_FLAGS; 625 } 626 mmap_write_unlock(mm); 627 628 userfaultfd_ctx_put(release_new_ctx); 629 } 630 631 /* 632 * ctx may go away after this if the userfault pseudo fd is 633 * already released. 634 */ 635 out: 636 atomic_dec(&ctx->mmap_changing); 637 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 638 userfaultfd_ctx_put(ctx); 639 } 640 641 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 642 struct userfaultfd_wait_queue *ewq) 643 { 644 ewq->msg.event = 0; 645 wake_up_locked(&ctx->event_wqh); 646 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 647 } 648 649 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 650 { 651 struct userfaultfd_ctx *ctx = NULL, *octx; 652 struct userfaultfd_fork_ctx *fctx; 653 654 octx = vma->vm_userfaultfd_ctx.ctx; 655 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 656 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 657 vma->vm_flags &= ~__VM_UFFD_FLAGS; 658 return 0; 659 } 660 661 list_for_each_entry(fctx, fcs, list) 662 if (fctx->orig == octx) { 663 ctx = fctx->new; 664 break; 665 } 666 667 if (!ctx) { 668 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 669 if (!fctx) 670 return -ENOMEM; 671 672 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 673 if (!ctx) { 674 kfree(fctx); 675 return -ENOMEM; 676 } 677 678 refcount_set(&ctx->refcount, 1); 679 ctx->flags = octx->flags; 680 ctx->features = octx->features; 681 ctx->released = false; 682 atomic_set(&ctx->mmap_changing, 0); 683 ctx->mm = vma->vm_mm; 684 mmgrab(ctx->mm); 685 686 userfaultfd_ctx_get(octx); 687 atomic_inc(&octx->mmap_changing); 688 fctx->orig = octx; 689 fctx->new = ctx; 690 list_add_tail(&fctx->list, fcs); 691 } 692 693 vma->vm_userfaultfd_ctx.ctx = ctx; 694 return 0; 695 } 696 697 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 698 { 699 struct userfaultfd_ctx *ctx = fctx->orig; 700 struct userfaultfd_wait_queue ewq; 701 702 msg_init(&ewq.msg); 703 704 ewq.msg.event = UFFD_EVENT_FORK; 705 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 706 707 userfaultfd_event_wait_completion(ctx, &ewq); 708 } 709 710 void dup_userfaultfd_complete(struct list_head *fcs) 711 { 712 struct userfaultfd_fork_ctx *fctx, *n; 713 714 list_for_each_entry_safe(fctx, n, fcs, list) { 715 dup_fctx(fctx); 716 list_del(&fctx->list); 717 kfree(fctx); 718 } 719 } 720 721 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 722 struct vm_userfaultfd_ctx *vm_ctx) 723 { 724 struct userfaultfd_ctx *ctx; 725 726 ctx = vma->vm_userfaultfd_ctx.ctx; 727 728 if (!ctx) 729 return; 730 731 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 732 vm_ctx->ctx = ctx; 733 userfaultfd_ctx_get(ctx); 734 atomic_inc(&ctx->mmap_changing); 735 } else { 736 /* Drop uffd context if remap feature not enabled */ 737 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 738 vma->vm_flags &= ~__VM_UFFD_FLAGS; 739 } 740 } 741 742 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 743 unsigned long from, unsigned long to, 744 unsigned long len) 745 { 746 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 747 struct userfaultfd_wait_queue ewq; 748 749 if (!ctx) 750 return; 751 752 if (to & ~PAGE_MASK) { 753 userfaultfd_ctx_put(ctx); 754 return; 755 } 756 757 msg_init(&ewq.msg); 758 759 ewq.msg.event = UFFD_EVENT_REMAP; 760 ewq.msg.arg.remap.from = from; 761 ewq.msg.arg.remap.to = to; 762 ewq.msg.arg.remap.len = len; 763 764 userfaultfd_event_wait_completion(ctx, &ewq); 765 } 766 767 bool userfaultfd_remove(struct vm_area_struct *vma, 768 unsigned long start, unsigned long end) 769 { 770 struct mm_struct *mm = vma->vm_mm; 771 struct userfaultfd_ctx *ctx; 772 struct userfaultfd_wait_queue ewq; 773 774 ctx = vma->vm_userfaultfd_ctx.ctx; 775 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 776 return true; 777 778 userfaultfd_ctx_get(ctx); 779 atomic_inc(&ctx->mmap_changing); 780 mmap_read_unlock(mm); 781 782 msg_init(&ewq.msg); 783 784 ewq.msg.event = UFFD_EVENT_REMOVE; 785 ewq.msg.arg.remove.start = start; 786 ewq.msg.arg.remove.end = end; 787 788 userfaultfd_event_wait_completion(ctx, &ewq); 789 790 return false; 791 } 792 793 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 794 unsigned long start, unsigned long end) 795 { 796 struct userfaultfd_unmap_ctx *unmap_ctx; 797 798 list_for_each_entry(unmap_ctx, unmaps, list) 799 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 800 unmap_ctx->end == end) 801 return true; 802 803 return false; 804 } 805 806 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 807 unsigned long start, unsigned long end, 808 struct list_head *unmaps) 809 { 810 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 811 struct userfaultfd_unmap_ctx *unmap_ctx; 812 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 813 814 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 815 has_unmap_ctx(ctx, unmaps, start, end)) 816 continue; 817 818 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 819 if (!unmap_ctx) 820 return -ENOMEM; 821 822 userfaultfd_ctx_get(ctx); 823 atomic_inc(&ctx->mmap_changing); 824 unmap_ctx->ctx = ctx; 825 unmap_ctx->start = start; 826 unmap_ctx->end = end; 827 list_add_tail(&unmap_ctx->list, unmaps); 828 } 829 830 return 0; 831 } 832 833 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 834 { 835 struct userfaultfd_unmap_ctx *ctx, *n; 836 struct userfaultfd_wait_queue ewq; 837 838 list_for_each_entry_safe(ctx, n, uf, list) { 839 msg_init(&ewq.msg); 840 841 ewq.msg.event = UFFD_EVENT_UNMAP; 842 ewq.msg.arg.remove.start = ctx->start; 843 ewq.msg.arg.remove.end = ctx->end; 844 845 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 846 847 list_del(&ctx->list); 848 kfree(ctx); 849 } 850 } 851 852 static int userfaultfd_release(struct inode *inode, struct file *file) 853 { 854 struct userfaultfd_ctx *ctx = file->private_data; 855 struct mm_struct *mm = ctx->mm; 856 struct vm_area_struct *vma, *prev; 857 /* len == 0 means wake all */ 858 struct userfaultfd_wake_range range = { .len = 0, }; 859 unsigned long new_flags; 860 861 WRITE_ONCE(ctx->released, true); 862 863 if (!mmget_not_zero(mm)) 864 goto wakeup; 865 866 /* 867 * Flush page faults out of all CPUs. NOTE: all page faults 868 * must be retried without returning VM_FAULT_SIGBUS if 869 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 870 * changes while handle_userfault released the mmap_lock. So 871 * it's critical that released is set to true (above), before 872 * taking the mmap_lock for writing. 873 */ 874 mmap_write_lock(mm); 875 prev = NULL; 876 for (vma = mm->mmap; vma; vma = vma->vm_next) { 877 cond_resched(); 878 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 879 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 880 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 881 prev = vma; 882 continue; 883 } 884 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 885 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 886 new_flags, vma->anon_vma, 887 vma->vm_file, vma->vm_pgoff, 888 vma_policy(vma), 889 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 890 if (prev) 891 vma = prev; 892 else 893 prev = vma; 894 vma->vm_flags = new_flags; 895 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 896 } 897 mmap_write_unlock(mm); 898 mmput(mm); 899 wakeup: 900 /* 901 * After no new page faults can wait on this fault_*wqh, flush 902 * the last page faults that may have been already waiting on 903 * the fault_*wqh. 904 */ 905 spin_lock_irq(&ctx->fault_pending_wqh.lock); 906 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 907 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 908 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 909 910 /* Flush pending events that may still wait on event_wqh */ 911 wake_up_all(&ctx->event_wqh); 912 913 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 914 userfaultfd_ctx_put(ctx); 915 return 0; 916 } 917 918 /* fault_pending_wqh.lock must be hold by the caller */ 919 static inline struct userfaultfd_wait_queue *find_userfault_in( 920 wait_queue_head_t *wqh) 921 { 922 wait_queue_entry_t *wq; 923 struct userfaultfd_wait_queue *uwq; 924 925 lockdep_assert_held(&wqh->lock); 926 927 uwq = NULL; 928 if (!waitqueue_active(wqh)) 929 goto out; 930 /* walk in reverse to provide FIFO behavior to read userfaults */ 931 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 932 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 933 out: 934 return uwq; 935 } 936 937 static inline struct userfaultfd_wait_queue *find_userfault( 938 struct userfaultfd_ctx *ctx) 939 { 940 return find_userfault_in(&ctx->fault_pending_wqh); 941 } 942 943 static inline struct userfaultfd_wait_queue *find_userfault_evt( 944 struct userfaultfd_ctx *ctx) 945 { 946 return find_userfault_in(&ctx->event_wqh); 947 } 948 949 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 950 { 951 struct userfaultfd_ctx *ctx = file->private_data; 952 __poll_t ret; 953 954 poll_wait(file, &ctx->fd_wqh, wait); 955 956 if (!userfaultfd_is_initialized(ctx)) 957 return EPOLLERR; 958 959 /* 960 * poll() never guarantees that read won't block. 961 * userfaults can be waken before they're read(). 962 */ 963 if (unlikely(!(file->f_flags & O_NONBLOCK))) 964 return EPOLLERR; 965 /* 966 * lockless access to see if there are pending faults 967 * __pollwait last action is the add_wait_queue but 968 * the spin_unlock would allow the waitqueue_active to 969 * pass above the actual list_add inside 970 * add_wait_queue critical section. So use a full 971 * memory barrier to serialize the list_add write of 972 * add_wait_queue() with the waitqueue_active read 973 * below. 974 */ 975 ret = 0; 976 smp_mb(); 977 if (waitqueue_active(&ctx->fault_pending_wqh)) 978 ret = EPOLLIN; 979 else if (waitqueue_active(&ctx->event_wqh)) 980 ret = EPOLLIN; 981 982 return ret; 983 } 984 985 static const struct file_operations userfaultfd_fops; 986 987 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 988 struct inode *inode, 989 struct uffd_msg *msg) 990 { 991 int fd; 992 993 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 994 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 995 if (fd < 0) 996 return fd; 997 998 msg->arg.reserved.reserved1 = 0; 999 msg->arg.fork.ufd = fd; 1000 return 0; 1001 } 1002 1003 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1004 struct uffd_msg *msg, struct inode *inode) 1005 { 1006 ssize_t ret; 1007 DECLARE_WAITQUEUE(wait, current); 1008 struct userfaultfd_wait_queue *uwq; 1009 /* 1010 * Handling fork event requires sleeping operations, so 1011 * we drop the event_wqh lock, then do these ops, then 1012 * lock it back and wake up the waiter. While the lock is 1013 * dropped the ewq may go away so we keep track of it 1014 * carefully. 1015 */ 1016 LIST_HEAD(fork_event); 1017 struct userfaultfd_ctx *fork_nctx = NULL; 1018 1019 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1020 spin_lock_irq(&ctx->fd_wqh.lock); 1021 __add_wait_queue(&ctx->fd_wqh, &wait); 1022 for (;;) { 1023 set_current_state(TASK_INTERRUPTIBLE); 1024 spin_lock(&ctx->fault_pending_wqh.lock); 1025 uwq = find_userfault(ctx); 1026 if (uwq) { 1027 /* 1028 * Use a seqcount to repeat the lockless check 1029 * in wake_userfault() to avoid missing 1030 * wakeups because during the refile both 1031 * waitqueue could become empty if this is the 1032 * only userfault. 1033 */ 1034 write_seqcount_begin(&ctx->refile_seq); 1035 1036 /* 1037 * The fault_pending_wqh.lock prevents the uwq 1038 * to disappear from under us. 1039 * 1040 * Refile this userfault from 1041 * fault_pending_wqh to fault_wqh, it's not 1042 * pending anymore after we read it. 1043 * 1044 * Use list_del() by hand (as 1045 * userfaultfd_wake_function also uses 1046 * list_del_init() by hand) to be sure nobody 1047 * changes __remove_wait_queue() to use 1048 * list_del_init() in turn breaking the 1049 * !list_empty_careful() check in 1050 * handle_userfault(). The uwq->wq.head list 1051 * must never be empty at any time during the 1052 * refile, or the waitqueue could disappear 1053 * from under us. The "wait_queue_head_t" 1054 * parameter of __remove_wait_queue() is unused 1055 * anyway. 1056 */ 1057 list_del(&uwq->wq.entry); 1058 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1059 1060 write_seqcount_end(&ctx->refile_seq); 1061 1062 /* careful to always initialize msg if ret == 0 */ 1063 *msg = uwq->msg; 1064 spin_unlock(&ctx->fault_pending_wqh.lock); 1065 ret = 0; 1066 break; 1067 } 1068 spin_unlock(&ctx->fault_pending_wqh.lock); 1069 1070 spin_lock(&ctx->event_wqh.lock); 1071 uwq = find_userfault_evt(ctx); 1072 if (uwq) { 1073 *msg = uwq->msg; 1074 1075 if (uwq->msg.event == UFFD_EVENT_FORK) { 1076 fork_nctx = (struct userfaultfd_ctx *) 1077 (unsigned long) 1078 uwq->msg.arg.reserved.reserved1; 1079 list_move(&uwq->wq.entry, &fork_event); 1080 /* 1081 * fork_nctx can be freed as soon as 1082 * we drop the lock, unless we take a 1083 * reference on it. 1084 */ 1085 userfaultfd_ctx_get(fork_nctx); 1086 spin_unlock(&ctx->event_wqh.lock); 1087 ret = 0; 1088 break; 1089 } 1090 1091 userfaultfd_event_complete(ctx, uwq); 1092 spin_unlock(&ctx->event_wqh.lock); 1093 ret = 0; 1094 break; 1095 } 1096 spin_unlock(&ctx->event_wqh.lock); 1097 1098 if (signal_pending(current)) { 1099 ret = -ERESTARTSYS; 1100 break; 1101 } 1102 if (no_wait) { 1103 ret = -EAGAIN; 1104 break; 1105 } 1106 spin_unlock_irq(&ctx->fd_wqh.lock); 1107 schedule(); 1108 spin_lock_irq(&ctx->fd_wqh.lock); 1109 } 1110 __remove_wait_queue(&ctx->fd_wqh, &wait); 1111 __set_current_state(TASK_RUNNING); 1112 spin_unlock_irq(&ctx->fd_wqh.lock); 1113 1114 if (!ret && msg->event == UFFD_EVENT_FORK) { 1115 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1116 spin_lock_irq(&ctx->event_wqh.lock); 1117 if (!list_empty(&fork_event)) { 1118 /* 1119 * The fork thread didn't abort, so we can 1120 * drop the temporary refcount. 1121 */ 1122 userfaultfd_ctx_put(fork_nctx); 1123 1124 uwq = list_first_entry(&fork_event, 1125 typeof(*uwq), 1126 wq.entry); 1127 /* 1128 * If fork_event list wasn't empty and in turn 1129 * the event wasn't already released by fork 1130 * (the event is allocated on fork kernel 1131 * stack), put the event back to its place in 1132 * the event_wq. fork_event head will be freed 1133 * as soon as we return so the event cannot 1134 * stay queued there no matter the current 1135 * "ret" value. 1136 */ 1137 list_del(&uwq->wq.entry); 1138 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1139 1140 /* 1141 * Leave the event in the waitqueue and report 1142 * error to userland if we failed to resolve 1143 * the userfault fork. 1144 */ 1145 if (likely(!ret)) 1146 userfaultfd_event_complete(ctx, uwq); 1147 } else { 1148 /* 1149 * Here the fork thread aborted and the 1150 * refcount from the fork thread on fork_nctx 1151 * has already been released. We still hold 1152 * the reference we took before releasing the 1153 * lock above. If resolve_userfault_fork 1154 * failed we've to drop it because the 1155 * fork_nctx has to be freed in such case. If 1156 * it succeeded we'll hold it because the new 1157 * uffd references it. 1158 */ 1159 if (ret) 1160 userfaultfd_ctx_put(fork_nctx); 1161 } 1162 spin_unlock_irq(&ctx->event_wqh.lock); 1163 } 1164 1165 return ret; 1166 } 1167 1168 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1169 size_t count, loff_t *ppos) 1170 { 1171 struct userfaultfd_ctx *ctx = file->private_data; 1172 ssize_t _ret, ret = 0; 1173 struct uffd_msg msg; 1174 int no_wait = file->f_flags & O_NONBLOCK; 1175 struct inode *inode = file_inode(file); 1176 1177 if (!userfaultfd_is_initialized(ctx)) 1178 return -EINVAL; 1179 1180 for (;;) { 1181 if (count < sizeof(msg)) 1182 return ret ? ret : -EINVAL; 1183 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1184 if (_ret < 0) 1185 return ret ? ret : _ret; 1186 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1187 return ret ? ret : -EFAULT; 1188 ret += sizeof(msg); 1189 buf += sizeof(msg); 1190 count -= sizeof(msg); 1191 /* 1192 * Allow to read more than one fault at time but only 1193 * block if waiting for the very first one. 1194 */ 1195 no_wait = O_NONBLOCK; 1196 } 1197 } 1198 1199 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1200 struct userfaultfd_wake_range *range) 1201 { 1202 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1203 /* wake all in the range and autoremove */ 1204 if (waitqueue_active(&ctx->fault_pending_wqh)) 1205 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1206 range); 1207 if (waitqueue_active(&ctx->fault_wqh)) 1208 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1209 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1210 } 1211 1212 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1213 struct userfaultfd_wake_range *range) 1214 { 1215 unsigned seq; 1216 bool need_wakeup; 1217 1218 /* 1219 * To be sure waitqueue_active() is not reordered by the CPU 1220 * before the pagetable update, use an explicit SMP memory 1221 * barrier here. PT lock release or mmap_read_unlock(mm) still 1222 * have release semantics that can allow the 1223 * waitqueue_active() to be reordered before the pte update. 1224 */ 1225 smp_mb(); 1226 1227 /* 1228 * Use waitqueue_active because it's very frequent to 1229 * change the address space atomically even if there are no 1230 * userfaults yet. So we take the spinlock only when we're 1231 * sure we've userfaults to wake. 1232 */ 1233 do { 1234 seq = read_seqcount_begin(&ctx->refile_seq); 1235 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1236 waitqueue_active(&ctx->fault_wqh); 1237 cond_resched(); 1238 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1239 if (need_wakeup) 1240 __wake_userfault(ctx, range); 1241 } 1242 1243 static __always_inline int validate_range(struct mm_struct *mm, 1244 __u64 start, __u64 len) 1245 { 1246 __u64 task_size = mm->task_size; 1247 1248 if (start & ~PAGE_MASK) 1249 return -EINVAL; 1250 if (len & ~PAGE_MASK) 1251 return -EINVAL; 1252 if (!len) 1253 return -EINVAL; 1254 if (start < mmap_min_addr) 1255 return -EINVAL; 1256 if (start >= task_size) 1257 return -EINVAL; 1258 if (len > task_size - start) 1259 return -EINVAL; 1260 return 0; 1261 } 1262 1263 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1264 unsigned long arg) 1265 { 1266 struct mm_struct *mm = ctx->mm; 1267 struct vm_area_struct *vma, *prev, *cur; 1268 int ret; 1269 struct uffdio_register uffdio_register; 1270 struct uffdio_register __user *user_uffdio_register; 1271 unsigned long vm_flags, new_flags; 1272 bool found; 1273 bool basic_ioctls; 1274 unsigned long start, end, vma_end; 1275 1276 user_uffdio_register = (struct uffdio_register __user *) arg; 1277 1278 ret = -EFAULT; 1279 if (copy_from_user(&uffdio_register, user_uffdio_register, 1280 sizeof(uffdio_register)-sizeof(__u64))) 1281 goto out; 1282 1283 ret = -EINVAL; 1284 if (!uffdio_register.mode) 1285 goto out; 1286 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1287 goto out; 1288 vm_flags = 0; 1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1290 vm_flags |= VM_UFFD_MISSING; 1291 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1292 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1293 goto out; 1294 #endif 1295 vm_flags |= VM_UFFD_WP; 1296 } 1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1298 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1299 goto out; 1300 #endif 1301 vm_flags |= VM_UFFD_MINOR; 1302 } 1303 1304 ret = validate_range(mm, uffdio_register.range.start, 1305 uffdio_register.range.len); 1306 if (ret) 1307 goto out; 1308 1309 start = uffdio_register.range.start; 1310 end = start + uffdio_register.range.len; 1311 1312 ret = -ENOMEM; 1313 if (!mmget_not_zero(mm)) 1314 goto out; 1315 1316 mmap_write_lock(mm); 1317 vma = find_vma_prev(mm, start, &prev); 1318 if (!vma) 1319 goto out_unlock; 1320 1321 /* check that there's at least one vma in the range */ 1322 ret = -EINVAL; 1323 if (vma->vm_start >= end) 1324 goto out_unlock; 1325 1326 /* 1327 * If the first vma contains huge pages, make sure start address 1328 * is aligned to huge page size. 1329 */ 1330 if (is_vm_hugetlb_page(vma)) { 1331 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1332 1333 if (start & (vma_hpagesize - 1)) 1334 goto out_unlock; 1335 } 1336 1337 /* 1338 * Search for not compatible vmas. 1339 */ 1340 found = false; 1341 basic_ioctls = false; 1342 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1343 cond_resched(); 1344 1345 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1346 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1347 1348 /* check not compatible vmas */ 1349 ret = -EINVAL; 1350 if (!vma_can_userfault(cur, vm_flags)) 1351 goto out_unlock; 1352 1353 /* 1354 * UFFDIO_COPY will fill file holes even without 1355 * PROT_WRITE. This check enforces that if this is a 1356 * MAP_SHARED, the process has write permission to the backing 1357 * file. If VM_MAYWRITE is set it also enforces that on a 1358 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1359 * F_WRITE_SEAL can be taken until the vma is destroyed. 1360 */ 1361 ret = -EPERM; 1362 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1363 goto out_unlock; 1364 1365 /* 1366 * If this vma contains ending address, and huge pages 1367 * check alignment. 1368 */ 1369 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1370 end > cur->vm_start) { 1371 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1372 1373 ret = -EINVAL; 1374 1375 if (end & (vma_hpagesize - 1)) 1376 goto out_unlock; 1377 } 1378 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1379 goto out_unlock; 1380 1381 /* 1382 * Check that this vma isn't already owned by a 1383 * different userfaultfd. We can't allow more than one 1384 * userfaultfd to own a single vma simultaneously or we 1385 * wouldn't know which one to deliver the userfaults to. 1386 */ 1387 ret = -EBUSY; 1388 if (cur->vm_userfaultfd_ctx.ctx && 1389 cur->vm_userfaultfd_ctx.ctx != ctx) 1390 goto out_unlock; 1391 1392 /* 1393 * Note vmas containing huge pages 1394 */ 1395 if (is_vm_hugetlb_page(cur)) 1396 basic_ioctls = true; 1397 1398 found = true; 1399 } 1400 BUG_ON(!found); 1401 1402 if (vma->vm_start < start) 1403 prev = vma; 1404 1405 ret = 0; 1406 do { 1407 cond_resched(); 1408 1409 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1410 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1411 vma->vm_userfaultfd_ctx.ctx != ctx); 1412 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1413 1414 /* 1415 * Nothing to do: this vma is already registered into this 1416 * userfaultfd and with the right tracking mode too. 1417 */ 1418 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1419 (vma->vm_flags & vm_flags) == vm_flags) 1420 goto skip; 1421 1422 if (vma->vm_start > start) 1423 start = vma->vm_start; 1424 vma_end = min(end, vma->vm_end); 1425 1426 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1427 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1428 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1429 vma_policy(vma), 1430 ((struct vm_userfaultfd_ctx){ ctx }), 1431 anon_vma_name(vma)); 1432 if (prev) { 1433 vma = prev; 1434 goto next; 1435 } 1436 if (vma->vm_start < start) { 1437 ret = split_vma(mm, vma, start, 1); 1438 if (ret) 1439 break; 1440 } 1441 if (vma->vm_end > end) { 1442 ret = split_vma(mm, vma, end, 0); 1443 if (ret) 1444 break; 1445 } 1446 next: 1447 /* 1448 * In the vma_merge() successful mprotect-like case 8: 1449 * the next vma was merged into the current one and 1450 * the current one has not been updated yet. 1451 */ 1452 vma->vm_flags = new_flags; 1453 vma->vm_userfaultfd_ctx.ctx = ctx; 1454 1455 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1456 hugetlb_unshare_all_pmds(vma); 1457 1458 skip: 1459 prev = vma; 1460 start = vma->vm_end; 1461 vma = vma->vm_next; 1462 } while (vma && vma->vm_start < end); 1463 out_unlock: 1464 mmap_write_unlock(mm); 1465 mmput(mm); 1466 if (!ret) { 1467 __u64 ioctls_out; 1468 1469 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1470 UFFD_API_RANGE_IOCTLS; 1471 1472 /* 1473 * Declare the WP ioctl only if the WP mode is 1474 * specified and all checks passed with the range 1475 */ 1476 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1477 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1478 1479 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1480 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1481 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1482 1483 /* 1484 * Now that we scanned all vmas we can already tell 1485 * userland which ioctls methods are guaranteed to 1486 * succeed on this range. 1487 */ 1488 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1489 ret = -EFAULT; 1490 } 1491 out: 1492 return ret; 1493 } 1494 1495 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1496 unsigned long arg) 1497 { 1498 struct mm_struct *mm = ctx->mm; 1499 struct vm_area_struct *vma, *prev, *cur; 1500 int ret; 1501 struct uffdio_range uffdio_unregister; 1502 unsigned long new_flags; 1503 bool found; 1504 unsigned long start, end, vma_end; 1505 const void __user *buf = (void __user *)arg; 1506 1507 ret = -EFAULT; 1508 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1509 goto out; 1510 1511 ret = validate_range(mm, uffdio_unregister.start, 1512 uffdio_unregister.len); 1513 if (ret) 1514 goto out; 1515 1516 start = uffdio_unregister.start; 1517 end = start + uffdio_unregister.len; 1518 1519 ret = -ENOMEM; 1520 if (!mmget_not_zero(mm)) 1521 goto out; 1522 1523 mmap_write_lock(mm); 1524 vma = find_vma_prev(mm, start, &prev); 1525 if (!vma) 1526 goto out_unlock; 1527 1528 /* check that there's at least one vma in the range */ 1529 ret = -EINVAL; 1530 if (vma->vm_start >= end) 1531 goto out_unlock; 1532 1533 /* 1534 * If the first vma contains huge pages, make sure start address 1535 * is aligned to huge page size. 1536 */ 1537 if (is_vm_hugetlb_page(vma)) { 1538 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1539 1540 if (start & (vma_hpagesize - 1)) 1541 goto out_unlock; 1542 } 1543 1544 /* 1545 * Search for not compatible vmas. 1546 */ 1547 found = false; 1548 ret = -EINVAL; 1549 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1550 cond_resched(); 1551 1552 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1553 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1554 1555 /* 1556 * Check not compatible vmas, not strictly required 1557 * here as not compatible vmas cannot have an 1558 * userfaultfd_ctx registered on them, but this 1559 * provides for more strict behavior to notice 1560 * unregistration errors. 1561 */ 1562 if (!vma_can_userfault(cur, cur->vm_flags)) 1563 goto out_unlock; 1564 1565 found = true; 1566 } 1567 BUG_ON(!found); 1568 1569 if (vma->vm_start < start) 1570 prev = vma; 1571 1572 ret = 0; 1573 do { 1574 cond_resched(); 1575 1576 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1577 1578 /* 1579 * Nothing to do: this vma is already registered into this 1580 * userfaultfd and with the right tracking mode too. 1581 */ 1582 if (!vma->vm_userfaultfd_ctx.ctx) 1583 goto skip; 1584 1585 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1586 1587 if (vma->vm_start > start) 1588 start = vma->vm_start; 1589 vma_end = min(end, vma->vm_end); 1590 1591 if (userfaultfd_missing(vma)) { 1592 /* 1593 * Wake any concurrent pending userfault while 1594 * we unregister, so they will not hang 1595 * permanently and it avoids userland to call 1596 * UFFDIO_WAKE explicitly. 1597 */ 1598 struct userfaultfd_wake_range range; 1599 range.start = start; 1600 range.len = vma_end - start; 1601 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1602 } 1603 1604 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1605 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1606 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1607 vma_policy(vma), 1608 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1609 if (prev) { 1610 vma = prev; 1611 goto next; 1612 } 1613 if (vma->vm_start < start) { 1614 ret = split_vma(mm, vma, start, 1); 1615 if (ret) 1616 break; 1617 } 1618 if (vma->vm_end > end) { 1619 ret = split_vma(mm, vma, end, 0); 1620 if (ret) 1621 break; 1622 } 1623 next: 1624 /* 1625 * In the vma_merge() successful mprotect-like case 8: 1626 * the next vma was merged into the current one and 1627 * the current one has not been updated yet. 1628 */ 1629 vma->vm_flags = new_flags; 1630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1631 1632 skip: 1633 prev = vma; 1634 start = vma->vm_end; 1635 vma = vma->vm_next; 1636 } while (vma && vma->vm_start < end); 1637 out_unlock: 1638 mmap_write_unlock(mm); 1639 mmput(mm); 1640 out: 1641 return ret; 1642 } 1643 1644 /* 1645 * userfaultfd_wake may be used in combination with the 1646 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1647 */ 1648 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1649 unsigned long arg) 1650 { 1651 int ret; 1652 struct uffdio_range uffdio_wake; 1653 struct userfaultfd_wake_range range; 1654 const void __user *buf = (void __user *)arg; 1655 1656 ret = -EFAULT; 1657 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1658 goto out; 1659 1660 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1661 if (ret) 1662 goto out; 1663 1664 range.start = uffdio_wake.start; 1665 range.len = uffdio_wake.len; 1666 1667 /* 1668 * len == 0 means wake all and we don't want to wake all here, 1669 * so check it again to be sure. 1670 */ 1671 VM_BUG_ON(!range.len); 1672 1673 wake_userfault(ctx, &range); 1674 ret = 0; 1675 1676 out: 1677 return ret; 1678 } 1679 1680 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1681 unsigned long arg) 1682 { 1683 __s64 ret; 1684 struct uffdio_copy uffdio_copy; 1685 struct uffdio_copy __user *user_uffdio_copy; 1686 struct userfaultfd_wake_range range; 1687 1688 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1689 1690 ret = -EAGAIN; 1691 if (atomic_read(&ctx->mmap_changing)) 1692 goto out; 1693 1694 ret = -EFAULT; 1695 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1696 /* don't copy "copy" last field */ 1697 sizeof(uffdio_copy)-sizeof(__s64))) 1698 goto out; 1699 1700 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1701 if (ret) 1702 goto out; 1703 /* 1704 * double check for wraparound just in case. copy_from_user() 1705 * will later check uffdio_copy.src + uffdio_copy.len to fit 1706 * in the userland range. 1707 */ 1708 ret = -EINVAL; 1709 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1710 goto out; 1711 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1712 goto out; 1713 if (mmget_not_zero(ctx->mm)) { 1714 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1715 uffdio_copy.len, &ctx->mmap_changing, 1716 uffdio_copy.mode); 1717 mmput(ctx->mm); 1718 } else { 1719 return -ESRCH; 1720 } 1721 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1722 return -EFAULT; 1723 if (ret < 0) 1724 goto out; 1725 BUG_ON(!ret); 1726 /* len == 0 would wake all */ 1727 range.len = ret; 1728 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1729 range.start = uffdio_copy.dst; 1730 wake_userfault(ctx, &range); 1731 } 1732 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1733 out: 1734 return ret; 1735 } 1736 1737 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1738 unsigned long arg) 1739 { 1740 __s64 ret; 1741 struct uffdio_zeropage uffdio_zeropage; 1742 struct uffdio_zeropage __user *user_uffdio_zeropage; 1743 struct userfaultfd_wake_range range; 1744 1745 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1746 1747 ret = -EAGAIN; 1748 if (atomic_read(&ctx->mmap_changing)) 1749 goto out; 1750 1751 ret = -EFAULT; 1752 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1753 /* don't copy "zeropage" last field */ 1754 sizeof(uffdio_zeropage)-sizeof(__s64))) 1755 goto out; 1756 1757 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1758 uffdio_zeropage.range.len); 1759 if (ret) 1760 goto out; 1761 ret = -EINVAL; 1762 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1763 goto out; 1764 1765 if (mmget_not_zero(ctx->mm)) { 1766 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1767 uffdio_zeropage.range.len, 1768 &ctx->mmap_changing); 1769 mmput(ctx->mm); 1770 } else { 1771 return -ESRCH; 1772 } 1773 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1774 return -EFAULT; 1775 if (ret < 0) 1776 goto out; 1777 /* len == 0 would wake all */ 1778 BUG_ON(!ret); 1779 range.len = ret; 1780 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1781 range.start = uffdio_zeropage.range.start; 1782 wake_userfault(ctx, &range); 1783 } 1784 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1785 out: 1786 return ret; 1787 } 1788 1789 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1790 unsigned long arg) 1791 { 1792 int ret; 1793 struct uffdio_writeprotect uffdio_wp; 1794 struct uffdio_writeprotect __user *user_uffdio_wp; 1795 struct userfaultfd_wake_range range; 1796 bool mode_wp, mode_dontwake; 1797 1798 if (atomic_read(&ctx->mmap_changing)) 1799 return -EAGAIN; 1800 1801 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1802 1803 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1804 sizeof(struct uffdio_writeprotect))) 1805 return -EFAULT; 1806 1807 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1808 uffdio_wp.range.len); 1809 if (ret) 1810 return ret; 1811 1812 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1813 UFFDIO_WRITEPROTECT_MODE_WP)) 1814 return -EINVAL; 1815 1816 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1817 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1818 1819 if (mode_wp && mode_dontwake) 1820 return -EINVAL; 1821 1822 if (mmget_not_zero(ctx->mm)) { 1823 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1824 uffdio_wp.range.len, mode_wp, 1825 &ctx->mmap_changing); 1826 mmput(ctx->mm); 1827 } else { 1828 return -ESRCH; 1829 } 1830 1831 if (ret) 1832 return ret; 1833 1834 if (!mode_wp && !mode_dontwake) { 1835 range.start = uffdio_wp.range.start; 1836 range.len = uffdio_wp.range.len; 1837 wake_userfault(ctx, &range); 1838 } 1839 return ret; 1840 } 1841 1842 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1843 { 1844 __s64 ret; 1845 struct uffdio_continue uffdio_continue; 1846 struct uffdio_continue __user *user_uffdio_continue; 1847 struct userfaultfd_wake_range range; 1848 1849 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1850 1851 ret = -EAGAIN; 1852 if (atomic_read(&ctx->mmap_changing)) 1853 goto out; 1854 1855 ret = -EFAULT; 1856 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1857 /* don't copy the output fields */ 1858 sizeof(uffdio_continue) - (sizeof(__s64)))) 1859 goto out; 1860 1861 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1862 uffdio_continue.range.len); 1863 if (ret) 1864 goto out; 1865 1866 ret = -EINVAL; 1867 /* double check for wraparound just in case. */ 1868 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1869 uffdio_continue.range.start) { 1870 goto out; 1871 } 1872 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1873 goto out; 1874 1875 if (mmget_not_zero(ctx->mm)) { 1876 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1877 uffdio_continue.range.len, 1878 &ctx->mmap_changing); 1879 mmput(ctx->mm); 1880 } else { 1881 return -ESRCH; 1882 } 1883 1884 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1885 return -EFAULT; 1886 if (ret < 0) 1887 goto out; 1888 1889 /* len == 0 would wake all */ 1890 BUG_ON(!ret); 1891 range.len = ret; 1892 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1893 range.start = uffdio_continue.range.start; 1894 wake_userfault(ctx, &range); 1895 } 1896 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1897 1898 out: 1899 return ret; 1900 } 1901 1902 static inline unsigned int uffd_ctx_features(__u64 user_features) 1903 { 1904 /* 1905 * For the current set of features the bits just coincide. Set 1906 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1907 */ 1908 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1909 } 1910 1911 /* 1912 * userland asks for a certain API version and we return which bits 1913 * and ioctl commands are implemented in this kernel for such API 1914 * version or -EINVAL if unknown. 1915 */ 1916 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1917 unsigned long arg) 1918 { 1919 struct uffdio_api uffdio_api; 1920 void __user *buf = (void __user *)arg; 1921 unsigned int ctx_features; 1922 int ret; 1923 __u64 features; 1924 1925 ret = -EFAULT; 1926 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1927 goto out; 1928 /* Ignore unsupported features (userspace built against newer kernel) */ 1929 features = uffdio_api.features & UFFD_API_FEATURES; 1930 ret = -EPERM; 1931 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1932 goto err_out; 1933 /* report all available features and ioctls to userland */ 1934 uffdio_api.features = UFFD_API_FEATURES; 1935 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1936 uffdio_api.features &= 1937 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1938 #endif 1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1940 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1941 #endif 1942 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1943 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1944 #endif 1945 uffdio_api.ioctls = UFFD_API_IOCTLS; 1946 ret = -EFAULT; 1947 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1948 goto out; 1949 1950 /* only enable the requested features for this uffd context */ 1951 ctx_features = uffd_ctx_features(features); 1952 ret = -EINVAL; 1953 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1954 goto err_out; 1955 1956 ret = 0; 1957 out: 1958 return ret; 1959 err_out: 1960 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1961 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1962 ret = -EFAULT; 1963 goto out; 1964 } 1965 1966 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1967 unsigned long arg) 1968 { 1969 int ret = -EINVAL; 1970 struct userfaultfd_ctx *ctx = file->private_data; 1971 1972 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 1973 return -EINVAL; 1974 1975 switch(cmd) { 1976 case UFFDIO_API: 1977 ret = userfaultfd_api(ctx, arg); 1978 break; 1979 case UFFDIO_REGISTER: 1980 ret = userfaultfd_register(ctx, arg); 1981 break; 1982 case UFFDIO_UNREGISTER: 1983 ret = userfaultfd_unregister(ctx, arg); 1984 break; 1985 case UFFDIO_WAKE: 1986 ret = userfaultfd_wake(ctx, arg); 1987 break; 1988 case UFFDIO_COPY: 1989 ret = userfaultfd_copy(ctx, arg); 1990 break; 1991 case UFFDIO_ZEROPAGE: 1992 ret = userfaultfd_zeropage(ctx, arg); 1993 break; 1994 case UFFDIO_WRITEPROTECT: 1995 ret = userfaultfd_writeprotect(ctx, arg); 1996 break; 1997 case UFFDIO_CONTINUE: 1998 ret = userfaultfd_continue(ctx, arg); 1999 break; 2000 } 2001 return ret; 2002 } 2003 2004 #ifdef CONFIG_PROC_FS 2005 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2006 { 2007 struct userfaultfd_ctx *ctx = f->private_data; 2008 wait_queue_entry_t *wq; 2009 unsigned long pending = 0, total = 0; 2010 2011 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2012 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2013 pending++; 2014 total++; 2015 } 2016 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2017 total++; 2018 } 2019 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2020 2021 /* 2022 * If more protocols will be added, there will be all shown 2023 * separated by a space. Like this: 2024 * protocols: aa:... bb:... 2025 */ 2026 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2027 pending, total, UFFD_API, ctx->features, 2028 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2029 } 2030 #endif 2031 2032 static const struct file_operations userfaultfd_fops = { 2033 #ifdef CONFIG_PROC_FS 2034 .show_fdinfo = userfaultfd_show_fdinfo, 2035 #endif 2036 .release = userfaultfd_release, 2037 .poll = userfaultfd_poll, 2038 .read = userfaultfd_read, 2039 .unlocked_ioctl = userfaultfd_ioctl, 2040 .compat_ioctl = compat_ptr_ioctl, 2041 .llseek = noop_llseek, 2042 }; 2043 2044 static void init_once_userfaultfd_ctx(void *mem) 2045 { 2046 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2047 2048 init_waitqueue_head(&ctx->fault_pending_wqh); 2049 init_waitqueue_head(&ctx->fault_wqh); 2050 init_waitqueue_head(&ctx->event_wqh); 2051 init_waitqueue_head(&ctx->fd_wqh); 2052 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2053 } 2054 2055 SYSCALL_DEFINE1(userfaultfd, int, flags) 2056 { 2057 struct userfaultfd_ctx *ctx; 2058 int fd; 2059 2060 if (!sysctl_unprivileged_userfaultfd && 2061 (flags & UFFD_USER_MODE_ONLY) == 0 && 2062 !capable(CAP_SYS_PTRACE)) { 2063 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 2064 "sysctl knob to 1 if kernel faults must be handled " 2065 "without obtaining CAP_SYS_PTRACE capability\n"); 2066 return -EPERM; 2067 } 2068 2069 BUG_ON(!current->mm); 2070 2071 /* Check the UFFD_* constants for consistency. */ 2072 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2073 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2074 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2075 2076 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2077 return -EINVAL; 2078 2079 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2080 if (!ctx) 2081 return -ENOMEM; 2082 2083 refcount_set(&ctx->refcount, 1); 2084 ctx->flags = flags; 2085 ctx->features = 0; 2086 ctx->released = false; 2087 atomic_set(&ctx->mmap_changing, 0); 2088 ctx->mm = current->mm; 2089 /* prevent the mm struct to be freed */ 2090 mmgrab(ctx->mm); 2091 2092 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2093 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2094 if (fd < 0) { 2095 mmdrop(ctx->mm); 2096 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2097 } 2098 return fd; 2099 } 2100 2101 static int __init userfaultfd_init(void) 2102 { 2103 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2104 sizeof(struct userfaultfd_ctx), 2105 0, 2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2107 init_once_userfaultfd_ctx); 2108 return 0; 2109 } 2110 __initcall(userfaultfd_init); 2111